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Abstract The class of matrix optimization problems (MOPs) has been recognized in recent years to be a pow-
erful tool to model many important applications involving structured low rank matrices within and beyond the
optimization community. This trend can be credited to some extent to the exciting developments in emerging
fields such as compressed sensing. The Löwner operator, which generates a matrix valued function via apply-
ing a single-variable function to each of the singular values of a matrix, has played an important role for a long
time in solving matrix optimization problems. However, the classical theory developed for the Löwner operator
has become inadequate in these recent applications. The main objective of this paper is to provide necessary
theoretical foundations from the perspectives of designing efficient numerical methods for solving MOPs. We
achieve this goal by introducing and conducting a thorough study on a new class of matrix valued functions,
coined as spectral operators of matrices. Several fundamental properties of spectral operators, including the
well-definedness, continuity, directional differentiability and Fréchet-differentiability are systematically stud-
ied.

Keywords spectral operators · directional differentiability · Fréchet differentiability ·matrix valued functions ·
proximal mappings
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1 Introduction

In this paper, we introduce a class of matrix valued functions, to be called spectral operators of
matrices. This class of matrix valued functions frequently arises in various applications such as
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matrix optimization problems (MOPs). MOPs have recently been found to have many important
applications involving matrix norm approximation, matrix completion, rank minimization, graph
theory, machine learning, and etc. [17,45,46,38,22,2,3,4,6,47,10,28,15,18]. A simple class of
MOPs takes the form of

min f0(X)+ f (X)

s.t. A X = b, X ∈X ,
(1)

where X is the real Euclidean vector space of real/complex matrices over the scalar field of real
numbers R, f0 : X → R is continuously differentiable with a Lipschitzian gradient, f : X →
(−∞,∞] is a closed proper convex function, A : X → Rp is a linear operator, and b ∈ Rp.
By taking X = Sm, the real vector subspace of m×m real symmetric or complex Hermitian
matrices, f0(X) = 〈C,X〉 := Re(trace(CTX)), and f = δSm

+
, the convex indicator function of the

positive semidefinite matrix cone Sm
+, one recovers semidefinite programming (SDP) [44]. Here

CT is either the transpose or the conjugate transpose depending on whether C is a real or complex
matrix. By [39, Corollary 28.3.1] and [33], the Karush-Kuhn-Tucker (KKT) conditions of (1) are
equivalent to the following Lipschitzian system of equations[

∇ f0(X)−A ∗y+Γ

A X−b
X−Pf (X +Γ )

]
= 0 ,

where Pf : X →X is the proximal mapping of f at X from convex analysis [39], i.e.,

Pf (X) := argminY∈X

{
f (Y )+

1
2
‖Y −X‖2

}
, X ∈X . (2)

The optimal value function (denoted by ψ f ) for the minimization problem in (2) is called the
Moreau-Yosida regularization of f . It is continuously differentiable with the Lipschitzian gra-
dient ∇ψ f (X) = X −Pf (X). The proximal mappings form one of the most important classes of
spectral operators of matrices, and the differential properties of Pf plays a crucial role in the
algorithmic designs of MOPs, see e.g., [51,7,26].

Proximal mappings of unitarily invariant proper closed convex functions belong to a class
of matrix functions studied previously in two seminal papers by Lewis [21], and Lewis and
Sendov [23]. In [21], Lewis defined a Hermitian matrix valued function by using the gradient
mapping g(·)=∇φ(·) :Rm→Rm of a symmetric function φ :Rm→ (−∞,∞]. The corresponding
Hermitian matrix valued function G : Sm→ Sm is defined by G(Y ) = ∑

m
i=1gi(λ (Y ))pi pTi , where

{p1, . . . , pm} forms an orthonormal basis of Rm (or Cm) and λ : Sm→ Rm is the mapping of the
ordered eigenvalues of a Hermitian matrix satisfying λ1(Y )≥ λ2(Y )≥ . . .≥ λm(Y ) for Y ∈ Sm.
Properties of G such as conditions assuring its (continuous) differentiability are well studied in
[21,23]. The (strong) semismoothness [30,37] of G is studied in [36]. Note that if the function
g has the form g(y) = (h(y1), . . . ,h(ym)) ∀ y ∈ Rm for a given function h : R→ R, then the
corresponding Hermitian matrix valued function G is called Löwner’s (Hermitian) operator [27]
(see e.g., [8,43] for more details).

In the potentially non-Hermitian case, i.e., X = Vm×n, where Vm×n is either Rm×n or Cm×n

with m ≤ n, the mapping g above is assumed to be the gradient mapping of an absolutely sym-
metric function φ , that is, φ(x) = φ(Qx) for any x ∈ Rm and any signed permutation matrix
Q, i.e., an m×m matrix each of whose rows and columns has one nonzero entry which is ±1.
In [20], Lewis studied the corresponding matrix valued function G(Y ) = ∑

m
i=1gi(σ(Y ))uivTi for

Y ∈ Vm×n, where {u1, . . . ,um} and {v1, . . . ,vm} are two orthonormal bases of Rm (or Cm) and
σ is the mapping of the ordered singular values of matrices (see also [24] for more details).
The related properties of Löwner’s (non-Hermitian) operators are studied by Yang [50]. The
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spectral operators of matrices considered here go well beyond proximal mappings, and so the
theoretical results of this paper are not covered by the previously mentioned works [21,23,36,
50]. More general spectral operators have been used and played a pivotal role in the study of the
low-rank matrix completion problems with fixed basis coefficients [29], where a non-traditional
spectral operator G was introduced as the rank-correction function. It is shown in [29, 24-26]
that this spectral operator does not arise from either a proximal mapping or gradient mapping of
an absolutely symmetric function.

Our main contributions here consist of defining a new class of matrix valued functions involv-
ing both Hermitian/symmetric and non-Hermitian/non-symmetric complex/real matrices, which
we call spectral operators of matrices and providing the first extensive study of their first- and
second-order properties, including the well-definedness, continuity, directional differentiability,
and Fréchet-differentiability. We believe that these results are fundamental for both the compu-
tational and theoretical study of the general MOPs, based on the recent exciting progress made
in solving the SDP problems [41,43,51,49,13,40,5,32], in which the Löwner operator plays
an essential role in the algorithmic design. Therefore, it is expected that the theoretical results
for spectral operators established here will shed new light on both designing efficient numerical
methods for solving large scale MOPs and conducting second-order variational analysis of the
general MOPs.

The remaining parts of this paper are organized as follows. In Section 2, we give the defini-
tion of spectral operators of matrices and study their well-definedness. We study the continuity,
directional and Fréchet-differentiability of spectral operators defined on the single matrix space
Vm×n in Section 3. In Section 4, we extend the corresponding results to spectral operators defined
on the Cartesian product of several matrix spaces. We conclude our paper in the final section.
Below are some common notations and symbols to be used:

– For any X ∈ Vm×n, we denote by Xi j the (i, j)-th entry of X and x j the j-th column of X . Let
I ⊆ {1, . . . ,m} and J ⊆ {1, . . . ,n} be two index sets. We use XJ to denote the sub-matrix of X
obtained by removing all the columns of X not in J and XIJ to denote the |I|× |J| sub-matrix
of X obtained by removing all the rows of X not in I and all the columns of X not in J.

– For X ∈ Vm×m, diag(X) denotes the column vector consisting of all the diagonal entries of
X being arranged from the first to the last. For x ∈ Rm, Diag(x) denotes the m×m diagonal
matrix whose i-th diagonal entry is xi, i = 1, . . . ,m.

– We use “ ◦ ” to denote the usual Hadamard product between two matrices, i.e., for any two
matrices A and B in Vm×n the (i, j)-th entry of Z := A◦B ∈ Vm×n is Zi j = Ai jBi j.

– For any given vector y ∈ Rm, let |y|↓ be the vector of entries of |y| = (|y|1, . . . , |y|m) being
arranged in the non-increasing order |y|↓1 ≥ . . .≥ |y|↓m.

– Let Op (p = m,n) be the set of p× p orthogonal/unitary matrices. Denote Pp and ±Pp the
sets of all p× p permutation matrices and signed permutation matrices, respectively. For any
Y ∈ Sm and Z ∈ Vm×n, we use Om(Y ) to denote the set of all m×m orthogonal matrices P
satisfying the eigenvalue decomposition of Y and use Om,n(Z) to denote the set of orthogonal
matrix pairs (U,V ) satisfying the singular value decomposition, respectively.

2 Spectral operators of matrices

In this section, we will first define the spectral operators on the Cartesian product of several
real or complex matrix spaces. The study of spectral operators under this general setting is not
only useful but also necessary. In fact, spectral operators defined on the Cartesian product of
several matrix spaces appear naturally in the study of the differentiability of spectral operators,
even if they are only defined on a single matrix space (see the discussion below). Moreover,
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the spectral operators used in many applications are defined on the Cartesian product of several
matrix spaces. See, e.g., [14,48] for more details.

Let s be a positive integer and 0 ≤ s0 ≤ s be a nonnegative integer. For given positive
integers m1, . . . ,ms and ns0+1, . . . ,ns, define the real vector space X by X := Sm1 × . . .×
Sms0 ×Vms0+1×ns0+1 × . . .×Vms×ns . Without loss of generality, we assume that mk ≤ nk, k =
s0 + 1, . . . ,s. For any X = (X1, . . . ,Xs) ∈X , we have for 1 ≤ k ≤ s0, Xk ∈ Smk and s0 + 1 ≤
k ≤ s, Xk ∈ Vmk×nk . Denote Y := Rm1 × . . .×Rms0 ×Rms0 × . . .×Rms . For any X ∈ X , de-
fine κ(X)∈Y by κ(X) := (λ (X1), . . . ,λ (Xs0),σ(Xs0+1), . . . ,σ(Xs)). Define the set P by P :=
{(Q1, . . . ,Qs) |Qk ∈ Pmk , 1≤ k ≤ s0 and Qk ∈ ±Pmk , s0 +1≤ k ≤ s}. Let g : Y →Y be a given
mapping. For any x = (x1, . . . ,xs) ∈ Y with xk ∈ Rmk , we write g(x) ∈ Y in the form g(x) =
(g1(x), . . . ,gs(x)) with gk(x) ∈ Rmk for 1≤ k ≤ s.

Definition 1 1 The given mapping g : Y → Y is said to be mixed symmetric, with respect to
P , at x = (x1, . . . ,xs) ∈ Y with xk ∈ Rmk , if

g(Q1x1, . . . ,Qsxs) = (Q1g1(x), . . . ,Qsgs(x)) ∀ (Q1, . . . ,Qs) ∈P . (3)

The mapping g is said to be mixed symmetric, with respect to P , over a set D ⊆ Y if (3) holds
for every x ∈D . We call g a mixed symmetric mapping, with respect to P , if (3) holds for every
x ∈ Y .

Note that for each k ∈ {1, . . . ,s}, the function value gk(x)∈Rmk is dependent on all x1, . . . ,xs.
When there is no danger of confusion, in later discussions we often drop “with respect to P”
from Definition 1. The following result on g can be checked directly from the definition.

Proposition 1 Suppose that the mapping g : Y →Y is mixed symmetric at x = (x1, . . . ,xs)∈Y
with xk ∈ Rmk . Then, for all 1 ≤ k ≤ s and any i, j ∈ {1, . . . ,mk}, (gk(x))i = (gk(x)) j if (xk)i =
(xk) j and for all s0 +1≤ k ≤ s and any i ∈ {1, . . . ,mk}, (gk(x))i = 0 if (xk)i = 0.

Let N be a given nonempty set in X . Define κN := {κ(X) ∈ Y | X ∈N }.
Definition 2 Suppose that g : Y → Y is mixed symmetric on κN . The spectral operator G :
N →X with respect to g is defined by G(X) := (G1(X), . . . ,Gs(X)) , X = (X1, . . . ,Xs) ∈N
with

Gk(X) :=
{

PkDiag
(
gk(κ(X))

)
PT

k if 1≤ k ≤ s0,
Uk
[
Diag

(
gk(κ(X))

)
0
]
VT

k if s0 +1≤ k ≤ s,

where Pk ∈Omk(Xk), 1≤ k ≤ s0, (Uk,Vk) ∈Omk,nk(Xk), s0 +1≤ k ≤ s.

Before showing that spectral operators are well-defined, it is worth mentioning that for the
case that X ≡ Sm (or Vm×n) if g has the form g(y) = (h(y1), . . . ,h(ym)) ∈ Rm with yi ∈ R for
some given scalar valued functional h : R→ R, then the corresponding spectral operator G is
called the Löwner operator [43] in recognition of Löwner’s original contribution on this topic in
[27] (or the Löwner non-Hermitian operator [50] if h(0) = 0).

Let Y ∈ Sm be given. Let µ1 > µ2 > .. . > µr denote the distinct eigenvalues of Y . Define the
index sets αl := {i |λi(Y ) = µ l , 1≤ i≤m}, l = 1, . . . ,r. Let Λ(Y ) be the m×m diagonal matrix
whose i-th diagonal entry is λi(Y ). Then, the following elementary property on the eigenvalue
decomposition of Y can be checked directly.

1 Note that Definition 1 is different from the property (E ) used in [31, Definition 2.2] for the special Hermitian/symmetric case,
i.e., X = Sm1 . The conditions used in [31, Definition 2.1 & 2.2] do not seem to be proper ones for studying spectral operators. For
instance, consider the function f : R2 → R2 defined by f (x) = x↓ for x ∈ R2, where x↓ is the vector of entries of x being arranged
in the non-increasing order, i.e., x↓1 ≥ x↓2. Clearly, f satisfies [31, Definition 2.1 & 2.2] and f is not differentiable at x with x1 = x2.
However, the corresponding matrix function F(X) = X is differentiable on S 2, which implies that [31, Corollary 4.2] is incorrect.
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Proposition 2 The matrix Q ∈ Om satisfies QΛ(Y ) = Λ(Y )Q if and only if there exist Ql ∈
O|αl |, l = 1, . . . ,r such that Q is a block diagonal matrix whose l-th diagonal block is Ql , i.e.,
Q = Diag(Q1,Q2, . . . ,Qr).

Let Z ∈Vm×n be given. We use ν1 > ν2 > .. . > νr > 0 to denote the nonzero distinct singular
values of Z. Let al , l = 1, . . . ,r, a, b and c be the index sets defined by

al := {i |σi(Z) = ν l, 1≤ i≤ m}, l = 1, . . . ,r, a := {i |σi(Z)> 0, 1≤ i≤ m} ,
b := {i |σi(Z) = 0, 1≤ i≤ m} and c := {m+1, . . . ,n} . (4)

By combining Propositions 1 and 2 and [14, Proposition 5] with the mixed symmetric property
of g, one can check the following result on the well-definedness of spectral operators readily.
For simplicity, we omit the detailed proofs here.

Theorem 1 Let g : Y →Y be mixed symmetric on κN . Then the spectral operator G : N →X
defined in Definition 2 with respect to g is well-defined.

3 Continuity, directional and Fréchet differentiability

In this section, we will first focus on the study of spectral operators for the case that X ≡Vm×n.
The corresponding extensions for the spectral operators defined on the general Cartesian product
of several matrix spaces will be presented in Section 4. Let N be a given nonempty open set in
Vm×n. Suppose that g : Rm→ Rm is mixed symmetric, with respect to P ≡ ±Pm (called abso-
lutely symmetric in this case), on an open set σ̂N in Rm containing σN := {σ(X) | X ∈N }.
The spectral operator G : N → Vm×n with respect to g defined in Definition 2 then takes the
form of G(X) = U [Diag(g(σ(X))) 0]VT, X ∈ N , where (U,V ) ∈ Om,n(X). For the given
X ∈N , consider the singular value decomposition (SVD) for X , i.e.,

X =U
[
Σ(X) 0

]
VT

, (5)

where Σ(X) is an m×m diagonal matrix whose i-th diagonal entry is σi(X), U ∈ Om and V =[
V 1 V 2

]
∈ On with V 1 ∈ Vn×m and V 2 ∈ Vn×(n−m). Let σ := σ(X) ∈ Rm. Let a, b, c, al , l =

1, . . . ,r be the index sets defined by (4) with Z being replaced by X . Denote ā := {1, . . . ,n}\a.
For each i∈ {1, . . . ,m}, we also define li(X) to be the number of singular values which are equal
to σi(X) but are ranked before i (including i), and l̃i(X) to be the number of singular values
which are equal to σi(X) but are ranked after i (excluding i), i.e., define li(X) and l̃i(X) such that

σ1(X)≥ . . .≥ σi−li(X)(X)> σi−li(X)+1(X) = . . .= σi(X) = . . .= σi+l̃i(X)(X)

> σi+l̃i(X)+1(X)≥ . . .≥ σm(X) . (6)

In later discussions, when the dependence of li and l̃i on X is clear from the context, we often drop
X from these notations for convenience. We define two linear matrix operators S : Vp×p→ Sp,
T : Vp×p→ Vp×p by

S(Y ) :=
1
2
(Y +YT), T (Y ) :=

1
2
(Y −YT), Y ∈ Vp×p . (7)
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Next, we introduce some notations which are used in later discussions. For any given X ∈N ,
let σ = σ(X). For the mapping g, we define three matrices E 0

1 (σ),E 0
2 (σ)∈Rm×m and F 0(σ)∈

Rm×(n−m) (depending on X ∈N ) by

(E 0
1 (σ))i j :=

{
(gi(σ)−g j(σ))/(σi−σ j) if σi 6= σ j ,
0 otherwise , i, j ∈ {1, . . . ,m} , (8)

(E 0
2 (σ))i j :=

{
(gi(σ)+g j(σ))/(σi +σ j) if σi +σ j 6= 0 ,
0 otherwise , i, j ∈ {1, . . . ,m} , (9)

(F 0(σ))i j :=
{

gi(σ)/σi if σi 6= 0 ,
0 otherwise, i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n−m} . (10)

When the dependence of E 0
1 (σ), E 0

2 (σ) and F 0(σ) on σ is clear from the context, we often drop
σ from these notations. In particular, let E

0
1, E

0
2 ∈ Vm×m and F

0 ∈ Vm×(n−m) be the matrices
defined by (8)-(10) with respect to σ = σ(X). Since g is absolutely symmetric at σ , we know
that for all i ∈ al , 1 ≤ l ≤ r, the function values gi(σ) are the same (denoted by ḡl). Therefore,
for any X ∈N , define

GS(X) :=
r

∑
l=1

ḡlUl(X) and GR(X) := G(X)−GS(X) , (11)

where Ul(X) := ∑i∈al
uivTi with Om,n(X). The following lemma on the differentiablity of GS

follows from the derivative formula of Löwner’s Hermitian operators (see e.g., [1]). By con-
structing a special Löwner’s non-Hermitian operator and employing the relationship between
the SVD of a given X ∈ Vm×n and the eigenvalue decomposition of its extended symmetric

counterpart
[

0 X
XT 0

]
∈ Sm+n, one can derive the corresponding derivative formula of Ul , espe-

cially the three components E 0
1 (σ), E 0

2 (σ) and F 0(σ) defined by (8)-(10) (see [25, Section 5.1]
for details).

Lemma 1 Let GS : N → Vm×n be defined by (11). Then, there exists an open neighborhood B
of X in N such that GS is twice continuously differentiable on B, and for any Vm×n 3 H → 0,
GS(X +H)−GS(X) = G′S(X)H +O(‖H‖2) with

G′S(X)H =U
[
E

0
1 ◦S(UTHV 1)+E

0
2 ◦T (UTHV 1) F

0 ◦ (UTHV 2)
]
VT

. (12)

Lemma 1 says that in an open neighborhood of X , G can be decomposed into a “smooth part”
GS plus a “nonsmooth part” GR. As we will see in the later developments, this decomposition
simplifies many of our proofs.

Next, we will first study the continuity of spectral operators. The following simple observa-
tion essentially follows from the absolutely symmetric property of g on σ̂N , directly.

Proposition 3 Let U ∈Om and V = [V1 V2] ∈On with V1 ∈Vn×m and V2 ∈Vn×(n−m) be given.
Let y∈ σ̂N . Then, for Y :=U [Diag(y) 0]VT it always holds that G(Y )=U [Diag(g(y)) 0]VT=
UDiag(g(y))VT

1 .

Proof. Let P ∈ ±Pm be a signed permutation matrix such that Py = |y|↓. Then, we know that
σ(Y ) = |y|↓ and Y has the following SVD

Y =U
[
PTDiag(|y|↓)W 0

]
VT =UPT[Diag(|y|↓) 0

][
V1WT V2

]T
,
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where W := |P| ∈ Pm is the m by m permutation matrix whose (i, j)-th element is the absolute
value of the (i, j)-th element of P. Then, we know from Definition 2 that

G(Y ) =UPT[Diag(g(|y|↓)) 0
][

V1WT V2
]T

.

Since g is absolutely symmetric at y, one has Diag(g(|y|↓)) = Diag(g(Py)) = Diag(Pg(y)) =
PDiag(g(y))WT. Thus, G(Y ) =UPT[PDiag(g(y))WT 0

][
V1WT V2

]T
=U

[
Diag(g(y)) 0

]
VT,

which proves the conclusion. �

By using [14, Proposition 7], we have the following result on the continuity of the spectral
operator G.

Theorem 2 Suppose that X ∈N has the SVD (5). The spectral operator G is continuous at X
if and only if g is continuous at σ(X).

Proof. “⇐= ” Let X ∈ N . Denote H = X −X and σ = σ(X). Let U ∈ Om and V ∈ On be
such that X = X +H = U [Σ(X) 0]VT. Then, we know from (5) that

[
Σ(X) 0

]
+UTHV =

UTU
[
Σ(X) 0

]
VTV . It follows from [14, (31) in Proposition 7] that for any X sufficiently close

to X , there exist Q ∈O|a|, Q′ ∈O|b| and Q′′ ∈On−|a| such that

UTU =

[
Q 0
0 Q′

]
+O(‖H‖) and VTV =

[
Q 0
0 Q′′

]
+O(‖H‖) , (13)

where Q = Diag(Q1,Q2, . . . ,Qr), Ql ∈O|al |. On the other hand, from the definition of the spec-
tral operator G one has UT(G(X)−G(X)

)
V =

[
Diag(g(σ)) 0

]
−UTU

[
Diag(g(σ)) 0

]
VTV .

Thus, we obtain from (13) and Proposition 1 that for any X sufficiently close to X , UT(G(X)−
G(X)

)
V =

[
Diag(g(σ)− g(σ)) 0

]
+O(‖H‖). Therefore, since g is assumed to be continuous

at σ , we can conclude that the spectral operator G is continuous at X .
“ =⇒ ” Suppose that G is continuous at X . Let (U ,V ) ∈Om×n(X) be fixed. Choose any σ ∈

σ̂N and denote X :=U [Diag(σ) 0]VT. It follows from Proposition 3 that G(X)=UDiag(g(σ))VT
1

and Diag(g(σ)−g(σ)) =UT(G(X)−G(X)
)
V 1. Hence, we know from the assumption that g is

continuous at σ . �

Secondly, we study the directional differentiability of spectral operators. Let Z and Z ′ be
two finite dimensional real Euclidean spaces and O be an open set in Z . A function F : O ⊆
Z →Z ′ is said to be Hadamard directionally differentiable at z ∈ O if the limit

lim
t↓0, h′→h

F(z+ th′)−F(z)
t

exists for any h ∈Z . (14)

It is clear that if F is Hadamard directionally differentiable at z, then F is directionally differen-
tiable at z, and the limit in (14) equals the directional derivative F ′(z;h) for any h ∈Z .

Assume that the g is directionally differentiable at σ . Then, from the definition of directional
derivative and the absolutely symmetry of g on the nonempty open set σ̂N , it is easy to see that
the directional derivative g′(σ ; ·) : Rm→ Rm satisfies

g′(σ ;Qh) = Qg′(σ ;h) ∀Q ∈ ±Pm
σ and ∀h ∈ Rm , (15)
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where ±Pm
σ

is the subset defined with respect to σ by ±Pm
σ

:= {Q ∈ ±Pm |σ = Qσ}. Since
σ i 6= σ j > 0 if i ∈ al and j ∈ al′ for all l, l′ = 1, . . . ,r with l 6= l′, we know that Q ∈ ±Pm

σ
if and

only if

Q = Diag
(
Q1, . . . ,Qr,Qr+1

)
with Ql ∈ P|al |, l = 1, . . . ,r and Qr+1 ∈ ±P|b| . (16)

Denote V := R|a1|× . . .×R|ar|×R|b|. For any h ∈ V , we rewrite g′(σ ;h) in the following form
φ(h) := g′(σ ;h) = (φ1(h), . . . ,φr(h),φr+1(h)) with φl(h) ∈R|al |, l = 1, . . . ,r and φr+1(h) ∈R|b|.
Therefore, it follows from (15) and (16) that the function φ : V → V is a mixed symmetric
mapping, with respect to P|a1|× . . .×P|ar|×±P|b|. Let W := S|a1|× . . .× S|ar|×V|b|×(n−|a|).
Define the spectral operator Φ : W → W with respect to the mixed symmetric mapping φ as
follows: for any W = (W1, . . . ,Wr,Wr+1) ∈W ,

Φ(W ) :=
(
Φ1(W ), . . . ,Φr(W ),Φr+1(W )

)
(17)

with Φl(W ) = P̃lDiag(φl(κ(W )))P̃T
l if 1≤ l ≤ r and Φl(W ) = M̃Diag(φl(κ(W )))ÑT

1 if l = r+1,
where κ(W ) :=(λ (W1), . . . ,λ (Wr),σ(Wr+1))∈Rm; P̃l ∈O|al |(Wl); and (M̃, Ñ)∈O|b|,n−|a|(Wr+1),
Ñ :=

[
Ñ1 Ñ2

]
with Ñ1 ∈V(n−|a|)×|b|, Ñ2 ∈V(n−|a|)×(n−m). From Theorem 1, we know that Φ is

well defined on W .
In order to present the directional differentiability results for the spectral operator G, we

define the following first divided directional difference g[1](X ;H) ∈ Vm×n of g at X along the
direction H ∈ Vm×n by

g[1](X ;H) :=
[
E

0
1 ◦S(UTHV 1)+E

0
2 ◦T (UTHV 1) F

0 ◦UTHV 2

]
+ Φ̂(D(H)), (18)

where E
0
1,E

0
2,F

0
are defined as in (8)-(10) at σ = σ(X),

D(H) :=
(

S(UT
a1

HV a1), . . . ,S(U
T
ar

HV ar),U
T
b H[V b V 2]

)
∈W (19)

and for any W = (W1, . . . ,Wr,Wr+1) ∈W , Φ̂(W ) ∈ Vm×n is defined by

Φ̂(W ) :=

[
Diag(Φ1(W ), . . . ,Φr(W )) 0

0 Φr+1(W )

]
. (20)

For the directional differentiability of the spectral operator G, we have the following result.

Theorem 3 Suppose that X ∈N has the SVD (5). The spectral operator G is Hadamard direc-
tionally differentiable at X if and only if g is Hadamard directionally differentiable at σ = σ(X).
In that case, the directional derivative of G at X along any direction H ∈ Vm×n is given by

G′(X ;H) =Ug[1](X ;H)VT
. (21)

Proof. “⇐= ” Let H ∈Vm×n be any given direction. For any Vm×n 3H ′→H and τ > 0, denote
X := X + τH ′. Consider the SVD of X , i.e.,

X =U [Σ(X) 0]VT . (22)
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Denote σ = σ(X). For τ and H ′ sufficiently close to 0 and H, let GS and GR be the mappings
defined in (11). Then, by Lemma 1, we know that

lim
τ↓0, H ′→H

1
τ
(GS(X)−GS(X)) = G′S(X)H , (23)

where G′S(X)H is given by (12). On the other hand, for τ and H ′ sufficiently close to 0 and H,
we have Ul(X) = ∑i∈al

uivTi , l = 1, . . . ,r and

GR(X) = G(X)−GS(X) =
r

∑
l=1

∑
i∈al

[gi(σ)−gi(σ)]uivTi +∑
i∈b

gi(σ)uivTi . (24)

For τ and H ′ sufficiently close to 0 and H, denote ∆l(τ,H ′) = 1
τ

∑i∈al
[gi(σ)− gi(σ)]uivTi , l =

1, . . . ,r and ∆r+1(τ,H ′) = 1
τ

∑i∈b gi(σ)uivTi .
Firstly, consider the case that X = [Σ(X) 0]. Then, from the directional differentiability of

the singular value functions (see e.g., [25, Section 5.1] or [14, Proposition 6]), we know that for
any τ and H ′ ∈ Vm×n sufficiently close to 0 and H,

σ(X) = σ(X)+ τσ
′(X ;H ′)+O(τ2‖H ′‖2) , (25)

where (σ ′(X ;H ′))al = λ (S(H ′alal
)), l = 1, . . . ,r and (σ ′(X ;H ′))b = σ([H ′bb H ′bc]). Denote h′ :=

σ ′(X ;H ′) and h := σ ′(X ;H). By using the fact that the singular value functions of a general
matrix are globally Lipschitz continuous, we know that

lim
τ↓0, H ′→H

(h′+O(τ‖H ′‖2)) = h . (26)

Since g is assumed to be Hadamard directionally differentiable at σ , we have

lim
τ↓0, H ′→H

g(σ)−g(σ)

τ
= lim

τ↓0, H ′→H

1
τ
[g(σ + τ(h′+O(τ‖H ′‖2)))−g(σ)] = g′(σ ;h) = φ(h) ,

where φ ≡ g′(σ ; ·) : Rm → Rm satisfies the condition (15). By noting that uivTi , i = 1, . . . ,m
are uniformly bounded, we know that for τ and H ′ sufficiently close to 0 and H, ∆l(τ,H ′) =
Ual Diag(φl(h))VT

al
+ o(1), l = 1, . . . ,r and ∆r+1(τ,H ′) = UbDiag(φr+1(h))VT

b + o(1). By [14,
(31) in Proposition 7], we obtain that there exist Ql ∈ O|al |, l = 1, . . . ,r, M ∈ O|b| and N =
[N1 N2] ∈On−|a| with N1 ∈ V(n−|a|)×|b| and N2 ∈ V(n−|a|)×(n−m) (depending on τ and H ′) such
that

Ual =

[ O(τ‖H ′‖)
Ql +O(τ‖H ′‖)

O(τ‖H ′‖)

]
, Val =

[ O(τ‖H ′‖)
Ql +O(τ‖H ′‖)

O(τ‖H ′‖)

]
l = 1, . . . ,r ,

Ub =

[
O(τ‖H ′‖)

M+O(τ‖H ′‖)

]
, [Vb Vc] =

[
O(τ‖H ′‖)

N +O(τ‖H ′‖)

]
.

Thus, we have

∆l(τ,H ′) =

0 0 0
0 QlDiag(φl(h))QT

l 0
0 0 0

+O(τ‖H ′‖)+o(1), l = 1, . . . ,r , (27)

∆r+1(τ,H ′) =
[

0 0
0 MDiag(φr+1(h))NT

1

]
+O(τ‖H ′‖)+o(1) . (28)
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We know from [14, (32) and (33) in Proposition 7] that

S(H ′alal
) = S(Halal )+o(1) =

1
τ

Ql[Σ(X)alal −ν lI|al |]Q
T
l +O(τ‖H ′‖2), l = 1, . . . ,r , (29)

[H ′bb H ′bc] = [Hbb Hbc]+o(1) =
1
τ

M[Σ(X)bb−νr+1I|b|]N
T
1 +O(τ‖H ′‖2) . (30)

Since Ql , l = 1, . . . ,r, M and N are uniformly bounded, by taking subsequences if necessary,
we may assume that when τ ↓ 0 and H ′→ H, Ql , M and N converge to Q̃l , M̃ and Ñ, respec-
tively. Therefore, by taking limits in (29) and (30), we obtain from (25) and (26) that S(Halal ) =

Q̃lΛ(S(Halal ))Q̃
T
l , l = 1, . . . ,r and [Hbb Hbc] = M̃ [Σ([Hbb Hbc]) 0] ÑT= M̃Σ([Hbb Hbc])ÑT

1 .
Hence, by using the notation (17), we know from (24), (27), (28) and (20) that

lim
τ↓0, H ′→H

1
τ

GR(X) = lim
τ↓0, H ′→H

r+1

∑
l=1

∆l(τ,H ′) = Φ̂(D(H)) , (31)

where D(H) = (S(Ha1a1), . . . ,S(Harar),Hbā).
To prove the conclusion for the general case of X , rewrite (22) as

[Σ(X) 0]+UTH ′V =UTU [Σ(X) 0]VTV .

Let Ũ :=UTU , Ṽ :=VTV and H̃ =UTHV . Denote X̃ := [Σ(X) 0]+UTH ′V . Then, we obtain
that GR(X) =UGR(X̃)VT. Thus, we know from (31) that

lim
τ↓0, H ′→H

1
τ

GR(X) =UΦ̂(D(H̃))VT
. (32)

Therefore, by combining (23) and (32) and noting that G(X) = GS(X), we obtain that for any
given H ∈ Vm×n,

lim
τ↓0, H ′→H

G(X)−G(X)

τ
= lim

τ↓0, H ′→H

GS(X)−GS(X)+GR(X)

τ
=Ug[1](X ; H̃)VT

,

where g[1](X ; H̃) is given by (18). This implies that G is Hadamard directionally differentiable
at X and (21) holds.

“ =⇒ ” Suppose that G is Hadamard directionally differentiable at X . Let (U ,V ) ∈Om×n(X)

be fixed. For any given direction h∈Rm, suppose that Rm 3 h′→ h. Denote H ′ :=U [Diag(h′) 0]VT

and H := U [Diag(h) 0]VT. Then, we have H ′ → H as h′ → h. Since for all τ > 0 and h′ suf-
ficiently close to 0 and h, σ := σ + τh′ ∈ σ̂N , we know from Proposition 3 that for all τ > 0
and h′ sufficiently close to 0 and h, G(X + τH ′) = UDiag(g(σ + τh′))VT

1 . This implies that
Diag

(
limτ↓0, h′→h

g(σ+τh′)−g(σ)
τ

)
=UT( limτ↓0, H ′→H

G(X+τH ′)−G(X)
τ

)
V 1. Thus, we know from the

assumption that lim
τ↓0, h′→h

g(σ + τh′)−g(σ)

τ
exists and that g is Hadamard directionally differen-

tiable at σ . �
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Remark 1 Note that for a general spectral operator G, we cannot obtain the directional differ-
entiability at X if we only assume that g is directionally differentiable at σ(X). In fact, a coun-
terexample can be found in [21]. However, since Vm×n is a finite dimensional Euclidean space,
it is well-known that for locally Lipschitz continuous functions, the directional differentiability
in the sense of Hadamard and Gâteaux are equivalent (see e.g. [34, Theorem 1.13], [11, Lemma
3.2], [16, p.259]). Therefore, if G and g are locally Lipschitz continuous near X and σ(X), re-
spectively (e.g., the proximal mapping Pf and its vector counterpart Pθ ), then G is directionally
differentiable at X if and only if g is directionally differentiable at σ(X).

Finally, we shall study the Fréchet differentiability of spectral operators. For a given X ∈N ,
suppose that the given absolutely symmetric mapping g is F(réchet)-differentiable at σ = σ(X).
The following results on the Jacobian matrix g′(σ) can be obtained directly from the assumed
absolute symmetry of g on σ̂N and the block structure (16) for any Q ∈ ±Pm

σ .

Lemma 2 For any X ∈N , suppose that g is F-differentiable at σ = σ(X). Then, the Jacobian
matrix g′(σ) has the following property g′(σ) = QTg′(σ)Q for any Q ∈ ±Pm

σ . In particular,{
(g′(σ))ii = (g′(σ))i′i′ if σi = σi′ and i, i′ ∈ {1, . . . ,m},
(g′(σ))i j = (g′(σ))i′ j′ if σi = σi′ , σ j = σ j′ , i 6= j, i′ 6= j′ and i, i′, j, j′ ∈ {1, . . . ,m},
(g′(σ))i j = (g′(σ)) ji = 0 if σi = 0, i 6= j and i, j ∈ {1, . . . ,m}.

Lemma 2 is a simple extension of [23, Lemma 2.1] for symmetric mappings. But one should
note that the Jacobian matrix g′(σ) of g at the F-differentiable point σ may not be symmetric
since here g is not assumed to be the gradient mapping as in [23, Lemma 2.1]. For example, the
absolutely symmetric mapping g defined by [29, (26)] is differentiable at x = (2,1) by taking
m = 2 and τ = ε = 1. However, it is easy to see that the Jacobian matrix g′(x) is not symmetric.

Let η(σ) ∈ Rm be the vector defined as

(η(σ))i :=
{
(g′(σ))ii− (g′(σ))i j if ∃ j ∈ {1, . . . ,m} and j 6= i such that σi = σ j,
(g′(σ))ii otherwise , i∈{1, . . . ,m} .

(33)
Define the corresponding divided difference matrix E1(σ) ∈ Rm×m, the divided addition matrix
E2(σ) ∈ Rm×m, the division matrix F (σ) ∈ Rm×(n−m), respectively, by

(E1(σ))i j :=
{
(gi(σ)−g j(σ))/(σi−σ j) if σi 6= σ j ,
(η(σ))i otherwise , i, j ∈ {1, . . . ,m} , (34)

(E2(σ))i j :=
{
(gi(σ)+g j(σ))/(σi +σ j) if σi +σ j 6= 0 ,
(g′(σ))ii otherwise , i, j ∈ {1, . . . ,m} , (35)

(F (σ))i j :=
{

gi(σ)/σi if σi 6= 0 ,
(g′(σ))ii otherwise, i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n−m} . (36)

Define the matrix C (σ) ∈ Rm×m to be the difference between g′(σ) and Diag(η(σ)), i.e.,

C (σ) := g′(σ)−Diag(η(σ)) . (37)

When the dependence of η , E1, E2, F and C on σ is clear from the context, we often drop σ

from the corresponding notations. Note that the divided difference matrix E1(σ) is similar with
that of [23, (3.1)] for the symmetric matrix case. Furthermore, the divided addition matrix E2(σ)
and the division matrix F (σ) arise naturally for general non-Hermitian matrices.
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Let X ∈N be given and denote σ = σ(X). Denote η = η(σ) ∈Rm to be the vector defined
by (33). Let E 1, E 2, F and C be the real matrices defined in (34)–(37) with respect to σ . Now,
we are ready to state the result on the F-differentiability of spectral operators. It is worth to note
that the following result, when reduced to the special symmetric case, is consistent with those
obtained in [23].

Theorem 4 Suppose that the given matrix X ∈N has the SVD (5). Then the spectral operator
G is F-differentiable at X if and only if g is F-differentiable at σ . In that case, the derivative of
G at X is given by

G′(X)H =U [E 1 ◦S(A)+Diag
(
C diag(S(A))

)
+E 2 ◦T (A) F ◦B]VT ∀ H ∈ Vm×n, (38)

where A := UTHV 1, B := UTHV 2 and for any X ∈ Vm×m, diag(X) denotes the column vector
consisting of all the diagonal entries of X being arranged from the first to the last. Moreover, G
is continuously differentiable at X if and only if g is continuously differentiable at σ = σ(X).

Proof. By employing the decomposition GS and GR defined in (11), Lemma 1 and the properties
of the Jacobian matrix g′(σ) obtained in Lemma 2, one can derivate the first part easily in the
similar manner to Theorem 3. For brevity, we omit the detail proofs of the first part and only
focus on the second part here.

“⇐= ” By the assumption, we know from the first part that there exists an open neighborhood
B ⊆N of X such that the spectral operator G is differentiable on B, and for any X ∈B, the
derivative G′(X) is given by

G′(X)H =U [E1 ◦S(A)+Diag(C diag(S(A)))+E2 ◦T (A) F ◦B]VT ∀H ∈ Vm×n , (39)

where (U,V ) ∈ Om,n(X), A = UTHV1, B = UTHV2 and η , E1, E2, F and C are defined by
(33)-(37) with respect to σ = σ(X), respectively. Next, we shall prove that

lim
X→X

G′(X)H→ G′(X)H ∀H ∈ Vm×n . (40)

Firstly, we will show that (40) holds for the special case that X = [Σ(X) 0] and X =

[Σ(X) 0]→ X . Let {F(i j)} be the standard basis of Vm×n, i.e., for each i ∈ {1, . . . ,m} and
j ∈ {1, . . . ,n}, F(i j) ∈ Vm×n is a matrix whose entries are zeros, except the (i, j)-th entry is 1 or√
−1. Therefore, we only need to show (40) holds for all F(i j). Note that since σ(·) is globally

Lipschitz continuous, we know that for X sufficiently close to X , σi 6= σ j if σ i 6= σ j. For each
i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}, write F(i j) in the following form F(i j) =

[
F(i j)

1 F(i j)
2

]
with

F(i j)
1 ∈ Vm×m and F(i j)

2 ∈ Vm×(n−m). Let us consider the following cases.
Case 1: i, j ∈ {1, . . . ,m} and i = j. In this case, since g′ is continuous at σ , we know that

if F(i j) is real, then limX→X G′(X)F(i j) = limX→X [Diag(g′(σ)ei) 0] = [Diag(g′(σ)ei) 0] =
G′(X)F(i j), where ei is the vector whose i-th entry is one, and zero otherwise; if F(i j) is complex,
then

lim
X→X

G′(X)F(i j)= lim
X→X

[gi(σ)+g j(σ)

σi +σ j
T (F(i j)

1 ) 0
]
=
[gi(σ)+g j(σ)

σi +σ j
T (F(i j)

1 ) 0
]
=G′(X)F(i j) .

Case 2: i, j ∈ {1, . . . ,m}, i 6= j, σi = σ j and σ i = σ j > 0. Therefore, we know that there
exists l ∈ {1, . . . ,r} such that i, j ∈ al . Since g′ is continuous at σ , we know from (33) that

lim
X→X

G′(X)F(i j) =
[(

(g′(σ))ii− (g′(σ))i j
)

S(F(i j)
1 )+

gi(σ)+g j(σ)

σ i +σ j
T (F(i j)

1 ) 0
]
= G′(X)F(i j) .
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Case 3: i, j ∈ {1, . . . ,m}, i 6= j, σi 6= σ j and σ i = σ j > 0. In this case, we know that

G′(X)F(i j) =
[

gi(σ)−g j(σ)
σi−σ j

S(F(i j)
1 )+

gi(σ)+g j(σ)
σi+σ j

T (F(i j)
1 ) 0

]
. Let s, t ∈Rm be two vectors defined

by

sp :=
{

σp if p 6= i,
σ j if p = i and tp :=

{
σp if p 6= i, j,
σ j if p = i,
σi if p = j,

p ∈ {1, . . . ,m} . (41)

It is clear that both s and t converge to σ as X → X . By noting that g is absolutely symmetric on
σ̂N , we know from (3) that g j(σ) = gi(t), since the vector t is obtained from σ by swapping the
i-th and the j-th components. By the mean value theorem (cf. e.g., [35, Page 68-69]), we have

gi(σ)−g j(σ)

σi−σ j
=

gi(σ)−gi(s)+gi(s)−g j(σ)

σi−σ j
=

∂gi(ξ )

∂ µi
(σi−σ j)+gi(s)−g j(σ)

σi−σ j

=
∂gi(ξ )

∂ µi
+

∂gi(ξ̂ )

∂ µ j
(σ j−σi)+gi(t)−g j(σ)

σi−σ j
=

∂gi(ξ )

∂ µi
− ∂gi(ξ̂ )

∂ µ j
, (42)

where ξ ∈ Rm lies between σ and s and ξ̂ ∈ Rm is between s and t. Consequently, we have
ξ → σ and ξ̂ → σ as X → X . By the continuity of g′, we obtain that limX→X

gi(σ)−g j(σ)
σi−σ j

=

(g′(σ))ii− (g′(σ))i j and limX→X
gi(σ)+g j(σ)

σi+σ j
=

gi(σ)+g j(σ)
σ i+σ j

. Therefore, we have

lim
X→X

G′(X)F(i j) =
[(
(g′(σ))ii− (g′(σ))i j

)
S(F(i j)

1 )+
gi(σ)+g j(σ)

σ i +σ j
T (F(i j)

1 ) 0
]
= G′(X)F(i j) .

Case 4: i, j ∈ {1, . . . ,m}, i 6= j, σi > 0 or σ j > 0 and σ i 6= σ j. Then, we have σi > 0 or σ j > 0
and σi 6= σ j. Since g′ is continuous at σ , we know that

lim
X→X

G′(X)F(i j) =

[
gi(σ)−g j(σ)

σ i−σ j
S(F(i j)

1 )+
gi(σ)+g j(σ)

σ i +σ j
T (F(i j)

1 ) 0
]
= G′(X)F(i j) .

Case 5: j ∈ {m+1, . . . ,n} and σ i > 0. Since g′ is continuous at σ , we have lim
X→X

G′(X)F(i j) =

lim
X→X

[
0

gi(σ)

σi
F(i j)

2

]
=
[
0

gi(σ)

σ i
F(i j)

2

]
= G′(X)F(i j).

Case 6: i, j ∈ {1, . . . ,m}, i 6= j, σ i = σ j = 0 and σi = σ j > 0. Therefore, we know that

G′(X)F(i j) =
[(

(g′(σ))ii− (g′(σ))i j
)

S(F(i j)
1 )+

gi(σ)+g j(σ)

σi +σ j
T (F(i j)

1 ) 0
]
.

We know from (33) and Lemma 2 that

lim
X→X

(g′(σ))ii = (g′(σ))ii = η i and lim
X→X

(g′(σ))i j = (g′(σ))i j = 0 . (43)

Let ŝ, t̂ ∈ Rm be two vectors defined by

ŝp :=
{

σp if p 6= i,
−σ j if p = i and t̂p :=

{
σp if p 6= i, j,
−σ j if p = i ,
−σi if p = j ,

p ∈ {1, . . . ,m} . (44)
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Also, it clear that both ŝ and t̂ converge to σ as X → X . Again, by noting that g is absolutely
symmetric on σ̂N , we know from (3) that gi(σ) =−g j(t̂) and g j(σ) =−gi(t̂). By using similar
arguments for deriving (42), we have

gi(σ)+g j(σ)

σi +σ j
=

∂gi(ζ )

∂ µi
+

∂gi(ζ̂ )

∂ µ j
, (45)

where ζ ∈ Rm is between σ and ŝ and ζ̂ ∈ Rm is between ŝ and t̂. Consequently, we know that
ζ , ζ̂ → σ as X → X . By the continuity of g′, we know from (33) that

lim
X→X

gi(σ)+g j(σ)

σi +σ j
= (g′(σ))ii = η i . (46)

Therefore, from (43) and (46), we have limX→X G′(X)F(i j) =
[
η iF

(i j)
1 0

]
= G′(σ)F(i j).

Case 7: i, j ∈ {1, . . . ,m}, i 6= j, σ i = σ j = 0, σi 6= σ j and σi > 0 or σ j > 0. Let s, t and ŝ, t̂
be defined by (41) and (44), respectively. By the continuity of g′, we know from (42) and (45)
that limX→X G′(X)F(i j) = limX→X

[gi(σ)−g j(σ)
σi−σ j

S(F(i j)
1 )+

gi(σ)+g j(σ)
σi+σ j

T (F(i j)
1 ) 0

]
=
[
η iF

(i j)
1 0

]
=

G′(X)F(i j).
Case 8: i 6= j ∈ {1, . . . ,m}, σ i = σ j = 0 and σi = σ j = 0. By the continuity of g′, we obtain

that
lim

X→X
G′(X)F(i j) = lim

X→X

[
(g′(σ))iiF

(i j)
1 0

]
=
[
η iF

(i j)
1 0

]
= G′(X)F(i j) .

Case 9: j ∈ {m+1, . . . ,n}, σ i = 0 and σi > 0. We know that G′(X)F(i j) =
[
0

gi(σ)

σi
F(i j)

2

]
.

Let s̃∈Rm be a vector given by s̃p :=
{

σp if p 6= i,
0 if p = i, p∈ {1, . . . ,m}. Therefore, we have s̃ con-

verges to σ as X → X . Since g is absolutely symmetric on σ̂N , we know that gi(s̃) = 0. Also,
by the mean value theorem, we have gi(σ)/σi = (gi(σ)− gi(s̃))/σi =

∂gi(ρ)
∂ µi

, where ρ ∈ Rm

is between σ and s̃. Consequently, we have ρ converges to σ as X → X . By the continu-
ity of g′, we know from (33) that limX→X

gi(σ)
σi

= (g′(σ))ii = η i. Thus, limX→X G′(X)F(i j) =

limX→X
[
0

gi(σ)

σi
F(i j)

2

]
=
[
0 η iF

(i j)
2

]
= G′(X)F(i j).

Case 10: j ∈ {m+1, . . . ,n}, σ i = 0 and σi = 0. By the continuity of g′, we know that

lim
X→X

G′(X)F(i j) =
[
0 (g′(σ))iiF

(i j)
2

]
= G′(X)F(i j) .

Finally, for the general case that X = U [Σ(X) 0]VT and X = U
[
Σ(X) 0

]
VT, it follows

from Theorem 4 that G is F-differential at X if and only if G is F-differential at [Σ(X) 0] and
for any H ∈ Vm×n, G′(X)H = U

(
G′([Σ(X) 0])(UT HV )

)
V T . Thus, we know from the above

analysis that (40) holds, which implies that G is continuously differentiable at X .
“ =⇒ ” Suppose that G is continuously differentiable at X . Let (U ,V ) ∈ Om×n(X) be fixed.

For any σ ∈ Rm, define X := U [Diag(σ) 0]VT. For any h ∈ Rm, let H := U [Diag(h) 0]VT.
From the proof of the second part of Theorem 4, we know from the assumption that for all
σ sufficiently close to σ , Diag(g′(σ)h) = UT

(G′(X)H)V 1 for all h ∈ Rm. Consequently, g is
continuously differentiable at σ . �
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Remark 2 In order to compute (38), it appears that one needs to compute and store V 2 ∈Vn×(n−m)

explicitly, which would incur huge memory costs if n� m. Fortunately, due to the special form
of F , the explicit computation of V 2 can be avoided as we shall show next. Let f̄ = ( f̄1, . . . , f̄m)

T

be defined by f̄i = gi(σ̄)/σ̄i if σ̄i 6= 0 and f̄i = (g′(σ̄))ii otherwise. Observe that the term in (38)
involving V 2 is given by

U(F ◦ (UTHV 2))V
T
2 = UDiag( f̄ )UTH(In−V 1VT

1 ) =UDiag( f̄ )UT
(H− (HV 1)V

T
1 ).

Thus, in numerical implementation, the large matrix V 2 is not needed.

4 Extensions

In this section, we consider the spectral operators defined on the Cartesian product of several
real or complex matrices. The corresponding properties, including continuity, directional dif-
ferentiability and (continuous) differentiability, can be studied in the same fashion as those in
Section 3 though the analysis for the general case is more involved. For simplicity, we omit the
proofs here. For readers who are interested in seeking the complete proofs, we refer them to the
PhD thesis of Ding [12] for worked out details.

Without loss of generality, from now on, we assume that X = Sm1×Vm2×n2 and Y =Rm1×
Rm2 with m = m1 +m2. For any X = (X1,X2) ∈ Sm1×Vm2×n2 , denote κ(X) = (λ (X1),σ(X2)) ∈
Y . Let N be a given nonempty open set in X . Suppose that g : Y → Y is mixed symmetric,
with respect to P ≡Pm1×±Pm2 , on an open set κ̂N in Rm containing κN = {κ(X) ∈ Y | X ∈N }.
Let G : X →X be the corresponding spectral operator defined in Definition 2.

Let X = (X1,X2) ∈ N be given. Suppose the given X1 ∈ Sm1 and X2 ∈ Vm2×n2 have the
following decompositions

X1 = PDiag(λ (X1))P
T and X2 =U [Diag(σ(X2)) 0]VT

, (47)

where P ∈ Om1 , U ∈ Om2 and V =
[
V 1 V 2

]
∈ On2 with V 1 ∈ Vn2×m2 and V 2 ∈ Vn2×(n2−m2).

Denote λ := λ (X1), σ := σ(X2) and κ := (λ ,σ). We use ν1 > .. . > νr1 to denote the distinct
eigenvalues of X1 and νr1+1 > .. . > νr1+r2 > 0 to denote the distinct nonzero singular values of
X2. Define the index sets al := {i |λ i = ν l, 1≤ i≤m1}, l = 1, . . . ,r1, al := {i |σ i = ν l, 1≤ i≤
m2}, l = r1 +1, . . . ,r1 + r2 and b := {i |σ i = 0, 1≤ i≤ m2}.

First, we have the following result on the continuity of spectral operators.

Theorem 5 Let X = (X1,X2) ∈N be given. Suppose that X1 and X2 have the decompositions
(47). The spectral operator G is continuous at X if and only if g is continuous at κ(X).

In order to present the results on the directional differentiability of spectral operators of
matrices, we introduce some notations. For the given mixed symmetric mapping g = (g1,g2) :
Y → Y , let E

0
1 ∈ Sm2 , E

0
2 ∈ Vm2×m2 and F

0 ∈ Vm2×(n2−m2) be the matrices given by (8)-(10)
with respect to κ = (λ ,σ), and A

0 ∈ Sm1 be the matrix defined by

(A
0
)i j :=

{
((g1(κ))i− (g1(κ)) j)/(λ i−λ j) if λ i 6= λ j,
0 otherwise,

i, j ∈ {1, . . . ,m1} .

Suppose that g is directionally differentiable at κ . Then, we know that the directional deriva-
tive g′(κ; ·)= (g′1(κ; ·),g′2(κ; ·)) : Y →Y satisfies that for any (Q1,Q2)∈Pκ and any (h1,h2)∈
Rm1×Rm2 ,(

g′1(κ;(Q1h1,Q2h2)),g′2(κ;(Q1h1,Q2h2))
)
=
(

Q1g′1(κ;(h1,h2)),Q2g′2(κ;(h1,h2))
)
, (48)
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where Pκ is the subset of P ≡ Pm1 ×±Pm2 defined with respect to κ by Pκ := {(Q1,Q2) ∈
Pm1×±Pm2 | (λ ,σ) = (Q1λ ,Q2σ)}. Note that λ i 6= λ j if i ∈ al and j ∈ al′ for all l, l′ = 1, . . . ,r1
with l 6= l′ and σ i 6= σ j > 0 if i ∈ al and j ∈ al′ for all l, l′ = r1 + 1, . . . ,r1 + r2 with l 6= l′.
Therefore, we have (Q1,Q2) ∈Pκ if and only if there exist Ql

1 ∈ P|al |, l = 1, . . . ,r1, Ql
2 ∈ P|al |,

l = r1 +1, . . . ,r1 + r2 and Qr1+r2+1
2 ∈ ±P|b| such that

Q1 = Diag
(
Q1

1, . . . ,Q
r1
1

)
∈ Pm1 and Q2 = Diag

(
Qr1+1

2 , . . . ,Qr1+r2
2 ,Qr1+r2+1

2

)
∈ ±Pm2 . (49)

Denote V :=R|a1|× . . .×R|ar1+r2 |×R|b|. For any h∈ V , rewrite g′(κ;h) =: φ(h)∈ V as φ(h) =
(φ1(h), . . . ,φr1+r2+1(h)) with φl(h)∈R|al | for l = 1, . . . ,r1+r2 and φr1+r2+1(h)∈R|b|. Therefore,
we know from (48) and (49) that the directional derivative φ is mixed symmetric mapping, with
respect to P|a1|× . . .×P|ar1+r2 |×±P|b|. Denote W := S|a1|× . . .×S|ar1+r2 |×V|b|×(|b|+n2−m2). Let
Φ : W → W be the corresponding spectral operator defined in Definition 2 with respect to
the mixed symmetric mapping φ , i.e., for any W = (W1, . . . ,Wr1+r2 ,Wr1+r2+1) ∈ W , Φ(W ) =(
Φ1(W ), . . . ,Φr1+r2(W ),Φr1+r2+1(W )

)
with

Φl(W ) =

{
R̃lDiag(φl(κ(W )))R̃T

l if l = 1, . . . ,r1 + r2,
M̃Diag(φr1+r2+1(κ(W )))ÑT

1 if l = r1 + r2 +1,

where R̃l ∈O|al |(Wl), (M̃, Ñ) ∈O|b|,|b|+n2−m2(Wr1+r2+1) and

κ(W ) = (λ (W1), . . . ,λ (Wr1+r2),σ(Wr1+r2+1)) ∈ Rm .

Then, the first divided directional difference g[1](X ;H) ∈X of g at X along the direction H =

(H1,H2) ∈X is defined by g[1](X ;H) :=
(

g[1]1 (X ;H), g[1]2 (X ;H)
)

with

g[1]1 (X ;H) = A
0 ◦PTH1P+Diag

(
Φ1(D(H)), . . . ,Φr1(D(H))

)
∈ Sm1

and

g[1]2 (X ;H) =
[
E

0
1 ◦S(UTH2V 1)+E

0
2 ◦T (UTH2V 1) F

0 ◦UTH2V 2

]
+

[
Diag(Φr1+1(D(H)), . . . ,Φr1+r2(D(H))) 0

0 Φr1+r2+1(D(H))

]
∈ Vm2×n2 ,

where

D(H)=
(
PT

a1
H1Pa1 , . . . ,P

T
ar1

H1Par1
,S(UT

ar1+1
H2V ar1+1), . . . ,S(U

T
ar1+r2

H2V ar1+r2
),UT

b H2[V b V 2]
)
∈W .

Now, we are ready to state the results on the directional differentiability of the spectral oper-
ator G.

Theorem 6 Let X = (X1,X2) ∈N be given. Suppose that X1 and X2 have the decompositions
(47). The spectral operator G is Hadamard directionally differentiable at X if and only if g is
Hadamard directionally differentiable at κ(X). In that case, G is directionally differentiable
at X and the directional derivative at X along any direction H ∈X is given by G′(X ;H) =(

Pg[1]1 (X ;H)PT
, Ug[1]2 (X ;H)VT

)
.
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In order to present the derivative formulas of spectral operators, we introduce the following
notation. For the given X = (X1,X2) ∈N , suppose that g is F-differentiable at κ . Denote by
g′(κ) ∈ Rm×m the Jacobian matrix of g at κ . Let η1 ∈ Rm1 and η2 ∈ Rm2 be the vectors defined
by for each i ∈ {1, . . . ,m1},

(η1)i :=
{
(g′1(κ))ii− (g′1(κ))i(i+1) if ∃ j ∈ {1, . . . ,m1} and j 6= i such that λ i = λ j,
(g′1(κ))ii otherwise ,

and for each i ∈ {1, . . . ,m2},

(η2)i :=
{
(g′2(κ))ii− (g′2(κ))i(i+1) if ∃ j ∈ {1, . . . ,m2} and j 6= i such that σ i = σ j,
(g′2(κ))ii otherwise .

Define the corresponding divided difference matrices A ∈ Rm1×m1 by

(A )i j :=
{
((g1(κ))i− (g1(κ)) j)/(λ i−λ j) if λ i 6= λ j,
(η1(κ))i otherwise,

i, j ∈ {1, . . . ,m1} .

Let E 1 ∈ Rm2×m2 , E 2 ∈ Rm2×m2 and F ∈ Rm2×(n2−m2) by the matrices defined by (34) – (37)
with respect to κ . Moreover, define the matrices C 1 ∈Rm1×m and C 2 ∈Rm2×m by C 1 = g′1(κ)−[
Diag(η1) 0

]
and C 2 = g′2(κ)−

[
0 Diag(η2)

]
. Then, we have the following results on the

F-differentiability of spectral operators.

Theorem 7 Let X = (X1,X2) ∈N be given. Suppose that X1 and X2 have the decompositions
(47). The spectral operator G is (continuously) differentiable at X if and only if g is (contin-
uously) differentiable at κ = κ(X). In that case, the derivative of G at X is given by for any
H = (H1,H2) ∈X ,

G′(X)(H) =
(

P[A ◦PTH1P+Diag
(
C 1h

)
]PT

,

U
[
E 1 ◦S(UTH2V 1)+Diag

(
C 2h

)
+E 2 ◦T (UTH2V 1) F ◦UTH2V 2

]
VT
)
,

where h :=
(
diag

(
PTH1P

)
,diag

(
S(UTH2V 1)

))
∈ Rm.

5 Conclusions

In this paper, we have introduced a class of matrix-valued functions, termed spectral operators
of matrices and have systematically studied several fundamental properties of spectral operators,
including well-definedness, continuity, directional differentiability and Fréchet-differentiability.
These results provide the necessary theoretical foundations for both the computational and theo-
retical aspects of many applications such as MOPs. Consequently, one is able to use these results
to design some efficient numerical methods for solving large-scale MOPs arising from various
applications. For instance, Chen et al. [7] proposed an efficient and robust semismooth Newton-
CG dual proximal point algorithm for solving large scale matrix spectral norm approximation
problems. The work done in this paper on spectral operators of matrices is by no means com-
plete. Due to the rapid advances in the applications of matrix optimization in different fields,
spectral operators of matrices will become even more important and many other properties of
spectral operators are waiting to be explored.
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