
 
Department of Physics and Astronomy 

 
Remote Sensing and Satellite Research Group 

 
 
 
 
 

 
 
 
 
 
 
 
 

Satellite Remote Sensing Algorithm Development to Estimate 
Total Suspended Sediment Concentration for Highly Turbid 

Waters of Western Australia 
 
 
 
 
 
 
 
 
 

Passang Dorji 
 
 
 
 
 
 
 
 
 
 

This thesis is presented for the Degree of 
Doctor of Philosophy 

of 
Curtin University 

 
 
 
 
 
 
 
 

April 2017 



Declaration 
 

 

 

To the best of my knowledge and belief this thesis contains no material 

previously published by any other person except where due 

acknowledgment has been made. 

 

This thesis contains no material which has been accepted for the award 

of any other degree or diploma in any university. 

 

 

 

 

 

 

 

Signature: …………………………………………. 

 

Date: ………………………... 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

Abstract 
 

 In the last decade, the quality of coastal waters of northern 

Western Australia have been impacted by the increased activities in 

development of offshore oil and gas infrastructure. Regular extensive in 

situ monitoring of water quality in the region has been challenging due to 

the requirement of huge resources needed to monitor the large spatial 

extent. The total suspended sediment (TSS) concentration, which serves 

as a proxy for water quality, has been successfully mapped at high 

spatiotemporal resolution in the coastal waters via satellite remote 

sensing. However, the accuracy and utility of such TSS measurements is 

directly related to the accuracy of the TSS algorithm and satellite sensors 

used in mapping TSS concentration. Most previous TSS algorithms have 

been developed for specific regions and have been based on empirical 

approaches and for particular satellite sensors.  Such TSS algorithms 

lack general applicability, and the use of a single satellite sensor with 

specific radiometric, spectral, temporal and spatial characteristics also 

limit the general application of remote sensing to study highly dynamic 

TSS variation across differing coastal regimes. Therefore, this research 

focuses on development of multi-sensor TSS model for highly turbid 

coastal waters of northern Western Australia, which is physically based 

on the principle of radiative transfer, but locally tuned using in situ optical 

properties of regional coastal waters of northern Western Australia.  

 In this study, a generic multi-sensor red band semi-analytic 

sediment model (SASM) was developed for regional waters of northern 

Western Australia. The SASM was used in mapping TSS concentration 

of the region using different satellite sensors; high spatial resolution 

WorldView-2 (WV2) at 2 m and Landsat-8 Operational Land Imager (OLI) 

at 30 m, medium spatial resolution MODerate resolution Imaging 

Spectroradiometer (MODIS)-Aqua at 250 m and low spatial resolution 

Advanced Himawari Imager (AHI) on-board Himawari-8 at 500 m – 2000 

m. It was found that the satellite sensors with spatial resolution of at least 

250 m were adequate in spatially discerning sediment plumes from the 
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background waters. Further, it was observed the temporal resolution of 1 

image per day from MODIS-Aqua was sufficient to segregate TSS 

variation as a result of dredging and natural processes. However, diurnal 

TSS variation caused by the tidal currents in the study regions were only 

discernible from high temporal resolution geostationary satellite—

Himawari-8. A feasibility study of Himawari-8 in mapping TSS 

concentration was conducted for the first time and the validation of AHI 

derived TSS concentration with MODIS-Aqua and Landsat-8 OLI showed 

good correlation, with correlation coefficients r = 0.71 and r = 0.91 

respectively. The results from the feasibility study of Himawari-8 showed 

that it can be a valuable resource in monitoring the TSS dynamics of 

coastal regions in Western Australia at high temporal resolution which 

can effectively fill the temporal gaps of other satellite sensors.  

 The implications of using readily available TSS algorithms and 

different satellite sensors were also quantified using rigorous statistical 

tests and simulated optical datasets. It was found that few previously 

published TSS algorithms from the last decade were robust enough to be 

used in mapping TSS concentration of optically unknown water types, 

with Mean Absolute Relative Errors (MARE) ranging from 69.96% to 

481.82%. Also, the application of an untested TSS algorithm without first 

testing and selecting an appropriate TSS algorithm, was shown to 

potentially result in errors in excess of three orders of magnitude. In 

highly turbid waters, the discrepancies between peak TSS levels 

obtained from satellite sensors with different spatial resolutions was 

demonstrated, with TSS concentration as high as 160 mg/L observed 

from WV2 at 2 m spatial resolution and only 23.6 mg/L from MODIS-

Aqua at 250 m. The implications of such discrepancies in TSS estimation 

via satellite remote sensing are extremely important to environmental 

resource managers for effective implementation of monitoring policies.   
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Definition of key terms  
 

The key terms used in this thesis are operationally defined as follows:  

 

1. “TSS Concentration” refers to the dry weight of suspended matter 

per volume of water (mg/L) that are retained after filtering through 

a 0.7 μm Whatman glass-fiber filter (GF/F).  

 

2. “Model(s)” or “Algorithm(s)” in the context of TSS 

model(s)/Algorithm(s) have the same implied meaning.  

 

3.  “Open, deep or offshore” waters have the same meaning as 

“Case-1” waters, which are defined as those waters whose optical 

properties co-vary primarily with phytoplankton concentration 

(Gordon & Morel, 1983).  

 

4. “Coastal” waters have same the meaning as “Case-2” waters, 

which are defined as those waters whose optical properties are 

more complex than Case-1 waters and the optical properties do 

not covary with phytoplankton concentration, but depend on other 

optically active water constituents, such as Coloured Dissolved 

Organic Matter and TSS (Gordon & Morel, 1983).  
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General Introduction 

1.1 Overview 

 In addition to the development of satellite based Total Suspended 

Sediment (TSS) algorithms to map the TSS concentration in the turbid 

waters of northern Western Australia, this thesis also examines the 

limitations, advantages, and potential of using polar orbiting and 

geostationary satellite sensor based TSS algorithms in the coastal 

environment monitoring endeavour. The quality of coastal waters, which may 

be ascertained from the TSS concentration, can be remotely mapped using 

satellite remote sensing. However, the remote sensing of TSS concentration 

from satellite is not without the limitations that are inherent in the satellite 

sensors and TSS algorithms themselves. Thus, the outcomes from this study 

may lead to a better understanding of the implications of using different 

satellite sensors in monitoring the water quality in the coastal waters and the 

need for improved TSS algorithms. This chapter provides the general 

background of remote sensing in water quality management and the impetus 

for improved TSS algorithms for a range of different satellite sensors in 

monitoring the dynamic coastal water system.  

1.2 Background 

 The monitoring of earth resources up until the middle of the 20th 

century was based predominantly on traditional ground based observations 

which were slow but compatible with the pace of environmental change of 

the time. Presently, the rapid pace of development at large spatial scales 

makes environmental impacts and their assessment more complex. This  

calls for faster data generation and dissemination processes for scientific 

studies which are currently benefited by the advancement in remote sensing 

technologies (Durrieu & Nelson, 2013). Remote sensing is the act of 

collecting information of objects from a distance and it is based on the basic 

principle that everything in nature emits, absorbs or reflects radiation in the 

electromagnetic spectrum (EMS). Every object has a unique radiation 
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signature in different regions of the EMS and it is this spectrum that may be 

perceived by remote sensing sensors. It is this unique spectrum of a 

particular object that can be exploited to distinguish between different objects 

(Lee, Carder, Mobley, Steward, & Patch, 1999), or changes in the spectrum 

exploited to measure change in the environment.  

 Remote sensing has seen a rapid advancement from early 

photography using a still camera in a single spectral band to modern 

hyperspectral sensors that can gather spectral signatures across hundreds 

of bands. The earliest of remote sensing methods from space can be traced 

backed to an oblique photograph of a small village near Paris by Gaspard 

Tournachon in 1859 (Aggarwal, 2004). Space borne remote sensing, in 

particular the satellite based remote sensing focused on monitoring the 

earth’s resources for scientific studies, has gained momentum from the 

launch of the first Earth Resource Technology Satellite in the early 1970’s, to 

numerous earth resource monitoring satellites launched thereafter in the 

following decades (Xie, Sha, & Yu, 2008). The applicability of the satellite-

based remote sensing of water was demonstrated as early as 1972 by 

McKim, Marlar, and Anderson (1972) by mapping water bodies larger than 

0.02 km2 using the Multispectral Scanner (MSS) on board Landsat-1. Since 

then, remote sensing technology has been extensively used in mapping not 

only the spatial extent of the water bodies, but also the water quality 

(turbidity) in deep and coastal waters (Blondeau-Patissier, Gower, Dekker, 

Phinn, & Brando, 2014).  The study of water quality includes, but is not 

limited to, the study of concentration of Chlorophyll-a (Chl-a) for biomass and 

primary production (Acker, Harding, Leptoukh, Zhu, & Shen, 2005; Arrigo & 

McClain, 1994; Jutla, Akanda, & Islam, 2012; Sullivan, Arrigo, McClain, 

Comiso, & Firestone, 1993), coloured dissolved organic matter (CDOM) 

(Kutser et al., 2005; Loisel, Vantrepotte, Dessailly, & MÈriaux, 2014b; Tiwari 

& Shanmugam, 2011), and TSS (Constantin, Doxaran, & Constantinescu, 

2016; Lim, MatJafri, Abdullah, & Asadpour, 2013; Ody et al., 2016; Tang, 

Larouche, Niemi, & Michel, 2013; Wang & Lu, 2010) which all serve as 

proxies for water quality.   
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 The monitoring of coastal water systems is important because more 

than half the human population is settled in coastal cities and the majority of 

sea-food is sourced from coastal waters (Bukata, 2005). However, 

monitoring of coastal waters is challenging because coastal waters are 

affected by both natural and anthropogenic processes which contribute to 

the optical complexities in remote sensing. Optically, the coastal or Case-2 

waters are characterized by the variation of optical properties of water being 

influenced by phytoplankton, TSS, and CDOM concentrations, but the clear 

oceanic or Case-1 waters are primarily characterized by variations of their 

optical properties associated with just the phytoplankton concentration 

(Gordon & Morel, 1983; Prieur & Sathyendranath, 1981). In sediment laden 

coastal waters, since the dependence of water quality is purported to be 

dominated by the TSS concentration (Alashloo, Lim, Asadpour, & Safarpour, 

2013; Guan, Li, & Booty, 2011), the monitoring of TSS concentration can 

serve as a proxy for the water quality for effective coastal management 

programs.  

 Traditionally, TSS concentration monitoring is performed using point 

based measurements at discrete sample locations and this method, though 

very accurate, limits the capability to address global needs to monitor water 

quality at high spatiotemporal resolution (Lim, Mat Jafri, Abdullah, & Abu 

Bakar, 2010). Satellite based remote sensing has shown the potential of 

effectively mapping TSS concentration over large spatial extents and at high 

temporal resolution (Brando & Dekker, 2003; Chen, Cui, Qiu, & Lin, 2014a; 

Härmä et al., 2001; Jutla et al., 2012; Kratzer, Brockmann, & Moore, 2008; 

Moses, Ackleson, Hair, Hostetler, & Miller; Tiwari & Shanmugam, 2011; 

Tzortziou et al., 2006). However, remote sensing of TSS concentration has 

to be supplemented by in situ data for algorithm development and validation. 

Thus, satellite based remote sensing coupled with in situ measurements 

provides an effective method in mapping the TSS concentration for a large 

spatial extent of coastal waters for water quality assessment.  

 The quantification of TSS concentration from satellite based remote 

sensing involves correlating in situ TSS concentration measurements with 

the remotely sensed information. The remotely sensed information includes 
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radiance (L) and irradiance (E), which may be combined to derive reflectance 

(ρ). These measurements may in turn be related to derive parameters such 

as the quasi - inherent optical property (IOP) diffuse attenuation coefficient 

(Kd). Remote sensing scientists have explored the use of L (Onderka & 

Pekárová, 2008), ρ (Nechad, Ruddick, & Park, 2010; Teodoro, Veloso-

Gomes, & Gonçalves, 2008) and Kd (Shi, Zhang, Liu, Wang, & Qin, 2014) to 

directly relate to the concentration of TSS through empirical or semi-

empirical methods by applying statistical regression analysis. However, to 

accurately quantify the TSS concentration, information about the IOP of the 

water masses is needed, and potentially combined with radiative transfer 

theory to produce a more robust understanding of the relationships between 

TSS and the remotely sensed measurements (Mobley, 1994).  

 The ease of establishing the direct empirical relationship between the 

remotely sensed surface reflectance, usually the water-leaving reflectance 

(ρw) or remote sensing reflectance (Rrs) (both defined explicitly in Ch. 2), and 

TSS concentration has led to numerous studies performed in estimating TSS 

concentration using a wide array of satellite sensors, including: Sea-viewing 

Wide Field-of-view Sensor (SeaWiFS) (Doxaran, Froidefond, & Castaing, 

2003; Vos, Hakvoort, Jordans, & Ibelings, 2003), Landsat series (Kallio et al., 

2008b; Vanhellemont & Ruddick, 2014; Wu et al., 2015; Wu, De Leeuw, 

Skidmore, Prins, & Liu, 2008; Zhang, Dong, Cui, Xue, & Zhang, 2014; Zhou, 

Wang, Zhou, & Troy, 2006), Medium Resolution Imaging Spectrometer 

(MERIS) (Chen, Han, & Feng, 2015b; Kratzer et al., 2008; Odermatt, Heege, 

Nieke, Kneubuhler, & Itten, 2008; Qing, Zhang, Cui, & Bao, 2014; Raag, 

Uiboupin, & Sipelgas, 2013; Tarrant, Amacher, & Neuer, 2010), MODerate 

resolution Imaging Spectroradiometer (MODIS) (Ayana, Worqlul, & 

Steenhuis, 2015; Chen et al., 2015a; Chen, Hu, & Muller-Karger, 2007; 

Hudson et al., 2014; Miller & McKee, 2004; Petus et al., 2014; Raag et al., 

2013), “Système Pour l'Observation de la Terre” (SPOT) (Doxaran, 

Froidefond, Lavender, & Castaing, 2002), and the high resolution sensor 

IKONOS (Ekercin, 2007). However, the use of simple direct empirical 

relationships to estimate TSS concentration in coastal waters are not always 

valid. For example, the validity of a simple linear empirical approximation 
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becomes invalid as the remotely sensed reflectance becomes saturated at 

high TSS concentrations (Doxaran et al., 2003; Petus et al., 2010). This calls 

for better and improved TSS algorithms in coastal waters that are not simply 

empirically based on the particular coastal region in which they were 

developed, but also physically grounded in the principle of radiative transfer 

theory where the relationship between the TSS concentration and 

reflectance are physically sensible.  

 Easy access to satellite datasets in the last decade has prompted a 

rapid growth in scientific studies in satellite remote sensing of TSS (Wulder, 

Masek, Cohen, Loveland, & Woodcock, 2012). Even by conservative 

estimates, around 49 MODIS and 27 Landsat based TSS algorithms were 

developed in the last decade for water quality monitoring (Dorji & Fearns, 

2016) . Since the TSS models developed in the studies collectively cover 

most geographical locations including America (Miller & McKee, 2004; Park 

& Latrubesse, 2014; Son & Wang, 2012), Africa (Ayana et al., 2015; Kutser, 

Metsamaa, Vahtmae, & Aps, 2007), Asia (Chen et al., 2015b; Choi et al., 

2014; Islam, Yamaguchi, & Ogawa, 2001), Australia (Evans et al., 2012; 

Islam et al., 2007), and Europe (Hudson et al., 2014; Petus et al., 2014; 

Raag et al., 2013; Sipelgas, Raudsepp, & Kõuts, 2006) one is begged to ask 

if we can use ‘off the self’ TSS models in mapping the coastal waters of 

different geographical regions without having the need to invest in expensive 

field campaigns to develop a regional TSS model. Confidence in the 

applicability of already developed TSS models to different regions would 

considerably help in cutting the costs for coastal water quality management. 

 From the perspective of coastal water quality monitoring by 

environmental protection agencies via satellite remote sensing, the 

availability of numerous satellites does present an unparalleled capability in 

mapping TSS concentration at high spatiotemporal resolution, but the use of 

varied satellite sensors also presents the complexities of using different 

satellite sensors with different spatial, spectral and radiometric 

characterization (Ody et al., 2016).  It has been observed in previous studies 

(Miller, Liu, Buonassissi, & Wu, 2011; Ody et al., 2016) that use of different 

satellite sensors in mapping the TSS concentration of coastal waters 
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produces different TSS results for the same region which is partly due to the 

different spatial resolution of the respective satellite sensors and the turbidity 

gradient of the water itself. Thus, a study of the variability of the TSS 

concentration produced by different satellite sensors with different spatial 

resolutions and radiometric characteristics in very turbid waters (e.g. dredge 

and river plumes in coastal waters) for effective compliance monitoring of 

coastal water quality is warranted.  

 The potential of low earth orbiting satellite sensors, such as the 

Landsat series, MODIS-Aqua and MODIS-Terra among other sensors has 

proved their significance in monitoring the quality of global waters at spatial 

and temporal resolutions that are adequate to discern the seasonal or daily 

temporal dynamics in water quality.  However, in coastal environments 

where temporal dynamics of water quality changes within an hour or less 

depending on the tidal and locally wind driven currents (Thompson et al., 

2011), the potential of low earth orbiting satellite sensors with low temporal 

resolution to effectively monitor the temporal dynamics of coastal waters is 

limited.  Previous studies using  the European Union’s meteorological 

satellite (EUMETSAT) (Neukermans, Ruddick, & Greenwood, 2012; Salama 

& Shen, 2010) and the South Korean geostationary ocean colour imager 

(GOCI) satellite (Choi et al., 2014; Doxaran et al., 2014; Huang et al., 2015) 

have shown the potential of using a high temporal resolution sensor 

(numerous images per day) in discerning the diurnal variability of water 

quality in coastal waters from daily or seasonal variations. The availability of 

a high temporal resolution (10 mins for a full disk) sensor, the Advanced 

Himawari Imager (AHI), on board the Japanese Meteorological satellite, 

Himawari-8, over the Australian waters with spectral bands in the visible, NIR 

and SWIR regions provides the potential for mapping the daily temporal 

dynamics of Australian coastal water quality. Thus, the development of TSS 

algorithms for Himawari-8 and studying the feasibility of mapping the TSS 

concentrations in coastal waters in Western Australia is also needed to take 

advantage of this new geostationary satellite in the region.   
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1.3 Research objectives and significance  

 The main objective of this thesis is to develop a satellite based remote 

sensing TSS algorithm for the highly turbid coastal waters of Western 

Australia and to demonstrate its application to coastal water quality 

monitoring. Further, quantitatively and qualitatively assess existing TSS 

algorithms for their applicability in coastal water quality monitoring of the 

northern Western Australian coastal waters. In specifics, the objectives of 

this study are to: 

• Develop a regional TSS model that is physically based on radiative 

transfer theory to map TSS concentration in the turbid waters of 

northern Western Australia; 

• Quantitatively assess and identify robust TSS algorithms that have 

been developed in the last decade for MODIS and Landsat based 

sensors to study the cross-applicability of the TSS algorithms in 

optically unknown water types;  

• Study the impact of spatial resolution of different satellite sensors in 

quantification of TSS concentration in turbid waters and the 

implications for coastal water quality monitoring, and;  

• Study the feasibility of the new generation geo-stationary Himawari-8 

satellite in monitoring TSS concentration in coastal waters of northern 

Western Australia.  

 

 The significance of the research outcomes lies in the development of 

a semi-analytical TSS algorithm for any satellite sensor with either a red or 

NIR band to estimate TSS concentration. In particular, to estimate TSS 

concentration for the turbid coastal waters of northern Western Australia 

where large dredging activities have been carried out recently and the need 

for high spatiotemporal water quality monitoring is needed to study the 

impact of such dredging activities. Further, the identification of the best 

performing TSS algorithms from existing Landsat and MODIS sensors in the 

last decade provides coastal managers and remote sensing scientists the 

ability to select appropriate algorithms for use in determining water quality 

with some level of confidence for optically unexplored waters. In addition, the 
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results on the effect of different spatial resolutions of different satellite 

sensors in the quantification of TSS concentration can also aid in informing 

coastal managers on the possible implication of using different satellite 

sensors for coastal water quality monitoring.  Finally, the significance of this 

research also lies in showing that the Himawari-8 satellite sensor, AHI, can 

be used in monitoring the TSS concentration over Western Australian waters 

at high temporal scales to discern diurnal TSS dynamics with daily or 

seasonal TSS variations.   

1.4 Thesis outline 

      This thesis comprises seven chapters, with Chapters 3 to 6 structured as 

self-contained scientific journal papers. The articles reproduced in Chapters 

3, 4 and 5 are already published in peer-reviewed remote sensing journals 

(Dorji & Fearns, 2016, 2017; Dorji, Fearns, & Broomhall, 2016) while the 

article reproduced in Chapter 6 is submitted and in review in a peer reviewed 

journal (see Table 1.1 for a summary of the publications). This chapter, 

Chapter 1, provides a general introduction and background, including the 

objectives and significance of this study. Chapter 2 presents a general 

overview of radiative transfer principles relevant to the remote sensing of 

ocean colour with a particular emphasis on TSS estimation. In addition, 

Chapter 2 also provides a current state-of-the-field in estimation of TSS 

concentration via satellite remote sensing in coastal waters. The main focus 

of Chapter 3 is the development of a TSS algorithm for the coastal waters of 

Western Australia using the MODIS-Aqua sensor with the aim to use the 

developed TSS algorithm in a study of the spatiotemporal pattern of TSS 

concentration in coastal waters of northern Western Australia. Chapter 4 

quantifies the existing TSS algorithms from the last decade for MODIS and 

Landsat based sensors with the objective to identify the most robust TSS 

model(s) with respect to being used in mapping TSS concentration in 

optically unknown water types. The advantages and limitations of using 

multiple satellite sensors with different spatial resolutions in estimation of 

TSS concentration in coastal waters are presented in Chapter 5. Chapter 6 

investigates the feasibility of the geo-stationary sensor AHI on board the 
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Himawari-8 satellite in estimation of TSS concentration of coastal waters of 

northern Western Australia. Finally, Chapter 7 presents the conclusions and 

general implications of this study in water quality monitoring of coastal waters 

of Western Australia and future directions of TSS estimation via satellite 

remote sensing as perceived from this study.  

 
Table 1.1: Summary of thesis chapters 

Chapter  Title Summary 

1 Introduction General background on remote sensing 

of TSS concentration, and objectives and 

significance of this research study. 

2 Literature Review Literature review of TSS estimation using 

different satellite sensors  

3 A semi-analytic model for estimating total 

suspended sediment concentration in 

coastal waters: a case study in coastal 

waters of Western Australia using MODIS 

250 m data (Dorji et al., 2016). 

Discusses the development of a semi-

analytic TSS model for the MODIS-Aqua 

sensor and the application of the TSS 

model in regional waters of northern 

Western Australia. Published in Remote 

Sensing 2016, 8, 556. 

4 A Quantitative Comparison of Total 

Suspended Sediment Algorithms: A Case 

Study of the Last Decade for MODIS and 

Landsat-based Sensors (Dorji & Fearns, 

2016). 

Identifies robust TSS model(s) from TSS 

models published in the last ten years for 

MODIS and Landsat sensors using 

comprehensive statistical tests and 

simulations. Published in Remote 

Sensing 2016, 8(10), 810.   

5 Impact of the Spatial Resolution of Satellite 

Remote Sensing Sensors in Quantification 

of Total Suspended Sediment 

Concentration: A Case Study in the 

Sediment Plume of the Waters in northern 

Western Australia (Dorji & Fearns, 2017).  

Studies the impact of different spatial 

resolutions of satellite sensors in TSS 

estimation and discusses possible 

implications for coastal water quality 

monitoring. Published in PLoS One 2017, 

12(4), e0175042. 

6 Mapping Total Suspended Sediment in 

Near Real Time: A preliminary Assessment 

of the AHI sensor on board the 

geostationary Himawari-8 satellite for 

Coastal Waters of Western Australia (Dorji 

& Fearns, 2017 [unpublished]).  

 

Explores the possibility of using 

Himawari-8, a meteorological 

geostationary satellite sensor, in TSS 

estimation for coastal waters of Western 

Australia. Submitted to Remote Sensing 

of Environment 2017.  

7 Conclusion and Future Perspectives Summary of findings from this study and 

perspectives on the further work.   
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Literature Review 

2.1 Overview  

 The literature review in this chapter is supplemented by the respective 

introductory sections of the papers reproduced in Chapters 3-6. Therefore, 

this literature review will be brief and focus on the details that are not explicit 

in the contents of Chapters 3-6. In particular, this chapter reviews the past 

and current work carried out in mapping TSS concentration in coastal waters, 

with greater emphasis paid to the limitations and challenges of the current 

state of satellite based TSS remote sensing. In addition, this chapter also 

describes in brief the propagation of light in water and how it is affected by 

different constituents present in water and the water surface itself. 

Specifically, Section 2.2 discusses the general radiative transfer theory used 

in quantification of different water constituents from a water column while the 

Section 2.3 discusses the major water constituents that affect the water 

quality and their implication on the remote sensing of TSS.  The various 

satellite sensors used in mapping of TSS concentration are presented in 

Section 2.4 with Section 2.5 focusing on the past and the current TSS 

models used in estimation of TSS concentration via satellite based remote 

sensing. Finally, Section 2.6 presents the current gaps and limitations in the 

field of TSS mapping via satellite remote sensing.  

2.2 Radiative Transfer Theory and optical properties of the water 
column 

 This section presents the theoretical framework, the fundamentals and 

the radiometric and geometric units used in radiative transfer theory related 

to the understanding of light propagation in the water column. The various 

optical properties of a water body that relate to the remote sensing of ocean 

colour are also described in this section. 

2.2.1 Radiometric quantities in remote sensing 
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 Figure 2.1 shows the configuration of the geometry used in the 

definition of the radiometric quantities in this chapter. The spectral radiance 

(L), a fundamental radiometric quantity, is operationally defined in Mobley 

(2001) as the amount of incident radiant energy (ΔQ) produced by photons in 

a wavelength range (Δλ) centred at λ that is incident on a surface of area 

(ΔA) located at point (x, y, z) in space at time (t) within the time interval (Δt) at 

a solid angle (ΔΩ) through direction (θ, φ):  

-1 -2 -1 -1Δ( , , , , , , ) [Js m sr nm ]
Δ Δ ΔΩΔ

QL x y z t θ φ λ
t A λ

≡  (2.1) 

 

 
Figure 2.1:Geometry used to define radiance (note: image reproduced from Figure 1 of 
Mobley (2001)) 
 

Form an infinitesimal L, Equation (2.1) can be rewritten as:  
4

-1 -2 -1 -1( , , , , , , ) [Js m sr nm ]
Ω
QL x y z t θ φ λ

t A λ
∂

≡
∂ ∂ ∂ ∂

 (2.2) 

For the oceanographic application, we can assume the optical properties of 

water and L are homogenous in the lateral direction and independent of t.  

This allows the multi-dimensional L in Equation (2.2) to be reformulated as a 

1-dimensional L (z, θ, φ, λ). Even though L defined by Equation (2.2) can 

completely describe the light field, L at all angles are typically not measured 

due to the practicalities of instrumental limitations. Thus, the commonly 

measured radiometric quantities are various irradiances (E), such as spectral 
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upwelling scalar irradiance (Eo), upwelling vector irradiance (Eu), downwelling 

scalar irradiance (Eod) and downwelling vector irradiance (Ed).  

 An upward facing hemispherical detector sensitive to photons of 

wavelength λ from any direction (θ, φ) and located at depth z can collect all 

the photons travelling downward. The output of such a detector is the 

spectral downwelling scalar irradiance (Eod (z, λ)) at depth z. The Eod (z, λ) can 

be related to L (z, θ, φ, λ) by:  

d

-2 -1
od

2

( , ) ( , , , ) Ω [Wm nm ]
π

E z λ L z θ φ λ d= ∫  (2.3) 

Here 2πd denotes the hemisphere of the downward direction for the set of 

directions (θ, φ) such that 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π, if θ is measured from +z 

or the nadir direction. Consequently, the output from the same instrument 

facing downward is the spectral upwelling scalar irradiance (Eou (z, λ)) which 

measures the upwelling photons towards the ocean surface. Then the total 

spectral scalar irradiance (Eo (z, λ)) is sum of Eod (z, λ) and Eou (z, λ) as defined 

by Equation (2.4).  
-2 -1

o od ou
4

( , ) ( , ) ( , ) ( , , , ) Ω [Wm nm ]
π

E z λ E z λ E z λ L z θ φ λ d≡ + = ∫  (2.4) 

 There are also planar detectors that are designed such that the 

sensitivity of the detector is proportional to |cos θ|, where θ is angle between 

the normal of the surface collector of area ΔA and direction of the incident 

photons. If such a detector is placed at depth z, collecting downward 

travelling photons, then the output of such a detector is directly proportional 

to the spectral downwelling plane, or vector, irradiance Ed (z, λ). Such an 

instrument would be collecting downwelling L weighted by |cos θ|:  

d

-2 -1
d

2

( , ) ( , , , ) cos Ω [Wm nm ]
π

E z λ L z θ φ λ θ d= ∫ 	 (2.5) 

Positioning this cosine dependent detector in the downward facing direction 

would then collect the upwelling photons and its output would give spectral 

upwelling plane, or vector, irradiance Eu (z, λ). Such radiometric quantities are 

useful in remote sensing because they give energy flux per unit area in a 

horizontal surface at any depth.  
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2.2.2 IOP and AOP 

 The bulk or the large scale optical properties of water are classified 

into AOPs and IOPs. The AOPs are those optical properties of water which 

depend both on the medium and geometrical structure of the ambient light 

field while the IOPs only depend on the medium (Mobley, 1994).  

 Common IOPs used in radiative transfer theory are total absorption 

(a(λ)) and total scattering (b(λ)) coefficients as defined by Equations (2.6) and 

(2.7) respectively:  

-1a

Δ 0
i

Φ ( )1( ) lim [m ]
Φ ( ) Δr

λ
a λ

λ r→
=  (2.6) 

where iΦ ( )λ (W nm-1) is the spectral radiant power from monochromatic light 

of wavelength λ and aΦ ( )λ  is amount of iΦ ( )λ  absorbed by the volume of 

water column with thickness Δr.  

-1

0
4

( ) ( , )dΩ 2 ( , )sin d [m ]
π

π

b λ β ψ λ π β ψ λ ψ ψ= =∫ ∫  (2.7) 

where ( , )β ψ λ (m-1 sr-1) is the volume scattering function which is a measure of 

the fraction of incident power iΦ ( )λ  scattered at an angle ψ into a solid angle 

ΔΩ. The total attenuation coefficient (c(λ)) of light by a volume of water 

column is a(λ) + b(λ). The b(λ) in Equation (2.7) is divided into two parts: the 

forward scattering coefficient (bf(λ)) is scattered at an angle 0 ≤ ψ ≤ π/2 and 

the backward scattering coefficient (bb(λ)) is scattered at an angle π/2 ≤ ψ ≤ π. 

Thus, bb(λ) is defined as:  

-1
b /2
( ) 2 ( , )sin d [m ]

π

π
b λ π β ψ λ ψ ψ= ∫  (2.8) 

 The water column consists of pure water molecules (W) and other 

water constituents such as, organic and inorganic particulate matter, algal 

and non-algal matter, detrital matter and phytoplankton pigments (Prieur & 

Sathyendranath, 1981). Thus, the IOPs of the water column are a cumulative 

sum of absorption and scattering from all the water constituents. However, 

for simplicity and the general application in remote sensing, the IOPs are 

attributed to only optically active water constituents, such as CDOM, 

particulate matter (P) and CHL(φ). Equations (2.9) - (2.11) list the 
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contribution of active water constituents that are significant contributors to 

a(λ), b(λ) and bb(λ):  

W P CDOM φ( ) ( ) ( ) ( )a λ a λ a λ a λ a= + + +  (2.9) 

W P φ( ) ( ) ( ) ( )b λ b λ b λ b λ= + +  (2.10) 

b bW bP bφ( ) ( ) ( ) ( )b λ b λ b λ b λ= + +  (2.11) 

 Commonly used AOPs in remote sensing are irradiance reflectance 

(R(z, λ)), remote-sensing reflectance (Rrs (θ, φ, λ)) and the diffuse attenuation 

coefficient for downwelling light (Kd (z, λ)) as defined in Equations (2.12) - 

(2.14) respectively.  

u

d

( , )
( , ) [unit-less]

( , )
E z λ

R z λ
E z λ

=  
(2.12) 

-1w
rs

d

(0 , , , )
( , , ) [sr ]

(0 , )
L θ φ λ

R θ φ λ
E λ

+

+
=  

(2.13) 

-1d
d

d

d ( , )1( , ) [m ]
( , ) d

E z λ
K z λ

E z λ z
=  

(2.14) 

The Lw (0+, θ, φ, λ) is water leaving radiance just above the water surface. 

The Rrs (θ, φ, λ) essentially just describes the irradiance reflectance just 

above the water surface per unit solid angles, more commonly known as 

remote sensing reflectance. The Kd (z, λ) is the decrease in the ambient 

downwelling irradiance as a function of depth (z).    

 The evaluation of R (z, λ) and Rrs (θ, φ, λ) just beneath the water surface 

are also important in remote sensing because these AOPs can be related to 

the IOPs of the water column to study the bio-geochemical properties of the 

water column (Gordon et al., 1988; Mobley, 2001). The Rrs (θ, φ, λ) evaluated 

just beneath the water surface is called the sub-surface remote-sensing 

reflectance rrs (θ, φ, λ) as defined in Equation (2.15): 

-1w
rs

d

(0 , , , )
( , , ) [sr ]

(0 , )
L θ φ λ

r θ φ λ
E λ

−

−
=  

(2.15) 

The rrs (θ, φ, λ) is proportional to the first order approximation of the IOPs 

term (bb(λ) /(a(λ)+ bb(λ)) of the water column (Gordon et al., 1988; Lee, 

Carder, & Arnone, 2002).  

2.2.3 Linking IOPs and AOPs through a Radiative Transfer Equation 
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 The equation that relates the IOPs and radiance (L) is termed a 

radiative transfer equation (RTE). Even in the simplest case, ignoring the t 

dependency and the horizontal gradient of the water body, the RTE is a 

complex integro-differential equation (Mobley, 2001):  

' ' ' ' '

4

d ( , , , )
cos ( , ) ( , , , ) ( , , , ) ( ; , , ; )dΩ ( , , , )

d
π

L z θ φ λ
θ c z λ L z θ φ λ L z θ φ λ β z θ φ θ φ λ S z θ φ λ

z
= − + × → +∫  (2.16) 

where ψ in ( , )β ψ λ  is an angle between the incident (θ’, φ’) and the scattered 

(θ, φ) direction of photons with wavelength λ. The S (z, θ, φ, λ) term accounts 

for the bioluminescence and inelastic scattering from photons with other 

wavelengths. Due to the complexity of solving the RTE analytically even in its 

simplest form, accurate solutions of the RTE are acquired using numerical 

approaches such as Monte Carlo, or Invariant Imbedding methods used by 

HydroLight simulations (Mobley et al., 1993). Approximate solutions are 

obtained using approximate analytical solutions such as single-scattering 

approximations or quasi-single-scattering approximations (Gordon & Wang, 

1994b).  

 The semi-analytic relationship by Gordon et al. (1988) which relates 

R(λ) to the IOPs of water at different solar zenith angles (θs) forms the basis 

in this thesis for remote sensing of TSS from satellite sensors, discussed in 

detail in Chapter 3. From Gordon et al. (1988) and Lee et al. (2002), a(λ) and 

bb(λ) are directly related to R(λ), and R(λ) is approximately equivalent to rrs(λ) 

as follows:  
i

2
b

i
i 1 b

( )( )( )
( ) ( ) ( )rs

b λR λr λ g
Q λ a λ b λ=

⎛ ⎞
≈ = ⎜ ⎟⎜ ⎟+⎝ ⎠

∑  (2.17) 

where Q(λ) equals π for a totally diffuse radiance distribution and in the range 

of 4 to 5 for L distributions observed in nature. The coefficient g1 = 0.0949 

and g2 = 0.0794 for Case-1 waters, generally open ocean waters (Gordon et 

al., 1988) and g1 = 0.084 and g2 = 0.17 (Lee et al., 2002) for Case-2 water, 

coastal and inland waters.  

2.3  Water quality and optically active water constituents  

 Technically, there is no one single definition for the term “water 

quality”, the water quality is a relative term used to express the suitability of 
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water for particular purpose or processes (Bartram & Ballance, 1996). The 

water quality can be assessed through the measurement of change in the 

concentration of water constituents before and after the impact of 

anthropogenic or natural processes. In marine remote sensing, the water 

quality is synonymous with the measure of ‘water clarity’ or ‘transparency’ 

which can be directly related to the water constituents present in the water 

bodies (Gholizadeh, Melesse, & Reddi, 2016). From the perspective of 

coastal water quality monitoring via satellite remote sensing, the optically 

active water quality parameters measured include CHL concentration 

(Brando & Dekker, 2003; Giardino et al., 2014; Hu et al., 2004; Jutla et al., 

2012; Koponen et al., 2007; Koponen, Pulliainen, Kallio, & Hallikainen, 2002; 

Östlund, Flink, Strömbeck, Pierson, & Lindell, 2001; Teodoro et al., 2008; 

Tilstone et al., 2013; Tzortziou et al., 2006; Wu, Zhang, Wang, & Luo, 2009), 

CDOM concentration (Brezonik, Menken, & Bauer, 2005; Keith, Lunetta, & 

Schaeffer, 2016; Kutser et al., 2005; Loisel et al., 2014b; Slonecker, Jones, 

& Pellerin, 2016; Tiwari & Shanmugam, 2011) and TSS concentration (Chen 

et al., 2014a; Lim et al., 2013; Miller & McKee, 2004; Ody et al., 2016; 

Ondrusek et al., 2012; Wang, Zhou, Xu, Song, & Wang, 2009a; Wang & Lu, 

2010; Zhou et al., 2006). There are also other parameters, such as total 

nitrogen, ammonium nitrogen, and dissolved phosphorus, among others, 

which affect the water quality besides the aforementioned optically active 

water constituents (Gholizadeh et al., 2016). However, due to the low 

variation in the optical signature (low signal to noise ratio) of non-optically 

active water constituents they are not used as often as the optically active 

water constituents in water quality monitoring via satellite remote sensing.  

 CHL or (Chl-a) is a photosynthetic pigment common to all 

phytoplankton species (Bissett, Patch, Carder, & Lee, 1997) which is used 

as a water quality indicator in Case-1 waters because phytoplankton are the 

predominant water constituents compared to other optically active water 

constituents, such as CDOM and TSS  (Gurlin, Gitelson, & Moses, 2011; 

Matthews, 2011). In Case-1 waters, the optical properties of water co-vary 

with the phytoplankton concentration, predominantly with Chl-a 

concentration, which absorbs light in all regions of the EMS, but strongly 
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reflects light in the green wavelengths (Gurlin et al., 2011). However Case-2 

waters are more optically complex than Case-1 waters because of the 

presence of other optically active water constituents such as CDOM and TSS 

as well as CHL (Gordon & Morel, 1983). Further, in Case-2 waters the 

spectral reflectance is influenced by the absorption and scattering from all 

active water constituents and the optical properties of Case-2 waters do not 

necessarily co-vary with CHL concentration, thereby making Case 2 waters 

more complex than Case-1 waters.  

 CDOM, commonly referred as a gelbstoff or yellow substance, 

comprises dissolved matter, such as marine phytoplankton (humic) and land 

based organic matter (fulvic) acids (Loisel, Vantrepotte, Dessailly, & Mériaux, 

2014a; Nebbioso & Piccolo, 2013). The CDOM in Case-1 waters usually 

originates from the degradation of dead phytoplankton and zooplankton 

while in Case-2 waters the major contributor is degraded terrestrial organic 

matter from river and land runoff (Boss, Pegau, Zaneveld, & Barnard, 2001; 

Vantrepotte et al., 2007). In coastal waters, CDOM is a major contributor to 

the absorption of light in the blue region of the EMS which has significant 

impact on the ocean colour remote sensing (Boss et al., 2001; Bricaud, 

Morel, & Prieur, 1981). Further, the increasing absorption of CDOM in the 

blue region of the EMS has impact on the estimation of CHL concentration 

from remote sensing because CHL algorithms are depended on the blue and 

green regions of the EMS (Carder et al., 1991). It has been shown by 

(Carder et al., 1991) that CDOM can positively bias the estimation of CHL 

concentration using ocean colour remote sensing by as much as 113% in a 

region dominated by CDOM (Hubert, Lubac, Dessailly, Duforet-Gaurier, & 

Vantrepotte, 2010).  

 The water constituent of interest in this literature review is TSS. 

Suspended sediments are of two types: organic (detritus and phytoplankton) 

and inorganic (minerals) matter (Kjelland, Woodley, Swannack, & Smith, 

2015). TSS by definition is the mass of the suspended particulate matter that 

is left after a sample of water is filtered, then the filter has been dried and 

weighed. For the operational distinction between dissolved matter and TSS, 

the particles that are smaller than 0.2 μm are considered as dissolved matter 
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while particle greater than 0.2 μm are considered particulate fractions 

(Steven, Pantus, Brooks, & Trott, 1998). However, for the practical purpose, 

depending on the particle loading, any TSS is quantitatively measured in unit 

weight of dry weight of suspended solids in per volume of water (mg/L) that 

are retained after filtering through a 0.7 μm Whatman glass-fiber filter (GF/F) 

(Chavez et al., 1995).  TSS consists of pigments and cell matter, dead 

organic matter, and minerals and it is synonymous with Suspended 

Sediment Concentration (SSC) and Suspended Particulate Matter (SPM) 

(Binding, Bowers, & Mitchelson-Jacob, 2005; Ouillon et al., 2008). The TSS 

absorbs or scatters light depending on the amount of organic and inorganic 

particles present in its total mass, but generally the organic components 

(pigments and dead organic matter) all strongly absorb light while minerals 

strongly scatter light (Matthews, 2011). 

2.4  Satellite Sensors used in TSS Mapping 

 Space-borne or satellite-based remote sensing occurs from outside of 

earth’s atmosphere using either a geosynchronous, sun-synchronous or 

polar orbit at heights ranging from several hundred (low earth orbit) to 

thousands of kilometres (high earth orbit). The launch of the first satellite 

(Earth Resources Technology Satellite 1 (Landsat 1)) for environmental 

monitoring of earth resources by the U.S Geological Survey and NASA on 

July 23, 1972 has led to interest in mapping TSS from space (Kim, 1980). 

The earliest of the studies by Klemas, Borchardt, and Treasure (1973) and 

Bowker, Fleischer, Gosink, Hanna, and Ludwich (1973) of the space-borne 

sensors used in mapping TSS includes the use of radiance (L) of 

multispectral channels from Landsat-1 to correlate to TSS concentration. 

Since then numerous studies from across the globe have been carried out 

using different satellite sensors based on the needs and the general 

requirement of the study. 

 The most common low earth orbiting satellite sensors used in 

mapping TSS concentration and currently operational are Landsat-7 and 8 

(Kallio et al., 2008a; Wu et al., 2008; Zhou et al., 2006), MODIS-Aqua and 

MODIS-Terra (Chen et al., 2007; Doxaran, Froidefond, Castaing, & Babin, 
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2009; Miller & McKee, 2004) and MERIS (Kratzer et al., 2008; Odermatt et 

al., 2008). The historical Landsat satellite sensors, despite the low signal-to-

noise ratios (SNR) and radiometric properties not suitable for ocean colour 

application, were still used in ocean colour applications because of the 

availability of long time series data to study the historical trends in TSS. The 

Landsat-8 OLI sensor in use today consists of improved SNR and 

radiometric characteristics with spatial resolution of 30 m in all visible bands 

except the panchromatic band (15 m) and spectral bands suitable for 

regional mapping of TSS (Olmanson, Bauer, & Brezonik, 2008; Onderka & 

Pekárová, 2008). However, the repeat cycle of 16 days and high probability 

of cloud coverage makes Landsat-8 OLI data not suitable for rapid change 

detection applications (Chen et al., 2007).  The MODIS sensors on board 

Terra (EOS AM) and Aqua (EOS PM) satellites cover most parts of earth 

every 1 to 2 days and offers a near real time coverage.  The MODIS band 1 

(620-670 nm) and band 2 (841-876 nm) are more commonly used to map 

TSS in coastal waters because of their spatial resolution of 250 m compared 

to the remaining visible bands which have lower spatial resolution (1 km) 

(Chen et al., 2007; Miller & McKee, 2004). In addition, the free accessibility 

of MODIS and Landsat data makes them more appealing to researchers to 

develop regional algorithms to estimate TSS.  

 Other low earth orbiting satellite sensors used in mapping TSS in 

coastal water bodies include SPOT (Doxaran et al., 2002), MERIS (Kratzer 

et al., 2008), IKONOS (Ekercin, 2007), EO-1 Hyperion (Giardino, Brando, 

Dekker, Strömbeck, & Candiani, 2007), Indian Remote Sensing (IRS) 

(Mabwoga, Chawla, & Thukral, 2010), Huan Jing (HJ)-1A/B (Chen et al., 

2014a) and Thailand Earth Observation System (THEOS) (Lim et al., 2013). 

The SPOT High Resolution Visible (HRV) data, available in three wave 

bands, 500-590 nm, 610-680 nm, and 790-890 nm, was found to correlate 

well with TSS. However, caution must be exercised while using SPOT data 

due to its coarse 70 nm spectral resolution (Dekker, Vos, & Peters, 2002). 

The availability of data in visible and NIR channels with a spatial resolution of 

5.8 m and repeat cycle of 5 days makes the IRS Linear Imaging Self 

Scanner (LISS) IV sensor suitable to study water clarity of coastal waters. 
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Observation by Mabwoga et al. (2010) showed strong correlation between 

data from the NIR band and TSS in wetlands in India using the IRS LISS IV 

satellite. The Chinese disaster monitoring and forecasting satellite (HJ-1A/B) 

has a revisit time of 2 days with similar spectral bands (430-520nm, 520-

600nm, 630-690nm, and 760-900nm) and spatial resolution (30 m) to 

Landsat TM which makes it more appealing in the study of TSS. Chen et al. 

(2014a) showed that HJ-1A data can be used to derive TSS from turbid 

coastal water with reasonable uncertainty (< 29%) provided that an 

appropriate atmospheric correction method is available.  THEOS has the 

required spectral bands (450-520 nm, 530-600 nm, 620-690 nm, and 770-

900 nm) with spatial resolutions of 15 m for the first three bands and 2 m for 

the last band. Lim et al. (2013) and Asadpour, Lim, Alashoo, and Mousavi 

(2012) have demonstrated the applicability of THEOS imagery in estimating 

TSS from coastal waters. The hyperspectral sensors, Hyperion, and very 

high spatial resolution sensors, WorldView 2-4 also have the capability to 

map TSS with greater accuracy and move away from localized algorithms 

Giardino et al. (2007). The capability of hyperspectral imagery to shift beyond 

empirical based algorithms to map water quality is demonstrated by Giardino 

et al. (2007) using Hyperion imagery, however, the limited accessibility of 

such data restricts its wider applicability. From the aforementioned TSS 

studies, the general consensus is that the selection of an appropriate 

satellite sensor for the water quality monitoring is generally dictated by the 

specific requirements of the task and the availability of the specific bands at 

the required spectral, temporal and spatial resolutions.  

 High earth orbiting geostationary satellites are designed particularly 

for meteorological purposes, but in the last decade, the geostationary 

satellites with visible and NIR bands have been found feasible in the study of 

water quality (Ruddick, Neukermans, Vanhellemont, & Jolivet, 2014). The 

geostationary satellite sensors that are currently used in the study of TSS are 

SEVIRI on the METEOSAT second generation platform and Geostationary 

Ocean Colour Imager (GOCI) on board the South Korean communication, 

ocean and meteorological satellite (COMS). The sensors on board the 

geostationary satellites do not have the high spectral resolutions of the low 
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earth orbiting satellite sensors but, the studies (Choi et al., 2014; He et al., 

2013; Huang et al., 2015; Neukermans et al., 2009; Salama & Shen, 2010; 

Vanhellemont, Neukermans, & Ruddick, 2014) have shown that the 

geostationary satellite sensors are capable of quantitatively mapping TSS 

concentration in coastal waters at high temporal resolution. The GOCI, which 

is the first geostationary satellite sensor with designated ocean colour bands 

in the visible and NIR region with spatial resolution of 500 m and capable of 

collecting 8 images per day, has been used to study TSS concentrations in 

Korean and neighbouring waters (Choi et al., 2014; Doxaran et al., 2014; 

Huang et al., 2015). Choi et al. (2014) found that Rrs derived from GOCI band 

5, centred at 660 nm, had a high regression coefficient (R2 = 0.93) with TSS 

concentrations and in situ validation of their results also produced a high 

correlation coefficient (R2 = 0.85). Since the feasibility study by Neukermans 

et al. (2009) on using the Meteosat’s SERIVI sensor in estimating TSS 

concentration, further studies (Neukermans et al., 2012; Vanhellemont et al., 

2014) have been conducted thereafter. Neukermans et al. (2009) showed 

that SERIVI, with a temporal resolution of 15 minutes, was able to retrieve 

TSS in the Southern North Sea and SERIVI- derived TSS correlated strongly 

(R2 = 0.83) with MODIS-Aqua derived TSS in highly turbid waters but 

displayed high uncertainty (relative error ~ 39-100%) in clearer waters. The 

satellite sensors that are currently operational and that have the potential to 

map TSS concentration are listed in Table 2.1 with their spatial resolution, 

spectral bands and bandwidths, and temporal characteristics.  
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Table 2.1: List of satellite sensors currently operational with the potential to map TSS concentration 

 

* Geostationary satellite, ** Commercial satellite, *** Satellite data that can be acquired at free of costs 

LISS = Linear imaging Self Scanner, WV = World View, OLCI = Ocean and Land Colour Instrument, MSI = Multi-Spectral Imager, SEVIRI = Spinning Enhanced 

Visible and InfraRed Imager, COMS = communication, Ocean and Meteorological Satellite, AHI= Advanced Himawari Imager, GOCI = Geostationary Ocean 

Colour Imager, AVNIR = Advanced Visible and Near Infrared Radiometer, OLI = Operational Land Imager, MODIS = MODerate resolution Imaging 

Spectroradiometer, ALI = Advanced Land Imager, ASTER = Advanced Spaceborne Thermal Emission and Reflection Radiometer

Satellite (Sensor) Launch Year – Life span Spectral Bands (range (in nm)) Spatial Resolution Temporal Resolution 
Resourcesat-2A (LISS IV) 2016 – 5 years 3 (520 – 860) 5.8 5 days  

Digital Globe (WV-4) ** 2016 – 12 years 5 (450 – 920) 0.31 – 3.51 m  1 – 4.5 days 

Sentinel-3A & B (OCLI) *** 2016 (17) – 7 years 21 (400 – 1020) 300 m 2 days 

Sentinel-2A & B (MSI) *** 2015 (17) – 7.25 years 13 (433 – 2280) 10 – 60 m 5 days with 2 satellites 

TH-01 (MSI) 2015 – 3 years 5 (430 – 900) 2 – 10 m 5 days 

Meteosat-11 (SEVIRI) * 2015 – 7 years 12 (3.9 – 13400) 1000 – 3000 m Every 15 minutes for full disk 

Himawari-8 & 9 (AHI) * 2014 (16) – 8 years 16 (430 –  13400) 500 – 2000 m Every 10 minutes for full disk 

ALOS-2 (AVNIR-2) ** 2014 – 7 years 5 (420 – 890) 2.5 – 10 m 14 days 

SPOT-7 (MSI)** 2014 – 10 years 5 (455 – 890) 1.5 – 6 m 1 day 

NOAA (WV3) ** 2014 – 7.25 years 17 (400 – 2365) 0.31 – 3.7 m  1 – 4.5 days 

Landsat-8 (OLI) *** 2013 – 5 years 8 (433 – 2300) 15 – 30 m 16 days 

SPOT-6 (MSI) ** 2012 – 10 years 5 (455 – 890) 1.5 – 6 m  1 day 

Resourcesat-2 (LISS-IV) 2011 – 5 years 3 (520 – 860) 5.8 m  5 days 

COMS (GOCI)* 2010 – 7.7 years 8 (402 – 885) 500 m 10 acquisition / day 

Digital Globe (WV-2) ** 2009 – 13 years 9 (450 – 1040) 0.46 – 1.85 m  1.1 days 

GeoEye (Geoeye-1) 2008 – 7+ years 5 (450 – 920) 0.41 – 1.65 < 3 days 

Digital Globe (WV-1) ** 2007 – 13 years 9 (400 – 1040) 0.5 m 1.7 days 

Terra-EOS-PM (MODIS) *** 2002 – 6 years 36 (405 – 11650) 250 – 1000 m 1 – 2 days 

EO-1 (Hyperion) *** 2000 – 1 year 242 (350 2570) 30 16 days 

EO-1 (ALI) *** 2000 – 1 year 10 (433 – 2350) 10-30 m 16 days 

Landsat-7 (ETM+) *** 1999 – 5 years 8 (450 – 2350) 15 – 30 m 16 days 

Terra (ASTER) *** 1999 – 6 years 14 (520 – 11650) 15 – 90 m 16 days 

Terra-EOS-AM (MODIS) *** 1999- 6 years 36 (405 – 14385) 250 – 1000 m 1 – 2 days 
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2.5  TSS Algorithms 

 Algorithms used in mapping TSS via remote sensing methods can be 

broadly classified into three categories—empirical, bio optical and semi-

analytic models. In this section, a brief discussion of TSS models is 

presented for each of the three categories. More detailed descriptions of 

TSS models with greater emphasis on Landsat and MODIS based satellite 

sensors is presented in Section 4.2.  

2.5.1 Empirical models 

 The empirical TSS models are those models that are designed solely 

based on empirical data and established using a statistical relationship 

between the reflectance (water leaving (ρw), Rrs, rrs or top of the atmosphere 

(ρtoa)) and TSS concentration through a linear or non-linear regression. The 

empirical models are the most common models in remote sensing of TSS in 

coastal waters because of their simplicity and ease in design, and also 

because such TSS models produce better results than semi-analytic or bio-

optical models when the model is tuned to a particular region (Matthews, 

2011). The design and the implementation of empirical TSS models in 

estimating TSS concentration from satellite sensors involves the following 

steps:  

1. The concurrent measurement of the in situ TSS concentrations 

and optical properties (reflectance and/or radiance) of the regional 

waters;  

2. The collected in situ data are processed and quality controlled to 

form a linear and/or non-linear relationship between the TSS 

concentration and highly correlated optical properties, usually the 

reflectance (Rrs and ρw) at a specific band or combination of bands 

through a statistical linear or nonlinear regression analysis; 

3. The established relationship between TSS concentration and 

optical properties, the TSS model, is validated using in situ 

validation data to assess accuracy, and;  
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4. The validated TSS model is applied to satellite remote sensed and 

atmospherically corrected or top of atmosphere measured 

reflectance or radiances to generate the TSS concentration.  

 The form of the empirical relationships between TSS concentration 

and reflectance are typically either linear (Ayana et al., 2015; Kaba, Philpot, 

& Steenhuis, 2014; Miller et al., 2011), exponential (Feng, Hu, Chen, & 

Song, 2014; Hudson et al., 2014; Zhang, Shi, Zhou, Liu, & Qin, 2016a), 

polynomial (Giardino et al., 2014; Kumar, Equeenuddin, Mishra, & Acharya, 

2016; Petus et al., 2014) or power (Chu et al., 2009; Espinoza Villar et al., 

2013; Sokoletsky, Yang, & Shen, 2014). The form of the empirical 

relationships used in deriving TSS concentrations have an implication for 

their accuracy because most empirical relationship do not necessarily 

represent the actual relationships between TSS and reflectance in reality. 

Further, because such relationships are often determined on the basis of the 

highest regression coefficient obtained when performing the regression 

analysis between TSS concentration and reflectance, such methods may 

produce a bias in the TSS model that favours either high or low turbid waters 

if the full spectrum of TSS values are not used in parameterizing the TSS 

models. For example, for low TSS concentrations in the red and NIR bands, 

the TSS concentration does vary linearly with reflectance, but as the TSS 

concentration increases the linear relationship begins to break down and 

reflectance saturates at higher TSS concentrations (Mobley, 1994). TSS 

estimated with such a linear relationship would underestimate TSS 

concentration in highly turbid waters. Thus, in designing TSS models, it is 

important to sample waters that are representative of the full range of 

turbidity values in the region and select an appropriate form to generate an 

empirical relationship. In the case of high turbidity over a specific region, the 

studies by Feng et al. (2014) and Chen et al. (2015a) have shown that the 

use of different TSS models, possibly a split TSS algorithm for different 

turbidity regimes (high or low turbid waters) gives improved results compared 

to one general TSS model for the whole spectrum of turbidity.  

 The bands used in estimation of TSS concentration in empirical 

models ranges from the visible to the NIR regions of spectrum. However, the 
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most common bands used in the TSS models in the last decade were single 

red (Kumar et al., 2016; Lu, Chen, Tian, & Zhang, 2014; Shi et al., 2015; 

Zhang et al., 2016a)  and NIR (Ayana et al., 2015; Cai, Tang, & Li, 2015b; 

Hicks, Stichbury, Brabyn, Allan, & Ashraf, 2013; Kaba et al., 2014) bands or 

combinations of red and NIR bands (Chen et al., 2015a; Hudson et al., 2014; 

Wang, Zhou, Liu, Zhou, & Zhao, 2012). There have been studies (Härmä et 

al., 2001; Sawaya, Olmanson, Heinert, Brezonik, & Bauer, 2003; Wang & 

Ma, 2001) where different band ratios in the visible and NIR spectral regions 

have been used in estimation of TSS concentration by taking advantage of 

the phytoplankton absorption minimum near 560 nm, which makes 

reflectance in that band relatively sensitive to the changes in TSS 

concentration (Matthews, 2011). In water where the expected variation of the 

sediment types (particle size and refractive indices) are high over the long 

timescales then the use of band-ratios in the NIR and green bands and NIR 

and red bands are shown to be more robust than single red or NIR band 

TSS models (Doxaran et al., 2009). 

2.5.2 Bio-optical and semi-analytical models 

 In the bio-optical models, the biogeochemical properties (TSS in this 

case) of water are derived by seeking to model the ρw using the IOPs of 

water through radiative transfer modelling (Dekker et al., 2002). However, 

the IOPs of water are different for different geographical locations and the 

limitation of optical instruments to accurately measure the IOPs of the water 

column limits the development of a purely analytic model. Thus, different 

model-based approaches are derived using radiative transfer modelling to 

establish a relationship between biogeochemical properties of water and the 

reflectance through either ‘forward’ or ‘inverse’ modelling.  

 In a forward model, the rrs or ρw are derived using the in situ bio-optical 

properties of water through an approximate solution, as in Equation (2.17), or 

a more accurate solution is generated by solving the RTE using a range of 

radiative transfer models such as HydroLight (Mobley, 1994) or Monte Carlo 

simulations (Gordon et al., 1988). In the ‘inverse’ model, the reflectance 

derived by satellite sensors is used in deriving the IOPs of the water using a 
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range of mathematical optimization techniques such as Levenberg-

Marquardt or non-linear regression methods (IOCCG, 2000) to establish an 

analytical relationship between reflectance and IOPs, such as aφ and bbp, 

which generally have well established relationships with the CHL or TSS 

concentrations (Matthews, 2011).  

 The bio-optical models are desired over empirical models because 

bio-optical models are physically based on the principle of RTE and have the 

potential to accurately estimate biogeochemical parameters if IOPs of the 

water column are known. The complexity and difficulty in measurement of 

IOPs of the water column limits the development of robust analytical models, 

but the use of empirical data to establish a relationship between optical 

properties and the concentration of the biogeochemical parameters of 

interest have led to the development of “semi-analytical” models. The use of 

semi-analytical models to estimate the TSS concentrations have gained 

momentum over the years from a few early studies (Dekker, Vos, & Peters, 

2001; Dekker et al., 2002; Gordon et al., 1988; Lee et al., 2002) to numerous 

recent studies (Chen et al., 2014a; Chen, Cui, Tang, & Song, 2014b; Chen, 

Cui, Qiu, & Lin, 2013a; Dorji & Fearns, 2016; Han et al., 2016; Nechad et al., 

2010; Shen, Zhou, Peng, & Chen, 2014). The semi-analytic TSS models 

reviewed here are observed to derive the TSS concentration from the 

satellite reflectance (Rrs, ρw or rrs) using a non-linear relationship with one or 

more coefficients statistically derived from a regional or global in situ IOP 

dataset.  

 The satellite sensor bands used in bio-optical or semi-analytic models 

to estimate TSS concentrations in coastal waters or highly turbid waters are 

usually a single red band (Han et al., 2016; Katlane, Nechad, Ruddick, & 

Zargouni, 2013; Vanhellemont & Ruddick, 2014) or NIR band (Chen, D'Sa, 

Cui, & Zhang, 2013b; Kong et al., 2015b; Shen et al., 2014) or a combination 

of red and NIR bands (Chen et al., 2013b), because particulate matter is 

known to dominate the backscattering in the red and NIR bands when 

compared with the optical response from other biogeochemical constituents 

(particularly phytoplankton). However, there are also semi-analytical TSS 

models that use different combinations of bands in the visible and NIR 
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spectral regions (Zhang et al., 2016b). Use of a single red or NIR band 

provides a robust and TSS sensitive algorithms in turbid waters, where 

optical properties in those bands are dominated by suspended sediments. 

But in optically complex water where TSS is not necessarily a dominating 

constituent then the use of band combinations in the visible and NIR regions 

can be useful in normalizing the optical effect of other constituents in 

estimation of TSS concentration (Kwiatkowska & Bonekamp, 2016). 

2.6  Challenges and future direction 

 Satellite remote sensing has proven to be more effective in mapping 

TSS concentration at high spatiotemporal resolution than ever possible with 

traditional ground based sampling methods, but satellite remote sensing of 

TSS (or any other biogeochemical parameter) has its limitations and 

challenges. The challenges for remote sensing of TSS from satellite includes 

inherent limitations of radiometric, temporal, spatial and spectral resolution of 

satellite sensors themselves, the uncertainty in the TSS model that may be 

the result of inadequate calibration of the model because it is physically not 

possible to obtain a training dataset representative of all turbidity values of 

the region, and atmospheric effects on the signals collected at the satellite 

sensor (Gholizadeh et al., 2016).  

2.6.1 Satellite sensor requirements and limitations 

   The design of satellite sensors is guided by the specific mission 

requirements and their applications; therefore, different satellite sensors 

have different spatial, spectral band and band widths, SNR, radiometric 

characteristics and temporal resolutions (CARSOCRO & National Research 

Council, 2011). Even in open Case-1 waters, the minimum number of 

spectral channels needed for retrieval of a CHL pigment index, sediment 

detection and assessment of aerosol is five channels, three in visible bands 

(438 - 448 nm, 485 - 495 nm, and 550 - 565 nm) and two in the NIR bands 

(744 - 757 nm and 855 – 890 nm) (IOCCG, 1998). In addition to the 

minimum of five spectral channels, the high SNR (Noise Equivalent 

Radiance of 0.035 W m-2 sr-1 μm-1 or lower in the visible bands and below 
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0.025 in the NIR bands) and the capability to maintain the minimum required 

radiometric stability and adequate dynamic range to differentiate between 

weak Lw with those of atmospheric contributions are necessary. Further, a 

mechanism to avoid sensor saturation from sun glint, adequate spatial 

resolution (~1 km) and temporal resolution (~2-3 days) are also needed as a 

required minimum for satellite a sensor designed for remote sensing of open 

Case-1 water (IOCCG, 1998).  

 For coastal water quality monitoring, an additional spectral channel in 

the SWIR (1040 - 1240 nm) is needed as well as the minimum bands 

required in Case-1 waters because the non-zero reflectance in the NIR 

bands over the Case-2 or coastal waters due to high sediment concentration 

renders the atmospheric correction scheme of Case-1 waters not applicable 

(IOCCG, 2000). The spatial and temporal resolutions required for coastal 

waters are also dependent on the intended applications. For example, in 

coastal ocean-colour applications involving the monitoring of river and tidal 

plumes, spatial resolutions in the range of 30 m – 1 km and temporal 

resolutions of hours are needed, while general coastal water quality 

monitoring would require spatial resolutions of 100 m – 1 km and temporal 

resolutions within days (IOCCG, 2000). The current existing polar orbiting 

sensors with dedicated ocean colour bands are MODIS-Aqua and Modis-

Terra. MODIS sensors have adequate spatial, radiometric SNR and spectral 

channels needed for a general coastal-water quality monitoring, but capable 

of providing only one image per day or combined two images per day during 

cloud free days. Higher temporal resolution satellite sensors with adequate 

spatial resolution, such as the geostationary satellite sensor GOCI with the 

capability of acquiring 8 images per day at 500 m spatial resolution, can 

effectively map the temporal dynamics of coastal waters (Choi et al., 2014; 

Doxaran et al., 2014; Huang et al., 2015). However, GOCI currently only 

“looks” around the Korean Peninsula and lacks the SWIR band required to 

perform atmospheric correction over turbid regions. The Landsat-8 OLI 

sensor, though designed for terrestrial applications, has found uses in water 

quality monitoring due to its high spatial resolution which can effectively 

resolve and delineate fine turbidity features between the micro-tidal river and 
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offshore waters plumes (Ody et al., 2016). However, with a revisit frequency 

of every 16 days Landsat-8 OLI lacks the required temporal resolution to 

monitor the temporal dynamics of suspended sediments in the coastal 

environment. 

 The past and the existing satellite sensors have provided a wealth of 

information in qualitative and quantitative understanding of the dynamics of 

our coastal waters quality as a result of natural and anthropogenic 

processes. However, there are challenges in continuously monitoring the 

coastal waters quality due to the satellite sensor’s spatiotemporal and 

radiometric limitations. The synergistic approach of using different satellite 

sensors in conjunction with each other has shown some potential in 

achieving the limitations of using only a single satellite sensor (Miller et al., 

2011). However, some challenges still exist in multi-sensor data fusion 

resulting from different radiometric and spatial characteristics of each sensor. 

The availability of geostationary sensors, such as GOCI and SERIVI, has 

shown the potential of high temporal monitoring of water quality in coastal 

waters in regional waters. Thus, the possible future in coastal water quality 

lies in the availability of synchronized geostationary satellite with at least 

equivalent radiometric and spectral characteristics of MODIS or better. 

Further, the exploration of the application of other planned or already 

available geostationary sensors, like Himawari 8 & 9 and the third generation 

European Union’s meteorological satellite sensor, with sufficient SNR and 

spectral bands is warranted to sustain the effort of water quality monitoring of 

highly dynamic coastal waters.  

2.6.2 Limitations of TSS models 

 The complex nature of biogeochemical properties of coastal waters 

limits the general application of already developed and validated TSS 

models from one region to another. Further, the limitations of TSS models 

are also caused by the different errors associated with not only the simple 

statistical basis used in the empirical model and the simplified relationship 

generated using approximation and assumption between IOPs and 

biogeochemical properties in the bio optical and semi-analytical models, but 
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also from the atmospheric correction procedures and calibration errors in the 

model as a result of the in situ measurements and the difference between 

the temporal and spatial match between satellite and in situ measurements 

(IOCCG, 2000).  

 The atmospheric correction for Case-1 waters generally assumes zero 

contribution of Lw in NIR bands which has been proven to be an invalid 

assumption in coastal waters because suspended sediments also contribute 

to Lw in the NIR bands (Ruddick, Ovidio, & Rijkeboer, 2000). Failure to 

correct for atmospheric effects on the quantification of geophysical 

parameters was shown to be significant by Doxaran et al. (2002), who 

observed ρw in the NIR bands (700 – 900 nm) for TSS greater than 50 mg/L 

were not negligible, and Chen, Zhang, Cui, and Wen (2013c) also found that 

ρw at 748 nm was not insignificant (0.0012) when TSS concentration was 

moderate (8.13 mg/L). Thus, Lw in turbid coastal waters was shown to be not 

negligible, contrary to previous assumptions about ρw in NIR based 

atmospheric correction models. Further, it is well known that 5% uncertainty 

in reflectance translates to 5% error in the estimation of biogeochemical 

parameters (Gordon & Castaño, 1989).  

 The calibration of a part or whole of the parameters in both the 

empirical and semi-analytical TSS models requires accurate in situ 

measurements of optical properties or biogeochemical parameters, which 

are representative of the water conditions of the study region. However, 

accurate measurements of the optical properties using currently available 

optical instruments are limited by instrument’s sensitivities, calibration, dark 

signal correction, data processing, and deployment strategy among other 

environmental and experimental procedures (IOCCG, 2006). Empirical TSS 

models which are usually calibrated using in situ measurements from the 

regional water are only valid for that particular region and time, depending on 

the general representativeness of the in situ data collected from that 

particular region.  Apart from the different regional application of the 

developed TSS models, the application of developed regional TSS models is 

questionable at different time periods because IOPs of water are affected by 

the seasonal changes where one biogeochemical constituent’s concentration 
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might be less or more dominant during a particular season (Xing et al., 

2014). Further, the general applicability of TSS models is limited due to 

potential violation of physical relationships that exist between the TSS 

concentration and the optical properties the models assumes or 

approximates (IOCCG, 2000). In the case of the bio-optical and semi-

analytical models, the development of TSS models usually assumes or 

approximates the physical relationship between biogeochemical properties 

and the IOPs to simplify the actual physical relationships which are more 

complex and interlinked than a decoupled relationship of a single or few 

parameters. Thus, the uncertainties in the semi-analytical model are as a 

result of the chosen relationship between the physical parameters and the 

optical properties and associated assumptions used in generation of those 

relationships.  

 In addition to the aforementioned uncertainties associated with both 

empirical and semi-analytical TSS models, the uncertainties in the remotely 

sensed L or ρ by the satellite sensor also affects the quantification of TSS 

concentrations. It has been reported that 5% calibration error of satellite 

sensor will result in 50% error in Rrs  (Chen et al., 2015b) which can translate 

to 50% error in TSS concentration estimation even for a simple linear TSS 

model. The source of error in the validation of TSS models stems from the 

fact that in situ measurement are collected over small areas (usually a few 

square meters) while the satellite match-ups are generated from large areas 

(few hundreds square meters to a square kilometre) (IOCCG, 2006). Such 

validation methods are valid for the open ocean which is assumed to be 

relatively spatially homogenous, but such is not the case for turbid coastal 

waters. Despite the challenges and limitations faced by TSS models, more 

TSS models are developed where uncertainties associated with the model 

development are quantified through the use of advanced statistical methods, 

such as use of type II regression methods in the empirical models to account 

for the uncertainty associated with both the dependent (TSS concentration) 

and independent (reflectance) variables and non-linear adaptation in 

computation of the confidence interval for semi-analytical models (IOCCG, 

2006).  
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3.1 Abstract 

 Knowledge of the concentration of total suspended sediment (TSS) in 

coastal waters is of significance to marine environmental monitoring 

agencies to determine the turbidity of water that serve as a proxy to estimate 

the availability of light at depth for benthic habitats. TSS models applicable to 

data collected by satellite sensors can be used to determine TSS with 

reasonable accuracy and of adequate spatial and temporal resolution to be 

of use for coastal water quality monitoring. Thus, a study is presented here 

where we develop a semi-analytic sediment model (SASM) applicable to any 

sensor with red and near infrared (NIR) bands. The calibration and validation 

of the SASM using bootstrap and cross-validation methods showed that the 

SASM applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-

Aqua band 1 data retrieved TSS with a root mean square error (RMSE) and 

mean absolute relative error (MARE) of 5.75 mg/L and 33.33% respectively. 

The application of the SASM over our study region using MODIS-Aqua band 

1 data showed that the SASM can be used to monitor the on-going, post and 

pre-dredging activities and identify daily TSS anomalies that are caused by 

natural and anthropogenic processes in coastal waters of northern Western 

Australia. 
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3.2 Introduction 

 The use of satellite remote sensing of coastal waters to derive their 

bio-geophysical properties provides marine scientists and managers with a 

relatively affordable alternative to in situ based sampling. Remote sensing 

has been used to map a wide array of coastal water’s constituents, such as 

phytoplankton for biomass and primary production (Acker et al., 2005; Arrigo 

& McClain, 1994; Jutla et al., 2012; Sullivan et al., 1993), coloured dissolved 

organic matter (CDOM) for its effect on benthic habitats (Kutser et al., 2005; 

Loisel et al., 2014b; Tiwari & Shanmugam, 2011), and total suspended 

sediments (TSS) concentration as a measure of water quality (Ayana et al., 

2015; Binding et al., 2005; Chen et al., 2007; Martinez, Guyot, Filizola, & 

Sondag, 2009; Park & Latrubesse, 2014). Many studies have been 

performed to derive TSS concentration via satellite remote sensing using 

different platforms: Sea-viewing Wide Field-of-view Sensor (SeaWiFS) 

(Doxaran et al., 2003; Vos et al., 2003), Landsat series (Kallio et al., 2008b; 

Vanhellemont & Ruddick, 2014; Wu et al., 2015; Wu et al., 2008; Zhang et 

al., 2014; Zhou et al., 2006), Medium Resolution Imaging Spectrometer 

(MERIS) (Chen et al., 2015b; Kratzer et al., 2008; Odermatt et al., 2008; 

Qing et al., 2014; Raag et al., 2013; Tarrant et al., 2010), Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Ayana et al., 2015; Chen et 

al., 2015a; Chen et al., 2007; Hudson et al., 2014; Miller & McKee, 2004; 

Petus et al., 2014; Raag et al., 2013), “Système Pour l'Observation de la 

Terre” (SPOT) (Doxaran et al., 2002), and high resolution sensor IKONOS 

(Ekercin, 2007). Most models are developed to estimate TSS concentration 

by directly relating the remotely sensed reflectance with in situ 

measurements of the TSS concentration using statistical analysis, linear and 

non-linear regression. These models may use a single spectral band (Choi et 

al., 2014; Cui, Qiu, Fei, Liu, & Wu, 2013; Kaba et al., 2014; Shi et al., 2015; 

Tyler, Svab, Preston, Présing, & Kovács, 2006; Wang, Zhou, Xu, Song, & 

Wang, 2008; Wu et al., 2008) or combinations of different spectral bands 

(Chen et al., 2015a; Duan, Ma, Zhang, & Zhang, 2009; Espinoza Villar et al., 

2013; Kallio et al., 2008b; Kratzer et al., 2008; Qiu, 2013; Shen et al., 2014) 

with regression analysis to predict the TSS concentration. Linear 
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approximations from regression analysis are valid for relatively low TSS 

concentrations but as the TSS concentration increases the linearity weakens 

and the reflectance saturates at high TSS concentration (Doxaran et al., 

2003; Petus et al., 2010). The saturation of reflectance occurs at high TSS 

concentration because the increased water column scattering leads to a 

relative enhancement in absorption/attenuation of the backscattered light 

(Mobley, 1994). In such cases, a non-linear approximation such as a higher 

order polynomial or exponential function (Doxaran, Castaing, & Lavender, 

2006; Doxaran et al., 2003; Hudson et al., 2014; Shi et al., 2015) is used to 

relate the TSS concentration to reflectance. Combinations of different 

spectral bands in visible and near infrared (NIR) spectral regions have been 

used to estimate the TSS concentration in coastal waters that varied vastly in 

concentrations, from less than 11.0 mg/L (Alikas & Reinart, 2008; Kutser et 

al., 2007; Raag et al., 2013; Sipelgas et al., 2006) to very high, greater than 

2000 mg/L (Doxaran et al., 2003; Hu et al., 2004; Sokoletsky et al., 2014). 

Spectral bands in the blue and green spectral regions with (Chen et al., 

2015b; Li, Gao, & Wang, 2010; Qiu, 2013; Zhang, Tang, Dong, Song, & 

Ding, 2010) or without (Jiang and Liu 2011 as cited in (Chen et al., 

2015a),(Tang et al., 2013)) the combinations of red or NIR bands are used 

by many researchers to explore the potential of TSS mapping using different 

band combinations. However, more recently, single band estimations of the 

TSS concentration using the red or NIR bands have been widely used in 

TSS algorithms because of the particulates dominance in total 

backscattering when compared with the optical response of other 

components in these regions of the electromagnetic spectrum.  

 Empirical methods are most often used to estimate TSS concentration 

because of their simplicity in development. However, the lack of a physical 

basis in empirical models limits their general applicability to other than a local 

area where the algorithm was developed and ones confidence in 

extrapolating the model to higher of lower concentration than those on which 

it was developed (Chen et al., 2013b). In recent decades, physical and semi-

analytical models relating inherent optical properties (IOPs) of water to 

apparent optical properties (viz. irradiance reflectance just beneath the water 
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surface) are used to estimate bio-geophysical parameters of interest (Ayana 

et al., 2015; Brando & Dekker, 2003; Chen et al., 2014b; Chen et al., 2013b; 

Dekker et al., 2002; Odermatt et al., 2008; Vanhellemont & Ruddick, 2014; 

Yang, Matsushita, Chen, & Fukushima, 2011). A physical model, which is 

based on radiative transfer theory, requires that the in situ inherent optical 

properties of water, atmospheric conditions and several other factors are 

accurately known to enable the determination of TSS concentration (Mobley, 

1994). Use of semi-analytical models that combine both physical foundations 

and statistical analyses provide a promising method to estimate TSS 

concentration with limited knowledge of the in situ optical properties of the 

water body (Dekker et al., 2002; Lee et al., 1999; Nechad et al., 2010).  

 Semi-analytic TSS algorithms include model parameters that use in 

situ regional IOPs (Chen et al., 2013b), averaged IOPs representative of 

wider geographical locations (Nechad et al., 2010) or IOPs inverted from site 

specific satellite reflectance (Kong et al., 2015a). The site specific IOPs used 

in parameterizing these models are potentially the best for retrieving site-

specific TSS. However, notwithstanding the inherent uncertainties and 

limitations of in situ IOP instruments, the acquisition of IOPs is also 

challenging due to financial, logistical and time factors for rapid assessment 

of TSS. The dependence of IOPs on site-specific water constituents limits 

the use of published IOPs from other areas as an alternative without 

compromising the quality of the derived TSS concentration. The IOPs 

obtained by inverting the site specific satellite reflectance are also not 

without limitations because the inverted IOPs are affected by not only the 

uncertainties of IOPs from inversion models but also uncertainties of the 

reflectance product from which the IOPs are derived. The study conducted 

by (Wang, Boss, & Roesler, 2005) to determine the uncertainties of IOPs 

derived from semi-analytic models quantified that 20% of derived absorption 

coefficients were outside the 90% confidence limit while for the 

backscattering coefficient ~50% were outside the 90% confidence limit. 

In this study, we proposed a semi-analytic sediment model (SASM) that had 

a basis in radiative transfer theory and was locally tuned to the regional 

waters of northern Western Australia for MODIS-Aqua band 1 to monitor 
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TSS concentration in the region. The SASM was applied to the coastal 

waters of northern Western Australia using MODIS-Aqua 250 m data for 

mapping the TSS concentration in the region, which would serve as a 

baseline in future water quality monitoring of the region. 

3.3 Materials and Methods 

3.3.1 Study Site 

 Onslow waters fall within the Pilbara Coast West (from Exmouth to 

Karratha) of Western Australian centred at 21°35’00”S and longitude 

115°05’00”E (Figure 3.1) and experience an annual average temperature of 

29.2 °C and mean annual rainfall of 296 mm (Bureau of Meteorology, 

2015a). The discovery of the Wheatstone gas field off the coast of Onslow in 

2004 has led to the construction of 25 million tonnes per year gas processing 

plants (WAPC, 2011) with the dredging of a shipping access channel to the 

processing plants beginning from May 2013 till end of September 2013 in the 

location of the dredge area (DA) in Figure 3.1 (Chevron, 2014). The dredging 

operation was expected to generate 45 million m3 of dredge spoil (Chevron, 

2014), and the activity has some level of impact on the marine ecosystem in 

the region.  

 
Figure 3.1:True colour 15 m pan sharpened Landsat OLI (Operational Land Imager) imagery 
showing study site and the locations of sampling stations. Red squares represent the 
locations of dredge area (DA), spoil ground (SG), and clean area (CA) used in the temporal 
analysis. Red, purple and green filled circles are the locations of water sampling stations in 
2013, 2014 and 2015 respectively 
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3.3.2 In situ and Remote Sensing Data 

 The satellite-based remote sensing data for this study were MODIS-

Aqua data spanning the years 2013 to 2015, acquired as Level 1B data from 

the NASA LAADS web (http://ladsweb.nascom.nasa.gov/). The in situ data of 

reflectance samples was collected using a hyperspectral radiometer, the 

“Dynamic above-water radiance and irradiance collector” (DALEC) and 

simultaneously, water samples were gathered for TSS measurements. In 

total three field campaigns were carried out in the study site collecting a total 

of 130 water samples. First two field campaigns were carried out on board 

the RV Linnaeus, operated by the Commonwealth Scientific and Industrial 

Research Organisation (CSIRO) during October 2013 and June 2014. The 

third field campaign was carried out in July 2015 on the Australian Institute of 

Marine Science (AIMS) RV Solander (Figure 3.1).  

3.3.2.1 The DALEC Radiometer  

 The DALEC, a hyperspectral radiometer developed by “In situ Marine 

Optics” is used routinely for autonomous ship-based measurement of remote 

sensing reflectance (Brando et al., 2016). The DALEC takes coincident 

measurements of downwelling irradiance (Ed), upwelling radiance (Lu) and 

sky radiance (Lsky) with each sensor collecting spectral information in 256 

spectral bins ranging from 380 nm to 900 nm. Measurement of radiance from 

the Lu and Lsky sensors and irradiance from the Ed sensor can be used to 

compute remote sensing reflectance (Rrs) using the ad hoc formula of Mobley 

(1999), as shown by Equation (3.1), 

u sky( ) ( )
( )

( )rs
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L λ ρL λ
R λ

E λ
−

=  
(3.1) 

where ρ is a correction factor which is dependent on sky radiance, θs, wind 

speed and the instrument’s viewing angle (Mobley, 1999). The value of ρ 

was set to 0.022 as prescribed by Mobley (1999) for uniform sky conditions 

and wind speed less than 5 ms−1. DALEC data were collected between 10:00 

am and 3:00 pm local time when cloud cover was below 10%, the wind 

speed less than 5 ms−1 and the sea waves and swell were below 0.5 m. As 

recommended by Mobley (Mobley, 1999), the DALEC’s azimuthal viewing 
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angle was maintained at 135° relative to the solar direction and the viewing 

angles of the Lu and Lsky sensors were set at 40° off nadir and zenith 

respectively to minimize the sun glint and instrument shading. The necessary 

adjustment to the orientation of the DALEC was carried out as and when the 

heading of the ship changed during the course of the measurements.  

3.3.2.2 DALEC Data Collection and Analysis  

 The DALEC was mounted on the bow of the research vessel using a 

horizontal pole to a distance such that disturbance from the wake of the ship 

was avoided. The DALEC is capable of running continuously, and collecting 

individual spectra at integration times selected automatically in response to 

illumination conditions. On average DALEC was able to collect 11 

reflectance spectrum per minute. The DALEC was operated whilst the boat 

was underway and also when “on station”, with the on station periods lasting 

at least 5 min to allow collection of TSS samples.  

 Despite taking necessary steps discussed above as recommended by 

Mobley (1999) to avoid specular reflection of sunlight from some wave facets 

for the reflectance measurements, still some spectra can be contaminated by 

the sun glint. These sun glint affected spectra are removed from the time 

series of data prior to subsequent analysis. After elimination of sun glint 

contaminated spectra there were at least 5 reflectance spectra per stations 

every minute. Typically, an average spectrum is derived from a set of 

measurements coinciding with the collection of the TSS sample. Analysis of 

the variation in reflectance spectra, by calculating the standard deviation for 

time periods of ±1 min, ±3 min, and ±5 min from time when TSS sample was 

collected, showed that the standard deviation for each set of data was 

comparable. On average, we selected ±3 min as the standard averaging 

period for all stations. 

3.3.2.3. Water Sample Collection and Analysis  

 During the first two field trips we collected a minimum of two 1 litre 

sample bottles of water from ~0.5–1 m depth at each station while the boat 

was stationary. For the third field trip, we collected water samples using an 
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underway seawater sampling system on the AIMS RV Solander, which has a 

sea water intake system at a depth of ~1.9 m below the ocean surface.  

All the water samples collected were processed for TSS concentration using 

the gravimetric method within six hours from the time the water samples 

were collected. Whatman GF/F filters (47 mm diameter, nominal pore size 

0.7 µm) were pre-prepared in the laboratory by rinsing each filter with 50 mL 

of distilled/deionized water followed by drying at 60 °C in an oven for over 12 

h. The water samples were filtered using low vacuum pressure and the filter 

flushed with 50 mL of deionized water to remove residual salt. The filtered 

TSS samples were stored in a cool dry place until being taken back to the 

laboratory where they were dried for at least 24 h at 60 °C. The dried filters 

were then repeatedly measured until the measured weight was constant 

within the tolerance weight limit of 0.001 mg/L.  

 Analysis of TSS samples collected during the third field trip showed 

that the TSS did not correlate with the reflectance measurements or other 

optical measurements. Collecting the water samples from a depth of ~1.9 m 

might have resulted in the in situ TSS concentration being different from the 

actual expected value at the surface (~0.5—1.0 m) if the water column is 

stratified. In fact, observations from acoustic instruments did often show 

strong stratification, with suspended sediment loads increasing with depth. 

Thus, data from the third field trip were excluded from the algorithm 

development or TSS product validation in this study with the exception of 

DALEC measurements of the remote sensing reflectance to be used in the 

validation of the atmospheric correction process because DALEC data on 6 

July 2015 were acquired within 15 min from the MODIS-Aqua overpass. The 

details of water column stratification on the MODIS sensor at band 1 is 

discussed in Appendix B. 

3.3.2.4. Satellite Data Acquisition 

 MODIS-Aqua level 1B images containing geo located at-aperture 

radiances for all 36 spectral bands were acquired from NASA LAADS web 

for the dates corresponding to all the field trips for the validation of the 

MODIS-Aqua derived TSS. The images were screened for sun glint 
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contamination and cloud cover over the study sites visually and found to be 

free of cloud and sun glint. In addition to the aforementioned MODIS-Aqua 

images, additionally 247 MODIS-Aqua images free of cloud and sun glint in 

the study site for the year 2013 coinciding with the dredge operation to 

construct access channels for a gas processing plant by Chevron Pty Ltd. 

(Perth, Austrilia) were also acquired for time series analysis. All MODIS-

Aqua 1B images were processed for atmospheric correction, water pixel 

extraction for the validation, and spatial consideration for the temporal 

analysis. 

3.3.2.5. Atmospheric Correction 

 For the atmospheric correction, the top of the atmosphere (TOA) 

radiance from the MODIS-Aqua Level 1B products were converted to 

atmospherically corrected, at-surface remote sensing reflectance using the 

multi-sensor Level 1 to Level 2 generator (l2gen) function which can be run 

as a stand-alone program or accessed through the SeaDAS 7.2 interface 

(Feldman & McClain, 2010). Among many atmospheric correction algorithms 

available for data processing in SeaDAS we considered two, the standard 

atmospheric correction method for MODIS high resolution data SWIR (Wang, 

2007), and the MUMM (Ruddick et al., 2000) atmospheric correction method, 

because previous studies (Chen et al., 2014b; Ody et al., 2016; Ruddick et 

al., 2000; Wang, Son, & Shi, 2009c) have demonstrated that these two 

atmospheric correction algorithms are effective for turbid coastal waters. The 

SWIR atmospheric algorithm estimates the aerosol reflectance using the 

1240 nm and 2130 nm MODIS bands while the MUMM atmospheric 

correction is based on the spatial homogeneity of water-leaving radiances 

and aerosol ratios for the MODIS 748 nm and 869 nm bands (Ody et al., 

2016). 

 Both the MODIS high resolution and MUMM atmospheric correction 

were applied to MODIS-Aqua Level 1B data for 6 July 2015 because all the 

DALEC Rrs data collected on 6 July 2015 were within 15 min of MODIS 

overpass time compared to in excess of at last 90 min on other sampling 

dates. A comparative analysis of Rrs data from the two atmospheric 
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correction methods considered (results discussed in result Section 3.4.4.1) 

showed that MUMM is better at retrieving Rrs when compared with the 

standard MODIS high resolution SWIR atmospheric correction method for 

our study site. All MODIS-Aqua data were subsequently processed with the 

MUMM atmospheric correction approach. However, analysis of the products 

showed that MUMM’s default cloud screening band at 869 nm caused the 

turbid plumes to be flagged as clouds, thus we applied the 2130 nm band 

instead.  

3.3.2.6. Water Pixel Extraction and Analysis  

 For water pixel extraction, we used the geographical location of the in 

situ TSS sampling stations that were within ±30 min, ±60 min and ±90 min 

from MODIS-Aqua overpass time. Herein, data are referred to as Aqua 

Validation Data (AVD) and followed by the suffix 30, 60 and 90 for data 

collected within ±30 min, ±60 min and ±90 min of MODIS-Aqua overpass 

respectively. For the AVD30, AVD60 and AVD90 there were 18, 28 and 45 

match-up pairs between MODIS-Aqua derived TSS and in situ TSS 

respectively. TSS from each location at the validation sites were extracted 

using the SeaDAS pixel extraction tool for window sizes of a single pixel, 3 × 

3 pixels, and 5 × 5 pixels to account for the pixel variability in the error 

analysis.  

 For the selection of the location and the spatial extent in the MODIS 

derived TSS for performing the time series analysis, we focused on three 

different regions in the study site after careful analysis of the pan-sharped 15 

m Landsat imagery to confirm appropriate locations to represent (1) clean 

area (CA); (2) dredge area (DA); and (3) spoil ground (SG). All three areas of 

interest were confined to a spatial extent of 25 km2 after visually examining 

the high spatial resolution Landsat images. The CA was selected away from 

the main dredging area and further off the coast, the DA was selected at a 

location coincident with dredging operations, and the SG was selected at a 

location where spoils from the dredge operations were dumped. MODIS-

derived TSS concentrations corresponding to each location were extracted 
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for MODIS-Aqua time series analysis. The spatial extent and the 

geographical locations of CA, DA and SG are shown in Figure 3.1.  

3.3.3. SASM Model Formulations 

 The formulation of the SASM describes the relationship between TSS 

concentration and ocean reflectance, thus providing a means to estimate 

TSS concentration using remote sensing methods. The approach is based 

on general radiative transfer theory and the Quasi Analytic Algorithm of Lee 

et al. (2002). 

3.3.3.1 Reflectance Model 

 Gordon et al. (1988) showed subsurface remote sensing reflectance 

(rrs), is related to the total absorption coefficient, a(λ), and total 

backscattering coefficient, bb(λ), through: 
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 The coefficients gi depend on solar angle, scattering phase function, 

bidirectional reflectance effects and water surface conditions. Gordon et al. 

(1988) gave g1 = 0.0949 and g2 = 0.0794 for Case-1 waters and Lee et al. 

(1999) demonstrated that g1 = 0.084 and g2 = 0.17 are more suitable for 

highly scattering coastal waters. In this study, we adopted the values of g1 

and g2 provided by Lee et al. (1999).  

The Rrs(λ) which are measured by above-water radiometer can relate to rrs(λ) 

using the relationship from Lee et al. (1999) as shown in Equation (3.3). 
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 The total absorption coefficient is expressed as the sum of absorption 

coefficients for pure sea water (aw(λ)), particulate matter (ap(λ)), 

phytoplankton pigments (aφ(λ)), and coloured dissolved organic matter 

(acdom(λ)). 
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 The total backscattering coefficient is expressed as the sum of 

backscattering coefficients for pure sea water (bbw(λ)), particulates (bbp(λ)), 

and phytoplankton pigments (bbφ(λ)).  

)()()()( bφbpbw λλλλ bbbbb ++=  (3.5) 

 Equation (3.2) representing the subsurface remote sensing 

reflectance as a function of the IOPs can be rewritten as a quadratic 

equation as follows:  
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3.3.3.2 Inherent Optical Properties Model 

 In the IOPs model we represent the ratio of bb(λ) to a(λ) as !"# (λ) as 

follows:  
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For the case of turbid water, we adopt the following assumptions: 

• For high-scattering coastal waters, bb(λ) is mainly due to the 

backscattering coefficient from particulate matter and water 

molecules, the backscattering coefficient contributions from other 

constituents are insignificant (Tiwari & Shanmugam, 2013). Further, in 

the red and NIR regions of the spectrum the scattering by water 

molecules becomes insignificant, thus we can make an assumption 

that total backscattering in the red and NIR regions is due to 

particulate matter only. Equation (3.5) can be approximated as:  

)()( bpb λλ bb ≈  (3.9) 

 The assumption in Equation (3.9) can potentially be undermined for 

extreme concentrations of chlorophyll during phytoplankton blooms because 

in such cases, the backscattering from chlorophyll can be significant and 

cannot be ignored. HydroLight simulations show that even in the extreme 
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case of high chlorophyll concentration (10 mg/m3) the backscattering 

contribution from chlorophyll constitute backscattering equivalent of TSS 

concentration of 3.4 mg/L and 3.6 mg/L at MODIS band 1 and 2 respectively. 

The backscattering contribution from pure water is calculated to be ~20% 

and ~9% of backscattering coefficient of MODIS band 1 and band 2 

respectively than the TSS backscattering contribution even at TSS 

concentration of 0.2 mg/L. The coastal waters in Western Australia typically 

shows a seasonal cycle in chlorophyll with average low values of 0.24 mg/m3 

during summer and peaks in June with average values of 0.69 mg/m3 (Moore 

Ii, Matear, Marra, & Clementson, 2007). Considering the concentration of 

chlorophyll is typically less than 1 mg/m3 and its backscattering effect 

minimal even during the peak seasons in coastal waters of Western 

Australia, we can assume Equation (3.9) is valid for both MODIS band 1 and 

band 2. An added bonus that the aforementioned MODIS bands are both 

capable of is a 250 m spatial resolution. 

• Following (Babin, Morel, Fournier-Sicre, Fell, & Stramski, 2003a; Babin 

et al., 2003b) we can assume the particulate backscattering coefficient 

(bbp(λ)) and absorption coefficient (ap(λ)) to be proportional to TSS 

concentration, via appropriate constants—the specific particulate 

backscattering coefficient (bbp*(λ)) and specific particulate absorption 

coefficients (ap*(λ)).  

TSSbb ×= )()( *
bpbp λλ  (3.10) 

TSSaa ×= )()( *
pp λλ  (3.11) 

 Taking into account the aforementioned assumptions, we can 

formulate Equation (3.8) into 
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where C1(λ)=aother(λ)/ bbp
*(λ) and C2(λ)=ap

*(λ)/bbp
*(λ). 

 Essentially, Equation (3.12) is equivalent to Equation (5) of Nechad et 

al. (2010). However, the difference between the two models lies in the 

approximation of rrs(λ) where we use the second order approximation of 

Gordon et al. (1988) and Nechad et al. (2010) make use of the first order 
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approximation of rrs(λ) from (Gordon et al., 1988). The difference in rrs(λ) 

between Nechad et al. (2010) and the SASM model stems from the 

computation of !"# (λ) by each individual model. The details of reflectance 

models comparison between Nechad et al. (2010) and SASM is presented in 

Appendix A. 

3.3.3.3. Consolidation of Reflectance and Inherent Optical Properties Model 

 Equation (3.7) can be established in terms of !"# (λ) using the 

relationship from Equation (3.8) as follows:  
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Substituting Equation (3.13) into Equation (3.12) gives: 
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where x(λ) is the positive root of the solution of the quadratic function shown 

as Equation (3.6), which is as follows: 

2

2
2

11

2
)(4)(

)(
g

rggg
x rs λλ

++−
=  (3.15) 

 The constants C1(λ) and C2(λ) in Equation (3.14) will be derived using 

regression analysis between in situ TSS measurements and x(λ). 

3.3.4 Conversion of DALEC Remote Sensing Reflectance to Sub-Surface 

Remote Sensing Reflectance  

 Fact that DALEC and MODIS have different spectral resolutions and 

the SASM uses rrs in its model, it is necessary to convert DALEC Rrs to 

MODIS equivalent below-water surface rrs. Thus, in situ DALEC-measured 

Rrs were convolved to MODIS band 1 (B1) and band 2 (B2) equivalent Rrs 

using spectral response functions of the MODIS-Aqua following the method 

described in (Nechad et al., 2010). The MODIS B1 and B2 equivalent Rrs 

were then converted to rrs using the relationship defined in Equation (3.3). 

Herein, in situ DALEC Rrs convolved to MODIS band equivalent Rrs and 
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converted to sub-surface remote sensing reflectance will be referred as 

rrs(B1) and rrs(B2) for MODIS band 1 and band 2 respectively. 

3.3.5. Regional Empirical Model  

 Many regional algorithms that are used in estimating the TSS 

concentration from remote sensing image-derived reflectance or in situ 

reflectance use either linear or exponential models (Matthews, 2011). To 

compare the performance of the SASM with empirical models the simple 

form of linear and exponential models were selected as represented by 

Equations (3.16) and (3.17) respectively.  

baxTSS += )()( λλ  (3.16) 

caeTSS bx += )()( λλ  (3.17) 

where x is rrs(B1) and rrs(B2) and various combinations of the two bands and 

a, b, and c are coefficients derived from regression analysis between TSS 

and x. 

3.3.6. Model Calibration and Model Uncertainty Estimates  

 To calibrate the SASM and empirical models in Equations (3.14), 

(3.16), and (3.17) we used TSS and rrs(B1) and rrs(B2) and various 

combinations of the two bands from the data of the first two field trips. From 

the 69 TSS samples collected during the first two field campaigns only 48 

stations afforded the appropriate match-up pair with Rrs data collected by the 

DALEC. For all TSS and Rrs match-up pairs, the TSS concentrations varied 

from a minimum of 2.4 mg/L to a maximum of 69.6 mg/L and mean of 9.89 

mg/L. In calibrating a model, it is desirable to have separate data sets for 

model calibration and testing collected independently of each other. 

However, due to the limitation of only acquiring 48 match-up pairs, we 

decided to use all 48 pairs for model calibration and validate using the leave-

one-out cross-validation (LOOCV) procedure of Stone (1974). The LOOCV 

method is a commonly used statistical method in small sample size to allow 

for whole samples to be used in training and validations (Volpe, Silvestri, & 

Marani, 2011). In this procedure, one pair of data is left as a validation data 

set and the remaining data are used in calibrating the model. This procedure 
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is repeatedly executed excluding the pair that has been picked in previous 

validations and recalibrated using the new remaining data until all 48 pairs 

are validated. 

 Using all 48 match-up pairs the SASM in Equation (3.14) and 

empirical models in Equations (3.16) and (3.17) were calibrated. From the 

results discussed in Section 3.4.2, the different bands or their combinations 

were not at par in retrieving TSS when compared with the MODIS-Aqua 

band 1, thus we selected MODIS-Aqua band 1 for this study. Finally, all three 

calibrated models from Equations (3.14), (3.16), and (3.17) are presented 

below for MODIS-Aqua band 1.  
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 The LOOCV method provides overall model accuracy but does not 

produce assessment of uncertainty in the results derived by the model 

(Volpe et al., 2011). The bootstrap method of Efron (1979) as discussed in 

(Volpe et al., 2011) provides a means to generate the confidence in models 

as a result of uncertain determination of model parameters, uncertainties in 

in situ measurements, and assumptions in the model formulations (Volpe et 

al., 2011). Following Efron (1979), 1000 sets of data were generated using 

re-sampling via a re-substitution method, and 65% confidence limits and 

upper and lower bound of the derived TSS products were generated for all 

three models considered. The 65% confidence interval was obtained by the 

percentile method by taking the upper and lower 17.5% (the 17.5% and 

82.5% quantiles) of the results from the bootstrap distribution. 

3.3.7. Accuracy Assessment for Model Performance 

 The accuracy assessment was performed by comparing model-

derived and in situ measurements with Root Mean Square Error (RMSE), the 
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correlation coefficient (r), and Mean Absolute Relative Error (MARE), which 

are defined in Equations (3.21)–(3.23).  
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where n is the total number of samples, xi is the model-derived TSS and yi is 

the measured TSS. 

3.4 Results and Discussion 

3.4.1. Spectral Characterization of Field Spectral Measurements  

 The DALEC measured spectral reflectance signatures for different 

concentrations of TSS show that in the blue region of the spectrum (400–495 

nm) there is little distinct separation between Rrs spectra for low and high 

TSS concentrations (Figure 3.2). In the green (495–570 nm) and the yellow 

(570–590 nm) spectral regions there are general trends in the increment of 

the magnitude of Rrs with increases in TSS concentration. In addition, there is 

a tendency for the wavelength of maximum Rrs to increase with increasing 

TSS concentration, from about 570 nm at 3 mg/L to 590 nm at 69.6 mg/L. 

For the red spectral region (620–750 nm), there is a distinct increment of the 

magnitude in Rrs spectra with increase in TSS concentration. For the case of 

the NIR region (>750 nm) there is no clear difference among Rrs spectra for 

TSS less than 13 mg/L, but for higher TSS there is a distinct increment in 

magnitude of Rrs with the NIR Rrs exhibiting an increasingly more distinct peak 

at ~810 nm. 
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Figure 3.2: In situ DALEC spectral reflectance plots for different ranges of TSS 
concentration. 

 
 The selection of the red band and NIR bands for SASM are in 

agreement with (Kong et al., 2015a) in considering band’s responsiveness to 

TSS concentration in establishing a good retrieval model. In our spectral 

data, the reflectance at the red and NIR bands responds well with TSS 

concentration, as shown by the distinct increase in the magnitude of red 

band reflectance with increase in TSS concentration for all TSS 

concentrations, while the NIR band shows distinct increments for TSS 

concentrations greater than 13 mg/L. The correlation coefficients (r) between 

Rrs and TSS at the blue, green, red, and NIR regions of the spectrum were 

0.66, 0.42, 0.84, and 0.77 respectively, indicating the presence of a strong 

linear relationship between reflectance and TSS at red and NIR 

wavelengths.  

3.4.2. SASM Calibration and Validation  

 The validation of the results for rrs(B1) and rrs(B2) and various band 

combination results obtained from the LOOCV method are shown in Table 

3.1. The results in Table 3.1 show that rrs(B1) alone has better results than 

rrs(B2) or combinations of the two bands. The poor performance result for 

rrs(B2) may be because most of the available TSS measurements in our data 

set were lower. At low TSS concentrations and in the NIR wavelengths 

where the reflectance measurements are relatively low, results may be better 

modelled with a simple linear model which works well in low TSS 
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concentrations (Kutser et al., 2007; Miller & McKee, 2004). However, in the 

waters with higher TSS concentrations and spectral regions where 

reflectance are high, the reflectance are not linearly related to the TSS 

concentration (Li et al., 2010) so a different approach than a simple linear 

regression has to be taken. Thus, applying the SASM in MODIS band 1 to a 

region with low TSS concentration can avoid the lower reflectance issues in 

MODIS band 2 and also the SASM can address the problem of non-linearity 

between TSS and reflectance when using a simple linear model for higher 

TSS concentrations.  
Table 3.1: Validation results from the LOOCV results for the SASM for MODIS-Aqua band 1, 

band 2 and their combinations. 

Bands rrs(B1) rrs(B2) rrs(B2/B1) rrs((B1+B2)/2) 

RMSE (mg/L) 5.75 28.66 15.95 6.32 

MARE (%) 33.33 82.90 102.78 38.52 

r 0.89 −0.51 0.08 0.86 

 

 The results of the SASM uncertainty obtained using the bootstrap 

method discussed in Section 3.3.6 is presented in Figure 3.3. The upper and 

lower bounds in Figure 3.3, shown by the grey shading represent the highest 

and the lowest TSS values obtained in the bootstrap results. The upper and 

lower bounds simply express the model uncertainty in deriving TSS 

concentration because of uncertainty in estimating model parameters from in 

situ data. The 65% confidence limit represented by dashed lines in Figure 

3.3 defines a narrow band and closely follows the model curve indicating that 

the TSS retrieved by the SASM is closer to the expected TSS from the 

SASM. In Figure 3.3, the uncertainty estimates defined by the 65% 

confidence limits and upper and lower bounds are smaller at the lower 

concentration end of the curve and wider at the middle and upper part of the 

concentration curve. The smaller uncertainty at low TSS concentration is due 

to the availability of larger numbers of match-up (Rrs and TSS) pairs while the 

higher uncertainty at high TSS is due to the limited number of match-up 

pairs. The future endeavour in collecting in situ TSS and Rrs should be 
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focused on collection of more match-up pair that are evenly distributed 

throughout the range of different TSS concentrations.  

 
Figure 3.3: The SASM curve for rrs(B1) (Equation (3.18)) is shown by the solid line. 
The in situ data points are shown by open circles. The 65% confidence limits obtained 
through the bootstrap method are shown by dashed lines. The greyed region 
represents the upper and lower bound for 1000 bootstrap runs.  

3.4.3. SASM Comparison with Empirical Models 

 The accuracy assessment results for the SASM, the linear, and the 

exponential models obtained through the LOOCV process described in 

Section 3.3.6 are presented in Table 3.2. The results show that the SASM 

and the exponential models perform relatively better than the simple linear 

model in all three accuracy assessment categories. The comparison 

between the SASM and the exponential model are quite similar, however the 

SASM performs marginally better than the exponential model in all three 

assessment categories. Figure 3.4 shows TSS values derived from each 

model using the LOOCV method with respect to the in situ TSS values. 

Assessment of Figure 3.4 shows that all three models underestimate TSS 

when compared with in situ TSS for TSS greater than 30 mg/L. We can 

speculate that underestimation is due to our calibration data set having more 
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low TSS values, 75% of in situ TSS data collected were less than 10 mg/L. 

Further, in the region where TSS were less than 30 mg/L there is no clear 

case supporting which model estimated TSS values better considering the 

large spread in the model-derived TSS by all three models. 

 
Table 3.2: Results for the SASM, linear and exponential models for MODIS-Aqua band 1. 

Model MARE (%) RMSE (mg/L) r 

SASM 33.33 5.75 0.89 

Linear 59.17 7.39 0.80 

Exponential 39.29 6.16 0.87 

 

 
Figure 3.4: Validation results using the LOOCV method for the three models. The box 
at the bottom right is a blow out of the TSS < 10 mg/L and the dashed line is 1:1 line. 

  

 The results of model uncertainty defined by the upper, lower, and 65% 

confidence limits generated by the bootstrap method discussed in Section 

2.6 are presented in Figures 3.5a and 3.5b for the linear and exponential 

models respectively. In addition to the confidence interval and the extreme 

bounds of each model, the relative errors (RE) for the lowest, median, and 

the largest TSS concentrations from the bootstrap distribution are also 
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presented in Table 3 for the SASM, linear, and exponential models. The 

median value of the bootstrap results was used because of the random re-

sampling procedure employed in the bootstrap methods results of extreme 

cases (possibly outliers) that affects the mean of whole distributions. The 

median RE value for all three models are similar to the MARE from the 

LOOCV method (shown in Table 2) which agrees with the results from the 

bootstrap method.  

  
(a) (b) 

Figure 3.5: The empirical model curve for rrs(B1) is shown by the solid line, in situ data points 
shown by open circles for both (a) the linear model and (b) the exponential model. In both 
the figures the 65% confidence limit obtained through the bootstrap method are shown by 
dashed lines. The greyed region represents the upper and lower bound for 1000 bootstrap 
runs. The upper and lower bound for exponential model has been limited to 95% CI because 
few high values of TSS were in excess of several thousand mg/L. The box at the bottom 
right in (a) and middle left (b) is a blow out of the TSS < 10 mg/L and rrs (B1) < 0.025 sr−1. 
  

 From the results in Table 3.3 we observe that the lowest and largest 

RE is slightly better for the exponential model when compared with the 

SASM, but the mean RE is better for the SASM when compared with the 

exponential. The RE results of the linear model are all lower than the SASM 

and exponential model in all three categories of RE results. The bootstrap 

results of RE indicate slightly better performance for the exponential model. 

However, on considering the 65% confidence interval and upper and lower 

bounds of the bootstrap results in Figures 3.3 and 3.5 we observe that the 

SASM has a smaller 65% confidence interval and significantly smaller upper 

and lower bounds when compared with the exponential model. 
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Table 3.3: Absolute relative error for the SASM, linear and exponential models derived from 

the bootstrap distribution of the TSS results. 

Model Lowest RE (%) Median RE (%) Largest RE (%) 

SASM 1.20 30.93 228.15 

Linear 2.20 53.64 349.90 

Exponential 1.03 38.39 195.55 

 

 Considering the retrieval error of TSS concentrations from MODIS 

algorithms is in the range of ~18.0% to ~61% for many studies conducted in 

the last decade, all three models looks feasible in estimating the TSS 

concentrations in the coastal waters of northern Western Australia. However, 

we must exercise caution when using any model, particularly when 

extending the application beyond the limits of the calibration data. A simple 

linear regression model depends on the linearity between TSS concentration 

and reflectance, which is observed to weaken as the turbidity of the water 

increases (Li et al., 2010). Without the proper calibration data for lower 

reflectance values, the linear model starts to yield negative TSS values at Rrs 

of ~0.0042 sr−1 in MODIS band 1 and underestimates TSS at higher Rrs 

values, as shown in Figure 3.5a. The exponential model gives closer values 

to the SASM than a simple linear model. Similar result between the SASM 

and exponential model might be because the non-linear relationship of 

reflectance and TSS concentration given by bio-optical models closely 

approximates the exponential curve (Dekker et al., 2002). However, we must 

caution using the exponential model within proper calibration data because 

for even zero Rrs the exponential model in our study gives minimum value of 

3.308 mg/L for and over estimates TSS at higher Rrs values. In reality, even 

with the zero contributions from the constituents in the water there is still 

backscattering from water molecules, which when modelled using HydroLight 

gives Rrs of ~0.000085 sr−1 in MODIS band 1 for no contributions from in-

water constituents. At this Rrs value the SASM, linear and exponential models 

give TSS of 0.002 mg/L, −4.778 mg/L, and 3.308 mg/L respectively. In real 
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world applications, the values provided by the linear and exponential models 

are not theoretically sensible whereas those TSS values provided by the 

SASM are closer to the values we would expect for near zero reflectance. 

 Considering the results from the LOOCV and bootstrap methods, the 

SASM is more suitable for the application of deriving TSS concentration 

using MODIS band 1 in coastal waters of northern Western Australia. 

However, when applied to sensors other than MODIS the SASM model 

would need to be recalibrated for that sensor. The collection of hyperspectral 

Rrs measurements using the DALEC and knowledge of the sensor band 

response functions makes this possible. We also have to be mindful that the 

error in TSS concentration is also impacted by factors such as atmospheric 

correction and sensor calibration, where a 5% error in radiance at-sensor 

results in 50 percent error in Rrs (Chen et al., 2015b). 

3.4.4. Application to MODIS Imagery 

3.4.4.1. Atmospheric Correction 

The difference between the standard MODIS high resolution SWIR and 

MUMM atmospheric correction methods was significant, as shown in Figure 

3.6 for 6 July 2015 Rrs data. The default MODIS l2gen atmospheric correction 

method for high resolution MODIS imagery underestimated Rrs on average by 

39.2% while MUMM underestimated by only 5% in MODIS band 1 when 

compared with DALEC Rrs.  
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Figure 3.6: Rrs(B1) from the standard atmospheric correction method in SeaDAS SWIR 
and the MUMM atmospheric correction method in comparison with DALEC 
measurements for 6th July 2015. 
 
 The analysis of the MODIS-Aqua band 1 data corresponding to 

AVD30, AVD60, and AVD90 to estimate the error in reflectance derived from 

the satellite resulted in AVD30 with the least error in satellite derived 

reflectance with MARE of 9.7% while the highest is for AVD90 with 27.58%, 

and AVD60 with MARE of 21.99%. The correlation coefficients between 

DALEC Rrs and MUMM derived Rrs were 0.98, 0.86, and 0.67 for AVD30, 

AVD60 and AVD90 respectively. Results shows that as time the difference 

between satellite sensors and DALEC measurement decreases the 

difference between DALEC measured Rrs and MODIS Rrs also decreases. 

These results support the view amongst the remote sensing community that 

comparison between satellite sensor and in situ measurement can be 

improved by narrowing the time difference between the two. For this study, 

we used respective error for each AVD to account for the atmospheric 

correction error in subsequent analysis of the results in estimation of the TSS 

concentration. 
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3.4.4.2. MODIS-Aqua Validation 

 In order to consider the validation of the SASM results against the in 

situ TSS data, we have considered the contribution of two sources of error 

on the retrieval of TSS concentrations from MODIS-Aqua reflectance, 

namely the errors in the calibration of model parameters and errors arising 

from atmospheric correction. Notwithstanding the errors from other sources 

specifically, such as satellite sensor calibration, time difference between 

satellite image acquisition, and errors in in situ TSS measurements, the total 

error for AVD30, AVD60, and AVD90 were 43.03%, 55.32%, and 60.91% 

respectively. The total error is obtained from the following sources: MARE of 

33.33% as a model error from the SASM in MODIS band 1 plus respective 

error for the AVD30, AVD60 and AVD90 from the atmospheric correction 

process presented in Section 3.4.1. 

 The validation of the TSS concentration derived using SASM in 

MODIS-Aqua band 1 shows that AVD30 has the better performance with a 

MARE of 35.39% while AVD60 and AVD90 had MARE of 94.38% and 

78.62% respectively. As the duration between satellites overpass timing and 

measurement increases, the mismatch between the in situ and satellite 

derived TSS also increases depending on the spatial variability and water 

dynamics influenced by ocean currents and wind. To account for the source 

of error of TSS due to time difference between satellite image acquisition 

and in situ measurement, we calculated the average TSS for different pixel 

window widths. Figures 3.7a–c shows the validation results between the 

observed TSS and SASM-derived TSS for AVD30, AVD60 and AVD90 

respectively. As the time difference between MODIS-Aqua overpass and in 

situ data collection increases the spatial variability in the SASM-derived TSS 

also increases, as indicated by the error bars displayed on each data point 

tending to lengthen as we move from AVD30 to AVD90. The effect of TSS 

spatial variability can be minimised by using an aggregate of larger pixel 

window sizes. However, using larger window width can also result in higher 

variability in TSS, especially in waters that vary rapidly in the spatial domain, 

a common characteristic of waters associated with dredging operations. For 
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our study site, on the second field trip, we visually observed that high spatial 

variation in TSS was present in a small spatial domain. 

 

 
(a) 

 
(b) 
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(c) 

Figure 3.7: Validation between the SASM-derived TSS from MODIS-Aqua band 1 
reflectance for (a) AVD30; (b) AVD60; and (c) AVD90. The error bar indicates the minimum 
and maximum TSS computed in 3 × 3 and 5 × 5-pixel window widths. 

3.4.4.3. Temporal Analysis of 2013 MODIS Imagery 

 The daily and monthly TSS averages for SG, DA and CA were 

computed and are shown in Figures 3.8a and 3.8b respectively. In MODIS-

Aqua daily TSS plots we see that SG and DA TSS are consistently higher 

than CA, which is expected because of the location of CA being further from 

the coast, further from the dredge operation, and in deeper waters thus have 

less re-suspension of TSS from local tidal influences. The monthly average 

of MODIS-Terra derived TSS in DA is higher than SG from the beginning of 

2013 until June 2013 and then comparable to SG from July 2013 until the 

end of 2013. After June 2013, the MODIS-Aqua derived TSS in DA is slightly 

higher than SG for all months except July and October. However, the 

differences in monthly averaged TSS concentration between SG and DA 

after June 2013 are not different than monthly averaged TSS concentration 

before June 2013 (refer to Figures 3.8a, and 3.8b for details). The apparent 

shift in TSS, in MODIS-Aqua data, from SG being lower in the early half of 

2013 and increasing in the later part of 2013 may be as a result of the 

increasing load of spoil in the SG. Further, the effect of river outflow from the 
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Ashburton River and intermediate streams created by heavy rain might be a 

cause of DA being higher in TSS when compared with SG during the early 

half of 2013. Rainfall data for Onslow Airport shows there was higher rainfall 

from January to June 2013 when compared with July to December (Bureau 

of Meteorology, 2015b). 

 
(a) 

 
       (b) 

Figure 3.8: (a) Daily and (b) monthly averaged TSS derived from the SASM for 2013 
MODIS-Aqua data. 

 
 Figure 3.8a shows a number of anomalies in daily TSS when 

compared with the respective trend, apparent as “spikes” in the data. Such 
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anomalies were examined with respect to the wind speed of the study site to 

study the potential links to re-suspension of sediment in the water column. 

From the daily mean average wind speed in 2013 acquired from the Bureau 

of Meteorology (http://www.bom.gov.au) for Onslow Airport, we performed a 

correlation analysis between wind speed on different days and TSS for all 

three study regions. In general, for wind speeds less than 7 m s−1 there was 

no significant correlation between wind speed and TSS for any of the 

regions. For speeds greater than 8 m s−1, and for two and three days before 

the TSS dates, there was strong correlation observed between TSS and 

wind speed at all three regions. The results show that for MODIS-Aqua 

derived TSS, a lag of three days gives the highest correlation (r = 0.92) for 

the DA. The correlation results between wind speed and TSS indicates that 

the re-suspension of sediments from wind speed greater than 8 m s−1 tends 

to take about three days to build to a maximum before settling down. Specific 

TSS anomalies in the time series, such as those observed on days 15 (15 

January) and 61 (2 March) in Figure 3.8a correspond to the effects of tropical 

cyclone Narelle which moved as close as 330 km off the coast of Exmouth 

on 12 January 2013 and severe tropical cyclone Rusty which made landfall 

on 27 February 2013 in Port Hedland which is located at 389 km north east 

of Onslow (Bureau of Meteorology, 2015c). 

 Figure 3.9 show a series of monthly average TSS images spanning 

2013 derived from MODIS-Aqua using the SASM. January was impacted by 

tropical cyclone Narelle, which crossed the study site on 11 and 12 January 

2013, thus the average TSS levels are relatively high and widespread. The 

monthly images show that TSS levels in the SG and DA begin to increase 

from May and maintain high levels until October, then tend to decrease 

during November and December. The increase in TSS in both the SG and 

DA from May is likely due to dredging activities being carried out starting in 

May and continuing until October 2013. The maximum monthly TSS 

averages were observed in October in the SG with a TSS concentration of 

2.88 ± 0.52 mg/L, in the DA the maximum was 3.73 ± 1.21 mg/L in May, and 

the CA displayed a maximum of 0.79 ± 0.04 mg/L in October amongst the 

MODIS-Aqua derived monthly TSS averages. The monthly TSS averages 
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were higher in SG and DA from May to December than the January to 

March, despite the higher rainfall in the first six months of 2013 (Bureau of 

Meteorology, 2015b). This is a strong indication of the impact of the dredge 

process causing higher TSS concentrations.  

 
Figure 3.9: 2013 monthly averaged TSS images derived from MODIS-Aqua 250 m band 1 
(January to December 2013). Rectangles represent locations for CA, DA, and SG. 

3.5 Conclusions  

In this paper we developed a semi-analytic sediment model (SASM) that is 

both physically sensible in its general form and adapted to the northern 

Western Australian coastal waters in retrieving TSS from 250 m MODIS-
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Aqua band 1 reflectance. We assessed the inherent uncertainty due to 

combined model and atmospheric correction effects in the retrieved TSS 

product to be 43.03% to 60.91% for MODIS-Aqua. We demonstrated the 

application of the SASM TSS concentration product in analysing MODIS-

Aqua data for 2013 and associated this with the dredge activities at Onslow 

in Western Australia. The 250 m imagery was successful at highlighting the 

impact of cyclones and dredge activities on dredge spoil grounds and dredge 

operation areas. Further, daily anomalies in temporal data were able to be 

linked to specific causes, including dredge activities, cyclone events, wind-

induced re-suspension, and increased river outflow. Thus, we have shown 

that the SASM, in conjunction with an appropriate atmospheric correction 

method for MODIS-Aqua band 1, should be sufficient for monitoring TSS in 

Onslow waters or waters with similar optical properties before, during and 

after dredging operations. The SASM developed in this study can be applied 

to other regional waters of Western Australia or waters with similar optical 

properties, but the application of the SASM beyond the regional waters of 

Western Australia should be carried out with recalibration of the SASM 

parameters. The merits of the SASM are the ease in calibration using in situ 

TSS concentration for particular regions of interest, akin to fully empirical 

algorithm, but also the robustness based on a physical foundation of the 

radiative transfer theory.  
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A Quantitative Comparison of Total Suspended Sediment Algorithms: A 
Case Study of the Last Decade for MODIS and Landsat-Based Sensors. 

 

This chapter has been published in the journal: Remote Sensing 

 

Dorji, P., & Fearns, P. (2016). A Quantitative Comparison of Total 

Suspended  Sediment Algorithms: A Case Study of the Last Decade for 

MODIS and  Landsat-Based Sensors. Remote Sensing, 8(10), 810.  

 

4.1 Abstract  

A quantitative comparative study was performed to assess the relative 

applicability of Total Suspended Solids (TSS) models published in the last 

decade for the Moderate Resolution Imaging Spectroradiometer (MODIS) 

and Landsat-based sensors. The quantitative comparison was performed 

using a suite of statistical tests and HydroLight simulated data for waters 

ranging from clear open ocean Case-1 to turbid coastal Case-2 waters. The 

quantitative comparison shows that there are clearly some high performing 

TSS models that can potentially be applied in mapping TSS concentration for 

regions of uncertain water type. The highest performing TSS models tested 

were robust enough to retrieve TSS from different water types with Mean 

Absolute Relative Errors (MARE) of 69.96%–481.82% for HydroLight 

simulated data. The models were also compared in regional waters of 

northern Western Australia where the highest performing TSS models 

yielded a MARE in the range of 43.11%–102.59%. The range of Smallest 

Relative Error (SRE) and Largest Relative Error (LRE) between the highest 

and the lowest performing TSS models spanned three orders of magnitude, 

suggesting users must be cautious in selecting appropriate models for 

unknown water types.  
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4.2 Introduction 

 The health of coastal waters not only determines the health of marine 

habitats in the region but also signifies the health of the nearby human 

inhabitants with nearly 60% of the earth’s population settled in the coastal 

zones of our oceans and seas, and over 90% of the world’s fish caught for 

consumption being sourced from coastal waters (Bukata, 2005). The health 

of water systems is typically determined from a key indicator, the water 

clarity (turbidity) which is influenced by the amount of dissolved matter and 

total suspended solids (TSS) comprising organic matter such as algae and 

other micro-organisms and inorganic particulate matter from minerals 

(Macdonald, Ridd, Whinney, Larcombe, & Neil, 2013). Monitoring TSS along 

with other water quality parameters is crucial for coastal ecology because 

TSS can directly affect the turbidity and colour of water (Miller & McKee, 

2004) and turbidity determines the amount of light availability at depth for 

primary production (Chen et al., 2010; Havens et al., 2011; Shi et al., 2014).  

 Monitoring the temporal and spatial distribution of TSS in the coastal 

environment can be a huge undertaking and nearly impossible in terms of 

financial and time resources if performed using traditional in situ water 

sampling methods (Kong et al., 2015a) unless coupled with satellite-based 

remote sensing. Since the early space-borne sensors of the 1970s there has 

been, and continues to be, a great improvement in the spectral, spatial and 

temporal resolutions (Chang, Imen, & Vannah, 2015). For example, the 

Landsat-based series of sensors has evolved over the years from three (red, 

green and blue) spectral bands with spatial resolutions of 185 m and a revisit 

time of 18 days to the newest Landsat-8 with 11 spectral bands (433–12,500 

nm) with spatial resolutions of 30 m (and 15 m panchromatic) and a revisit 

time of 16 days. The shortcoming of the long revisit time for Landsat can be 

filled by the readily available MODIS-Aqua and Terra sensors which have 

shorter revisit times of one day, and with 36 spectral bands (405–14,385 nm) 

and spatial resolutions from 250 m to 1000 m.  

 Since the launch of the early remote sensing satellites in the early 

1970s many studies have been conducted in remotely mapping TSS, driven 

in part by the capability of satellite remote sensing to cover large spatial 
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domains in near real time (Kong et al., 2015a). Considering the past decade, 

remote sensing studies of the spatial and temporal mapping of TSS have 

utilized moderate resolution sensors including Landsat (Olmanson et al., 

2008; Vanhellemont & Ruddick, 2014; Wang, Lu, Liew, & Zhou, 2009b; Wu 

et al., 2015; Wu et al., 2008; Zhang et al., 2014; Zhou et al., 2006), MERIS 

(Alikas & Reinart, 2008; Chen et al., 2015b; Raag et al., 2013; Shen, 

Verhoef, Zhou, Salama, & Liu, 2010; Shi et al., 2014; Yang et al., 2011), 

MODIS (Chen et al., 2015a; Chen, Huang, Chen, & Chen, 2011a; Hudson et 

al., 2014; Kutser et al., 2007; Raag et al., 2013; Shi et al., 2015; Sipelgas et 

al., 2006; Wang & Lu, 2010), and high resolution sensors including SPOT 

(Doxaran et al., 2002), IKONOS (Ekercin, 2007), and THEOS (Lim et al., 

2013). Further, the TSS mapping studies encompassed waters with diverse 

optical and physical properties, from inland lakes and river systems (Kaba et 

al., 2014; Park & Latrubesse, 2014; Shi et al., 2015; Wang, Han, Kung, & 

Van Arsdale, 2006; Wang & Lu, 2010) to coastal waters (Chen, Huang, 

Chen, & Wang, 2011b; Choi et al., 2014; Feng et al., 2014; Nechad et al., 

2010; Petus et al., 2014) and from different geographical locations including 

America (Miller & McKee, 2004; Park & Latrubesse, 2014; Son & Wang, 

2012), Africa (Ayana et al., 2015; Kutser et al., 2007), Asia (Chen et al., 

2015b; Choi et al., 2014; Islam et al., 2001), Australia (Evans et al., 2012; 

Islam et al., 2007), and Europe (Hudson et al., 2014; Petus et al., 2014; 

Raag et al., 2013; Sipelgas et al., 2006). 

 The majority of the models developed in retrieving TSS by remote 

sensing methods are typically locally tuned to a regional water or waters with 

similar optical properties. Regional tuning of a TSS model is necessary 

because of the potentially large variation in the inherent optical properties 

(IOPs) of the water constituents. The theoretical basis of ocean colour 

remote sensing has shown that sensor-measured reflectance of the water is 

related to the IOPs of the water—absorption and scattering coefficients. IOPs 

vary with the types and amounts of the water’s constituents, such as 

sediments, phytoplankton, detrital matter and CDOM (Brewin et al., 2015) 

which may be different for different sediment types and phytoplankton types 

in different regions. In addition, factors such as water depth, viewing 
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geometry, and atmospheric conditions all add to the complexity of the 

relationship between the measurement of reflectance of the water surface 

and the IOPs and concentrations of constituents (Curran & Novo, 1988). 

 TSS models are generally classified into three categories, (1) an 

empirical model where TSS is modelled directly using a statistical analysis to 

relate the apparent optical properties (AOPs); (2) an analytic model that 

relates the IOPs and AOPs of water through radiative transfer theory to 

derive TSS; and (3) a semi-analytic model that is partly based on the 

empirical analysis and grounded on the radiative transfer theory (Kong et al., 

2015a). Individual TSS model designs have their own limitations and 

advantages. An empirical model is often sought for its simplicity and 

explanatory power because unique properties of local waters are tuned to 

each model, but it may lack general applicability. An analytic model is 

potentially applicable to other water bodies because it is not dependent on 

the in situ water constituents, but it requires accurate knowledge of water 

column properties which is often difficult to acquire. The semi-analytic model 

has both the limitations and advantages associated with the first two models, 

and it is generally preferred because it has higher explanatory power and is 

more convenient than the analytic model (Chang et al., 2015; Kong et al., 

2015a).  

 In the last decade, various TSS models have been developed (Feng 

et al., 2014; Nechad et al., 2010; Petus et al., 2014; Qiu, 2013; Wang, Lu, 

Liew, & Zhou, 2010b) and applied to their respective regions with a wide 

range of success with reported retrieval errors ranging from lows of ~18% to 

highs of ~61%. Considering each model is developed and tuned for a 

specific region, water type and its associated IOPs, the application or 

transferability of the models to other regions is limited, and the likely 

accuracy of the results unknown. Even when an existing TSS model is 

applied to waters in similar regions it is often first re-calibrated before being 

applied. The availability of many TSS algorithms for different regions and 

sensors warrants one to ask if we can use someone else’s algorithm to 

estimate TSS in regions where we do not have any in situ observations? For 

the cross applicability of TSS models between different regions the design of 
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a TSS algorithm has to either be based on analytic methods and grounded 

on theoretical functions of radiative transfer theory, or the waters must be 

assumed to have similar optical and physical properties. However, 

considering the vast number of TSS models that have been developed 

across different geographical regions with different optical and physical 

properties we can seek to establish the robustness in the applicability of 

these existing TSS algorithms for different regions.  

 A recent study by Brewin, et al. (2015) developed an objective 

methodology where comparison of different bio-optical algorithms are 

quantitatively and qualitatively considered for use in climate studies. 

Following the methods of Brewin, et al. (2015) and their quantitative 

methodology to rank the algorithms, in this study we objectively compare the 

performance of TSS algorithms for MODIS and Landsat sensors developed 

during the last decade using HydroLight simulated data for different water 

and sediment types. If shown to be robust, these algorithms would provide 

marine remote sensing scientists and coastal managers some level of 

confidence in their ability to assess the quality of water with minimal resource 

for coastal monitoring of optically unexplored waters. Specifically, this study 

aims to quantitatively assess the applicability of established TSS algorithms 

to different water types and quantify the variability in retrieving TSS when 

using off the shelf TSS algorithms for MODIS and Landsat sensors. 

4.3. Materials and Methods  

4.3.1. Dataset 

4.3.1.1. HydroLight Simulation 

 A set of ocean reflectance spectra were derived using the radiative 

transfer numerical model HydroLight 4.2 (Sequoia Scientific, Inc., Bellevue, 

WA 98005, United States of America) in the four component Case-2 waters 

mode. Using a forward model HydroLight solves radiance distributions and 

derives reflectance and radiance for water bodies with specific inherent 

optical properties (SIOPs) for given sky and water state conditions (Mobley, 
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1994). Sub-surface remote sensing reflectance’s (rrs) were computed for 

infinitely deep water using a range of SIOPs, sea-state, and sky conditions. 

The spectral range for rrs from HydroLight was simulated for wavelengths (λ) 

in the range of 400 nm–800 nm at a nominal bandwidth of 4 nm.  

 For all the HydroLight simulations the sea state was chosen to have a 

wind speed of 5 m s−1 and the sky radiance computed using the Harrison 

and Coombes (1988) normalized radiance model for a clear sky. The diffuse 

and direct sky irradiances were computed using the Gregg and Carder 

(1990) irradiance model for a solar zenith angle of 30° (Mobley & Sundman, 

2001). The four components, pure water, chlorophyll (CHL), coloured 

dissolved organic matter (CDOM), and mineral (TSS) were modelled in 

varying concentrations, presented in Table 4.1, to be representative of open 

ocean to turbid coastal waters. For the TSS component, five different 

sediment types were used, namely (1) brown earth; (2) calcareous sand; (3) 

yellow clay; (4) red clay; and (5) Bukata from the default database of 

HydroLight. The phase functions for the components were modelled as 

Rayleigh like phase function for pure water, Fournier-Forand phase function 

with bb(λ)/b(λ) of 0.01 for CHL, and Petzold “average particle” phase function 

for TSS for all the aforementioned HydroLight simulations. In addition to the 

aforementioned parameters for HydroLight simulations, we further carried out 

additional simulations using the parameters outlined above but with solar 

zenith angles of 15°, 30°, 45°, and 60° and bb(λ)/b(λ) ratios of 0.001, 0.01, 

0.018, 0.05, and 0.1 for calcareous sand to study the robustness of TSS 

models to changes in solar angles and the backscattering ratios.  
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Table 4.1: Concentration of coloured dissolved organic matter (CDOM), chlorophyll (CHL), 

and total suspended solids (TSS) used in HydroLight modelling. The pure water component 

in all the HydroLight runs remains unchanged. 

CHL (mg/m3) CDOM (m−1) TSS (mg/L) 

0.01, 3.0, 20.0 0.001, 1.0, 10.0 

0.01–1.00 at 0.01 interval 

1.00–10.00 at 0.1 interval 

10.00–50.00 at 1.0 interval 

50.00–100.00 at 2.0 interval 

100.00–250.00 at 5.0 interval 

250.00–500.00 at 10.0 interval 

500.00–2000.00 at 50.0 interval 

2000.00–7000.00 at 250.0 interval 

  

 The IOP models used in this HydroLight simulation are described by 

Equations (4.1) and (4.2). The total absorption coefficient (a(λ)) is the sum of 

absorption coefficients of pure water (aw(λ)), CHL (aϕ(λ)), CDOM (acdom(λ)) 

and TSS (ap(λ)):  

)()()()()( pcdomw λλλλλ φ aaaaa +++=  (4.1) 

 The total scattering coefficient (b) is the sum of scattering coefficients 

of pure water (bw(λ)), CHL (bϕ(λ)), and TSS (bp(λ)):  

)()()()( pw λλλλ φ bbbb ++=  (4.2) 

 The total backscattering coefficient is expressed as the sum of 

backscattering coefficients for pure sea water (bbw(λ)), particulates (bbp(λ)), 

and phytoplankton pigments (bbφ(λ)).  

)()()()( bφbpbw λλλλ bbbbb ++=  (4.3) 

 The SIOP models allow the scaling of the IOP of each component with 

concentration (X):  

ii Xaa ×= )()( *
i λλ  (4.4) 

ii Xbb ×= )()( *
i λλ  (4.5) 
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where i is the component and ai*(λ) and bi*(λ) are component specific 

absorption and scattering coefficients.  

 The SIOP of each component was either obtained from HydroLight’s 

default dataset or modeled using established models. For the specific 

absorption and scattering coefficients: the absorption coefficient for pure 

water was obtained from Pope and Fry (1997) (Pope & Fry, 1997) and mass-

scattering coefficient from Smith and Baker (1981) (Smith & Baker, 1981), 

the CHL mass-specific absorption coefficient (aϕ*(λ)) from Prieur-

Sathyendranath (1981) (Prieur & Sathyendranath, 1981) and the CHL mass-

specific scattering coefficient modeled using Equation (4.6), the CDOM 

mass-specific absorption was modeled using Equation (4.7) and CDOM was 

considered to be a non-scattering component, and the mineral mass-specific 

absorption and scattering coefficients were obtained from HydroLight’s 

default dataset for brown earth, calcareous sand, yellow clay, red clay, and 

Bukata. Figure 4.1a and 4.1b shows the mass-specific absorption and 

scattering coefficients of the five different minerals used in the HydroLight 

modelling of water reflectance.  

  
(a) (b) 

Figure 4.1:(a) Mineral mass-specific absorption and (b) scattering coefficients. 

* 0.795 600( ) 0.407b CHLϕ λ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4.6) 

))440(014.0exp(1.0)(* −×−= λλcdoma  (4.7) 
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4.3.1.2 Extrapolation of Simulated Dataset  

 The IOP data output by HydroLight do not extend beyond 800 nm, 

however some of the TSS algorithms for MODIS and Landsat utilize bands 

beyond the 800 nm reflectance data generated by the HydroLight 

simulations. To include algorithms which utilize bands in the NIR region of 

the electromagnetic spectrum, we extrapolated the rrs(λ) data from 

HydroLight to 1300 nm using Equation (4.1) of the quasi-analytical model of 

Lee et al. (2002) at a nominal wavelength of 1.0 nm:  

b b
rs 1 2

b b

2
( ) ( )

( )
( ) ( ) ( ) ( )
b λ b λ

r λ g g
a λ b λ a λ b λ

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠
 (4.8) 

where g1 and g2 are assigned either g1 = 0.0949 and g2=0.0794 for oceanic 

Case-1 water (Gordon et al., 1988), g1 = 0.084 and g2 = 0.17 for coastal 

water, or averaged values of g1 = 0.0895 and g2 = 0.1247 for coastal and 

Case-1 waters (Lee et al., 2002). The selection of values for g1 and g2 were 

based on the condition that the selected values provided the minimum Mean 

Absolute Relative Error (MARE) as defined in Equation (E1) in the Appendix 

E between HydroLight and Equation (4.8) rrs(λ) spectra.  

 To model the rrs(λ) spectra to 1300 nm using Equation (4.8), we used 

the following IOPs—the total absorption coefficient was computed using 

Equation (4.1) while the total backscattering coefficient was computed using 

Equation (4.2). Equations (4.4) and (4.5) were used to compute individual 

component-specific absorption and scattering coefficients using the 

respective component concentration and the phase function used in the 

HydroLight simulations as mentioned in Section 4.3.1.1. The total 

backscattering coefficient in Equation (4.8) was computed from the 

respective backscattering components in Equation (4.3) which in turn were 

computed using respective scattering components from Equation (4.2) and 

scattering phase functions and backscattering ratios discussed in Section 

4.3.1.1. The mineral specific absorption and backscattering coefficients were 

spline extrapolated to 1300 nm to compute the mineral-specific absorption 

and backscattering coefficients required in Equations (4.4) and (4.5). The 

rrs(λ) spectra generated using HydroLight and modelled using Equation (4.8) 
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had MARE of 1.6% to 13.73%. The higher relative error was toward the blue 

end of the spectral region.  

4.3.1.3. Grouping of Datasets  

Using the extrapolation methods discussed in Section 4.3.1.2, in total 2.2 × 

104 rrs(λ) spectra were generated for the spectral range of 350 nm to 1300 

nm at the nominal wavelength of 1.0 nm for the parameters discussed in 

Section 4.3.1.1. The water, from the point of view of remote sensing, can be 

classified into Case-1 and Case-2 water types: Case-1 waters are optically 

dominated by phytoplankton (CHL) while Case-2 waters are more optically 

complex with varying concentrations of CHL, CDOM and TSS that are region 

specific (Curran & Novo, 1988; Doxaran et al., 2002). With respect to 

modelling the water types, it is not feasible to model each water type that is 

optically similar to the optical properties of the water where each individual 

TSS model was developed. The TSS models that are robust enough in one 

region can often fail when applied to other regions because each TSS model 

is typically tuned to a specific region where the waters are optically unique. 

Thus, due to the problem of accurately modelling the waters to suit any 

specific TSS model, and acknowledging the fact that we cannot simulate all 

the conditions and compositions of ocean constituents for different regions, 

we resorted to five different classes (shown in Table 4.2) to represent varying 

cases of water where concentrations of one ocean constituent might 

dominate the others or there are different degrees of contributions from each 

constituent. CLASS I from the water classification in Table 4.2 represents 

high CHL and low CDOM concentration which in a physical world would be 

associated with high phytoplankton blooms in eutrophic lakes where 

concentration of CHL dominates other optically active substances (Arst, 

2003). CLASS II with high CDOM and low CHL represents water where 

CDOM dominates other optically active substances, which is the case in 

lakes where CHL is generally low, for example as in the case in lakes in 

boreal regions and waters off the coast in the Baltic Sea (Arst, 2003). CLASS 

III and IV represent the extreme cases where both CDOM and CHL are 

either high or low, which can be associated with high phytoplankton blooms 
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in coastal waters for CLASS III and open ocean water with low CHL for 

CLASS IV. CLASS V represents a general case of coastal waters where 

CHL and CDOM are moderate. For all the classes of water discussed above, 

the TSS is varied in its concentration independent of different water cases 

considered.  

 
Table 4.2: Five different water classes. 

CLASS CDOM (m−1) CHL (mg/m3) 

I 0.01 20.0 

II 10.0 0.1 

III 10.0 20.0 

IV 0.01 0.1 

V 1.0 5.0 

4.3.1.4. HydroLight-derived Reflectance to Sensor Equivalent Reflectance 

 The TSS retrieval algorithms developed by various researchers use 

different types of reflectance measurements to relate to TSS concentrations. 

The most common choice among all the TSS algorithms considered here is 

the remote sensing reflectance (Rrs(λ)), which is defined by Equation (4.9).  

w
rs

d

(0 , )
( )

(0 , )
L λ

R λ
E λ

+

+
=  (4.9) 

where Lw (0+, λ) is the water leaving radiance and Ed (0+, λ) is the downwelling 

irradiance evaluated above the water surface. The HydroLight generated 

rrs(λ) was converted to Rrs(λ) following Lee et al. (2002) as defined by 

Equation (4.10). 
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rs 711
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−

=  (4.10) 

 After converting rrs(λ) to Rrs(λ), depending on the sensor and the bands 

used by particular TSS algorithms, we convolved Rrs(λ) from Equation (4.10) 

to each sensor’s respective band reflectance using the spectral response 

function of the sensor in their respective bands using Equation (4.11).  
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where 
rs

kR  is the band averaged Rrs for each band, k, with band width Δk and 

spectral response function s(λ) of the sensor. 

 The next common reflectance type used in TSS algorithms is a 

normalized water-leaving reflectance which is related to Rrs(λ) as follows:  

)()( λRπλρ Nw rs=  (4.12) 

 There are also algorithms which employ normalized water leaving 

radiance which is calculated using Equation (4.13).  

w
w

( ) ( )
( ) o

N

ρ λ F λ
L λ

π
×

=  (4.13) 

where Fo(λ) is the extraterrestrial solar irradiance band averaged to each 

sensor’s band using their respective band spectral response functions. 

4.3.2. TSS Models  

 This section lists the available TSS algorithms from 2000–2015 that 

are empirical and semi-analytic in their design for MODIS and Landsat-based 

sensors. We made an effort to select all the available TSS algorithms for the 

sensors considered in this study using a search database 

‘Scopus’(https://www.scopus.com/), but we acknowledge that some of the 

literature for TSS algorithms, which were not present in the database, might 

have been missed. However, within the limitation of our search capability we 

made an effort to use other science databases and discovered 42 MODIS 

empirical models and 7 semi-analytical models, 22 Landsat empirical models 

and 5 semi-analytical models. The summaries of each TSS algorithm are 

provided in Table B1. Semi-analytical models described in this section 

encompass all the semi-analytical models from MODIS (MOD-A) and 

Landsat (LAN-A). Models are considered semi-analytic because they are 

derived based on a physical form (Chen et al., 2013a) or one or more 

parameters in the TSS algorithms are either parameterized using site-

specific or global in-water bio-optical properties (Nechad et al., 2010). Semi-

analytic algorithms for the two sensors considered here consist of algorithms 

that are based on radiative transfer modelling to relate the dependence of 
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geo-physical properties of the water, TSS in our case, to the reflectance via 

IOPs of the water.  

 Empirical models consist of TSS algorithms that are directly related 

with in situ AOPs of water and the TSS using linear or non-linear regression 

methods. For the two optical sensors considered here the empirical 

algorithms from MODIS (MOD-E) and Landsat (LAN-E) will be collectively 

known as empirical algorithms unless otherwise stated explicitly. The form of 

the equations used in the empirical methods ranged from simple linear 

(Kutser et al., 2007; L & Mckaee, 2004; Liu, He, Li, & Ren, 2006; Raag et al., 

2013), exponential (Choi et al., 2014; Hu et al., 2004; Shi et al., 2015; Wu et 

al., 2015), power (Qiu, 2013; Wang et al., 2012; Zhang et al., 2014) and 

other polynomial relationships (Chen, Tingwei, Zhongfeng, & Changsong, 

2014c; Chen, Huang, Wang, & Li, 2009; Ondrusek et al., 2012) using single, 

multiple or combinations of different bands in band ratio or self-formulated 

indexes. To differentiate the algorithms within each sensor, algorithms will be 

labelled with a respective number following each sensor’s name, MOD-A1 

and MOD-E1 will represent MODIS semi-analytic algorithm 1 and MODIS 

empirical algorithm 1 respectively; likewise, a similar naming convention is 

followed for TSS algorithms for Landsat-based sensors.  

4.3.3. Statistical Tests and Scoring System 

 The statistical tests used to evaluate the performance of each TSS 

algorithm for different types of water described in Section 4.3.1.3 are based 

on the statistical tests used by Brewin et al. (2015). Further, to objectively 

rank the TSS algorithms we used the point scoring system of Brewin et al. 

(2015). The details of each statistical test and scoring system of each test 

adopted from Brewin et al. (2015) are described in the following sections. 

Further, to contain the effect of spurious TSS generated by some of the TSS 

models being applied outside their range, we only included TSS estimations 

that were between a lower bound available in each TSS model (zero for the 

TSS models which did not contain the lower bound) and an upper bound of 

twice the highest TSS concentration reportedly used to calibrate each TSS 

model.  
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4.3.3.1. Pearson Correlation Coefficient (r) Test 

 The point scoring system for the r test involves determining if the r-

value for each TSS algorithm is statistically significant when compared with 

the mean r-value for all TSS algorithms. The statistical significance is 

determined through z-scores and the z-score is computed through Fisher’s r-

to-z transformation using relationships between the r-values of two models 

and the total number of samples used to determine the r-values, described in 

Brewin et al. (2015) as:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

+
=

1

1
1 1

1
log5.0

r
r

z  (4.14) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

+
=

2

2
2 1

1
log5.0

r
r

z  (4.15) 

3
1

3
1

21

21

−
+

−

−
=

nn

zz
zscore  

(4.16) 

where r1 is the r-value of a specific TSS algorithm and r2 is the mean of all r-

values from all the TSS algorithms. Similarly, n1 is the number of samples in 

a specific TSS algorithm and n2 is the mean number of samples from all TSS 

algorithms.  

 For algorithm comparison, a two-tailed test was performed using the 

Z-score to determine the p-value. If the p-value was less than 0.05 then the r-

values were considered as statistically significant and for each TSS algorithm 

that were statistically significant the following scores were assigned 

comparing the r-value and the mean r-value )(r  of all TSS algorithms:  

0 points 
test 1 point

2 points 

if r r
r if r r

if r r

⎫ <
⎪

− =⎬
⎪ >⎭

 (4.17) 

4.3.3.2. Root Mean Square Error (ψ) Test: 

 The Root Mean Square Error (ψ) of a model estimate, yi, with respect 

to a true value, xi, can be computed using Equation (4.18): 
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 The 95% confidence intervals were also calculated for each TSS 

algorithm and the mean of all TSS algorithms. For each TSS algorithm, the 

following scoring points were assigned according to the conditions in 

Equation (4.19):  

95% 95%

95% 95% 95% 95% 95% 95%

95% 95%

0 points  
1 point    or
2 points  

CI CI

CI CI CI CI CI CI

CI CI

if ψ ψ ψ ψ
ψ test if ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

if ψ ψ ψ ψ

⎫ − > +
⎪

− − ≤ − ≤ + − ≤ + ≤ +⎬
⎪ + < −⎭

 (4.19) 

where CI%95ψ  and CI%95ψ  is the 95% confidence interval of ψ and mean −ψ (ψ

) of all TSS algorithms respectively.  

 Figure 4.2 shows an example of scoring point classification for 

Landsat algorithms used in retrieving TSS concentration for the ψ—test.  

 

Figure 4.2: Point classification for Landsat algorithms using the Root Mean Square Error 
(RMSE)Test. The upper and lower dashed lines indicate the mean ± 95% confidence limits 
and the solid horizontal line is the mean RMSE of all the TSS algorithms. Unfilled circles are 
RMSE of each TSS algorithm with respective ± 95% confidence limits shown by error bars. 

4.3.3.3. The Bias (δ) Test 

The bias (δ) of model estimate yi and true xi is calculated using Equation 

(4.20):  
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 For each TSS algorithm, following score points were awarded 

according to the conditions in Equation (4.21):  

95%CI 95%CI 95%CI 95%CI 95%CI 95%CI

95%CI 95%CI 95%CI 95%CI 95%CI 95%CI 95%CI 95%CI

95%CI 95%CI 95%CI 95%CI

0 points  AND 0 or 0
1 point or 0 0  or 0 0
2 points AND 0 0

if δ δ δ δ δ δ δ δ
δ test if δ δ δ δ δ δ δ δ δ δ

if δ δ δ δ δ

⎫ > − > + + > −
⎪

− < − ≤ + ≤ + − ≤ − ≤ +⎬
⎪ < − ≤ − ≤ +⎭ 95%CI 95%CI 95%CI 95%CI or 0 0δ δ δ δ δ− ≤ + ≤ +

 (4.24) 

where 95%CIδ  and 95%CIδ  is the 95% confidence interval of mean −δ ( )δ of all TSS 

algorithms respectively. Further, to score one point only one conditions must 

be satisfied while to score two points both the conditions must be satisfied. 

4.3.3.4. The Center-Pattern Root Mean Square Error (Δ) Test: 

The center-pattern Root Mean Square Error (Δ) is calculated using Equation 

(4.22): 
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 The 95% confidence intervals were also calculated for each TSS 

algorithm and the mean of all TSS algorithms. For each TSS algorithm, the 

following scores were assigned according to the conditions in Equation 

(4.23):  

95%CI 95%CI

95%CI 95%CI 95%CI 95%CI 95%CI 95%CI

95%CI 95%CI

0 points Δ Δ Δ  Δ
Δ 1 point Δ  Δ Δ Δ Δ  Δ  or Δ  Δ Δ Δ Δ  Δ

2 points Δ Δ Δ Δ

if
test if

if

⎫ − > +
⎪

− − ≤ − ≤ + − ≤ + ≤ +⎬
⎪ + < −⎭

 (4.23) 

where 95%CIΔ  and 95%CIΔ  is the 95% confidence interval of Δ and mean−Δ (Δ ) 

of all TSS algorithm respectively.  

4.3.3.5. The Slope (S) and Intercept (I) of a Type-2 regression Test 

 The Slope (S) and Intercept (I) of a type-2 regression (Glover, Jenkins, 

& Doney, 2011) were calculated using Equation (4.24):  

ISXY +×=  (4.24) 
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where Y is the TSS estimates derived from the TSS algorithms and X the true 

TSS. The following scores were assigned by comparing the S—value of each 

TSS algorithm and mean—S ( s ) value of all TSS algorithms.  

0 points AND 1 2 or 1 2
test 1 point or 1 2 1 2  or 1 2 1 2

2 points AND 1 2 1 2  or 1 2 1 2

s s s s s s

s s s s s s s s

s s s s s s s s

if σ σ S σ σ S σ σ
S if σ σ σ S σ σ σ S σ σ

if σ σ σ S σ σ σ S σ σ

⎫ > − > + + < −
⎪

− < − ≤ − ≤ + − ≤ + ≤ +⎬
⎪ < − ≤ − ≤ + − ≤ + ≤ +⎭

 (4.25) 

where sσ  is the standard deviation of s  from all TSS algorithms.  

 For the I parameter, for each TSS algorithm, the following scores 

were assigned according to the conditions in Equation (4.26).  

0 points AND  0 2 or 0 2
test 1 point or  0 2 0 2 or 0 2 0 2

2 points AND 0 2 0 2 or 0 2 0 2

I I II I I

I I II I I I I

I I II I I I I

if σ σ I σ σ I σ σ
I if σ σ σ I σ σ σ I σ σ

if σ σ σ I σ σ σ I σ σ

⎫ > − > + + < −
⎪

− < − ≤ − ≤ + − ≤ + ≤ +⎬
⎪ < − ≤ − ≤ + − ≤ + ≤ +⎭

 (4.26) 

where Iσ  is the standard deviation of mean—I ( I ) from all TSS algorithms. 

Further, in the S and I—test in Equations (4.25) and (4.26), to score one 

point only one of the two conditions must be satisfied while to score two 

points both the conditions must be satisfied. 

4.3.3.6. Percentage of Possible Retrievals (η): 

The percentage of possible retrievals (η) was calculated using Equation 

(4.27):  

%×= 100M

E

N
N

η  (4.27) 

where NE is the total number of TSS retrieved using each TSS algorithm from 

the total number of TSS concentrations (NM) considered in the study. For the 

point scoring system the following basis was followed:  

0 points
1 point 
2 points

η

η η

η

η η σif
η test if η σ η η σ

if η η σ

< −⎫
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 (4.28) 

where η  and ησ  is the mean η-value and its standard deviation for all TSS 

algorithm in η-test.  
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4.3.3.7. Total Points 

 For objective comparison the performance of each TSS algorithm with 

respect to different water types, all points from each statistical test were 

added and normalized by the mean score of all TSS algorithms. Thus, a 

score of zero indicates that the TSS algorithm is performing lower than the 

mean of all TSS algorithms, a score of one indicates that the TSS algorithm 

is at par with the average of all TSS algorithms, and a score of 2 means the 

TSS algorithm is better than the mean of all TSS algorithms.  

 Further, to test the stability of the scoring systems used in this study, 

we used a bootstrap method (Efron, 1979), with 1000 runs and each time 

generating a new dataset by resampling via the replacement method for 

model generated TSS and HydroLight TSS. Each new dataset was tested 

using the statistical tests and scored using the scoring system described in 

Section 4.3.3. The results reported in the Section 4.4 are the mean values of 

the total points from the bootstrapping method with 2.5 and 97.5 percentiles 

reported as uncertainty estimates for 95% confidence limits.  

4.3.3.8. Mean of Total Points 

 The mean of total points is achieved by averaging the score of each 

TSS model across different sediment types or solar zenith angles or 

backscattering ratios for the particular water classes described in Section 

4.3.1.3. For example, in the case of different sediment types in CLASS-I 

water, the mean of total points in CLASS-I is an aggregate of total scores of 

each TSS model for different sediment types. For the case of different 

backscattering ratios and solar zenith angle, the mean of total points is an 

aggregate of each TSS model for different backscattering ratios and solar 

zenith angles, respectively, for a specific sediment type in a particular water 

class. The error bars in the mean of total points are the mean of uncertainty 

estimates of the total points obtained from the 95% confidence limit from the 

bootstrapping method.  
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4.3.3.9. Final Score 

The final score is the aggregate of the mean of total points across all water 

classes for different sediment types, backscattering ratios and solar zenith 

angles. For example, the final score for MOD-E1 is derived as the mean from 

the aggregate score of MOD-E1 at five different sediment types, 

backscattering ratios, and solar zenith angles across all five different water 

classes. The error bars are the standard deviation of errors from the mean of 

total points across all five different water classes. Figure 4.3 shows an 

illustration of the point score system adapted from Brewin et al. (2015) and 

used in comparing TSS models in this study. The error bars in the Final 

score are the mean of uncertainty estimates from the mean of total points.  

 
 
Figure 4.3: Flow diagram showing the methodology of the point scoring system described in 
Section 4.3.3. 

4.4 Results 

4.4.1. TSS Model Comparisons  

 Figures 4.4 and 4.5 show the quantitative comparison between the 

models using the final scores which are aggregates of the total scores from 

HydroLight 
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ratios, and solar zenith angles 
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different sediment types, backscattering ratios, and solar zenith angles 

across all five different water classes for MODIS and Landsat-based models 

respectively. The final results presented in Figures 4.4 and 4.5 are 

indications of the overall performance of the TSS models when weighted 

across different water types, sediment types and backscattering ratios. The 

detailed results of individual model performance in respective sediment 

types, backscattering ratios, and water types are presented in Appendix F. In 

addition, the Supplementary A1-A10 also provide the detailed statistical test 

results for each TSS model. 

 From the final scores displayed in Figures 4.4 and 4.5 we can visually 

observe that there are clearly high and low performing models. The high 

performing MODIS TSS models with final scores greater than 1.5, in the 

order of highest to lowest final score, are MOD-E6, MOD-A1, MOD-E28, 

MOD-A4, MOD-E10, and MOD-E42 and low performing MODIS TSS models 

with scores less than 0.5 are MOD-E8, MOD-E2, MOD-E24, MOD-E22 and 

MOD-E32. For the Landsat TSS models, LAN-E3, LAN-A4, LAN-E9, LAN-

A5, and LAN-A1 have final scores greater than 1.5 while LAN-E11, LAN-

E22, LAN-E16, and LAN-E18 have final scores less than 0.5. In the final 

scores of low performing TSS models, the LAN-E18 model has scores of 

zeros which shows that LAN-E18 failed to derive TSS within the acceptable 

TSS bounds of 0.4–5.8 mg/L. We suspect the published algorithm includes 

an error. The overall ranking of the TSS models using the final scores for 

each TSS model is also presented in Tables C1 and C2 for MODIS and 

Landsat respectively. Further, Tables D1 and D2 provides mean total scores 

for different sediment types, backscattering ratios, and solar zenith angles in 

all five water classes for respective TSS model.  
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Figure 4.4: Final scores of MODerate resolution Imaging Spectroradiometer (MODIS) TSS 
models. 
 

 
Figure 4.5: Final scores of Landsat TSS models. 
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 With respect to the results displayed in Figures 4.4 and 4.5, without 

the inclusion of error bars the distinction between the high performing TSS 

models is clear and we can easily compare the scores of each TSS model to 

obtain a ranking. For instance, in Figures 4.4 and 4.5, the MOD-E6 and LAN-

E3 are the highest scoring models with final scores of 1.70 and 1.73 

respectively. However, on inclusion of the error bars, all high performing TSS 

models may be considered comparable and difficult to separate in terms of 

robustness, thus may all be ranked equally. Likewise, the case is similar for 

low performing TSS models where their error bars overlap. Further, we 

observe that two and three of the top five high scoring TSS models in MODIS 

and Landsat respectively are semi-analytic while none of the semi-analytic 

models were in the bottom five low scoring models.  

4.4.2. Evaluation of Models  

4.4.2.1. Model Evaluation Using HydroLight Data  

The five high and low scoring models from MODIS and Landsat TSS models 

were selected to further evaluate their performance. From all available 

HydroLight data discussed in Section 4.3.1.1, the aforementioned high 

scoring TSS models were evaluated for their Relative Error (RE) between 

model-derived and HydroLight TSS. From the results presented in Table 4.3 

we observe that there is high variability in the RE results amongst the 

respective MODIS and Landsat TSS models. The differences in the Smallest 

Relative Error (SRE) for high scoring TSS models were not as large as the 

differences within the MARE and Largest Relative Error (LRE). The MARE 

ranged from a low of 69.96% to a high of 481.82% while the SRE and LRE 

ranged from 15% to 63.14% and 139.35% to 1109.80% respectively. In the 

low scoring models, the high variability in the RE was observed with the 

MARE for low performing models ranging from 106.43% to 1832.79% while 

the SRE and LRE ranged from 39.90% to 213.54% and 118.16% to 

6778.93% respectively. In both MODIS and Landsat high scoring models, 

the LRE results were for backscattering ratios of 0.001 and for Bukata type 

sediment. The SRE results were for backscattering ratios of 0.01 and 

calcareous sand sediment. Further, for the SRE in both the high and low 
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performing TSS models, we observe that the high and low performing TSS 

models scored reasonably well in either one of the categories in sediment 

types, backscattering ratios, solar zenith angle and water classes. For 

instance, the low performing LAN-E22 scored higher than most of the high 

scoring TSS models in SRE results which indicated that LAN-E22 retrieves 

better in one of the water types.  

 The TSS derived using real satellite-data are bound by uncertainty 

related to observational, instrumental, measurement and data processing 

errors, the latter largely associated with the atmospheric correction 

procedure (Chen, Lee, Hu, & Wei). Thus, to assess the tolerance of high and 

low performing TSS models to the uncertainties in Rrs, which is the key input 

in derivation of the TSS concentration, we simulated the effect of Rrs 

uncertainty ( ΔRrs) by varying the Rrs by ±10%, ±20% and ±50% of the 

HydroLight generated Rrs at each of the MODIS and Landsat bands. The Rrs ± 

ΔRrs was used in deriving TSS concentration and compared with HydroLight 

input TSS to calculate the Absolute Relative Error (ARE) of the TSS model. 

Table 4.3 reports the ARE and the MARE of HydroLight Data Validation as 

defined in Equation E2 in Appendix E. In general, we observe that with the 

increase in ΔRrs the ARE also increases and the errors are higher for +ΔRrs 

than −ΔRrs. The ARE for high scoring TSS models ranged from 33.14% to 

1974.47% while for low scoring TSS models it ranged from 82.69% to 

12747.84% which shows both high and low performing TSS models are not 

impervious to uncertainty in Rrs measurements. However, high scoring TSS 

models show better tolerance to ΔRrs than the low scoring TSS models. The 

details of the TSS models deviation in estimating TSS concentration from the 

error-free HydroLight data with ΔRrs are shown in Table 4.3.  
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Table 4.3: Relative Error and ΔRrs Uncertainty Tolerance results for the highest and lowest 

scoring models’ evaluation using HydroLight Data. The highest scoring models are in bold 

text and the lowest scoring models are in regular italic text. The results provided in 

parenthesis represent the +ΔRrs and ‘-’ indicates the model failed to provide TSS estimation 

within acceptable bounds. SRE: Smallest Relative Error. LRE: Largest Relative Error. MARE: 

Mean Absolute Relative Error. ARE: Absolute Relative Error. 

Model 
Relative Errors from HydroLight Data 

Validation ARE from Rrs Uncertainty (%) 

SRE (%) MARE (%) LRE (%) −(+) 10% Δ Rrs −(+) 20% Δ Rrs −(+) 50% Δ Rrs 
MOD-E6 59.35 94.30 139.35 70.46 (113.02) 44.59 (129.11) 91.94 (170.65) 
MOD-A1 15.00 75.56 151.14 39.24 (126.59) 38.89 (182.84) 97.92 (294.93) 
MOD-E28 51.61 148.62 191.97 97.96 (211.76) 49. 89 (271.68) 53.30 (497.21) 
MOD-A4 63.14 257.59 386.87 157.51 (346.27) 68.10 (410.35) 96.13 (530.23) 
MOD-E10 32.17 92.42 171.47 53.64 (149.97) 33.54 (242.01) 49.85 (396.29) 
MOD-E8 189.55 220.69 344.16 244.77 (197.29) 268.89 (180.18) 341.16 (164.68) 

MOD-E2 189.55 220.69 344.16 244.77(197.29) 268.89 180.18() 341.16 (164.68) 

MOD-E24 77.87 141.49 218.80 
10824.61 

(9960.40) 

11278.06 

(9549.92) 

12747.84 

(8416.88) 

MOD-E22 42.31 1832.79 5403.47 2461.87(1149.55) 
1369.44 

(1306.50) 

187.31 

(1206.94) 

MOD-E32 39.90 1717.85 6778.93 2575.05(1067.58) 
1381.65 

(1385.73) 
184.20 (288.28) 

LAN-E3 59.31 120.37 166.68 69.03 (170.14) 33.14 (220.15) 76.58 (387.62) 
LAN-A4 57.05 197.26 266.40 134.36 (262.03) 72.73 (331.63) 74.29 (541.89) 
LAN-E9 23.52 481.82 1109.80 171.42 (857.00) 51.00 (1167.00) 92.43 (1974.47) 
LAN-A5 62.86 244.28 362.44 149. 20 (341.63) 66. 53 (414.85) 95.90 (543.85) 
LAN-A1 16.07 69.96 141.53 38.02 (115.85) 39.00 (169.17) 97. 78 (286.31) 
LAN-E10 76.17 106.43 118.16 88.74 (126.91) 82.69 (161.62) −(357.92)  

LAN-E11 213.54 241.28 337.58 260.07 (22.48) 278.86 (203.89) 335.21 (177.52) 

LAN-E22 19.41 110.69 164.56 110. 70 (110.688) 
110. 64 

(110.72) 
196.66 (110.60) 

LAN-E16 77.55 135.45 222.93 150.00 (109.18) 151.20 (103.59) 223.24 (85.67) 

LAN-E18 - - - - - - 

4.4.2.2. Model Evaluation Using In situ Data 

 As part of a regional water monitoring program, in situ reflectance and 

TSS measurements were carried out for the waters off the coast of northern 

Western Australia to develop regional TSS models (see MOD-A1 and LAN-

A1 in Appendix C)(Dorji et al., 2016). The details of the in situ measurements 

and regional TSS model developed using in situ data can be obtained from 

(Dorji et al., 2016). A set of high scoring models (MOD-E10, MOD-A4, LAN-

E9, and LAN-A5) and low scoring models (MOD-E1, MOD-E38, LAN-E6, and 

LAN-A3) were selected to compare with MOD-A1 and LAN-A1 in the context 

of in situ data comparisons. These subsets of models were selected because 

the reflectance bands used by other high scoring models were beyond the 

available reflectance bands in the in situ data. Table 4.4 shows the Mean RE 

results obtained from each of the model evaluations against in situ data. 

Table 4.4 displays a high variability in the Mean RE for model comparisons 
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for high scoring models with in situ data, from a low of 43.11% for LAN-E9 to 

a high of 102.59% for LAN-A5. When compared with the regional model’s 

MOD-A1 and LAN-A1 MARE results, we see that both the high scoring TSS 

models MOD-E10 and LAN-E9 and low scoring TSS models LAN-E6 and 

LAN-A3 were comparable. However, the results presented in Table 4.4 also 

show the extreme variability observed in the Mean RE for the low scoring 

models with a low of 35.62% and a high of 256%. 

 
Table 4.4: The MARE for high and low scoring models for in situ data. The high scoring 

models are in bold text and the low scoring models are in italics. 

Error/ 
Model 

MOD-
E10 

MOD-
A1 * 

MOD-
A4 

MOD-

E1 

MOD-

E38 

LAN-
E9 

LAN-
A1 * 

LAN-
A5 

LAN-

E6 

LAN-

A3 

MARE 
(%) 46.20 33.33 100.85 341.04 256.00 43.11 33.36 102.59 55.23 35.62 

* MARE was obtained using the leave-one-out cross validation method discussed in (Dorji et 

al., 2016). 

4.5 Discussion 

4.5.1. Data and Methodological Limitation  

The data used in this study to quantitatively compare TSS models have been 

generated using the widely used (Albert & Mobley, 2003; Du, Lee, & Carder, 

2006) in-water radiative transfer model HydroLight 4.2. The simulated data 

do not encompass all different water types in which each TSS model was 

developed to be used, however, it does provide us with a dataset that is 

independent of the data that has been used to parameterize the models to 

avoid biases in the results. To include all the models in comparisons, the 

simulated data were extrapolated to the NIR region of the spectrum using the 

methods discussed in Section 4.3.1.2. The extrapolation of reflectance data 

can introduce unrealistic values if the underlying assumptions of the spline 

extrapolation methodology does not hold true for the NIR regions. The 

extrapolation of the data is not ideal when used in modelling remote sensing 

products but the error for extrapolation had a MARE of 4.0% which was 
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considered to be acceptable for this study. The ideal case for data for model 

comparisons would be to use a real global water database, which is currently 

not available. The NOMAD dataset (http://seabass.gsfc.nasa.gov/) that is 

currently the most extensive dataset of in situ reflectance measurement and 

in-water variables did not contain the TSS measurements essential for this 

study.  

 The use of the objective methodology Brewin et al. (2015) of 

comparing models, used in this study to compare TSS models, can aid users 

in selection of TSS models that are best suited for waters of regional interest 

in the absence of means and a method to produce their own regionally tuned 

TSS algorithms. However, the objective methodology used here is not 

without limitations, as discussed by Brewin et al. (2015) with respect to using 

average performance to classify between high and low performing models. 

The very low performance of one particular model would affect the average 

of all other models to the extent that it becomes difficult to differentiate 

scores between models. For example, in Figure F1 for the score of MODIS 

TSS models in yellow clay, MOD-E1-2, E8-9, E15, E22-24, E32, and E38 all 

have low scores which increases the score of other TSS models making it 

difficult to differentiate among high scoring models. This problem is further 

exacerbated when the majority of TSS models score low which makes the 

few remaining high scoring models to appear similar in score, which is the 

case in Figure F22 for bb/b of 0.001.  

 The objective classification was conducted on a case by case basis 

for different water types, sediment types, solar zenith angles, and 

backscattering ratios. The overall low performance of models in the final 

scores in Figures 4.4 and 4.5 does not necessarily mean that low performing 

TSS models scored less in all the categories used in deriving the final score. 

For example, in Figure 4.5, LAN-E22 scored a very low final score when 

compared to other TSS models, but when considering specific results as 

presented in Figures F16 to F20, LAN-E22 received a score at least 

comparable with most of the best performing models in all water classes for 

the red clay sediment type. Likewise, similar cases can be ascertained for all 

the respective TSS model’s scores for specific water classes, sediment 
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types, backscattering ratios and solar zenith angle (Results provided as 

Appendix F for other overall low scoring TSS models in Figures 4.4 and 4.5). 

An additional disadvantage of the objective methodology used here is that 

the final score does not necessarily show the performance of all models in 

different categories considered, it shows only the relative performance of 

models in comparison with the mean scores of TSS models. In Figure F1, we 

observe that almost all TSS models score relatively higher total points for 

brown earth and lower for Bukata sediment types when compared with other 

sediments.  

 To account for the methodological uncertainties from the range of 

univariate statistical tests described in Section 4.3.3, we used a 

bootstrapping method (Brewin et al., 2015; Efron, 1979) which generates the 

confidence limit in the final score. The results from the 1000 bootstrap runs 

presented in all the score charts shows that the mean score of models did 

not vary significantly for each different run, the ranges of 95% confidence 

limits were smaller for most of the models. Further, to limit the effect of 

spurious TSS values derived by some of the models, especially models with 

exponential and power functions, we filtered out any derived TSS value 

below a minimum of 0.001 mg/L and greater than a twice the maximum TSS 

concentration of each TSS model. Filtering out the spurious results can 

artificially inflate the final scores because only values that are within the 

upper and lower bounds would be considered for statistical tests. However, 

the possible percentage retrieval test discussed in Section 4.3.3.6 negate 

such an effect because filtering out spurious results would result in lower 

possible percentage retrieval and lower score in the percentage retrieval 

test.  

4.5.2. TSS Model Selection Guidelines  

 Even though there were clearly distinct higher and lower performing 

TSS models from the final score chart presented in Figures 4.4 and 4.5, the 

performance of individual models varied widely when viewed against 

respective water types, sediment types, and backscattering ratios. The 

results presented in Figures 4.4 and 4.5 can be of use to the end-users who 
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are clearly interested in TSS models that are robust enough to be used in 

waters for which they have little or no information of their optical and physical 

properties to generate TSS products. Figures 4.4 and 4.5 indicate that the 

MODIS TSS models MOD-E6, MOD-A1, MOD-E28, MOD-A4 and MOD-E10 

and the Landsat TSS models LAN-E3, LAN-A4, LAN-E9, LAN-A5 and LAN-

A1 are ranked the highest in terms of likely suitability for estimating TSS 

concentration of unknown water types. An example of the selection of high 

performing TSS models using a real water dataset was demonstrated in 

Section 4.4.2.2 and it can be seen that the results varied widely among the 

high scoring TSS models, with MOD-E10 and LAN-E9 producing results 

within a MARE of 46.20% and 43.11% and other higher scoring models 

producing results as high as 102.59%. Considering the retrieval error of TSS 

concentrations from MODIS algorithms are typically reported as in the range 

of ~18.0% to ~61% for many studies conducted in the last decade (Feng et 

al., 2014; Nechad et al., 2010; Petus et al., 2014; Qiu, 2013; Wang et al., 

2010b), we consider the regional TSS models MOD-A1 and LAN-A1, and the 

empirical models MOD-E10 and LAN-E9 as being the most appropriate for 

the waters in the north of Western Australia.  

 However, readers with prior information of water and sediment types 

can use information provided in S4.11, and Tables D1 and D2 as a guideline 

in selecting the model that is best suited for that particular water type. The 

difference in Relative Error between the high and low scoring models 

validated using HydroLight data and the in situ data showed that there is a 

huge difference between the two. The best performing model from the high 

scoring models shows that TSS can be estimated with a Mean RE between 

69.96% and 481.82% (for different water conditions), but the low scoring 

model’s results can vary dramatically within a Mean RE ranging from 

106.43% to 1832.79%. The high Mean RE for low scoring models does not 

necessarily mean that the low scoring model performs low for all waters 

types. The low scoring TSS model’s performance in one category or more 

can be significantly better than other models, but overall on average the 

model performs poorly when compared with high scoring models across all 

water types. For example, the low scoring model LAN-E22 displays the 
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Smallest RE of 19.41% which is certainly better than the Smallest RE of 

most of the high scoring model’s Smallest RE. Thus, with prior knowledge of 

water types and bio-geochemical properties of the region, we can select a 

TSS model from both high and low performing TSS models presented in 

Tables D1 and D2 that have higher scores in the water that are similar to the 

region where TSS model would be applied. 

 The results also showed that semi-analytic models were generally 

higher in ranking when compared with empirical models. The reason for most 

semi-analytic models performing better than empirical models can be 

attributed to the fact that semi-analytic models, by design, were based on 

radiative transfer theory (Nechad et al., 2010; Passang, Peter, & Mark, 2016) 

and one or more parameters were calibrated using general in situ bio-optical 

properties representative of a wide range of global waters (Kong et al., 

2015a; Nechad et al., 2010).  

4.6. Conclusions  

 In summary, in this study we have applied an objective methodology 

to compare the TSS models and their suitability in use for retrieving TSS in 

the absence of a regionally tuned TSS model. From the study we have 

identified the MODIS TSS models MOD-E6, MOD-A1, MOD-E28, MOD-A4 

and MOD-E10 and the Landsat TSS models LAN-E3, LAN-A4, LAN-E9, 

LAN-A5 and LAN-A1 as suitable for estimating TSS concentration in waters 

with no prior knowledge of bio-optical or bio-geochemical properties. The 

results from this study highlighted the impact of “local tuning” of algorithms, 

showing that some low scoring models performed better than the high 

scoring models in one or more specific sediment, backscattering, solar zenith 

and water types. The results from this study can be used to ascertain which 

TSS models perform well in particular water types, sediment types and 

backscattering ratios for use in aiding the selection of a TSS model suited for 

use in a particular water type. In addition, the results also show that the 

semi-analytic TSS models are generally better than empirical TSS models in 

deriving TSS estimation in unknown water types.  
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5.1 Abstract   

 The impact of anthropogenic activities on coastal waters is a cause of 

concern because such activities add to the total suspended sediment (TSS) 

budget of the coastal waters, which have negative impacts on the coastal 

ecosystem. Satellite remote sensing provides a powerful tool in monitoring 

TSS concentration at high spatiotemporal resolution, but coastal managers 

should be mindful that the satellite-derived TSS concentrations are 

dependent on the satellite sensor’s radiometric properties, atmospheric 

correction approaches, the spatial resolution and the limitations of specific 

TSS algorithms. In this study, we investigated the impact of different spatial 

resolutions of satellite sensor on the quantification of TSS concentration in 

coastal waters of northern Western Australia. We quantified the TSS product 

derived from MODerate resolution Imaging Spectroradiometer (MODIS)-

Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at 

native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser 

spatial resolution (resampled up to 5 km) to quantify the impact of spatial 

resolution on the derived TSS product in different turbidity conditions. The 

results from the study show that in the waters of high turbidity and high 

spatial variability, the high spatial resolution WV2 sensor reported TSS 

concentration as high as 160 mg/L while the low spatial resolution MODIS-
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Aqua reported a maximum TSS concentration of 23.6 mg/L. Degrading the 

spatial resolution of each satellite sensor for highly spatially variable turbid 

waters led to variability in the TSS concentrations of 114.46%, 304.68% and 

38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The 

implications of this work are particularly relevant in the situation of 

compliance monitoring where operations may be required to restrict TSS 

concentrations to a pre-defined limit.  

5.2 Introduction 
 Global coastal marine ecology is at ever increasing risk because of 

the increase of impacts due to the demands of maritime trade, supporting 

population growth which necessitates land reclamation, maintenance and 

capital dredging for ports, dredging for offshore resources, and placing of 

sub-sea transport pipelines (Evans et al., 2012; Mostafa, 2012). The 

Australian economy is heavily dependent on maritime links because of its 

geographical remoteness from other continents. One third of its GDP is 

based on sea-borne trade, and the existing ports that support this high 

volume of shipping traffic require constant maintenance dredging of existing 

shipping channels and frequent large capital dredging projects (Australia, 

2014). The environmental effects of dredging on the coastal marine ecology 

are diverse, with dredging potentially resulting in either partial reduction or 

complete loss of marine habitat through the physical removal of substratum 

biota from the sub-sea surface and immediate burial due to sedimentation of 

the dredged materials (Erftemeijer, Riegl, Hoeksema, & Todd, 2012). 

Further, increase in turbidity caused by dredging significantly attenuates the 

amount of light reaching the benthic habitat for primary productivity (Chen et 

al., 2010; Havens et al., 2011; Shi et al., 2014). The environmental cost of 

dredging and the need for coastal development poses a challenge to 

environmental monitoring agencies, marine ecologists and coastal 

infrastructure developers who aim to find a balance between the two 

(Erftemeijer et al., 2012).  

 Coastal water quality monitoring of the effects of anthropogenic 

processes aims to provide immediate and appropriate responses, but often 
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requires continuous ground based monitoring, which is typically resource 

intensive, to maintain and only provides information on limited specific 

geographical locations (Etcheber et al., 2011; Gernez et al., 2015). The 

availability of satellite remote sensing platforms has provided coastal 

managers with tools and capabilities to effectively monitor the coastal 

environment at spatial and temporal scales previously unconceivable from 

the perspective of traditional in situ based observation methods (Peta, 2001). 

Coastal water quality in the form of water turbidity or Total Suspended 

Sediment (TSS) concentration has been widely studied across diverse 

geographical locations (Acker et al., 2005; Binding et al., 2005; Burenko, 

Ershova, kopelevich, Sheberstov, & Shevchenko, 2001; Ekercin, 2007; 

Koponen et al., 2007; Miller & McKee, 2004; Min, Ryu, Lee, & Son, 2012; 

Ouillon & Petrenko, 2005; Tang et al., 2013; Wang et al., 2008) by using a 

suite of remote sensing sensors such as, Landsat (Brezonik et al., 2005; 

Doxaran et al., 2006; Kallio et al., 2008a; Kloiber, Brezonik, Olmanson, & 

Bauer, 2002; Olmanson et al., 2008; Onderka & Pekárová, 2008; Östlund et 

al., 2001; Wang et al., 2009b; Wu et al., 2008; Zhou et al., 2006), MEdium 

Resolution Imaging Spectrometer (MERIS) (Koponen et al., 2002; Kratzer et 

al., 2008; Odermatt et al., 2008; Shi et al., 2014), MODerate resolution 

Imaging Spectroradiometer (MODIS) (Chen et al., 2014b; Chen et al., 2007; 

Doxaran et al., 2009; Hu et al., 2004; Li et al., 2010; Miller & McKee, 2004; 

Min et al., 2012; Petus et al., 2010; Wang et al., 2008; Wang et al., 2009a; 

Wang & Lu, 2010; Wang et al., 2009c; Wu et al., 2008; Wu et al., 2009; 

Zhang et al., 2010), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) 

(Binding, Bowers, & Mitchelson-Jacob, 2003; Burenko et al., 2001; Fettweis, 

Nechad, & Van den Eynde, 2007; Gordon & Wang, 1994b; Myint & Walker, 

2002; Ruddick et al., 2000). In addition to these most commonly used and 

“free to ground” sensors, commercial high spatial resolution sensors such as 

Systèm Pour l’Observation de la Terra (SPOT) (Dekker et al., 2002; Doxaran 

et al., 2006; Doxaran et al., 2002), IKONOS (Ekercin, 2007) and WorldView-

2 (WV2) (Eugenio, Martin, Marcello, & Bermejo, 2013) are also employed to 

map the TSS.  
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 The high spatial resolution commercial satellite sensors such as 

IKONOS, WV2, and GeoEye-1 can provide data at spatial resolutions of 

approximately 0.5 m — 4.0 m with temporal resolutions of ~1—8 days 

(DigitalGlobe, 2017). The freely available remote sensing data of MODIS and 

MERIS from the National Aeronautics and Space Administration can provide 

near-daily TSS estimates at 250 m — 300 m resolution and Landsat at 30 m 

but with a monitoring frequency of 16 days. Previous studies (Evans et al., 

2012; Gernez et al., 2015; Miller et al., 2011; Ody et al., 2016) conducted in 

mapping TSS for water quality monitoring have studied the spatial extent of 

suspended sediment plumes using one or more satellite sensors and the 

common consensus is that the higher spatial resolution satellite sensors are 

able to resolve finer details of suspended sediment plumes while the lower 

spatial resolution sensors lose the finer details. However, only a few studies 

(Miller et al., 2011; Ody et al., 2016) have been conducted to study the 

impact of using different spatial resolution sensors in estimation of TSS in 

sediment plumes where the water can be spatially variable in TSS 

concentration, even at sub-pixel level. Ody et al. (Ody et al., 2016) showed 

that in the Gulf of Lion, France, the variability in the TSS concentration at the 

turbid fronts and edges of the river plume was estimated to be around 7 

mg/L and 10 mg/L  for 250 m and 1.0 km spatial resolution respectively. 

Further, the lower spatial resolution sensor SERVI (Spinning Enhanced 

Visible and Infrared Imager) at 3.0 x 5 km2 was shown to have TSS 

concentration variability due to different spatial resolution were as high as 20 

mg/L. The two studies (Miller et al., 2011; Ody et al., 2016) indicated that the 

quantification of TSS concentrations using remote sensing sensors are not 

only determined by the spatial resolution of the sensors, but also the TSS 

variability of the region itself. Generally, the coarser spatial resolution 

sensors would produce higher TSS variability but the magnitude of TSS 

variability depended on the variability of the TSS concentration of the 

sampled region. 

 In Western Australia, specifically the Pilbara region, the last decade 

and a half has seen substantial capital dredging projects with the total 

volume of dredged material in excess of ~70 million m3 and the recent 
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Wheatstone gas field project is expected to add another ~45 million m3 of 

dredge spoils to this total (Hanley, 2011). Compliance monitoring of large 

volume capital dredging and/or frequent maintenance dredging is typically 

carried out using in situ data loggers that measure a range of water quality 

parameters (TSS concentration, turbidity, light, and sedimentation rate) 

(SKM, 2013). In compliance monitoring of dredge operations in Western 

Australia, it is required of dredging companies to perform environmental 

impact assessment studies using hydrodynamic modelling of sediment 

plumes to identify zones of impact and trigger values derived in relation to a 

water quality parameter and sensitivity to benthic communities (WA EPA, 

2011). For instance, in the Wheatstone gas field project, a zone of high 

impact (mortality rate > 50%) was identified along the dredge channels and 

spoil area.  The hydrodynamic model was used to identify trigger values to 

prompt management responses, with thresholds of TSS > 25 mg/L for more 

than 14% of the time, >10 mg/L for more than 38% of the time, and > 5 mg/L 

for more than 63%  (WA EPA, 2011). The TSS levels set to trigger a 

management response are monitored using point measurement from the in 

situ data loggers, accepted as providing very accurate and reliable data. 

However, in situ data loggers cannot provide a synoptic view of TSS 

concentration at reasonable costs over a large spatial extent, which has led 

environmental managers  adopting remote sensing technologies which can 

provide a synoptic view of plume dynamics and TSS concentration at 

reasonable costs (Islam et al., 2007).  

 Despite the benefits of satellite remote sensing in water quality 

monitoring, the environmental protection agencies tasked with monitoring the 

coastal water quality should be aware of potential discrepancies in satellite 

derived TSS concentration as a result of different satellite sensors and 

different spatial resolutions. The impact of significant spatial variability in the 

TSS concentration can affect the results of the satellite derived TSS 

concentration used in monitoring the water quality. In effect, the monitoring 

of dredging activity with different satellite-based remote sensing sensors can 

produce different TSS concentrations even in the same spatial region and 

depends on which satellite sensor is employed for the compliance 
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monitoring. Thus, this work was carried out to study the variability in TSS 

concentration at different spatial resolutions in the waters of the Onslow 

region in northern Western Australia using WV2, Landsat-8 OLI (Operational 

Land Imager) and MODIS-Aqua data. Specifically, first we tested the 

capabilities of WV2, Landsat-8 OLI and MODIS-Aqua in resolving the spatial 

features in areas of sediment plumes caused by dredging activities and river 

outflows. Second, we quantified the range of TSS concentration variability in 

the region of the sediment plumes and background waters by degrading the 

native spatial resolution of each sensor to coarser spatial resolutions. Finally, 

we discuss the impact of using different spatial resolution sensors in 

monitoring of water quality as a result of findings from this study.  

5.3 Materials and Methods  

5.3.1 Study Site and Context 

The study area, the coastal waters of Onslow, fall within the Pilbara region, in 

Western Australia (see Figure 5.1). The coastal area of Onslow generally 

experiences a mean annual temperature of 29.2 °C and mean annual rainfall 

of 296 mm (Bureau of Meteorology, 2015a). The study area is generally 

sheltered from the prevailing south-west winds and sea-swells from the 

Indian ocean by Barrow Island and the shoals of Lowendal and Montebello 

Islands, however, the area experiences locally wind-driven waves and 

seasonal tropical cyclones (Chevron, 2014). The topography of the coastal 

area generally drives the ebb and flood tides easterly and westerly along the 

coastline with the flow occasionally disturbed by the locally wind-driven 

currents. The tides around the shoreline are semi-diurnal with the spring tide 

ranging from a mean high of 2.5 m to a mean low of 0.6 m (Chevron, 2014). 

 The discovery of the Wheatstone gas field, located at the edge of the 

continental shelf 200 km off the coast of Onslow (located approximately 1390 

km from Perth, Western Australia), has led to the construction of offshore 

platforms and onshore gas processing plants (Chevron, 2014). The turbidity 

of the coastal waters of Onslow was previously only affected by natural 

processes, including seasonal tropical cyclones and episodic river outflows 
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from the Ashburton river which can range the TSS concentration from 15 

mg/L to 5000 mg/L (with higher TSS concentration closer to the river mouth) 

with river flow rates of 30 m3/s to 250 m3/s (URS, 2014). The dredging 

activity in the near-shore waters of Onslow occurred from May 2013 to 

December 2015 with an estimated 45 million m3 of dredge spoil generated 

(WAPC, 2011). Such large volumes of dredge spoil are expected to have 

immediate impact in the immediate area of the dredging and also have some 

level of impact on the marine habitat in the vicinity of the dredging locations.  

 

Figure 5.1: Study Site. True colour imagery Landsat OLI showing the locations of field 
sites in the waters off the coast of Onslow, Western Australia. True colours image of the 
study site is reprinted from Figure 1 in Dorji et al., (2016) under a Creative Commons 
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). The black 
polygon added in Figure 5.1 represents the area where WorldView 2 data were captured 
on June 13th 2014. The coloured dots represent locations of in situ data with colours 
indicating the year of data acquisition. 
 

5.3.2 Field Remote Sensing Reflectance and TSS Measurements 
 As part of the Dredging Science Node project 2/3 (WAMSI, 2014) 

funded by the Western Australian Marine Science Institution three field 

campaigns were carried out in October 9th – 31th, 2013, June 7th – 21st, 2014 
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and July 3rd – 13th 2015 onboard RV Linnaeus operated by the 

Commonwealth Scientific and Industrial Research Organization and RV 

Solander operated by the Australian Institute of Marine Science. The ship-

based “Dynamic Above-water radiance (L) and irradiance (E) Collector” 

(DALEC) (Brando et al., 2016) was used to measure the remote sensing 

reflectance (Rrs, in sr-1) and in situ water sampling methods were used in 

measuring TSS concentrations. A brief description of the in situ Rrs 

measurements using the DALEC and sampling of TSS concentration are 

provided below. Further details of the Rrs and TSS concentration data used in 

this study, including the data collection procedure and data quality control 

measures, are discussed in depth in Dorji et al. (2016).  

5.3.2.1 DALEC and TSS Data Collection and Analysis 

 The DALEC, developed by “In situ Marine Optics”, is an autonomous 

ship based hyperspectral upwelling radiance (Lu), sky radiance (Lsky) and 

downwelling irradiance (Ed) collector which takes coincident measurements 

in 256 spectral bins in the 380 nm – 900 nm spectral range. The Lu, Lsky and 

Ed measurements from the DALEC can be used to compute Rrs using an ad-

hoc Rrs formulation from Mobley (Mobley, 1999) for a uniform sky condition 

and wind speed less than 5 m s-1, as presented in Equation (5.1).  

u sky( ) 0.022 ( )
( )

( )rs
d

L λ L λ
R λ

E λ
−

=  (5.1) 

 The quality of DALEC data were maintained at two stages. 1) During 

the data collection stage, we positioned the DALEC instrument at an azimuth 

angle of ~135° relative to solar direction while the viewing angle of the Lu and 

Lsky sensors were maintained at 40 off nadir and zenith respectively to 

minimize the sun glint and instrument shading. 2) During the data analysis 

stage, we visually inspected the Lu and Lsky spectra and removed any spectra 

that were contaminated by sun glint. The remaining spectra free of sun glint 

were averaged within ± 3 min from TSS sample collection time to generate 

an average Rrs spectrum corresponding to that TSS sample.   

 For in situ TSS concentration measurement, we collected a minimum 

of two 1-liter samples of sea water at a depth of approximately 0.5 m – 1 m 
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at each TSS sample location (see Figure 5.1). The TSS samples were 

filtered using a Whatman GF/F filters (47 mm diameter, nominal pore size of 

0.7 μm) pre-prepared in the laboratory by flushing the filters with 50 mL of 

deionized water and drying in an oven at 60 °C for 24 hrs. The filtered TSS 

samples were flushed with 50 mL of deionized water to remote salt from the 

seawater, then dried in the oven at 60 °C for 24 hrs and repeatedly 

measured and dried until consistent measurements were obtained within the 

tolerance limit of 0.001 mg/L. After performing the quality checks of the in 

situ data there were 48 (Rrs and TSS) match-up pairs that were selected to 

establish a TSS algorithm. The range of TSS concentrations used in the 

algorithm development varied from a low of 2.5 mg/L to a high of 69.9 mg/L. 

5.3.2.2 Satellite Remote Sensing Data 

5.3.2.2.1 Satellite Data Acquisition and Atmospheric Correction  

 The satellite data used in this study comprise MODIS-Aqua, Landsat-

8 OLI and WV2 acquired around the time when the second field campaign 

was carried out in June 7th - 21st 2014. Due to the temporal limitation of the 

Landsat-8 OLI of 16 days we could not acquire data for all three satellites 

contemporaneously. However, we acquired three concurrent sets of Landsat 

OLI and MODIS-Aqua data for May 23, July 10 and July 26 that were free of 

clouds and sun glint. The MODIS-Aqua and WV2 data were acquired for 

June 13, 2014, which was when the WV2 image was requisitioned over the 

study region. The spectral bands and the spatial resolutions used in mapping 

the TSS concentrations were band 1 (620 – 670 nm) at 250 m, band 4 (640 

– 670 nm) at 30 m and the ‘red band’ (630 – 690 nm) at 2 m for MODIS-

Aqua, Landsat-8 OLI and WV2 respectively. 

 For this study we used the top of the atmosphere radiance data from 

MODIS-Aqua available from the NASA LAADS web 

(http://ladsweb.nascom.nasa.gov/) as geo-located Level 1B data in all 36 

spectral bands. All the MODIS-Aqua Level 1B data were atmospherically 

corrected using the MUMM (Ruddick et al., 2000) atmospheric correction as 

implemented in SeaDAS (version 7.2) (Feldman & McClain, 2010). The 

MUMM atmospheric correction, based on the spatial homogeneity of water 



  

 

102 

 

leaving radiance and constant aerosol ratios in MODIS 748 nm and 869 nm 

bands (Ody et al., 2016), was demonstrated to perform well in the waters 

over our study region (Dorji et al., 2016).  

 Radiometrically and geometrically corrected Level 1T Landsat-8 OLI 

data were obtained from USGS archives using the EarthExplorer 

(http://earthexplorer.usgs.gov/). The Level 1T Landsat-8 OLI data were 

atmospherically corrected to marine remote sensing reflectance using the 

ACOLITE software (available at 

https://odnature.naturalsciences.be/remsem/software-and-data/acolite) 

(Vanhellemont & Ruddick, 2014). Two atmospheric correction algorithms are 

available in ACOLITE, the NIR and SWIR algorithm: the NIR algorithm is 

based on the selection of the red (655 nm) and NIR (865 nm) bands to 

account for the aerosol contributions, the SWIR algorithm uses the SWIR1 

(1608.5 nm) and SWIR2 (2200.5 nm) bands available on the Landsat-8 OLI 

sensor. For this study, we selected the SWIR algorithm because it is valid for 

turbid waters (Vanhellemont & Ruddick, 2015), which is the case for our 

study site where in situ TSS concentration was measured as high as 69.6 

mg/L in the vicinity of dredging areas and it is likely higher in the area of the 

dredge plumes (Dorji et al., 2016). Further, the SWIR algorithm was shown 

to be an improvement over the NIR band based atmospheric correction 

algorithm (Vanhellemont & Ruddick, 2014) that was valid for only moderately 

turbid waters (Ody et al., 2016; Vanhellemont & Ruddick, 2015).  

 The WV2 image covered an area of 331 km2 over the study area (see 

Figure 5.1 for the spatial extent in the study area and the WV2 image). The 

WV2 data comprise spectral bands in the blue (450 - 510 nm), green (510 - 

580 nm), red (630 - 690 nm) and NIR1 (770 - 895 nm) and are supplied as 

ortho ready standard WV2 satellite image data at 2 m spatial resolution. The 

SeaDAS and ACCOLITE platforms were specifically designed and adapted 

to process, among others, MODIS and Landsat-8 OLI satellite sensor data, 

but they are not designed to process WV2 data. A study by Martin et al. 

(Martin, Eugenio, Marcello, & Medina, 2016) demonstrated the success of 6S 

(Second Simulation of a Satellite Signal in the Solar Spectrum) radiative 

transfer code in the atmospheric correction of satellite data captured in turbid 
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coastal waters. The 6S code predicts the satellite signals at the top of 

atmosphere between 250 - 4000 nm based on geometrical conditions, 

atmospheric models for gaseous components, the aerosol model, spectral 

conditions, and ground reflectance (Zhao, Tamura, & Takahashi, 2001). 

Thus, we applied the 6S atmospheric correction method of Kotchenova et al. 

(Kotchenova, Vermote, Matarrese, & Klemm, 2006) and obtained the marine 

surface reflectance using the following input parameters: 1) geometrical 

conditions were obtained from the solar zenith angle, solar azimuth angle, 

satellite zenith angle, satellite azimuth angle, image acquisition day and 

month that was supplied with the WV2 image, 2) the atmospheric model was 

selected as the Tropical atmospheric model, 3) the aerosol model was 

selected as the ‘Continental’ aerosol model with visibility of 15 km, 4) The 

spectral band used was equivalent to the red band of WV2 and ground 

reflectance was modeled as a homogenous ocean BRDF model with wind 

speed of 5 m s-1, wind azimuth of 220° from North, salinity of 35 psu and 

pigment concentration of 0.5 mg/m3. The input parameters in 6S were 

selected to match closely with the conditions over the study region.  

5.3.2.2.2 Validation of Atmospheric Correction Methods 

 For the in situ validation of the atmospheric correction method, only 

MODIS-Aqua provided concurrent measurements to the DALEC-measured 

Rrs. The MODIS-Aqua overpass time over the study region on July 13th 2014 

was at 06:30 hrs (UTC) while in situ TSS and DALEC Rrs were collected 

between 02:00 – 07:30 hrs (UTC). The WV2 and Landsat-8 OLI data were 

not concurrent with the DALEC-measured Rrs during any of the Landsat-8 

OLI and WV2 overpass times in the study region, thus no in situ validation is 

performed for Landsat-8 OLI and WV2-derived Rrs. The time difference 

between DALEC Rrs measurements and MODIS-Aqua overpasses used in 

the validation was constrained to ±90 min. As a validation of atmospheric 

correction for Landsat-8 OLI and WV2-derived Rrs, an inter comparison of Rrs 

with reference to MODIS-Aqua was performed for the WV2 and Landsat-8 

OLI derived Rrs over the study site for selected locations (see light cross 
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marks in Figure 5.2a and Figures 5.2c—e) representing a range of TSS 

concentrations.  

 An inter satellite sensor comparison can show significantly different Rrs 

values over the same region due to the time difference of data acquisition 

and the dynamic water conditions where water masses can move and evolve 

rapidly (Ody et al., 2016), thus to minimize the effect of satellite data 

acquisition time difference we used the aggregates of pixel values in a 

selection of square boxes of 2.5 km in length that represented waters ranging 

from clear to highly turbid in the image. The length of 2.5 km was chosen 

because the minimum size of the plumes in the area of study were at least 5 

km in length, and the intent was to incorporate pixels within the plumes 

which are expected to display a small range in Rrs values. For the MODIS-

Aqua and WV2-derived Rrs comparison, we selected 12 square box regions 

after visually identifying the areas that ranged in different turbidity from the 

WV2 image for June 13, 2014 (see white cross marks for central locations of 

each box in Figure 5.2a). For the MODIS-Aqua and Landsat-8 OLI derived 

Rrs comparison, we selected 12 square boxes per image after visually 

identifying the areas representing a range of different turbidity levels using 

Landsat-8 OLI imagery for May 23, July 10 and July 26, 2014 (see white 

cross marks in Figures 5.2c-e).  
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Figure 5.2: The atmospherically corrected Rrs (red band) product. (a) and (b) WV2 and 
MODIS-Aqua on 13th June 2014; (c)-(e) Landsat-8 OLI and (f)-(h) MODIS-Aqua on 23rd 
May, 10th July and 26th July 2014 respectively. The white cross mark on (a), (c)-(e) are the 
locations of the central pixel of 2.5 km square used in Rrs product validation. The black cross 
mark are locations corresponding to Dredged Areas (DA and DA2), Spoil Ground (SG), 
Clean Area (CA), River Plume (RP) and Moderate Turbid Area (MTA) in each image. 
 

 
5.3.2.2.3 Degrading the Satellite Spatial Resolution  

 Quantification of the variability in TSS concentration derived from 

sensors with different spatial resolutions was assessed by spatially 

degrading the satellite sensor’s derived TSS products to coarser spatial 

resolutions than their respective native resolutions of 250 m, 30 m and 2 m 

for MODIS-Aqua, Landsat-8 OLI and WV2 data respectively. The 

degradation of the spatial resolution depended on the respective sensor’s 

native resolution, the MODIS-Aqua TSS data were degraded to 500 - 5000 
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m at 500 m intervals, the Landsat-8 OLI TSS data were degraded to 60 - 

4800 m at 60 m intervals, and the WV2 TSS data were degraded to 4 - 5000 

m at 2 m intervals. The spatial resolution was degraded using the aggregate 

of all available pixel values in a selected region. For example, if MODIS-

Aqua 250 m data were to be degraded to 1000 m spatial resolution then all 

pixels confined within the 1000 m by 1000 m (equivalent to 4 × 4 250 m 

spatial grids) would be averaged. The locations and size of each selected 

area were determined visually by assessment of the uniformity of TSS in the 

region and the spatial resolution of degradation. For each MODIS-Aqua and 

Landsat-8 OLI TSS image we selected 5 locations, the 1) the center of the 

dredge area (DA), 2) center of the spoil ground (SG), 3) moderately turbid 

but spatially uniform area (MTA), 4) clean area (CA) and 5) center of the river 

plume (RP). For the WV2 TSS image, we also selected 5 locations, but 

replaced the location of the river plume with the second dredge area (DA2) 

because the area of the river plume was not covered by the WV2 image (see 

black cross marks in Figure 5.2 for the locations). 

 In addition, the data to visually examine the spatial characteristic of 

the sediment plumes were generated by spatially degrading the TSS product 

for all of the study regions from each sensor’s native spatial resolution. The 

high spatial resolution 2 m WV2 TSS product was degraded to 30 m, 250 m, 

500 m, and 1000 m, the spatial resolution of the 30 m Landsat-8 OLI TSS 

product was degraded to 250 m, 500 m, and 1000 m, and the coarser 250 m 

spatial resolution of MODIS-Aqua was degraded to 500 m and 1000 m. For 

the examination of the plume features we focused on the area where the 

plume was visually evident (see red box in Figures 5.2a, c, and h) for the 

TSS product of June 13th 2014 for WV2, May 23rd for Landsat-8 OLI and July 

10th 2014 for MODIS-Aqua.    

5.3.2.3 Calibration and Validation of Multi-Sensor TSS Algorithm  

 The TSS algorithm used in this study is the Semi-Analytic Sediment 

Model (SASM) from Dorji et al. (2016) where the physical form of SASM is 

based on the principle of radiative transfer and it has been shown that the 

SASM performs better in the study region compared with simple linear and 
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exponential models. Further, SASM is based on a red spectral band which 

suits our purpose because all three satellite sensors considered here have 

red bands which are proven to be effective in mapping TSS concentrations in 

the turbid region. To calibrate the SASM model, the DALEC measured Rrs 

was convolved to the respective sensors band’s spectral response functions 

and then converted to equivalent sub-surface remote sensing reflectance 

(rrs). Then all the 48 (rrs and TSS) match-up pairs were used in re-calibration 

of the general form of the SASM in Equation (14) of Dorji et al. (2016). The 

recalibrated model was validated using the method of Leave-one-out cross-

validation (LOOCV) (Stone, 1974) where all but one (rrs and TSS) match-up 

pairs were used in calibration and the remaining one was used in validation 

until all the match-up pairs were exhausted. The SASM re-calibrated to the 

respective red bands of MODIS-Aqua, Landsat-8 OLI and WV2 are 

presented below in Equations (5.2), (5.3), and (5.4) for MODIS-Aqua in band 

1, Landsat-8 OLI in band 4 and WV2 in the red band respectively.  
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5.3.3 Mapping of TSS Concentration  

  The Rrs derived from the atmospherically corrected reflectance of 

MODIS-Aqua in band 1, Landsat-8 OLI in band 4 and WV2 in the red band 

for all the corresponding dates of image acquisition were used in mapping 

the TSS concentration. The respective satellite derived Rrs were converted to 
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rrs using Equation (5.5) (Lee et al., 1999) then, the resultant rrs was used in 

the respective satellite sensor’s TSS algorithm given by Equations (5.2), 

(5.3) and (5.4) for MODIS-Aqua, Landsat-8 OLI and WV2 respectively.  
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5.3.4 Accuracy Assessment   

 The common accuracy assessment methods, Mean Absolute Relative 

Error (MARE), Absolute Relative Error (ARE) and Root Mean Square Error 

(RMSE) employed in remote sensing by numerous studies (Forkuor, 

Hounkpatin, Welp, & Thiel, 2017; Shi et al., 2017; Sun et al., 2013) were 

used in this study to compare model-derived and ‘true’ Rrs and TSS values. In 

this study we refer to ‘true’ value as the in situ measurements or MODIS-

Aqua derived Rrs or TSS values. We also considered the correlation 

coefficient (r) defined in Equation (5.9), although r cannot be strictly used in 

assessing the accuracy between two models because a high r value does 

not necessarily mean a better prediction because the systematic model error 

can also lead to over and/or under prediction (Forkuor et al., 2017). We used 

r to gauge the presence of positive correlation between the models. RMSE, 

as defined in Equation (5.8), is the most common accuracy assessment used 

to indicate average error of a model. Because of its susceptibility to outliers 

we resorted to using RMSE to evaluate in situ validation of TSS algorithms 

only, where in the in situ model validation the model-derived TSS 

concentration is not expected to deviate significantly from the in situ TSS 

measurements. However, in the accuracy assessment of TSS concentration 

derived from the satellite images, the TSS concentration can be highly 

variable and possibly include outliers, which can limit the use of RMSE 

accuracy assessment in such cases. Thus, the MARE and ARE as defined in 

Equations (5.6) and (5.7) respectively, were deemed more appropriate for 

satellite image derived TSS comparison. Further, the MARE and ARE are 

scale independent and provide errors in percentages, which better facilitates 

the comparative study of TSS concentrations produced by different satellite 

sensors. Thus, accuracy assessment for quantitative comparison of TSS 



  

 

109 

 

concentration derived from different sensors was performed using MARE 

and ARE. However, it should be noted that negative or zero, model-derived 

or ‘true’ values can result an unreliable accuracy estimates in MARE and 

ARE calculation. In this study, in the atmospheric correction process of the 

satellite images, the Rrs values were tested for negative or zero values to be 

flagged as ‘bad’ pixels and removed from subsequent analysis 
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where n is the total number of samples, xi is the model-derived TSS and yi is 

the ‘true’ TSS. 

5.4 Results  

5.4.1 Validation of TSS Algorithms  

 The result from the LOOCV method used in calibration and validation 

of the TSS algorithms in Equations (5.2), (5.3) and (5.4) are presented in 

Table 5.1. Further, the corresponding TSS model curves for MODIS-Aqua in 

band 1, Landsat-8 OLI in band 4 and WV2 in the red band are shown in 

Figure 5.3. The results from all three sensor’s TSS algorithms produce 

similar results in terms of MARE, RMSE and r values. The similar results 

between all three TSS algorithm’s validation are expected because all three 

algorithms use the respective sensor’s red band with slight variation in 

spectral response function of each sensor.  
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Table 5.1: Validation results for MODIS-Aqua, Landsat-8 OLI, and WV2 TSS algorithms. 

SASM Model MARE (%) RMSE (mg L-1) r 

Modis-Aqua 33.33 5.75    0.89 

Landsat-8 OLI 33.36 5.73 0.89 

WorldView 2 33.34 5.68 0.89 

 

 
Figure 5.3: The TSS model curves for MODIS-Aqua (blue), Landsat-8 OLI (green) and 
WV2 (red). The in situ data points are shown by filled circles with the same colour profile 
as respective TSS model curves. The data for TSS < 10 mg/L and rrs < 0.025 sr-1 are also 
shown in the blow out version of the plot. 

5.4.2 Multi-Sensor Atmospheric Correction Validations 

 Validation of the atmospheric correction methods for the different 

satellite sensors involved two methods: 1) in situ validation for MODIS-Aqua 

atmospheric correction methods and 2) inter-sensor Rrs validation between 

MODIS-Aqua, WV2 and Landsat-8 OLI. In both the validation methods, type-

II linear regression from (Glover et al., 2011) was used because type-I 

regression typically assumes the dependent variable (‘true’) is error free, but 

this is not the case even in in situ measurements (Brewin et al., 2015). 
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 The in situ atmospheric correction validation result for MODIS-Aqua 

using the DALEC-derived Rrs is shown in Figure 5.4. The error bars on the 

data points in Figure 5.4 indicate the minimum and maximum values of Rrs 

within 3 × 3 and 5 × 5 pixel extents. In Figure 5.4 we observe that the 

majority of the data points were within the 1:1 line considering the error bars 

from Rrs variability in a 5 by 5-pixel window. However, there are also a few 

data points whose error bars do not overlap with the 1:1 line and resulted in 

ARE as high as 109.64% between the in situ DALEC Rrs measurement and 

MODIS-Aqua derived Rrs. The overall MARE of all data points was 34.82% 

with slope of 0.67, intercept of 0.0018 and R2 of 0.54 as obtained from Type-

II regression. Additional observation we can make from Figure 5.4 are that as 

the pixel window increases from a 3 × 3 to a 5 × 5 pixel window, the upper 

and lower error bounds also increase, showing that the water is highly 

variable in Rrs values. This spatial variability in Rrs is associated with the 

spatial variability in TSS.  
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Figure 5.4: In situ validation of DALEC-measured Rrs and MODIS-Aqua derived Rrs for 
match-up data within ± 90 min from the satellite overpass. The error bars indicate the 
maximum and minimum MODIS Rrs values in 3 × 3 and 5 × 5 pixel extents. The Rrs bands 
were red bands of the respective sensors. 
 

 The result of the inter-sensor validation of the Rrs product is shown in 

Figures 5.5a and b. From Figures 5.5a and b we observe that the inter-

sensor Rrs product validation of MODIS-Aqua vs Landsat-8 OLI (Figure 5.5a) 

with MARE of 44.85 % showed a better result than MODIS-Aqua vs WV2 

(Figure 5.5b) with a MARE of 55.99%. In addition, the ARE results in Figure 

5.5a were also better with the smallest ARE and largest ARE of 0.15% and 

158.11% while in Figure 5.5b the smallest ARE and largest ARE were 1.20% 

and 332% respectively. Further, in Figure 5.5a the type-II linear regression 

indicates that there is high correlation, with R2
 = 0.87, between MODIS-Aqua 

and Landsat-8 OLI derived Rrs, with most data points falling along the 1:1 

line, considering the Rrs variability within a 2.5 km width square box (indicated 

by error bars in Figures 5.5a and b with the 17.5 and 82.5 percentile Rrs 

values). The correlation between MODIS-Aqua and WV2, as shown in Figure 

5.5b, was lower, with R2=0.61 with some data points failing to fall within the 

1:1 line even after considering the errors from Rrs variability in the 2.5 km 

square box. However, the majority of the data points in both Figures 5.5a 
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and b show that MODIS-derived Rrs are lower than either WV2 or Landsat-8 

OLI derived Rrs for Rrs > 0.005 sr-1. 

 

 
(a) 

 
(b) 

Figure 5.5: Inter-satellite Rrs product validation results. (a) MODIS-Aqua vs Landsat-8 OLI Rrs 
product validation from May 23rd, July 10th and July 26th 2014; (b) MODIS-Aqua vs WV2 Rrs 
product validation for Rrs from June 13th 2014. The error bars indicate the 17.5 percentile 
(lower limit) and 82.5 percentile (upper limit) of pixel values from a 2.5 km width box for each 
respective satellite sensors derived Rrs. Dashed lines indicate the 1: 1 relationship. The Rrs 
bands were red bands of the respective sensors.  

5.4.3 Sediment Plume Features Examination 
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 Few selected regions within the study sites in Figure 5.1 (shown by 

red boxes in Figures 5.2a, 5.2c, and 5.2h) which are spatially degraded to 

lower spatial resolutions are shown in Figures 5.6a-c for WV2, Landsat-8 OLI 

and MODIS-Aqua sensors respectively. Subsequent images from the top row 

to bottom row in Figures 5.6a-c are spatially degraded to a coarser spatial 

resolution. In Figure 5.6a, showing WV2 at 2 m spatial resolution, we are 

able to visually identify even the fine spatial features in the sediment plumes 

adjacent to the large turbidity features which are very evident. Similar spatial 

features as those observed at 2 m spatial resolution are still evident in the 

degraded lower spatial resolution of 30 m. As the spatial resolution is 

degraded to 250 m and 500 m the fine spatial features which were evident at 

2 m and 30 m spatial resolution are no longer visible, but we can still identify 

the two large distinct plume regions (DA and DA2 in Figure 5.6a) which are 

visible enough to be distinguished as two separate regions of plume when 

compared with the surrounding areas in DA and DA2.  
 In the lowest spatial resolution of 1000 m, we can no longer clearly 

discern even the two distinct DA and DA2 plumes observed at the 250 m and 

500 m spatial resolutions. The separate regions of DA and DA2 are fused 

together to appear as one large region of turbid plume when compared with 

the surrounding background data. In Figure 5.6b, showing Landsat-8 OLI 

data at 30 m spatial resolution, we can distinguish the fine features of the 

river plume, but as the spatial resolution is degraded to 250 m, 500 m and 

1000 m only the larger boundaries of the sediment plumes remain visible as 

the finer features are replaced by the coarser grids at degraded spatial 

resolutions. Similarly, in Figure 5.6c showing MODIS-Aqua data, we can 

clearly observe the dredge plume in the 250 m and 500 m spatial resolution 

images, but the 1000 m spatial resolution image loses the details that are 

observed at the higher spatial resolutions. 
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Figure 5.6: Spatially degraded images of the dredge area (DA) and river plume (RP): 
Extracted from images in Figures 5.2a, d, and i corresponding to (a) WV2, (b) Landsat-8 
OLI and (c) MODIS-Aqua. 
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5.4.4 Quantification of TSS in Sediment Plumes 

 Figures 5.7a and 5.7b show the histograms of TSS concentrations 

derived from pixels located within the clean area (CA) which represents the 

background water to the turbid dredged area (DA) for all the images at 

MODIS-Aqua and WV2 sensor’s native spatial resolution as well as spatially 

degraded resolutions respectively. The degraded resolutions encompass 

more pixels and the histogram shows the average TSS value of each area, 

with the error bars indicating the maximum and minimum TSS values of the 

native resolution pixels within each area. The comparative results between 

MODIS-Aqua and WV2 for the June 13th 2014 show that MODIS-Aqua 

derived average TSS values are relatively lower than WV2 derived average 

TSS for the regions DA, RP, SG and MTA. At sensor native resolution (2 m 

for WV2 and 250 m for MODIS-Aqua) the MODIS-Aqua derived TSS for the 

turbid regions (DA, SG and RP) were ~8.5 times less than WV2 derived TSS 

concentrations. In terms of average TSS derived at different spatial 

resolutions for the WV2 image (Figure 5.7b) we observe that in the 

plume/turbid areas (DA), the average TSS concentration decreased as the 

spatial resolution became coarser and the MARE between average TSS 

derived from 2 m and 2000 m spatial resolution in DA was 114.46%. 

Likewise, a similar trend was observed for the MODIS-Aqua images, with the 

MARE between 250 m and 5000 m spatial resolutions of 30.80% for MODIS-

Aqua.  
 The variability in TSS concentration in different regions is represented 

by error bars (minimum and maximum TSS concentration in each spatial 

grid) in Figures 5.7a and 5.7b. The error bars in Figures 5.7a and 5.7b show 

that for all regions considered, the range of TSS variability increases as 

spatial resolution gets coarser and the area encompassed increases. In the 

region of the dredge plume (DA) the TSS concentration ranged from a low of 

2.3 mg/L to a high of 160 mg/L for the WV2 image at the spatial resolution of 

2000 m while for MODIS-Aqua, at a spatial resolution of 5000 m, by contrast 

only displayed TSS in the range of 1.4 mg/L to 6.6 mg L. 
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(a) 

 
(b) 

Figure 5.7. (a) MODIS-Aqua and (b) WV2 at their respective native and degraded spatial 
resolutions, averaged over the areas: dredge plume (DA and DA2), Spoil Ground (SG), 
River Plume (RP), Moderate Turbid Area (MTA) and Clean Area (CA). The error bars 
indicate the minimum and maximum TSS concentrations in each spatial grid. 
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 Figures 5.8a-f show histograms of the TSS concentration derived 

using Landsat-8 OLI and MODIS-Aqua data for May 23rd, July 10th and July 

26th 2014 for regions DA, CA, MTA, RP and SG at native and degraded 

spatial resolutions. For all three dates, the TSS concentration derived using 

Landsat-8 OLI images were higher than the MODIS-Aqua for the turbid (DA, 

SG and RP) and moderately turbid (MTA) regions while the MODIS-Aqua 

derived TSS was higher than the Landsat-8 OLI for the clean area (CA). For 

the turbid regions (DA, RP and SG) the ARE between MODIS-Aqua and 

Landsat-8 OLI derived TSS ranged from 2.3% to 304.68% with higher ARE 

at the higher spatial resolution for all Landsat-8 OLI and MODIS-Aqua image 

pairs. For the regions of moderately turbid (MTA) and clean area (CA) the 

ARE in TSS concentration ranged from 44.22% to 82.08% with a maximum 

of 4% variability in ARE for all different spatial resolutions within any Landsat-

8 OLI and MODIS-Aqua image pair

 In general, apart from the MODIS-Aqua image of the May 23rd 2014 

(Figure 5.8d) all TSS concentrations derived for turbid regions (DA, SG and 

RP) show general trends in which the mean TSS concentrations of the 

coarser spatial resolution grid are lower than the mean TSS concentrations 

derived at higher spatial resolution. Further, the variability in TSS 

concentration as represented by minimum and maximum TSS 

concentrations in the spatial grid increases as the spatial grids get coarser 

and cover a larger extent. The range of TSS concentration as derived by 

Landsat-8 OLI and MODIS-Aqua varied from 5.59 mg/L to 29.15 mg/L and 

3.9 mg/L to 6.31 mg/L in the turbid regions (DA, SG and RP) respectively 

while the TSS concentration ranged from 0.38 mg/L to 0.43 mg/L for MODIS-

Aqua and 0.14 mg/L to 0.30 mg/L for Landsat-8 OLI in the background 

waters (CA).  
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Figure 5.8: Average TSS concentration. (a)—(c) Landsat-8 OLI and (d)—(f) MODIS-Aqua at their respective native and degraded spatial resolutions in the 
dredge plume (DA), Spoil Ground (SG), River Plume (RP), Moderate Turbid Area (MTA) and Clean Area (CA). The error bars indicate the minimum and 
maximum TSS concentrations in each spatial grid. 
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5.5 Discussion 

5.5.1 Data and Methodological Limitations 

 The results presented demonstrate the differences observed in 

remotely sensed TSS concentrations for three different sensors and for 

varying spatial scales of monitoring. The remote sensing instruments, WV2, 

MODIS-Aqua and Landsat-8 OLI considered in this study have their own 

radiometric characteristics and atmospheric correction methods that are best 

suited to each individual sensor. Apart from the radiometric and atmospheric 

correction methodologies considered for each sensor we also have to take 

into account the different image acquisition times when attempting to 

compare the results of the different sensors. The miss-match between the 

different sensor image acquisition times leads to the situation where the 

water mass, or the feature of interest such as a sediment plume, may move 

and alter in spatial distribution, thus the comparison of the Rrs was based on 

a spatial subset of pixels contained within a square region of length 2.5 km, 

the average distance the surface current for June 13th 2014 in the study 

region was estimated to move a water mass within the acquisition time 

differences (P. Branson, personal communication, July 4th 2016). Further, the 

effect of pixel resolution and the size of the spatial domain on the TSS 

product was studied by degrading the spatial resolution of the TSS products 

for each sensor to coarser and larger grids.  

 The inter-sensor TSS algorithms considered in this study were all 

calibrated using the same in situ TSS and Rrs measurements in the red 

bands of the respective sensors and the in situ validation result of the TSS 

algorithms for all three satellite sensors were within MARE of 33.33% to 

33.36%. Figure 5.3 shows the close similarity in the algorithm curves for 

each sensor, with a maximum relative difference of ~10% between TSS 

values occurring at higher Rrs. However, comparison between TSS algorithm 

curves should take into account the differences in the spectral response of 

each sensor, thus the Rrs value for the same body of water would be 
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expected to be slightly different for each sensor, as indicated by the 

horizontal displacement of the individual data points in Figure 5.3. 

Nonetheless, the value of 10% is a reasonable estimate of the upper limit of 

the differences in TSS to be expected simply due to differences between 

sensor algorithms. The use of different atmospheric correction methods for 

different sensors can cause discrepancies in the final derived TSS products, 

thus it is vital to account for such discrepancies in atmospheric correction 

methods. The Rrs results for the MODIS-Aqua which were validated using the 

in situ Rrs data showed that MODIS-Aqua had MARE of 33.82%. The WV2 

and Landsat-8 OLI atmospheric correction results which were “validated” 

against the MODIS-Aqua Rrs data had MARE of 55.99% for WV2 vs. MODIS-

Aqua, and 44.85% for MODIS-Aqua vs. Landsat-8 OLI. The high MARE 

values of inter sensor validation may be expected because of the acquisition 

time differences between satellite sensor data that were in excess of 3 hrs 

between MODIS-Aqua and WV2, and 3.75 hrs between MODIS-Aqua and 

Landsat-8 OLI. In areas of the turbid dredged plumes (DA and DA2 in Figure 

5.2a) the MODIS-Aqua Rrs derived using the MUMM atmospheric correction 

method is particularly low when compared with Rrs derived from WV2 using 

the 6S atmospheric correction method. The highest ARE were between the 

Rrs derived from the MUMM and 6S atmospheric correction methods at 332% 

while the lowest ARE of 1.2 % were observed in the region of the 

background waters (CA in Figure 5.2a). The underestimation of Rrs by the 

MUMM atmospheric correction method could be because it was designed for 

moderately turbid waters (Vanhellemont & Ruddick, 2014) and fails to 

retrieve Rrs correctly in highly turbid waters of the dredge plumes. Similar 

under estimation of Rrs in the turbid region (DA in Figures 5.2c-h) by the 

MUMM atmospheric correction method applied to the MODIS-Aqua image 

was observed when compared with Rrs derived from the SWIR atmospheric 

correction applied to the Landsat-8 OLI which was adapted for the turbid 

waters (Vanhellemont & Ruddick, 2015).  
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5.5.2 General Observation and Recommendations 

 The effect of different spatial resolutions of the satellite sensors on 

identifying and mapping the fine features in the dredge plumes are evident 

from the results. The higher spatial resolution satellite sensors, no doubt, 

have the benefit of identifying even the fine features in the sediment plumes. 

For the size and scale of images displayed, the 30 m Landsat-8 OLI and 2 m 

WV2 TSS products shows similarly fine features, but as the spatial resolution 

is degraded to larger pixel sizes the fine features are no longer visible, as 

seen in images with the spatial resolution greater than 250 m (see Figure 

5.6). The fine details observed with the high spatial resolutions of WV2 at 2 

m and Landsat-8 OLI and 30 m native spatial resolution makes these two 

sensors capable of resolving fine spatial details in the surface turbidity 

features and shows the capability of their application in spatial 

features/extent mapping of the sediment plumes when compared with 

MODIS-Aqua sensors. From the perspective of dredge plume monitoring for 

environmental impact assessment or compliance, the finer details available 

in the higher resolution satellite data provide better resolution of the spatial 

extent of dredge plumes, and this in turn translates to a higher confidence in 

the product. For instance, the extent of the dredge plume in the lateral 

direction when measured with the high resolution WV2 image was ~6 km, 

while the MODIS-Aqua derived measurement was ~10 km. However, marine 

and environmental protection agencies should carefully weigh the cost and 

benefit of using different spatial resolution sensors. Both the WV2 and 

Landsat-8 OLI data are able to identify the fine features of the dredge plume, 

but users should be mindful that the WV2 data are not freely accessible, as 

is Landsat-8 OLI. Further, if the requirement of the agencies were just to map 

the extent of dredge plume then MODIS 250 m spatial resolution shows 

similar capability in mapping the larger TSS spatial features, but not the fine 

features and details as seen in the high resolution WV2 and Landsat-8 OLI 

images.  

 The general trend observed in quantified TSS concentration (Figures 

5.7 and 5.8) is that as the spatial resolution gets coarser and the spatial 
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extent increases the mean TSS concentration decreases for all three 

different sensors for turbid regions (DA, SG and RP) while the mean TSS 

concentrations for CA and MTA remain relatively uniform. Depending on the 

spatial resolution, the mean TSS concentration results for different spatial 

resolutions by the same satellite sensors are different and it is shown to 

decrease as spatial resolution gets coarser for turbid regions. The decrease 

in TSS concentration with coarser spatial resolutions are observed because 

of the inclusion of background and lower turbid waters in averaging as the 

spatial grids get larger. In monitoring of TSS concentration in turbid regions it 

is important for environmental agencies to be mindful of the result from this 

study where it shows the effect of the coarser spatial resolution sensors in 

inclusion of background and lower TSS concentration neighboring pixels 

producing a lower average TSS concentration than the TSS concentration of 

the sediment plume over a small spatial extent, particularly when the size of 

the sediment plume is smaller than the spatial resolution of the satellite 

sensor. However, our results did not show that such an effect is observed in 

regions where the turbidity is uniformly distributed over a relatively large 

spatial extent. 
 The quantification of TSS concentrations variability results (see 

Appendix G for details) show that in the background, CA (see Figure G3), 

spatially uniform and moderately turbid waters, MTA (see Figure G2), the 

TSS variability remains similar across different spatial resolutions for each 

sensor. The TSS variability across different spatial resolutions (250 m – 2000 

m) for CA and MTA were mostly below ~5% from the mean TSS 

concentrations of the respective region, with the exception of Landsat-8 OLI 

in MTA which had TSS variability of 10.39%. The low TSS variation is 

expected in the CA and MTA regions because the CA, which is 

approximately 30 km from the dredge region, is expected to remain 

undisturbed by the dredging activities and has a natural background level of 

TSS concentration without disturbance from anthropogenic processes. 

Further, the MTA region, which has spatially uniform TSS concentration, is 

expected to show minimum variance when spatially degraded to represent 
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coarser spatial resolution. However, in the turbid regions (DA, SG and RP) 

the TSS variability was higher, with 16.96%, 54.09%, and 12.05% for 

MODIS-Aqua, Landsat-8 OLI and WV2 respectively. The higher TSS 

variability in the turbid regions, the regions of dredge and river plumes, can 

be associated with higher TSS gradient in each region. The mean TSS 

concentration derived by different satellite sensors was also different for 

each sensor.  
The MODIS-Aqua sensor produced mean TSS concentrations of 12.67±2.15 

mg/L, 1.89±0.04 mg/L, and 0.51±0.02 mg/L for the DA, MTA and CA regions 

respectively. Likewise, for Landsat-8 OLI and WV2 sensors, the mean TSS 

concentrations in the DA, MTA and CA regions were quantified to be 

11.34±6.13 mg/L, 1.61±0.07 mg/L, and 0.16±0.02 mg/L for Landsat-8 OLI 

and 22.04.34±2.65 mg/L, 3.85±0.19 mg/L, and 1.84±0.06 mg/L for WV2. 

Thus, in monitoring TSS concentration, it should be noted that the TSS 

variability observed by the satellite sensors is not only associated with the 

different satellite sensor’s spatial resolution, but also the horizontal spatial 

distribution of TSS as well.  

5.6 Conclusion 

 The aim of this study was to highlight the effect of the sensor spatial 

resolution on quantification of TSS concentration in turbid sediment plumes. 

Results from this study show that different satellite sensors with different 

spatial resolutions can produce different TSS concentrations, particularly in 

regions of spatially variable TSS. The WV2 sensor, with 2 m spatial 

resolution, was shown to generate TSS concentrations as high as 160 mg/L 

in the region of the dredge plumes while the highest TSS concentration 

generated by MODIS-Aqua with 250 m spatial resolution was 23.6 mg/L. 

Even for the same satellite sensor degraded to different spatial resolutions, 

the TSS concentrations in the non-uniform turbid regions varied by 114.46%, 

304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively 

as the sensor resolution was degraded and the spatial extent increased. In 

the region of background water and uniformly turbid waters, the mean TSS 
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concentration was observed to be uniform as the sensor resolution was 

degraded and the spatial extent was increased. Thus, in the context of TSS 

monitoring of the coastal waters, and particularly for environmental 

compliance monitoring for dredge operations, users must be mindful of the 

fact that different satellite sensors produce different TSS concentrations with 

higher spatial resolution satellite sensors reporting higher TSS values. Also, 

higher spatial resolution sensors are able to resolve fine turbidity features 

while lower spatial resolution sensors are only able to resolve the larger 

spatial extent of the sediment plumes.  

 



  

 

126 

 

  
Mapping Total Suspended Sediment in Near Real Time: A Preliminary 
Assessment of the AHI sensor on board the geostationary Himawari-8 

satellite for Coastal Waters of Western Australia. 
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6.1 Abstract   

 Recent studies in the application of geostationary satellite sensors, 

such as the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) 

onboard the European Union’s meteorological satellite, and the 

Geostationary Ocean Colour Imager (GOCI) from South Korea, to monitor 

the Total Suspended Sediment (TSS) in coastal waters have shown that the 

higher temporal dynamics in the coastal processes can be better achieved 

through the use of high temporal resolution geostationary satellite sensors. 

The availability of the geostationary satellite, Himawari-8 carrying the 

Advanced Himawari Imager (AHI) sensor with visible, Near InfraRed (NIR) 

and Shortwave InfraRed (SWIR) bands over the coastal waters of Australia 

has prompted this study to test the feasibility of AHI in studying the coastal 

TSS dynamics in Western Australian waters. In this study, we show that 

diurnal variability in TSS concentration in coastal waters of northern Western 

Australia can be observed using the AHI sensor for TSS concentrations 

greater than ~0.15 mg/L and when solar zenith angles (θ0) are less than 60°. 

In addition, the diurnal variations of TSS concentration in the region showed 
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that the TSS concentration of water near the coast decreased by a factor of 

~2 between the lowest and highest tidal elevation point. Also, in situ 

validation performed on the atmospherically corrected water leaving 

reflectance (ρw) showed that atmospheric correction performed on AHI data 

using SWIR bands in aerosol estimations performed better than using a 

combination of NIR and SWIR bands. Further, cross-validation of AHI 

derived TSS concentration with MODIS-Aqua and Lansat-8 Operational 

Land Imager (OLI) data showed good correlation, with correlation 

coefficients r = 0.71 and r = 0.91 respectively.  

6.2 Introduction 

 Monitoring the status of ocean colour in the past has been mostly met 

by low altitude, polar orbiting satellites with either a dedicated ocean colour 

sensor or sensors that were primarily designed for terrestrial monitoring 

(IOCCG, 2000). Widely used historical ocean colour sensors with dedicated 

ocean colour bands employed in mapping Total Suspended Sediment (TSS) 

included the Coastal Zone Colour Scanner (CZCS) (Viollier & Sturm, 1984), 

Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) (Binding et al., 2003; 

Burenko et al., 2001; Fettweis et al., 2007; Myint & Walker, 2002), and the 

Medium Resolution Imaging Spectrometer (MERIS) (Doxaran et al., 2014; 

Kratzer et al., 2008; Odermatt et al., 2008). The currently operational polar 

orbiting sensor with dedicated ocean colour bands used in TSS mapping is 

the MODerate resolution Imaging Spectrometer (MODIS) on board the Terra 

and Aqua satellites (Constantin et al., 2016; Li et al., 2010; Miller & McKee, 

2004; Wang et al., 2009a) and the recently launched Sentinel-3A in February 

2016 with Ocean and Land Colour Instrument (OLCI) as part of the 

European Commission’s Copernicus programme (EUMETSAT, 2017). The 

MODIS instruments have passed their designed life-spans (MODIS Web, 

2017). Landsat based sensors, which were primarily designed for use in 

terrestrial monitoring, have also been extensively used in marine 

applications. For example, TSS mapping in coastal environments was 

carried out using the earliest Multispectral Scanner (MSS) and Thematic 
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Mapper (TM) aboard Landsat satellites 1 to 5 (Kim, 1980; Klemas et al., 

1973; Wang et al., 2006; Zhou et al., 2006) and more recently using the 

currently operational Landsat sensors, Enhanced Thematic Mapper Plus 

(ETM+) (Kallio et al., 2008a; Wang et al., 2009b) and Operational Land 

Imager (OLI) (Cai et al., 2015b; Ody et al., 2016; Vanhellemont & Ruddick, 

2014, 2015; Zhang et al., 2016b) aboard Landsat-7 and Landsat-8 

respectively.   

 The advantage of low earth orbiting satellite sensors are numerous, 

and have far surpassed the spatiotemporal limitations inherent in the 

traditional in situ sampling methods used in water quality monitoring. Further, 

notwithstanding the availability of the high spatial resolution (~1.5-10 m) of 

commercial satellite sensors such as WorldView 2-4, Satellite Pour 

l'Observation de la Terre (SPOT) 6-7, and Advanced Land Observing 

Satellite (ALOS) 2, the freely accessible low earth orbiting sensors such as 

MODIS-Aqua/Terra and Landsat-7 and Landsat-8 with global spatial 

coverage, provide ocean colour data for mapping TSS concentration at 

adequate spatial resolutions from 30 m to 0.25 – 1.0 km respectively. 

However, the temporal resolutions of MODIS and Landsat sensors are 

generally ~1-2 days and ~16 days respectively, thus data from these sensors 

are sufficient to differentiate, at best, daily TSS variability during cloud free 

periods, or seasonal variability of TSS concentration for most open ocean 

waters (Neukermans et al., 2009). In contrast, most coastal waters are 

characterized by highly energetic environments that undergo frequent 

horizontal advection and vertical resuspension from the influence of wind 

driven and tidal currents, thus the variability in biogeochemical processes 

occurs at relatively short timescales (Van Raaphorst, Malschaert, & Van 

Haren, 1998). For instance, Thompson et al. (2011) reported that apart from 

the wind driven waves, the resuspension due to tidal forcing alone can 

account for from approximately 8% to 13% for a short ( < 30 min) duration 

timescale. The temporal resolution needed to discern such diurnal variability 

from daily or seasonal variation in TSS concentration is much higher than 

currently afforded by low earth orbiting satellite sensors. Satellite sensors 



  

 

129 

 

with the capability of acquiring numerous images per day, currently available 

only through high earth orbiting geostationary satellite sensors, can provide 

the high temporal resolution required for studies of coastal dynamics. 

 First of the pioneering studies in estimating TSS using a geostationary 

satellite sensor was carried out by Neukermans et al. (2009) using the 

Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard the 

European Union’s meteorological satellite (EUMETSAT). Following 

Neukermans et al. (2009), a limited number of studies have been carried out 

using the SIVIRI sensor (Neukermans et al., 2012; Salama & Shen, 2010) 

and the dedicated ocean colour sensor, Geostationary Ocean Colour Imager 

(GOCI) (Choi et al., 2014; Doxaran et al., 2014; Huang et al., 2015), on 

board the Communication, Ocean and Meteorological Satellite (COMS) 

operated by South Korea. The SERIVI was primarily developed for 

meteorological purposes with broad spectral resolution in the visible and 

near infrared (NIR) bands, thus it has limitations in general ocean colour 

monitoring. Nonetheless, SERIVI has shown promise in the study of the 

temporal dynamics of coastal waters because of its high temporal resolution 

(data available every 15 min) and its ability to map TSS concentration using 

just a single Red or NIR band at a spatial resolution of 3.0 x 6.5 km 

(Neukermans et al., 2009). The GOCI sensor, primarily developed for ocean 

colour applications with six visible (412, 443, 490, 555, 660, and 680 nm) 

and two NIR (745 and 865 nm) bands, has shown that it can be used in 

mapping the dynamics of TSS concentration in coastal waters at high 

temporal resolution (eight images per day) (He et al., 2013), but the absence 

of spectral bands in short-wave infrared (SWIR) bands has proven 

challenging in atmospheric correction of data collected over highly turbid 

coastal waters (Wang et al., 2013).  

 This study was prompted by the success of the SERIVI and GOCI 

sensors in mapping TSS concentration in coastal waters. We explore the 

feasibility of the Advanced Himawari Imager (AHI) on board the Japanese 

meteorological agency’s geostationary meteorological satellite, Himawari-8, 

in mapping the temporal dynamics of TSS variability in coastal waters of 
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Western Australia. The AHI sensor has the required spectral bands and the 

spatiotemporal resolution needed for the detection of high temporal 

dynamics in coastal waters in Western Australia. Further, there are planned 

missions involving geostationary satellite sensors with the required ocean 

colour bands, such as GOCI-II by South Korea, GEO-CAPE by the United 

States, Geo-Oculus by Europe, Himawari-9 by Japan, and HR-GEO by India 

(IOCCG, 2012). The current geostationary sensors, and the planned 

missions, provide the needed incentive in conducting more studies in ocean 

colour mapping using Geostationary satellite sensors. As far as we know, no 

study has been conducted using the AHI sensor in mapping TSS 

concentration, although feasibility studies in ocean colour estimation—the 

mapping of chlorophyll-a (Chl-a), were conducted by Murakami (2016) using 

AHI observations. Specifically, this study will aim to answer following two 

questions: 1) are AHI data capable of mapping TSS concentration in coastal 

waters of Western Australia, and 2) are AHI data able to discern diurnal TSS 

variability in the region. 

6.3. Materials and Methods  

6.3.1. Study area 

 The study area chosen for this study falls along the Pilbara coast, 

which extends between the Exmouth Gulf (22° 25΄ 00΄΄ S and 114° 25΄ 00΄΄ 

E) and Onslow (21° 35΄ 00΄΄ S and 115° 05΄ 00΄΄ E) in Western Australia 

(see Figure 6.1 for details). The coastline of the Pilbara region is dominated 

by river deltas and tidal flats which are more than 2 km wide from the 

coastline in the majority of the region (Stul, Gozzard, Eliot, & Eliot, 2014). 

The shallow waters in the Exmouth Gulf and the Onslow region extend 

approximately 50 km from the coastline, with water depths less than 30 m, 

while the waters that extends greater than 50 km from the coast can range in 

depth from 30 m, depending on their proximity to the coast, to greater than 

1000 m for offshore waters (Department of Environment, 2007). A significant 

source of sediments in the coastal waters of the Pilbara region is the 
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Ashburton River (22° 42΄ S and 114° 55΄ 00΄΄ E) which discharges large 

quantities of sediment laden water with TSS concentration ranging from 15 

to 5000 mg L-1 with higher concentration closer to the river mouth (URS, 

2014).  The vertical mixing of waters in the Pilbara coastal regions is 

generally caused by the combination of tidal current, wind-driven waves and 

episodic seasonal cyclones (Department of Environment, 2007). The 

average rainfall in the Exmouth Gulf and Onslow region is approximately 300 

mm annually with mean annual temperatures in the range 21.5 to 29 °C and 

with mean summer wind speeds between 7 and 9 m s-1 and winter wind 

speeds of only 3 m s-1 in variable directions (Bureau of Meteorology, 2015a).  

 

 
Figure 6.1: True colour image of the study site (RGB = AHI Band 3, 2, 1). Black filled 
circles are the in situ validation points collected during the field campaign on July 4th – July 
10th 2015 (shown in blow-out version on the right for greater details). Box A corresponds to 
homogenous clear water area; Box B corresponds to homogenous region within the 
Exmouth Gulf; Box C corresponds to turbid waters near the coast. 
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6.3.2 Himawari-8 (AHI) overview 

 Himawari-8, stationed above the equator at 140.7 °E, is a Japanese 

meteorological satellite that was primarily designed for meteorological 

purpose and was launched on October 7th 2014, becoming fully operational 

from July 7th 2015 (Murakami, 2016). The AHI sensor onboard Himawari-8 

has 16 spectral channels, with three that collect data in visible bands (470.3, 

510.5, and 639.9 nm), one NIR (856.3 nm), two SWIR bands (1609.8, and 

2257 nm), and 10 bands in thermal infrared (TIR) regions (~3.9 – 13.3 μm). 

Spatial resolution at the sub satellite point of the first two visible bands (blue 

and green) and the NIR band is 1 km, while the third visible band (red) is 0.5 

km. The spatial resolution of the SWIR and TIR bands is 2 km. Himawari-8 

collects data at three different temporal resolutions that depend on the 

sampled regions, divided into the whole earth disk, three target regions, and 

two landmark areas (see Figure 6.2 for details). The full disk of the earth as 

seen from the satellite is collected every 10 min while two target regions 

focused on north eastern and south western Japan with one flexible target 

region which can be changed depending on the needs of meteorological 

conditions are collected every 2.5 minutes, and two landmark regions which 

are also flexible to enable the prompt and rapid assessment of 

meteorological conditions are collected every 0.5 minutes (Japan 

Meteorological Agency, 2015). 
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Figure 6.2: Full disk view of earth as seen from Himawari-8 with different target areas (green 
rectangles (top) North-Eastern Japan Area and (bottom) South-Western Japan Area, red 
square flexible target area and white rectangles are flexible Landmark areas). The satellite 
view angle is show for the whole disk with satellite zenith at 140.7°E. 

6.3.3. Satellite sensor dataset acquisition and atmospheric correction 

 The satellite dataset used in this study are from Himawari-8 AHI, 

Landsat-8 OLI and MODIS-Aqua acquired for the dates shown in Table 6.1. 

 
Table 6.1: Data Acquisition dates for Himawari-8, Landsat and MODIS-Aqua 

Satellite Sensor Date/Time 

Himawari-8 AHI July 4 –10th, 2015 (10:00 am – 4: 00 pm at every 10 mins) 

Modis-Aqua July 4 –6th and July 8-10th, 2015 (1:00 pm – 2:35pm) 

Landsat-8 OLI July 29th, 2015 (10:20 pm) 

6.3.3.1 Himawari-8 AHI data acquisition and atmospheric correction 

 The first six bands, three visible, one NIR and two SWIR, of full disk 

data were used in this study. The Himawari Standard Data (HSD) of the AHI 

sensor for July 4 – 10th, 2015 were obtained from the Australian Bureau of 

Meteorology through the National Computational Infrastructure facilities 
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(http://nci.org.au/). HSD data files contain all the necessary metadata for 

calibration and projection parameters in the header section along with the 

raw binary data available in the main HSD block. The calibration parameters 

were applied to the raw counts to produce at-satellite radiance (Ltoa) for fixed 

grids, which are defined by fixed pixel locations relative to an ideal 

geostationary satellite viewpoint (Japan Meteorological Agency, 2015). The 

Ltoa was converted to reflectance at top of the atmosphere (ρtoa) using 

Equation (6.1), spatially resampled from 0.5 km in the red band and 1 km in 

the blue, green and NIR band to a standard 2 km as in SWIR and TIR bands. 

The AHI derived Ltoa data were converted to a CF-complaint NetCDF-4 files 

using a ‘hsd2netcdf’ source code written in C (available at 

http://www.data.jma.go.jp/) which was developed by Japanese 

Meteorological Satellite Center to convert the HSD to a NetCDF file.   
2

toa
toa

0 0cos
πd Lρ F θ=  (6.1) 

Where d is the sun-earth distance in astronomical units, θ0 is the solar zenith 

angle and F0 is spectral solar irradiance at top of the atmosphere (in W m-2 

μm-1).  

 For the atmospheric correction, the ρtoa can be decomposed into 

following contributions as shown in Equation (6.2) (Neukermans et al., 2009; 

Vanhellemont & Ruddick, 2014).  

toa a r ra g 0 v w wc( )t tρ ρ ρ ρ ρ ρ ρ= + + + + +  (6.2) 

where ρa and ρr are reflectance from Rayleigh and aerosol scattering 

respectively, ρra is the contribution as a result of interaction between aerosol 

and molecules. Typically, ρra is included in the ρa estimation, so it can be 

excluded from Equation (6.2). ρg is the sun-glint contribution, to and tv are 

sun-sea and sea-sensor total diffuse transmittance, ρw = πLw(0+) /Ed(0+) and 

ρwc are water-leaving reflectance and white caps reflectance of the sea 

surface respectively. ρg  is only significant when the satellite zenith angle (θv)  
is close to θ0  and relative azimuth angle (Δφ=|φ0 - φv|) is close to 180° 

(Neukermans et al., 2009). For the whole of our study region (Figure 6.1), the 
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θv and satellite azimuth (φv) angle varied between 39°- 40° and 53°- 54° 

respectively and Δφ varied from ~15° - 123° between 10 am to 3 pm, so ρg 

was assumed to be negligible in Equation (2) for the study site. Further, ρwc 

for our study site was also assumed to be negligible because wind speed for 

the dates considered in this study was less than 10 m s-1, as according to 

Gordon and Wang (1994a) the ρwc should be accounted for in the aerosol 

correction for wind speeds higher than 10 m s-1. Thus, after considering the 

negligible contributions from ρg and ρwc, the Equation (6.2) can be rewritten 

as, 

toa a r 0 wvt tρ ρ ρ ρ= + +  (6.3) 

 The to and tv can be decomposed separately into the effects from the 

atmospheric gases (ozone, water vapor, methane, oxygen, and carbon 

monoxide and carbon dioxide), aerosol and air molecules as shown in 

Equation (6.4).  
g ga r a r

0 0 0 0 v v v v= and = t t t t t t t t  (6.4) 

where 
ga r

0 0 0 0= , ,t t t t  are transmittance factors for sun-sea for aerosol, Rayleigh 

and atmospheric gasses respectively and 
ga r

v v v v= , ,t t t t  are for sea-sensor for 

aerosol, Rayleigh and atmospheric gasses respectively. The Rayleigh 

corrected reflectance (ρc) can be computed as shown in Equation (6.5) if ρr is 

known a priori.  

c toa r a 0 wvt tρ ρ ρ ρ ρ= − = +  (6.5) 

The unknown parameters ρr, to and tv in Equation (6.5) were generated as a 

look-up-table (LUT) using the Second Simulation of a Satellite Signal in the 

Solar Spectrum Vector Version 1.1 (6SV1.1) developed by Vermote, Tanre, 

Deuze, Herman, and Morcette (1997) for the parameters shown in Table 6.2 

for the first six AHI bands. The satellite geometry, θv and φv, used in 

generating the LUT was maintained constant at 39.2° and 53.6° respectively, 

which are the mean values of satellite geometry of the study site. Further, the 

range of satellite geometry, both θv and φv varied by only ~1° for the whole 
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study site. For the atmospheric model, we only varied water vapor and ozone 

concentration because these two parameters are known to exhibit higher 

spatial and temporal variability than other gases which are considered well 

mixed in both the spatial and temporal domains (Proud, Fensholt, 

Rasmussen, & Sandholt, 2010). In addition, we used a tropical aerosol 

model for the aerosol model type required as input for the 6SV1.1. For the 

cloud and land mask for AHI data for our study region we used AHI Band 5 

in the SWIR region with a threshold of 
c

5 0.0215ρ >  as it is shown to be 

effective in classifying cloud and land from water pixels even in turbid coastal 

water (Vanhellemont & Ruddick, 2015; Wang & Shi, 2006).  

 
Table 6.2: Parameters and values used in generating LUT using 6SV 

Parameters Values 

Solar Zenith Angle 0,5,10,15,20,25,30,35,40,45,50,55,60,70 

Solar Azimuth Angle 0,15,30,45,60,90,120,150,180,210,240,270,300,330,360 

Water Vapor (g/cm2) 0,0.5,1.0,2.0,3.0,4.0,5.0 

Ozone(cm/atm) 0,0.1,0.2,0.25,0.3,0.4,0.45,0.5,1.0 

AOT (550 nm) 0.0,0.001,0.01,0.05,0.1,0.15,0.2,0.3,0.4,0.5,1.0 

  

 The aerosol, ρa, correction in Equation (6.5) was performed using two 

aerosol estimation methods: 1) SWIR bands (Band 5 = 1609.8 nm and Band 

6 =2257 nm) and 2) one NIR (Band 4 = 860 nm) and one SWIR band (Band 

5 = 1609.8 nm). Hereafter, the first aerosol correction method will be referred 

to as the SWIR method and the second as the NIR-SWIR method. In the 

SWIR bands ρw is negligible even for very turbid water cases, with essentially 

zero contribution from ρw because of strong absorption by water molecules in 

the SWIR bands (Gordon & Wang, 1994b; Vanhellemont & Ruddick, 2015). 

In the NIR bands ρw is not negligible in turbid waters, but for clear water 

pixels that are farther away from the coast ρw can be assumed to be 
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negligible even in the NIR bands. With ρw = 0, we can reformulate Equation 

(6.5) for AHI Band 4, Band 5 and Band 6 as follows:  

a a r a

4 4 4 4 5 5 5 5 6 6 6 6
toa r toa r toa;   ;  and  c c cρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ= − = = − = = − =  (6.6) 

 In the SWIR and NIR-SWIR aerosol correction methods, the ratio of 

aerosol reflectance (5,6)ε  for AHI Band 5 and Band 6 and (4,5)ε  for AHI Band 4 

and Band 5 are computed using Equation (6.7) as follows: 

a c a c

a c a c

5 5 4 4
(5,6) (4,5)

6 6 5 5
;  and ε ε

ρ ρ ρ ρ
ρ ρ ρ ρ

= = = =  (6.7) 

 The ratios (5,6)ε  and (4,5)ε  were computed on an image-by-image basis 

for all available AHI data over the clear water pixels (Box A in Figure 6.1) 

using Equation (6.7). The distribution of aerosol reflectance ratios was 

observed to be normal (see Figure 6.3), thus the median values of (5,6)ε  and 
(4,5)ε  computed from each image were used for each AHI scene with the 

assumption that the aerosol scattering ratio was spatially homogenous for 

our study region. Further, 1 standard deviations (STD) of the respective (5,6)ε  

and (4,5)ε  values were taken as the uncertainties in aerosol reflectance ratios. 

For all available AHI dates in Table 6.1, the (5,6)ε  and (4,5)ε  values were 

calculated to be 1.12 ± 0.65 and 1.82 ± 0.84 respectively.  

 
Figure 6.3: Histogram of aerosol reflectance ratio derived from clear water pixels of AHI data 

on July 9th 2015 at 2:00 UTC (A)
(5,6)ε and (B)

(4,5)ε from rayleigh corrected reflectance (N is 
the total number of pixels). 
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By replacing ρ in Equation (6.5) with ρ4 to denote AHI Band 4 in the NIR-

SWIR method and ρ5 to denote Band 5 in the SWIR method, we can 

combine Equation (6.5) and Equation (6.7) to compute atmospherically 

corrected
w

4ρ and
w

5ρ as follows:  

c a c a

w

0 v 0 v

c a c a

w

0 v 0 v

4 4 4 (4,5) 5
4

4 4 4 4

5 5 5 (5,6) 6
5

5 5 5 5

ε

t t t t

ε

t t t t

ρ ρ ρ ρ
ρ

ρ ρ ρ ρ
ρ

− −
= =

− −
= =

 (6.8) 

In both the SWIR and NIR-SWIR methods, knowing the aerosol reflectance 

in longer wavelengths (
a

5ρ and 6
a
ρ ) allows for 

w

iρ (i = other bands) to be 

computed as:  

c a

w

0 v

c a

w

0 v

( ,6) 6

( ,5) 5

  SWIR: 

NIR-SWIR:

       

  

i i
i

i i

i i
i

i i

ε

t t

ε

t t

ρ ρ
ρ

ρ ρ
ρ

−
=

−
=

 (6.9) 

where ( ,5)iε and ( ,6)iε can be derived using simple exponential extrapolation 

from (Gordon & Wang, 1994b) as follows:  

( )

( )

( ,5) (4,5) 5

5 4

( ,6) (5,6) 6

6 5

;

;

δii i

δii i

λ λ
ε ε δi

λ λ
λ λ

ε ε δi
λ λ

−
= =

−

−
= =

−

 (6.10) 

6.3.3.2 MODIS-Aqua data acquisition and atmospheric correction  

 Data from the MODIS sensor onboard the Aqua (EOS PM) satellite 

was used in this study to validate and compare the data from the AHI sensor. 

MODIS Level 1B data, which are geo-located and calibrated Ltoa data from 

MODIS in 36 spectral channels, were downloaded from the NASA LAADS 

web (http://ladsweb.nascom.nasa.gov/) for the dates provided in Table 6.1. 

Atmospheric correction of MODIS-Aqua level 1B data was performed using a 

standard MUMM atmospheric correction methods available in SeaDAS 

version 7.2 (Feldman & McClain, 2010). The MUMM atmospheric correction 
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method is based on the assumption that the ratio of multiple-scattering 

aerosols and aerosol-Rayleigh reflectance at MODIS NIR bands (MODIS 

Band 15 and Band 16) in the sub-scene of interest is spatially homogeneous 

(Ruddick et al., 2000). The only deviation from the standard MUMM method 

was that we employed the SWIR (2130 nm) band instead of the NIR (869 

nm) for cloud detection. A study by Dorji et al. (2016) found that, for our 

study site, the SWIR band was more suited for cloud detection as reflectance 

in the NIR band was occasionally impacted by significant reflectance and 

thus highly turbid waters were flagged as clouds. Validation of 

atmospherically corrected remote-sensing reflectance (Rrs) from MODIS-

Aqua data in our study site was performed by Dorji et al. (2016) who showed 

that MUMM underestimated Rrs by approximately 5% when compared with in 

situ Rrs. MUMM atmospherically corrected, MODIS-Aqua Band 1 data were 

resampled to 2000 m spatial resolution to be used for validation of AHI 

results in this study.  

6.3.3.3 Landsat-8 OLI data acquisition and atmospheric correction 

 In addition to MODIS-Aqua data, Landsat-8 OLI data were also used 

for comparison with the results from the AHI sensor. Landsat-8 OLI data from 

the United States Geological Services were obtained using EarthExplorer 

(http://earthexplorer.usgs.gov/) as radiometrically and geometrically 

corrected level 1T data for July 29th 2015. Only the July 29th 2015 image was 

cloud free over the study site during that month. The atmospheric correction 

of Landsat-8 OLI data was performed using the atmospheric correction 

platform for Landsat and Sentinel sensors, ACOLITE, available from 

https://odnature.naturalsciences.be/remsem/software-and-data/acolite. 

ACOLITE includes several methods for atmospheric correction which are 

similar in design to the Rayleigh and other atmospheric effects corrections of 

(Gordon & Wang, 1994b; Neukermans et al., 2009; Ruddick et al., 2000). For 

aerosol corrections, different methods are available in ACOLITE, using either 

two SWIR bands or a combination of one NIR and one SWIR band. In the 

combination of two SWIR bands method, the added advantage is that the ε 
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for the whole scene can either be computed for every pixel, or one constant 

value for the whole scene can be estimated using either mean or median ε 

values (Vanhellemont & Ruddick, 2015). For our study, we selected two 

SWIR bands from Landsat-8 OLI (SWIR1 = 1608.5 nm and SWIR2 = 2200.5 

nm) for aerosol corrections and chose to select a median value for the 

aerosol scattering ratio between SWIR1 and SWIR2 to represent the whole 

of our study region, an approach adopted in previous studies by (Ody et al., 

2016; Vanhellemont & Ruddick, 2015) and shown to work better for coastal 

waters. The TSS product derived from the atmospherically corrected 

Landsat-8 OLI Band 4 (655 nm) and resampled to 2000 m was used to 

compare with the results of the AHI sensor.  

6.3.4 AHI sensor noise estimation 

 To test the feasibility of the AHI sensor in mapping TSS concentration, 

we assessed the signal to noise ratio (SNR) and noise equivalent radiance 

(NEL) of the AHI sensor using a method described in Hu et al. (2012). In 

brief, the method involves first selecting a region of cloud free clear ocean 

water pixels in each AHI image from all available images in the AHI dataset. 

The clear ocean region is labelled as ‘Box A’ in our study region (see Figure 

6.1). This area was visually determined after examining the true colour 

images and also based on the fact this region is a significant distance from 

the shore, thus unlikely to be influenced by near-coast TSS dynamics. 

Secondly, the clear water pixels were further screened using a window of 3 x 

3 pixels to segregate the real variation in the ocean or atmosphere from 

sensor noise. The threshold derived from the ratio of maximum/minimum Ltoa 

of the whole of Box A pixels was used to quality control pixels for the SNR 

calculation by discarding 3 x 3 pixel windows whose maximum/minimum 

ratios were greater than the ratio for the whole of Box A. Finally, the mean of 

the qualified pixels from the 3 x 3 pixel windows was accepted as the typical 

at sensor radiance (Ltypical) in an image, and 1 STD as the noise (Lstd), which 

is essentially the NEL value due to AHI sensor artifacts. Further, for all the 

above steps, all the clear water pixels were grouped according to discrete θ0 
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(40°±1°,45°±1°,50°±1°,55°±1°,60°±1°, and 65°±1° ) because θ0 can vary 

significantly during the course of an entire day and Ltypical values are known 

to vary as a function of θ0 (Hu et al., 2012). The SNR was computed by 

dividing Ltypical from clear water pixels by Lstd. Further, the computed NEL was 

converted to noise equivalent reflectance (NEρ) as a function of different θ0 

using the following Equation (6.11).   

  
2

0 0cos
L

ρ

NE
F
πdNE θ=  (6.11) 

where d and Fo are as defined in Equation (6.1).  

For noise equivalent TSS concentration (NETSS) for AHI sensor, we used NEρ 

of AHI Band 3 at different θ0 to estimate NETSS using a single red band TSS 

algorithms from Dorji et al. (2016).  

6.3.5 In situ validation dataset 

 For in situ validation data, concurrent measurements of Rrs using a 

“dynamic above-water radiance and irradiance collector” (DALEC) (Brando et 

al., 2016) were available for July 4–10th , 2015. The details of Rrs collection 

using a DALEC, quality control and analysis methods are described in Dorji 

et al. (2016). To get the match-up data corresponding to the AHI dataset, we 

selected the Rrs data that were within ±3 min of the Himawari-8 overpass 

time. In total, we selected 167 DALEC and AHI derived Rrs match-up pairs to 

perform the in situ validation. Unfortunately, the range of in situ Rrs data were 

limited to only 0.0003 – 0.0227 sr-1 for the entire dataset at AHI Band 3 

(~640 nm). Further, the majority of the data were in the lower range of Rrs 

value, with a mean of only 0.0026 ± 0.0018 sr-1. In contrast, other data 

collected in the same region, but not at appropriate times for AHI validation, 

displayed Rrs as high as 0.05 sr-1 in the red band (Dorji et al., 2016). Our 

limited range of in situ Rrs validation data may have an impact on the 

validation of the atmospheric correction of AHI data. The entire in situ Rrs 

validation dataset used in this study has been interpolated to 1 nm and is 

shown in Figure 6.4.   
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Figure 6.4: In situ DALEC measured Rrs used in validation of AHI derived Rrs 

6.3.6. Single red band TSS algorithm 

 The single red band multi-sensor TSS algorithm developed by Dorji et 

al. (2016) for coastal waters of northern Western Australia is used in this 

study. The single red band MODIS-Aqua TSS algorithm from Dorji et al. 

(2016) was recalibrated to Landsat-8 OLI Band 4 and AHI Band 3 using an in 

situ dataset comprising 48 match-up pairs of sub-surface remote sensing 

reflectance (rrs) and TSS concentration from Onslow regional waters within 

the study site (see Figure 6.1). The TSS algorithms, recalibrated and 

convolved to the spectral response functions for Landsat-8 OLI Band 4 and 

AHI Band 3 along with MODIS-Aqua Band 1, from Dorji et al. (2016) are 

shown below:  

  

23.47
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where 
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for MODIS-Aqua, λ = Band 4 for Landsat-8 OLI and λ = Band 3 for AHI, g1 = 

0.084 and g2 = 0.17.  

The TSS products from Landsat-8 OLI and MODIS-Aqua were derived for all 

dates and times shown in Table 6.1 at the sensors red band’s native spatial 

resolution, 30 m and 250 m respectively, and resampled to a spatial 

resolution of 2000 m of AHI derived TSS for quantitative analysis.  

6.3.7. Accuracy assessment  

 The accuracy assessment used in comparing the AHI-derived product 

with in situ or other sensor derived products includes: 1) Mean Absolute 

Relative Error (MARE), 2) Absolute Relative Error (ARE), 3) Root Mean 

Square Error (RMSE), and 4) correlation coefficient (r) as defined by 

Equations (6.15) - (6.18).  
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where n is the total number of samples, yi is the AHI-derived products 

(reflectance or TSS concentrations) and xi is either in situ, MODIS-Aqua or 

Landsat-8 OLI derived products. 

6.4 Results  

6.4.1. Quantitative comparison of water leaving reflectance derived from the 

SWIR and NIR-SWIR aerosol estimation methods 

 The quantitative comparisons of ρw estimated using SWIR and NIR-

SWIR aerosol reflectance estimation methods are presented in Table 6.3. 

The ρw data presented in Table 6.3 include the mean and STD of all AHI 

images from July 04 –10th, 2015. The mean and STD of each individual AHI 

image was computed for all the pixels within the Boxes A, B and C (see 

Figure 6.1). Boxes A, B and C correspond to a homogenous offshore region 

(clear water), gulf region (moderate turbid) and a near coastal region (turbid 

water) respectively.  Table 6.3 shows that for all AHI Bands 1, 2, 3 and 4, the 

ρw was consistently higher for the SWIR method than the NIR-SWIR method. 

The ARE calculated from the ρw of the SWIR and NIR-SWIR methods shows 

that in AHI Band 1, the SWIR method produced higher ARE (57.1% - 

63.84%) in all three regions (Boxes A, B and C). Likewise, similar 

observations were observed in other bands, where the SWIR method 

estimated ρw higher than the NIR-SWIR method by 31.03% - 37.73%, 

43.69% - 113.10%, and 63.57% - 211.75% in Bands 1, 2 and 3 respectively. 

The overall ρw comparison result using the SWIR and NIR-SWIR methods is 

shown in Figure 6.5. We observe from Figure 6.5 that ρw results computed 

from the SWIR method are all above the 1:1 line with an overall RMSE of 
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0.0046. In addition, the simple linear regression analysis shows that ρw 

obtained by the SWIR and NIR-SWIR methods are well correlated with slope 

of ~1.0 and R2 of 0.94, but slightly positively biased toward the SWIR aerosol 

estimation method.  

 

 
Figure 6.5: Scatter plot of ρw computed using a SWIR and NIR-SWIR atmospheric correction 
method. Solid line is line of best fit and broken line is 1:1 line. 
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Table 6.3: Water leaving reflectance (ρw) of AHI sensor in Band 1, 2, 3 and 4 computed for 

different atmospheric correction methods (NIR-SWIR and SWIR aerosol correction 

methods). The mean and STD ρw results are determined from all pixels within Box A, B and 

C for all available AHI data. The ARE are determined as the absolute relative error between 

NIR-SWIR and SWIR results.   

Band ρw Box A Box B Box C 

NIR-
SWIR 

SWIR NIR-
SWIR 

SWIR NIR-
SWIR 

SWIR 

1 Mean 
(STD) 

0.0112 
(0.0018) 

0.0176 
(0.0018) 

0.0177 
(0.0035) 

0.0299 
(0.0016) 

0.0151 
(0.0029) 

0.0247 
(0.0024) 

ARE 57.1% 69.12% 63.84% 

2 Mean 0.0144 
(0.0022) 

0.0199 
(0.0030) 

0.0314 
(0.0037) 

0.0423 
(0.0037) 

0.0291 
(0.0023) 

0.0381 
(0.0028) 

ARE 37.73% 34.75% 31.03% 

3 Mean 0.0031 
(0.0012) 

0.0067 
(0.0021) 

0.0109 
(0.0043) 

0.0205 
(0.0047) 

0.0176 
(0.0111) 

0.0252 
(0.0111) 

ARE 113.10% 87.10% 43.69% 

4 Mean 0.0030 
(0.0016) 

0.0050 
(0.0018) 

0.0018 
(0.0014) 

0.0056 
(0.0016) 

0.0031 
(0.0019) 

0.0061 
(0.0023) 

ARE 63.57% 211.75% 96.56% 

  

 The underestimation of ρw by the NIR-SWIR method can be attributed 

to higher ρa estimated by the NIR-SWIR method. The ρa in all AHI bands 

considered here (Bands 1- 4) were consistently estimating high aerosol 

reflectance as a result of the NIR-SWIR method. The results shown in Table 

6.4 for the ρa obtained using the SWIR and NIR-SWIR methods shows that in 

Band 1, the NIR-SWIR method estimated ρa higher than the SWIR method 

by 60.78% - 75.50% in Boxes A, B and C. Likewise, in Bands 2, 3 and 4, the 

NIR-SWIR method estimated ρa higher by 59.16% - 74.71%, 54.70% - 

72.34% and 46.03% - 67.51% respectively in all the Boxes A, B, and C.  
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Table 6.4: Aerosol reflectance (ρa) of AHI sensor in Band 1, 2, 3 and 4 computed for different 

atmospheric correction methods (NIR-SWIR and SWIR aerosol correction methods). The 

mean and STD ρa results are determined from all pixels within Box A, B and C for all 

available AHI data. The ARE are determined as the absolute relative error between NIR-

SWIR and SWIR results. 

Band ρa Box A Box B Box C 

NIR-
SWIR 

SWIR NIR-
SWIR 

SWIR NIR-
SWIR 

SWIR 

1 Mean 
(STD) 

0.0059 
(0.0016) 

0.0023 
(0.0008) 

0.0121 
(0.0030) 

0.0030 
(0.0006) 

0.0119 
(0.0027) 

0.0042 
(0.0007) 

ARE 60.78% 75.50% 64.31% 
2 Mean 0.0056 

(0.0012) 
0.0023 
(0.0007) 

0.0115 
(0.0028) 

0.0029 
(0.0006) 

0.0114 
(0.0025) 

0.0042 
(0.0007) 

ARE 59.16% 74.71% 62.90% 
3 Mean 0.0050 

(0.0012) 
0.0023 
(0.0007) 

0.0101 
(0.0022) 

0.0028 
(0.0005) 

0.0099 
(0.0019) 

0.0041 
(0.0007) 

ARE 54.70% 72.34% 58.83% 
4 Mean 0.0040 

(0.0009) 
0.0022 
(0.0007) 

0.0080 
(0.0015) 

0.0026 
(0.0005) 

0.0079 
(0.0012) 

0.0038 
(0.0006) 

ARE 46.03% 67.51% 51.53% 

6.4.2. In situ validation of water leaving reflectance derived from SWIR and 

NIR-SWIR aerosol estimation methods 

 The in situ validation of ρw derived using the AHI sensor was 

performed for ρw obtained using both the SWIR and NIR-SWIR atmospheric 

correction methods. The DALEC measured (in situ) reflectance data which 

were within ± 3 min of the AHI image acquisition time were selected for the 

validation analysis. A 5 x 5-pixel window from the AHI image was selected 

after matching the geographical location of the in situ data with the closest 

latitude and longitude space of the AHI image. The AHI Band’s in situ 

validation results are provided in Table 6.5 for Bands 1, 2 3 and 4. The 

accuracy assessment, r, MARE, and RMSE described in Section 6.3.7 were 

used in the in situ validation. The correlation coefficients, r, for all four bands 

show very poor correlation (< 0.3) for both the SWIR and NIR-SWIR 

methods. This poor result for r can be attributed to the fact that all in situ 

validation data points were within a very narrow range. For instance, in Band 

3 the highest ρw was only ~ 0.07 and more than 95% of the ρw data were all 

below 0.015. However, the MARE results were better for Bands 1, 2 and 3 
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with all bands combined MARE values ranging from 22.17% - 47.76% and 

23.78% - 69.81% for the NIR-SWIR and SWIR atmospheric correction 

methods respectively. The results of the MARE in Band 4 were larger by 

comparison with the MARE observed to be greater than 300% for both 

atmospheric correction methods. 

 
Table 6.5: In situ validation of water leaving reflectance (ρw) derived from AHI in Band 1, 2, 3 

and 4 using SWIR and NIR-SWIR atmospheric correction method. LRE = Largest Relative 

Error and SRE = Smallest Relative Error are the extreme points within the Absolute Relative 

Error (ARE) generated from whole of AHI dataset. 

ρw Band 1 Band 2 Band 3 Band 4 

NIR-
SWIR 

SWIR NIR-
SWIR 

SWIR NIR-
SWIR 

SWIR NIR-
SWIR 

SWIR 

r 0.34 0.33 0.18 0.11 0.09 0.10 0.15 0.09 

MARE (%) 47.76 25.57 22.71 23.78 44.22 69.81 388.85 504.73 

LRE (%) 75.65 150.00 180.06 284.64 326.02 869.41 1881.12 3286.00 

SRE (%) 3.02 1.33 0.4 0.09 0.3 0.1 8.23 12.21 

RMSE 0.0133 0.0067 0.0068 0.0069 0.0059 0.0059 0.0019 0.0027 

  

 In addition to the individual band’s accuracy assessment, we also 

performed over all accuracy assessment for all the bands together and 

spectral feature comparison of AHI derived ρw in Bands 1-4. The overall in 

situ ρw validation scatter plots for the SWIR and NIR-SWIR results are shown 

in Figure 6.6A and B respectively. General visual observation from Figure 

6.6A shows that the majority of validation points in AHI Bands 1, 2 and 3 for 

the SWIR atmospheric correction method (see Figure 6.6A) were 

underestimated when compared with in situ ρw. For the NIR-SWIR 

atmospheric method, Figure 6.6B still shows underestimation of ρw in Band 

1, but the majority of the validation points in Band 2, 3 and 4 were over 

estimated. The results from the simple regression analysis and RMSE of all 

the data in Bands 1-4 indicates that the NIR-SWIR method performed better 
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than the SWIR method. The RMSE, regression slope, and R2 were better for 

the SWIR method, with RMSE = 0.0058, slope = 0.78 and R2=0.79 compared 

to the NIR-SWIR method with RMSE = 0.0081, slope = 0.67 and R2=0.75.  

 
Figure 6.6: In situ validation of ρw for all available match-up data points for (A) SWIR and (B) 
NIR-SWIR atmospheric correction method. 
 
The spectral shapes of atmospherically corrected ρw in AHI Bands 1-4 are 

shown in Figures 6.7A and 6.7B for two in situ data points, one close to the 

coast and one further away from the coast. Additional spectral shapes for 

rest of the validation data points are presented in Appendix I. In Figures 6.7A 

and 6.7B we observe spectrally both the NIR-SWIR and SWIR derived ρw 

closely match the spectral features of the in situ ρw, however it appears that 

the atmospheric correction processes both overcorrect AHI Band 1 in Figure 

6.7A, corresponding to water closer to the coast. In particular, in Figure 

6.8(A) we observe both the magnitude of SWIR and NIR-SWIR corrected ρw 

closely matches with in situ reflectance in Band 2-4. The SWIR method has 

slightly higher magnitude than in situ ρw while the magnitude of NIR-SWIR 

slightly was slightly lower. However, in Figure 6.7B we observe that both the 

SWIR and NIR-SWIR methods produced slightly lower ρw in magnitude than 

in situ, but generally good agreement is observed between all bands (Bands 

1-4). The good spectral match between in situ and atmospherically corrected 

ρw provides some confidence in our atmospheric correction process of the 
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AHI data, although based on the relative errors shown in Table 6.5, we may 

conclude that the confidence in Band 4 is somewhat lower than bands 1-3.  

 

 
Figure 6.7: Spectral plot of atmospherically corrected ρw in AHI Band 1-4 using SWIR and 
NIR-SWIR methods and in situ data at (A) pixel close to the coast and (B) farther away from 
the coast. 

6.4.3 Uncertainty of AHI sensor noise and comparison with the sensor noise 

of MODIS-Aqua and Landsat-8 OLI sensors   

 The results of the AHI sensor noise estimation determined using the 

method discussed in Section 6.3.4 are shown in Figures 6.8A-C. We have 

also presented in Table 6.6 the details of Ltypical, NEL, and SNR for AHI Bands 

1-6 at θ0 ranging from 45° - 65°. The statistics in Table 6.6 were calculated 

from all available AHI data in Table 6.1 and provided as an overall mean and 

STD (provided in parenthesis) at discrete θ0. Figure 6.8A shows that the 

typical radiance values, Ltypical, observed in clear water pixels from 10:00 am 

– 5:00 pm local time over the study site varied throughout the day, with the 

general trend displaying a decrease in Ltypical with an increase in θ0. It was 

observed that from θ0 = 45° - 65°, Ltypical ranged from 56.61 – 36.00 Wm-2 μm-

1sr-1, 37.96 – 24.52 Wm-2 μm-1sr-1, 13.24 – 9.01 Wm-2 μm-1sr-1, 2.86 – 2.20 

Wm-2 μm-1sr-1, 0.16 – 0.13 Wm-2 μm-1sr-1, and 0.028 – 0.025 Wm-2 μm-1sr-1 in 

AHI Bands 1 – 6 respectively. The NEL for Bands 1-6, shown in Figure 6.8B, 
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also vary from 0.18 - 0.26 Wm-2 μm-1sr-1, 0.17 – 0.22 Wm-2 μm-1sr-1, 0.23 - 

0.26 Wm-2 μm-1sr-1, 0.17 – 0.20 Wm-2 μm-1sr-1, 0.004 – 0.01 Wm-2 μm-1sr-1, 

and 0.001 – 0.004 Wm-2 μm-1sr-1 respectively. Likewise, Figure 6.8C shows 

that the SNR calculated for a clear water pixel at Ltypical values varied for 

different θ0, with the AHI Bands 1-6 SNR ranging from 200.55 – 243.89, 

123.16 – 182.14, 39.41 – 50.11, 11.20 – 16.00, 14.77 – 36.71 and 7.42 – 

22.34 respectively. There was no general trend observed in NEL or SNR for 

different θ0, thus we used the mean value calculated from SNR and NEL for 

θ0 = 45 - 60° for computation of NEρ and NETSS. 

 

 
Figure 6.8: Plot of a (A) Ltypical, (B) NEL, and (C) SNR calculated from a clear water pixel 
location (Box A in Figure 6.1) for AHI Band 1-6 at different θ0. Note that the SNR were 
calculated at Ltypical values. 
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Table 6.6: Mean (1 STD) values of SNR, Ltypical and NEL derived from the clear water pixels of 

AHI sensor for all the dates provided in Table 6.1. 

Band λ(μm) L (Wm-2 
μm-1sr-1) 

θ0 
45° 50° 55° 60° 65° 

1 0.46 Ltypical 56.61 
(3.09) 

52.36 
(7.80) 

51.10 
(10.38) 

38.70 
(0.62) 

36.00 
(0.57) 

NEL 0.26 
(0.04) 

0.23 
(0.04) 

0.21 (0.04) 0.19 (0.03) 0.18 
(0.004) 

SNR 219.93 
(43.80) 

231.56 
(54.57) 

243.89 
(57.41) 

203.83 
(28.24) 

200.55 
(5.97) 

2 0.51 Ltypical 37.96 
(2.16) 

35.10 
(5.33) 

34.49 
(7.16) 

26.16 
(0.52) 

24.52 
(0.48) 

NEL 0.22 
(0.05) 

0.19 
(0.04) 

0.21 (0.04) 0.17 (0.01) 0.20 
(0.04) 

SNR 169.43 
(35.56) 

182.14 
(47.50) 

165.32 
(46.04) 

156.95 
(9.89) 

123.16 
(25.77) 

3 0.64 Ltypical 13.24 
(0.87) 

12.27 
(1.96) 

12.04 
(2.72) 

9.41 (0.35) 9.01 
(0.33) 

NEL 0.26 
(0.05) 

0.23 
(0.03) 

0.23 (0.03) 0.23 (0.01) 0.23 
(0.01) 

SNR 50.11 
(8.40) 

54.20 
(8.81) 

52.58 
(9.16) 

40.85 
(2.45) 

39.41 
(2.75) 

4 0.86 Ltypical 2.86 
(0.25) 

2.64 
(0.40) 

2.74 (0.59) 2.18 (0.16) 2.20 
(0.16) 

NEL 0.19 
(0.03) 

0.18 
(0.02) 

0.17 (0.01) 0.18 (0.02) 0.20 
(0.04) 

SNR 14.72 
(2.03) 

14.60 
(2.89) 

16.00 
(3.49) 

12.00 
(1.83) 

11.20 
(2.64) 

5 1.6 Ltypical 0.16 
(0.03) 

0.14 
(0.02) 

0.15 (0.04) 0.13 (0.03) 0.13 
(0.03) 

NEL 0.011 
(0.023) 

0.007 
(0.002) 

0.008 
(0.003) 

0.004 
(0.002) 

0.007 
(0.003) 

SNR 14.77 
(1.05) 

21.03 
(1.00) 

19.84 
(1.88) 

36.71 
(0.00) 

18.56 
(0.28) 

6 2.3 Ltypical 0.028 
(0.006) 

0.025 
(0.006) 

0.028 
(0.008) 

0.025 
(0.008) 

0.025 
(0.007) 

NEL 0.004 
(0.0031) 

0.002 
(0.0004) 

0.004 
(0.0005) 

0.003 
(0.0003) 

0.001 
(0.0005) 

SNR 7.81 
(0.57) 

16.23 
(1.08) 

7.65 (0.90) 7.42 (0.99) 22.34 
(0.00) 

  

 Comparison of NETSS derived using AHI data with MODIS-Aqua and 

Landsat-OLI data was performed using published parameters to calculate 

SNR at a reference radiance (Lref) for the respective red bands of each 

sensor. The parameters Lref, SNR and Fo shown in Table 6.7, as required for 

NEρ computation for Landsat-8 OLI, were obtained from Irons, Dwyer, and 

Barsi (2012).  The MODIS-Aqua’s parameters were sourced from Franz et al. 

(2006) and AHI’s Lref and SNR were those listed in Table 6.6 while Fo for the 
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AHI sensor was obtained from the Japan Meteorological Agency (2015). By 

using the respective parameters (Lref, SNR, Fo and d = 1) for all three sensors 

considered here, first NEL= Lref/SNR was computed, then NEρ at different θ0 

was calculated using Equation (6.11). Following the computation of NEρ, 

NETSS was calculated using the respective sensor’s TSS algorithms, as 

described in Section 6.3.6. The NETSS for the red bands of AHI (Band 3), 

MODIS-Aqua (Band 1 and Band 13), and Landsat-8 OLI (Band 4) is shown 

in Figure 6.9. For all sensors, the general observation is that with increasing 

θ0, NETSS also increases gradually for θ0 < 50° and increases rapidly for 

higher θ0. As expected, from the four sensors considered here the lowest 

NETSS was observed for MODIS-Aqua Band 13 because of its high SNR, 

having been specifically designed for ocean applications. NETSS was less 

than 0.0041 mg/L for θ0 < 50° and the highest NETSS was 0.015 mg/L for θ0 = 

80°. The MODIS-Aqua Band 1 and Landsat-8 OLI Band 4, which were 

designed for terrestrial mapping, produced NETSS values between those of 

MODIS-Aqua Band 13 and AHI Band 3, with both curves for MODIS-Aqua 

Band 1 and Landsat-8 OLI Band 4 in Figure 6.9 following closely to one 

another. The NETSS for θ0 < 50° was less than 0.06 mg/L for both MODIS-

Aqua Band 1 and Landsat-8 OLI Band 4 while the maximum was 0.23 mg/L 

and 0.21 mg/L at θ0 = 80° for MODIS-Aqua Band 1 and Landsat-8 OLI Band 

4 respectively. The AHI sensor, designed specifically for meteorological 

purposes but with visible bands for true colour weather applications, had the 

highest NETSS in AHI Band 3 with the NETSS for θ0 < 50° less than 0.12 mg/L 

and the highest NETSS was 0.43 at θ0 = 80°. Even though the AHI sensor here 

shows high NETSS due to sensor noise, it has been shown that temporal 

averaging of images can be used in reducing the noise. For instance, 

Vanhellemont et al. (2014) showed that NETSS in SEVIRI images can be 

reduced by a factor of 5 when 5-images were temporally averaged and still 

retained temporal dynamics of TSS concentration due to tidal processes. 

With similar temporal averaging (6 images), we have shown in Figure 6.9 

that AHI Band 3 can effectively have similar or lower NETSS when compared 

with MODIS-Aqua Band 1 and Landsat-8 OLI Band 4.   
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Figure 6.9: NETSS at different solar zenith angle, θ0, for MODIS-Aqua Band 1 (250 m) and 
Band 13 (1000 m), Landsat-8 OLI Band 4 (30 m) and AHI Band 3 (2000 m). 

 
Table 6.7: Parameters used in the computations of NEρ and NETSS.   

Sensor (Band #) Lref (Wm-2 μm-1sr-

1) 
Fo (Wm-2 μm-1) NEL (Wm-2 μm-

1sr-1) 
SNR 

AHI (Band 3) 11.74 1631 0.24 49.44 

MODIS-Aqua (Band 1) 16.5 1578 0.1179 140 

MODIS-Aqua (Band 13) 14.7 1523 0.0074 1962 

Landsat-8 OLI (Band 4)  22 1549 0.0991 222 

6.4.4 Cross-validation of AHI derived TSS concentration with MODIS-Aqua 

and Landsat-8 Sensors 

 Figures 6.10A-6.10D shows a spatial comparison between AHI 

derived TSS maps with MODIS-Aqua and Landsat-8 OLI derived TSS maps, 

all produced at 2000 m spatial resolution. Figures 6.10A and 6.10B 

correspond to AHI and MODIS-Aqua derived TSS maps of the 9th July 2014 

at 02:40 pm and 02:35 pm local time respectively. From Figures 6.10A and 

6.10B, we observe both AHI and MODIS-Aqua derived TSS maps have 

similar spatial patterns, higher TSS concentration near the Exmouth Gulf 
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region, particularly higher TSS concentration in the Box C region than the 

off-shore waters in Box A (Box regions displayed in Figure 6.1). Also, we 

note that the AHI derived TSS maps (Figures 6.10A and 6.10C) have higher 

spatial noise than the MODIS-Aqua or Landsat-8 OLI derived TSS maps 

(Figures 6.10B and 6.10D). Figures 6.10C and 6.10D, which correspond to 

AHI and Landsat-8 OLI derived TSS maps of the 29th July 2015 at 10:20 am 

also show similar spatial patterns, with higher TSS concentration near the 

coastal region than offshore waters. The Landsat-8 OLI derived TSS were 

higher than AHI-derived TSS concentration near the coast but the opposite 

was the case for offshore waters. We also observe in Figures 6.10A-6.10D 

that some inland pixels were classified as TSS due to presence of inland 

water masses which were discarded in cross-validation analysis.  

  

 

 
Figure 6.10: Spatial maps of TSS concentration derived from (A) AHI Band 3 on July 9th 
2015 at 02:40 pm, (B) MODIS-Aqua Band 01 on July 9th 2015 at 02:35 pm, (C) AHI Band 03 
on July 29th 2015 at 10:20 am and (D) Landsat-8 OLI Band 4 on July 29th at 10:20 am.   
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 The quantitative cross validation was performed between AHI and 

MODIS-Aqua TSS concentration derived for July 4-6th and 8-10th 2015, and 

AHI and Landsat-8 OLI products of 29th July 2015. Figures 6.11A and 6.11B 

show linear regression results between AHI and Landsat-8 OLI, and AHI and 

MODIS-Aqua respectively. In Figure 6.11A, the cross-validation result shows 

that there is a good correlation between AHI and Landsat-8 OLI derived TSS 

concentration with r= 0.90 and the coefficient of determination, R2=0.81, 

regression slope of 0.91 and an offset of 0.45 at low concentrations. The 

data in Figure 6.11B for the cross-validation of AHI and MODIS-Aqua derived 

TSS concentrations show a correlation coefficient of r= 0.71, R2=0.50, slope 

of 0.74 and intercept of 0.17. Certainly, discrepancies are present between 

AHI and MODIS-Aqua or Landsat-8 OLI derived TSS products which could 

be caused by different native spatial resolution of the sensor and (or) as a 

result of atmospheric correction processes and different band response 

functions of individual sensors (Dorji & Fearns, 2017).   

 
Figure 6.11: A linear regression between (A) AHI and Landsat-8 OLI derived TSS 
concentration on July 29th 2015 and (B) AHI and MODIS-Aqua derived TSS concentration 
on July 4th-6th and 8th-10th, 2015. 

6.4.5 TSS Concentration Mapping and Temporal Dynamics 

 The TSS concentration maps of the study site derived from AHI Band 

3 are shown in Figure 6.12 for July 5th 2015 at every 30 min from 10:00 am 

to 03:30 pm local time at spatial resolution of 500 m. From Figure 6.12, we 

observe that the spatial distribution of TSS concentration in the study site is 

similar to a previous study by Dorji et al. (2016), where higher TSS 
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concentration was observed closer to the coast and decreased in moving 

futher away from the coast. For the quantitative analysis, TSS concentrations 

were computed for three different locations using the SWIR and NIR-SWIR 

atmospheric correction methods for all available AHI images in Table 6.1 at 

three different regions, Box A, B and C (see Figure 6.1). It was found that 

TSS concentration for the NIR-SWIR and SWIR atmospheric methods in 

Boxes A, B and C were 0.50 ± 0.19 mg/L, 1.72 ± 0.68 mg/L and 2.79 ± 1.97 

mg/L and 1.06 ± 0.33 mg/L, 3.26 ± 0.78 mg/L and 4.05 ± 2.07 mg/L 

respectively. Similar TSS concentration were observed by Dorji et al. (2016) 

in Onslow waters (21° 35’ S, 115° 05” E) where TSS concentration was 0.79 

± 0.04 mg/L in the offshore waters and 3.73 ± 1.21 mg/L closer to the coast. 

 From visual inspection of Figure 6.12, we observe that the temporal 

dynamics of TSS concentration are dicernable during the course of the day. 

As observed at the near coastal region (see ‘Box C’ in Figure 6.12), the TSS 

concentration varied from high in the morning (10:00-11:30 hrs Local Time) 

to gradually decreasing in the early afternoon (12:00 – 14:30 hrs) and 

increasing slightly toward the late afternoon (15:00 – 15:30 hrs). In Box B, 

the changes in TSS concentration were present with a similar trend to Box C, 

although changes were very subtle and not easily dicernable using visual 

inspection. In Box A, the changes in TSS concentration were negligible 

during the course of 10:00 – 15:30 hrs. Further for Box A, we observe 

background spatial noise to be more noticeable and increased toward the 

late afternoon. The sensor noise equivalent TSS concentration (Section 

6.3.4) of AHI in Band 3 was estimated to be around 0.12 mg/L for θ0 < 50° 

(corresponded to 10:30 – 15.00 hrs in the study site) and around 0.40 mg/L 

for θ0 > 70° (corresponded to later than 15:00 hrs in the study site). 
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Figure 6.12: Every 30 min TSS concentration derived by AHI on July 5th 2015 from 10:00 – 15:30 hrs. TSS was derived using SWIR atmospheric correction 
method described in Section 6.4.1. 



  

 

159 

 

 From visual inspection of the TSS maps in Figure 6.12, it is evident 

that diurnal TSS variations are noticeable near the coast, around the location 

of Box C. To further verify the diurnal TSS variation, quantitative analyses 

were performed by analysing every 10 min of AHI-derived TSS data from 

July 04th – July 10th 2015 at three locations (Boxes A, B an C). In addition, 

TSS variations were qualitatively compared with the tidal cycle in the area. 

Figures 6.13A-6.13C show TSS variation at the aforementioned loccations 

on July 4th, July 08th and July 10th 2015, each representing a different period 

of the tidal cycle. The error bars displayed for each TSS variation curve in 

Figures 6.13A-6.13C were calculated from uncertainties associated with NEL 

and the aerosol correction methods. 

 

 
Figure 6.13: Daily TSS concentration from 10:00 hrs – 15:00 hrs at Boxes A, B and C (see 
Figure 6.12) derived using the SWIR atmospheric correction method for (A) July 4th 2015, 
(B) July 8th 2015, and (C) July 10th 2015. NEL (TSS) and Δρa(TSS) are errors derived from 
AHI sensor noise and aerosol estimation. 
 

 In Figure 6.13A, which corresponds to TSS derived for July 4th 2015, 

we observe that in Boxes A and B that TSS concentration varied only slightly 

or remained relatively constant throughout the day, but in Box C, TSS 

concentration decreased at 10:00 am from ~7.0 mg/L to ~4.0 mg/L around 

13:00 hrs and then increased to ~6.0 mg/L at 15:00 hrs. Figure 6.13B, 

showing TSS concentration derived for July 8th 2015, shows that in Boxes B 

and C the TSS concentrations were highest, ~7.0 mg/L  and 14.0 mg/L 

respectively, at 10:00 hrs. By 15:00 hrs the TSS concentration in both Boxes 
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B and C drecreased to ~3.50 mg/L. Similarlry, but less pronounced, there 

was a decrease in TSS concentration in Box A from ~2.0 mg/L at 10:00 hrs 

to ~1.0 mg/L at 15:00 hrs. Likewise, in Figure 6.13C for July 10th, we observe 

the TSS variations were silimar to those shown in Figure 6.13B for Boxes B 

and C with a gradual decrease from morning towards late afternoon. By 

12:00 hrs the TSS concentrations in both Boxes B and C were similar, but 

both continued to decrease, although with a less pronounced decrease 

evident for Box C. With respect to the TSS variations portrayed in Figures 

6.13A –6.13C, and considering the gradient of TSS plots, we observe that 

Box C usually had a steeper gradient than Boxes A and B. Further, visually 

comparing the TSS curves with the tidal elevation, the magnitude of TSS 

concentation in Boxes B and C was observed to be higher when tide 

elevation was lower, and lower TSS concentration during flooded periods 

corresponding to the highest tidal elevation of the day. In Box A however, 

corresponding to a location further from coast where the water is generally 

deeper and the impact of tidal currents is assumed to be lower, the tidal level 

seems to have little or no direct effect on TSS concentration, where the TSS 

concentration variously increases, decereases or remains constant. Similar 

observations were made for TSS variation derived using the NIR-SWIR 

atmospheric correction methods, but with lower magnitude in TSS 

concentrations. The resuts for TSS variations derived for other dates, 

notpresented in this section, for both SWIR and NIR-SWIR atmosheric 

correction methods are presented in Appendix H. 

6.5 Discussion  

 In this study, we have shown that the AHI sensor onboard Himawari-8 

can be used in mapping of TSS concentration in the coastal waters of 

northern Western Australia at high temporal resolution, with the possibility of 

discerning temporal dynamics of TSS concentration of the region. The 

atmospheric correction of high temporal resolution daily data is usually 

challenged by varying solar geometry observed during the course of the day, 

which can have considerable impact on the derived products if geometrical 
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effects are not taken into account during the atmospheric correction process. 

For instance, Ltoa in AHI Band 3 varied by 31.94% (from 13.24 to 9.01 Wm-2 

μm-1sr-1) between 10:00 hrs and 15:00 hrs. Such a variation, without taking 

into account the geometrical effect in the atmospheric correction, would 

result in ~66% relative error in the final AHI derived TSS concentration.  

 The use of different aerosol calculation methods in the AHI 

atmospheric correction process, using AHI SWIR bands (4 and 5) and NIR-

SWIR bands (5 and 6), resulted in different aerosol reflectance, ρa. For all 

three different regions considered (Boxes A, B and C) we observed that ρa 

values in AHI Bands 1 to 4 derived by the SWIR method were lower than 

those derived using the NIR-SWIR method. On average, ρa estimated by the 

SWIR method was ~60 – 66% lower than for the NIR-SWIR method. In the 

NIR-SWIR aerosol correction method, which is based on the assumption that 

ρw is effectively zero, visual selection of clear water pixels from Box A might 

have resulted in inclusion of pixels with ρw not equal to zero, potentially 

inflating the estimation of . Further, using a single median value of  as 

a representative of the whole image might also have contributed to 

discrepancies in ρa between the SWIR and NIR-SWIR methods because  

can potentially be different for every pixel, especially near the coast where ρa 

are not necessarily spatially homogenous. It was noted by Neukermans et al. 

(2009) and Vanhellemont and Ruddick (2015) that a combination of longer 

wavelength bands (SWIRs) resulted in lower values of  than a combination 

of shorter and longer wavelength bands (NIR-SWIR), as was the case in this 

study with and values calculated to be 1.12 ± 0.65 and 1.82 ± 0.84 

respectively. As a result of lower ρa in the SWIR aerosol correction method, 

the ρw and resulting TSS concentration were calculated to be higher than for 

the NIR-SWIR aerosol correction method.  

 The validation of AHI derived ρw with DALEC measured (in situ) ρw 

produced MARE in the range of 22.17% - 47.76% and 23.78% - 69.81% for 

the NIR-SWIR and SWIR atmospheric correction methods respectively. 

Higher accuracy was obtained for the NIR-SWIR atmospheric correction 

method than the SWIR atmospheric correction method when validated with 

(4,5)ε ε

ε

ε
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in situ ρw, but validation was only limited to low turbidity values. Thus, a 

higher turbidity range of in situ validation data is needed to rigorously 

validate the results in this study, and to better understand the effect of 

atmospheric correction methods considered in this study. However, the ALI-

derived TSS validation using MODIS-Aqua and Landsat-8 OLI data did 

produce better correlation values, with r = 0.71 and r = 0.91 respectively. 

From the cross-validation results using both the in situ ρw and satellite-

derived TSS concentrations we have shown that AHI-derived TSS products 

can be generated at high temporal resolution with reasonable accuracies.  

 The TSS variation results presented in Section 6.4.5 show that the 

AHI-derived TSS can be used to discern diurnal TSS variation in the region, 

especially near the coast (Location B and C) even after taking into account 

uncertainty from sensor noise and atmospheric correction. It should be noted 

that bidirectional variability in ρw can also contribute to discrepancies in the 

observed satellite reflectance (Vanhellemont et al., 2014). For this study we 

have not applied bidirectional correction in our analysis due to unavailability 

of such bidirectional reflectance data for the study site.  

 Considering the offshore waters represented by Box A, the TSS 

variation during the course of the day cannot be separated from 

climatological influence and sensor noise, especially at high θ0. The changes 

in TSS concentration that could be mapped by AHI data was limited by the 

NETSS = ~0.15 mg/L for θ0 greater than 60°, which makes it difficult to study 

the variation in TSS concentration in offshore waters where TSS variations 

over relatively short time spans are typically less than ~0.1 mg/L. However, 

as discussed in Section 3.3, the NETSS can be reduced to ~0.06 mg/L even at 

high solar angles if the 10 min data are averaged into approximately hourly 

data. 

6.6 Conclusion  

 The temporal analysis of TSS variation using AHI data was only 

performed for a one week period, from July 4th to July 10th 2015. This study 

has not assessed TSS variation due to climatological influences, seasonal 
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variation or the impact of varying solar geometry over the course of a year. 

We have shown that two widely used aerosol correction methods, the NIR-

SWIR and SWIR methods, can produce reasonable atmospherically 

corrected AHI ρw at visible and NIR bands. We have demonstrated 

application of a TSS algorithm to the red band ρw to provide a TSS product at 

10 minute intervals throughout the day. In general we have shown that 

temporal variation in daily TSS concentration can be observed in AHI derived 

TSS products, and specifically, we can conclude from this study that the 

Himawari-8 geostationary satellite can be used in mapping TSS 

concentration in northern Western Australia at high temporal resolution with 

AHI Band 3 data, and diurnal TSS variability can only be discerned for TSS 

variability greater than ~0.15 mg/L for θ0 < 60° for 10 min data and ~0.06 

mg/L for temporally averaged ~1-hour data. 
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Conclusion and Future Work  

7.1 Conclusion  

 The principle aim of this thesis was to develop a generic multi-sensor 

satellite TSS algorithm for the coastal waters of northern Western Australia. 

The developed TSS model was to be based on the principle of radiative 

transfer theory where the established relationship between TSS 

concentration and reflectance in the model was physically sensible. Further, 

in development of the TSS model for the coastal waters of northern Western 

Australia, the general aims were also to: (1) explore the feasibility of 

established TSS models and methods employed in TSS estimation that 

might be applicable to coastal waters of Western Australia, (2) examine the 

implication of using different satellite sensors in TSS estimation as satellite 

sensors are limited by their design, particularly the radiometric, spatial and 

temporal characteristics, and (3) explore the feasibility of a high temporal 

resolution geostationary satellite, which was primarily designed for 

meteorological purposes, for monitoring TSS dynamics in coastal waters.  

 The monitoring of water quality for large spatial scales is currently 

challenging, but nonetheless it is progressively addressed by the 

advancement in remote sensing technologies and improved TSS models. 

Most of the TSS models employed in estimation of TSS concentration are 

generally based on a simple linear or exponential relationship established 

between TSS concentration and reflectance measurements. The implication 

of using wholly empirical relationships in TSS estimation are significant 

considering that in the physical world, the reflectance versus TSS 

concentration does not necessarily follow a simple linear or exponential 

relationship. Simple linear or exponential relationships, as shown in Chapter 

3, either overestimate or underestimate the TSS concentration by significant 

amounts if empirical models are not adequately tuned. In this thesis, we 

have developed a generic red band semi-analytic sediment model (SASM) 

for the coastal waters of northern Western Australia, the SASM being 
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physically based on the principle of radiative transfer, is physically sensible 

and performs relatively better than simple linear or exponential TSS models. 

The SASM developed in this thesis was further adapted to include different 

satellite sensors, MODIS-Aqua, Landsat-8 OLI, WV-2 and Himawari-8. This 

thesis has demonstrated that if adequately tuned to the regional waters, the 

SASM can be used to monitor TSS concentration using just a single red or 

NIR band of the various satellite sensors studied. The application of SASM 

using MODIS-Aqua 250 m data in the coastal waters of north Western 

Australian water was able to discern daily TSS anomalies of the region. 

Currently, the SASM is adopted by the Western Australian Marine Science 

Institute in the Dredging Science Node Project to study the coastal water 

quality to better understand the impact of dredging activities in northern 

Western Australia.   

 Due to the significance of coastal water quality monitoring, numerous 

TSS algorithms have been developed across the globe. In Chapter 4, we 

listed 76 TSS algorithms which were developed in the last decade for just the 

MODIS and Landsat sensors, but the majority of the TSS algorithms were 

regionally tuned to specific water types and mostly empirical in design. In this 

thesis, through rigorous statistical comparative analysis, we have shown that 

there are few developed TSS algorithms that can be employed to estimate 

TSS concentration in optically unknown water types. In Chapter 4, the 

application of high scoring TSS models in northern Western Australian 

coastal waters resulted in MARE of only 43.11% - 102.59%. Considering the 

MARE of previous studies for even the regionally tuned TSS algorithms were 

within ~ 18% – 61%, we can propose that the high performing TSS 

algorithms can be used in optically unknown waters types where regional 

TSS algorithms are not available. Further, the prior knowledge of the waters 

can also be used in selection of previously developed TSS algorithms 

presented in Chapter 4 to reduce the error and select more appropriate TSS 

models. However, it is not advisable to use any random TSS models without 

prior knowledge because the errors were shown to potentially exceed in 

excess of three orders of magnitudes for some cases.  
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 Progress in remote sensing technologies has led to rapid adoption of 

remote sensing in water quality assessment. However, the inherent 

radiometric, spatial, temporal and spectral characteristics of satellite sensors 

can have implications on the derived TSS concentration. In Chapter 5, we 

have quantified the effect of using different satellite sensors with different 

spatial resolutions. The results from Chapter 5 qualitatively reconfirmed the 

results of previous studies in asserting the benefit of high spatial resolution 

satellite sensors being visually superior in assessing the sediment plume and 

ability to discern high turbidity gradients within the larger sediment plumes. 

However, added value was that the results in Chapter 5 also showed the 

quantified evidence of the effect from different satellite sensors in estimation 

of TSS concentration. It was observed in Chapter 5 that there was significant 

differences in the derived TSS concentration between high and low spatial 

resolution sensors. The WV2 sensor was observed to estimate TSS 

concentration as high as 160 mg/L while low spatial resolution MODIS-Aqua 

estimated only 23.6 mg/L. Further, it was observed the differences in TSS 

estimated by different satellite sensors were more evident in regions of high 

turbidity gradient than spatially homogenous regions.  

 The remote sensing sensors, MODIS and Landsat, currently 

employed to study the TSS dynamics in the coastal waters of northern 

Western Australia are limited by their temporal resolution, at best to map the 

daily TSS variability. Thus, we have explored the feasibility of using 

Himawari-8, a geostationary satellite with high temporal resolution (~10 min) 

to study the coastal dynamics of TSS variation in the region. The feasibility 

study in Chapter 6 showed that daily TSS dynamics can be ascertained from 

Himawari-8 over the coastal waters of northern Western Australia. However, 

the limitation of employing a geostationary satellite designed primarily for 

meteorological purpose was that the SNR of the bands required to discern 

TSS variability limits its application to TSS concentrations > ~ 0.15 mg/L. 

Thus, application of Himawari-8 in open ocean waters where TSS 

concentration is < 0.15 mg/L must be cautioned or applied only after 

temporally averaging the data to reduce the effect of SNR. Further, it was 
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observed that applicability of Himawari-8 was limited to 10:00 am – 3:00 pm 

when θ0 < 60°.  

7.2 Limitations  

 In Chapter 3, in the formulation of SASM, the simplification of the 

optical model by assuming all the backscattering in the red and NIR regions 

in turbid waters (see Equation 3.9) was predominantly due to TSS 

concentration limits the application of this model to waters where CHL 

concentration is low, relative to the TSS concentration. However, even in 

high CHL dominated waters (CHL ~ 10 mg/m3), the TSS concentration to 

produce an equivalent backscattering effect at 650 nm to the CHL was 

estimated to be only ~3.4 mg/L. In addition, the data collected to calibrate the 

SASM were limited to only 48 match-up pairs (TSS and Rrs pairs) with TSS in 

the range of only 2.4 – 69.6 mg/L. Further, most of the calibration data were 

in the lower spectrum of the TSS concentration range. Thus, the SASM 

model, when applied in regions where TSS concentrations are beyond the 

calibration range, may have an impact on the accuracy of derived TSS 

concentration. 

  In Chapter 4, the limitation stems from the data used to compare the 

TSS algorithms. The data used in the comparative study were simulated 

using HydroLight for four discrete optical constituents (CHL, TSS, CDOM 

and Pure Water). However, the simulated datasets may not necessarily be 

representative of all the waters in the physical world. Further, due to the 

limitation of HydroLight 4.2 to simulate data for wavelengths greater than 800 

nm we employed extrapolation methods which introduced errors (~1 - 4%) in 

the longest wavelengths (~1300 nm).  

In Chapter 5, the limitation of the study was mainly due to the time 

difference in image acquisition by the satellite sensors. The time differences 

between different satellite sensors were in excess of ~3 hrs. Such large time 

differences make image comparison difficult, particularly in highly dynamic 

coastal waters where components of water can change completely between 

the two satellite overpass times.  
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 In Chapter 6, the limitation of the study can result from the aerosol 

estimation method employed in atmospheric correction of the AHI dataset. 

The ratio of aerosol reflectance between two methods, the SWIR (Band 5 

and Band 6) method and the NIR-SWIR (Band 4 and Band 5) method, was 

assumed to constant over the whole study region and only one single 

median value was used to derive aerosol reflectance. The aerosol 

reflectance ratio is not necessarily spatially homogenous as assumed in this 

study, but can vary across different pixel locations, particularly near the 

coastal land and waters. The assumption of spatially homogenous aerosol 

reflectance ratios over a large spatial extent can possibly result in 

discrepancies in the atmospheric correction process and the derived 

products. However, the limitations discussed in aforementioned sections 

were carefully considered and their implications discussed in each individual 

chapter.  

7.3 Future work and recommendations  

 The work pursued in development of SASM reinforces the need for 

larger datasets to adequately calibrate the SASM to be representative of 

generalized TSS algorithms for the whole of Western Australian coastal 

waters, or indeed for waters further afield. The data used in calibrating the 

SASM was sourced from one site over the course of three years, thus larger 

datasets comprising data from different sites in the coastal waters of Western 

Australia, and across different seasons, are needed to make SASM more 

robust to seasonal TSS variability and applicable to the extended coastal 

waters of Western Australia. In future, to limit the inaccuracies of the SASM 

associated with the parameterization, parameters of the SASM as defined in 

Equation (3.14) will be calibrated directly with in situ IOPs of the coastal 

waters in Western Australia. The IOPs are not depended on the ambient light 

fields, thus it has the potential to limit uncertainties associated with varying 

light fields in the water. The application of SASM in waters optically different 

than northern Western Australia should be performed only after calibration 

with in situ regional parameters.  
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 In Chapter 4, the comparative analysis of decadal TSS algorithms for 

MODIS and Landsat sensors also suggest an avenue of potential future 

work. The quantitative methodology adopted in scoring the algorithms was 

based on the comparison of average performances which were susceptible 

to very low or high scores of the individual algorithms. Further, the same 

weight was assigned for different statistical tests which can bias the results 

when one test is more or less significant than others in a comparative 

analysis. Thus, to compare the models, the development of a better 

quantitative methodology is needed that is not depended on the average 

performance, but on the significance of the tests. In addition, the validation of 

high scoring models needs to be validated with different in situ datasets to 

confirm their reliability because in our study we only performed validation 

using an in situ dataset of our study site. The general recommendation from 

Chapter 4 would be to select an appropriate TSS model through proper 

validation if in situ datasets are available or at least consider historical or 

neighbouring water’s biogeochemical properties to aid in selection of 

appropriate ‘off the shelf’ TSS algorithms.  

 The results from Chapter 5 showed that the difference in spatial 

resolutions of satellite sensors have an effect in the final derived TSS 

concentrations. Similarly, other attributes of the satellite sensors, such as 

radiometric and spectral characteristics can also significantly affect the final 

derived TSS product. Future work resulting from Chapter 5 will be in 

quantifying the uncertainties associated with different satellite sensors, in 

terms of radiometric and spectral bands. In addition, the communication of 

uncertainties associated with satellite remote sensing as a result of satellite 

sensors are important to make informed decisions of the final derived 

product, especially for coastal water quality monitoring agencies. Further, 

inter-sensor comparison of the final derived TSS products in Chapter 5 were 

dependent on the proper atmospheric correction of each individual satellite 

sensor, which is often challenging considering the different sensors have 

different radiometric properties. Thus, for inter-sensor comparative analysis it 

is important to take into account uncertainties associated with different 
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atmospheric corrections and quantitatively validate with in situ datasets to 

make reasonable comparison of the derived products between the sensors.  

 The TSS feasibility study in Chapter 6, being carried out for the first 

time, has resulted in subsequent possible future work. First, we adapted the 

widely used 6S radiative transfer methods of atmospheric correction, but with 

changes in the aerosol correction methods which were based on the satellite 

image itself. The two different SWIR and NIR-SWIR aerosol correction 

methods employed showed discrepancies between the two methods, but 

due to the lack of adequate validation data, we were unable to show which 

method was more valid for our study region. In future, we plan to collect a 

wide range of in situ aerosol data over the study region and validate the 

aerosol correction method best suited for our study region. The uncertainty in 

the final derived TSS product from individual ~10 min AHI data was 

considerable in clear waters, because the NETSS of 10 min AHI data were 

~0.15 mg/L, which is considerable in open waters where TSS concentrations 

are minimal. Thus, sensor noise reduction methods need to be explored for 

the AHI sensor, such as the image aggregation method discussed in Chapter 

6 which showed that aggregation of 10 min data to ~ 1 hour have potential to 

limit sensor noise to NETSS of ~ 0.06 mg/L.   

7.4 Concluding remark 

 In this thesis, we have achieved the four main objectives outlined in 

Chapter 1, as we have in:  

• Chapter 3: developed a TSS algorithm (SASM) for the coastal 

waters of northern Western Australia which is semi-analytic in design 

and physically based on the principle of radiative transfer theory. The 

developed SASM was tuned for the turbid coastal waters of northern 

Western Australia and recalibrated to be operational for Landsat-8 

OLI, MODIS-Aqua, WV2 and Himawari-8 sensors;  

• Chapter 4: quantitatively assessed published TSS algorithms from 

the last decade for the widely used MODIS and Landsat based 

sensors. In addition, we also identified TSS algorithm(s) that are best 
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suited for optically unknown water types and validated using in situ 

data of northern Western Australia;  

• Chapter 5: quantified the effect of different spatial resolutions of 

WV2, Landsat-8 OLI and MODIS-Aqua satellite sensors on derived 

TSS concentration. The implications of using different satellite 

sensors were also qualitatively presented to support coastal 

managers in making informed decisions on water quality monitoring, 

and;  

• Chapter 6: Himawari-8, a high temporal resolution geostationary 

satellite was found to be feasible to study the high temporal 

dynamics of TSS variation in the coastal waters of northern Western 

Australia. 
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Appendix A 

A1. Comparison of Reflectance Models for Nechad et al. (2010) and 
SASM 

 The !"# (%) by definition can be used as a proxy for reflectance 

because it is a ratio of the amount of light backscattered to the amount of 

light absorbed by water and its constituents Nechad et al. (2010), hereafter 

referred as NRP. Thus, !"# (%) from both the NRP and SASM model is used 

here for the comparative analysis using HydroLight-simulated data for 

different water types. From the HydroLight simulations, we generate rrs for 

given IOP models representing different water types (Mobley, Stramski, 

Bissett, & E, 2004) to be inverted to compute !"# (%) for use in model 

comparisons between NRP and SASM derived estimates of	!"# (%). Each 

model derived !"# (%) is then validated using the true !"# (%) given by Equation 

(3.8). The true !"# (%) are calculated from the a(λ) and bb(λ) we used as the 

inputs in the HydroLight simulation. 

A1.1. NRP Reflectance Model: 

 The reflectance model used in the formulation of rrs(λ) by NRP 

assumes rrs(λ) is based on the first order approximation of Gordon, et al. 

(1988): 
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where f ’ is a varying dimensionless factor described by Morel and Gentili 

(1991) and Q is the ratio of subsurface upwelling irradiance to the subsurface 

upwelling radiance. The ratio of the total backscattering coefficient to total 

absorption coefficient (!"# (%)) is related to subsurface remote sensing 

reflectance as follows:  
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13.0' =Qf (refer to (Nechad et al., 2010) for details)  

A1.2. SASM Reflectance Model: 

 SASM computes rrs based on the second order approximation of 

Gordon et al. (1988) as shown in Equation (3.2) using coefficients g1 and g2 

from Lee et al. (1999) optimized for turbid waters. In the SASM, rrs (λ) is 

related to !"# λ 	as follow:  
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where x is given by Equation (3.15). 

A2. HydroLight Simulation 

 HydroLight 4.2 was used to simulate Case-2 water Rrs for infinitely 

deep water using a four components model. The four components were: 1) 

pure water (W), 2) pigmented particles or chlorophyll (CHL), 3) coloured 

dissolved organic matter (CDOM) and 4) mineral particles (TSS).  

 For all HydroLight simulations, the following details were kept 

unchanged: the phase function for component 1 was a Rayleigh-like phase 

function, components 2 and 4 used Petzold “average particle” phase 

functions, and component 3 used an isotropic phase function. Standard 

(IOP) models from HydroLight were used to compute components’ scattering 

and absorption coefficients: the component 1 absorption coefficient was from  

and the scattering coefficients were from (Smith & Baker, 1981). The 

component 2 absorption coefficient for a chlorophyll-specific absorption was 

derived from  and the scattering coefficient was computed using the (Loisel & 

Morel, 1998) near surface power law model. The specific absorption for 

component 3 was computed using an exponential decay model and the 

component 4 specific absorption and scattering coefficients were from 

HydroLight data for Calcareous sand.  

 HydroLight simulations were performed fora solar zenith angle of 30°, 

wind speed of 5 m s-1, and for a clear sky using Harrison and Coombes’ sky 

model for different TSS concentration, CHL concentration, and CDOM 
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absorption. TSS concentration values ranged from 0–200 mg/L. For the 

range 0–50 mg/L the TSS concentration was increased at the rate of 0.2 

mg/L and for the 50–200 mg/L range the rate of increment was 2.0 mg/L. 

The concentration of chlorophyll was set at 0.1 mg/m3, 1 mg/m3, 5 mg/m3 

and 10 mg/m3 and CDOM absorption of 0.1 m-1 and 1.0 m-1 were used in the 

simulation.  The combinations of CHL and CDOM were used to define 6 

different water types, shown in Table A1.  
Table A.1: Six different water types grouped based on CHL concentration and CDOM 

absorption. 

CHL (mg/m3) and CDOM (m-1) Water type 
CHL 0.1 and CDOM 0.1 I 

CHL 1.0 and CDOM 0.1 II 

CHL 5.0 and CDOM 0.1 III 
CHL 10.0 and CDOM 0.1 IV 
CHL 0.1 and CDOM 1.0 V 
CHL 10.0 and CDOM 1.0 VI 

A3. Reflectance Model Evaluation 

 We present !"
# %  modelled using Equations (A2) and (A3) for the 6 

different water types as a function of TSS concentration, compared with 

HydroLight simulated !"# (%). The details of the results from model evaluation 

are presented in Table A2, Table A3, Table A4, and Table A5 for blue (494 

nm), green (566 nm), red (650 nm), and NIR (790 nm) wavelength 

respectively. For all bands and different water types, !"# %  was 

approximated better by the reflectance model in the SASM when compared 

with that in the NRP model. In comparison, the highest MARE was given by 

the NRP model for the green band (~75%) for water type I whereas the 

highest MARE of the SASM was ~4.5% in the blue band for water type V. 

 Since both the NRP and SASM are based on the assumption that red 

and NIR wavelengths are optimal for the estimation of TSS, we make a 

detailed comparative analysis between NRP and SASM in the red and NIR 

spectral regions. In the red spectral region, we find that the NRP model 

better estimates !"# (%) when CHL and CDOM are increased: MARE 
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improved by 6.0% from type I to type VI, while for the SASM the MARE 

performance decreases by 0.48% from water type I to type VI. Likewise, in 

the NIR band, the shift in improvement over different water types is ~1.0% 

for the NRP model and ~0.17% for the SASM. However, comparing the red 

and NIR bands, the NRP model performs better for the NIR band with the 

MARE ~15.0% lower than the red band. For the SASM, the performance is 

better in the red band by ~1.0 %. Illustration of the differences between the 

NRP model and the SASM for their performance in estimating !"# (%) with 

respect to HydroLight-modelled !"# (%) is shown in Figures A1 (a) and A2 (a) 

for red and NIR bands respectively for water type VI. For the variation of 

!"# (%) as a function of TSS, Figure A1 (b) for the red band and Figure A2 (b) 

for the NIR band shows that the accuracy of the estimation of !"# (%) 
decreases with increasing TSS concentration for the NRP model. The 

estimation of !"# (%) by the NRP model deviates by more than 25% for TSS 

concentrations greater than 100 mg/L. The !"# (%) are estimated better by the 

SASM for the whole range of TSS when compared with the NRP for all 

spectral bands with maximum deviation of only 4.53% in the blue band. 

 

Table A.2: Comparative (494nm),
bω 	results for the NRP and SASM models (all p<0.005). 

Water Type 
NRP SASM  

RMSE (sr-1) MARE (%) r RMSE (sr-1) MARE (%) r 

I 0.53 57.41 0.99 0.01 1.00 1.00 
II 0.49 53.70 0.99 0.01 1.15 1.00 
III 0.37 41.86 0.99 0.01 2.15 1.00 
IV 0.28 32.91 0.99 0.02 2.98 1.00 
V 0.23 26.00 0.99 0.02 4.53 1.00 

VI 0.17 20.55 0.99 0.02 4.13 1.00 
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Table A.3: Comparative (566nm),
bω results for the NRP and SASM models (all p<0.005). 

Water Type 
NRP SASM  

RMSE (sr-1) MARE (%) r RMSE (sr-1) MARE (%) r 

I 0.83 74.71 0.98 0.02 2.08 1.00 

II 0.81 73.31 0.98 0.02 2.05 1.00 
III 0.73 66.86 0.98 0.02 1.92 1.00 
IV 0.64 59.85 0.99 0.02 1.88 1.00 
V 0.52 49.24 0.98 0.02 2.25 1.00 

VI 0.45 43.06 0.98 0.02 2.66 1.00 

 

Table A.4: Comparative (650nm),
bω 	results for the NRP and SASM models (all p<0.005). 

Water Type 
NRP SASM  

RMSE (sr-1) MARE (%) r RMSE (sr-1) MARE (%) r 

I 0.36 35.91 0.98 0.02 3.07 1.00 

II 0.35 35.26 0.98 0.02 3.11 1.00 
III 0.32 32.64 0.99 0.02 3.24 1.00 
IV 0.29 29.62 0.99 0.02 3.44 1.00 
V 0.33 33.09 0.98 0.02 3.27 1.00 

VI 0.27 27.76 0.99 0.02 3.55 1.00 

 

 

Table A.5: Comparative (790nm),
bω 	results for the NRP and SASM models (all p<0.005). 

Water Type 
NRP SASM  

RMSE (sr-1) MARE (%) r RMSE (sr-1) MARE (%) r 

I 0.04 21.70 0.99 0.01 4.00 1.00 
II 0.04 21.57 0.99 0.01 4.00 1.00 
III 0.04 20.84 0.99 0.01 3.92 1.00 
IV 0.04 20.13 0.99 0.01 3.83 1.00 
V 0.04 21.87 0.99 0.01 4.00 1.00 

VI 0.04 20.15 0.99 0.01 3.83 1.00 
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Figure A.1: (a) Scatter plot for modelled and HydroLight (650nm),

bω ; (b) (650nm),
bω as a 

function of TSS. 

  
Figure A.2: (a) Scatter plot for modelled and (790nm),

bω ; (b) (790nm),
bω as a function of TSS 
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Appendix B 
 To ascertain how far below the water’s surface MODIS can “see” in 

MODIS band 1, we simulated diffuse attenuation coefficients (Kd) for the 

near surface waters for different chlorophyll (CHL) and CDOM for a range of 

TSS concentrations using HydroLight 4.2 (Mobley, 1994). From the 

simulated Kd results, with the assumption that 90% of the diffuse light comes 

from a water column of depth of 1/Kd (Mishra, Narumalani, Rundquist, & 

Lawson, 2005), MODIS band 1 can only penetrate 1.9 m at a TSS 

concentration of 3.9 mg/L for even very low CHL and CDOM. For high CHL 

and CDOM concentrations, the penetration depth of MODIS band 1 is only 

1.5 m even for zero TSS. Thus, the TSS data collected from a depth of ~1.9 

m may be unsuitable for remotely sensed TSS algorithm development or 

validation. 
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Appendix C 
Table C.1: The summary of TSS algorithms mentioned in Section 4.3.2 

Algorith
m Reference  Location TSS Range 

(mg/L) Bands/Algorithms 

Regre
ssion 
Coeffi
cient 
(R2) 

Error N 

MOD-E1 Kumar et al. 
(2016) 

Chilika 
Lagoon, India  3.9–161.7 2

13181 ( 1) 1408.6 ( 1) 44.15TSS R B R Brs rs= − +  0.915 RMSE = 2.64 mg/L 54 

MOD-E2 Ayana et al. 
(2015) 

Gumera 
catchment, 
Lake Tana, 
Ethiopia  

~5–255 2371 ( 2) 62.8TSS ρ B= −  0.95 SE = 10.77 mg/L 54 

MOD-E3 Chen et al. 
(2015a) 

Estuary of 
Yangtze 
River and 
Xuwen Coral 
Reef, China 

5.8–577.2 

2

2

rs

4 ( )
( ) ( 1) 0.025

2

4 ( )
log( ) ( 1) 0.025

2

0.334, 1.0046, 0.8251,( 2 4 ( )) 0
log( ( 2))/ log( ( 1))

rs
b b a c y

log TSS R B
a

b b a c y
TSS R B

a

a b c b a c y
y Rrs B Rrs B

⎫− + − − ⎪
= <⎬

⎪
⎭
⎫− + − − ⎪

= >⎬
⎪
⎭

=− = = − − ≥
=

 0.752 RMSE = 2.1mg/L 
RMSE = 38.6mg/l 40 

MOD-E4 

Zhang et al. 
(2016a) and 
Shi et al. 
(2015) 

Lake Taihu, 
China  1.7–343.9 9.65exp(58.81 ( 1))TSS R Brs=

 

0.70 RMSE = 14.0mg/L 150 

MOD-E5 Choi et al. 
(2014) 

Mokpo 
coastal area, 
Korea 

1.03–193.10 1.545exp(179.53 ( 1))TSS R Brs=

 

0.92 - 96 
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MOD-E6 Feng et al. 
(2014) 

Yangtze 
estuary 4.3–1762.1 

TSSlow = 2.49exp 97.19Rrs (B1)( )}TSS <10(mg / l)

TSShigh = 57.58exp 3.48 Rrs (B2) Rrs (B1)( )( )}TSS >150(mg / l)
TSSmid =α ×TSSlow +β ×TSShigh}50 < TSS <150(mg / l)

α =
ln TSSlow / 50( )
ln 150 / 50( )

,β =
ln 150 /TSSlow( )
ln 150 / 50( )

 

0.88 
(low) 
0.93 
(high) 

RMSE = 27.7% 78 

MOD-E7 Hudson et al. 
(2014) 

Fjord in 
Southwest 
Greenland 

1.2–716 1.80exp(19.11( ( 1) ( 2))TSS R B R Brs rs= +

 

0.84 - 143 

MOD-E8 (Kaba et al., 
2014) 

Lake Tana, 
Ethiopia  ~5–255 2371 ( 2) 62.8TSS ρ B= × −

 0.95 RMSE = 16.5 mg/L 54 

MOD-E9 (Lu et al., 
2014) 

Bohai Sea, 
China ~<160 

( 1) 0.0123
exp

0.0038

R BrsTSS
⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 0.75 RE = < 20% 627 

MOD-
E10 

(Park & 
Latrubesse, 
2014) 

Amazon 
River system  30–150 27.05exp(7.83 ( 1))TSS ρ B=

 

0.88 RMSE = 6.2 mg/L 232 

MOD-
E11 

(Sokoletsky 
et al., 2014) 

Yangtze river 
estuary 0–2500 [ ]( )(B4)rsR(B1)rsR2

10TSS
×

=  -  361 

MOD-
E12 

(Chen et al., 
2014c) Bohai Sea 4–106.4 

8 3 6 23 10 2 10 5453.3 3.8825

( 15) 1.107 ( 16)

TSS x x x

x ρ B ρ B
w w

= × − × + +

= −
 0.954 RMS = 30.12% 48 

MOD-
E13 

(Cui et al., 
2013) 

Ponyang 
lake, China 0–141.9 ))1(859.27exp(063.1 BTSS ρ=

 
0.91 SE = 11.20 mg/L 54 

MOD-
E14 

(Kazemzadeh
, 
Ayyoubzadeh
, & 
Moridnezhad, 
2013) 

Bahmanshir 
River, Iran 30–500 82.0)1(92.22 BTSS ρ=  0.63 RMSE = 261.84 23 

MOD-
E15 

(Raag et al., 
2013) 

Pakri Bay, 
Gulf of 0–10 1136.1))1(54.592 += BTSS ρ

 
0.52  77 
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Finland 

MOD-
E16 (Qiu, 2013) 

Yellow River 
Estuary, 
China 

1.9–1896.5 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛=

875.0

)14(
)12(

1932.1exp
BRrs
BRrsTSS  0.95 MAE = 24.5 mg/L 81 

MOD-
E17 

(Espinoza 
Villar et al., 
2013) 

Maderia River 25–622 
94.2

)1(
)2(1020 ⎟
⎠
⎞⎜

⎝
⎛= BRrs

BRrsTSS  0.62 - 282 

MOD-
E18 

(Min et al., 
2012) 

Saemangeum 
coastal area, 
Korea 

0.1–55 ))12(3.188exp(24.0 BrsRTSS=
 

0.90 - 88 

MOD-
E19 

(Ondrusek et 
al., 2012) 

Chesapeake 
Bay 4.5–14.92  0.95 MPD = 4.2% 35 

MOD-
E20 

(Son & 
Wang, 2012) 

Chesapeake 
Bay 1.0–20 )490(d263.57.1 KTSS +=  0.77 STD = 0.48 15,720 

MOD-
E21 

(Wang et al., 
2012) 

Hangzhou 
Bay, China 133–1,950 

3874.2

)2(
)1(4599.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

BRrs
BRrsTSS  0.82  35 

MOD-
E22 

(Chen et al., 
2011a) 

Apalachicola 
Bay, USA 1.29–208 2

log( ( 2) / log( ( 1)) 0.1325 log( ) 0.7429 log( ) 0.6768ρ B ρ B TSS TSS= − + +  0.86 RMSE = 4.76 mg/L 32 

MOD-
E23 

(Chen et al., 
2011b) 

Apalachicola 
Bay, USA 1.29–208 log( ( 2) / log( ( 1)) 0.4339 log( ) 0.8288ρ B ρ B TSS= +  0.8 RMSE = 4.79 25 

MOD-
E24 

Jiang and Liu 
(2011) as 
cited in (Chen 
et al., 2015a) 

Poyang Lake, 
China 0–40 

)4()3(

216.2708.36925.1365

BRrsBRrsx

xxTSS

+=

+−=
 0.81 - 27 

MOD-
E25 

(Siswanto et 
al., 2011) 

Yellow and 
East China 
Sea 

0.04–340.07 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

=
)12(
)10(646.0))13()12((623.25649.0

10 BRrs
BRrsBRrsBRrs

TSS
 

0.92 RPD = 15.7% 223 

MOD-
E26 

(Zhao, Chen, 
Walker, 
Zheng, & 
MacIntyre, 

Mobile Bay 
estuary, 
Alabama 

0–87.8 ))1(92.42exp(12.2 BTSS ρ=  0.781 RMSE = 5.42 63 

TSS = 3.8813 nLw(645)( )3 −13.822 nLw(645)( )2

+19.61 nLw(645)( )
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2011) 

MOD-
E27 

(Petus et al., 
2010) and 
(Petus et al., 
2014) 

Bay of 
Biscay, 
France 

0.3–145.6 45.0)1(1.6662)1(12450 ++= BRrsBRrsTSS  0.97 RMSE = 61% 74 

MOD-
E28 

(Wang & Lu, 
2010) 

Yangtze 
River, China 45–909 

)5()2((%)

)2623.0exp(369.61

BBx

xTSS

ρρ −=

=  0.78 RRMSE = 36.5% 35 

MOD-
E29 

(Wang et al., 
2010a) 

Apalachicola 
Bay, USA 1–64 ( ) 5755.0))1(log(/))2(log(5144.1)log( −= BBTSS ρρ  0.72 - 16 

MOD-
E30 

(Wang et al., 
2010b) 

Middle and 
Lower 
Yangtze 
River, China 

75–881 
)5()2((%)

03.2324.60
BBx

xTSS
ρρ −=

−=
 0.73 RMSE = 29.7% 153 

MOD-
E31 

(Zhang et al., 
2010) 

Yellow and 
East China 
Sea 

0.68–27.2 
5239.0,2158.22,6311.0

))4(/)10((
))1()4(()log(

210

2

10

−===

+

++=

sss
BRrsBRrss

BRrsBRrsssTSS
 0.87 ARE = 26% 81 

MOD-
E32 

(Chen et al., 
2009) 

Apalachicola 
Bay, USA 1.29–208 2

log( ( 2) / log( ( 1)) 0.1356 log( ) 0.7402 log( ) 0.6836ρ B ρ B TSS TSS= − + +

 

0.853 RMSE = 5.5mg/L 25 

MOD-
E33 

(Chu et al., 
2009) 

Kangerlussua
q Fjord, 
Greenland 

~500 ⎟
⎠

⎞
⎜
⎝

⎛ −

= 5.7
6.1)1(

10
BRrs

TSS  
- - - 

MOD-
E34 

(Doxaran et 
al., 2009) 

Gironde 
Estuary, 
France 

77–2182 ( )))1(189.0/()2(exp996.12 BRrsBRrsTSS =  0.89 RMSE: 18%–22% 204 

MOD-
E35 

(Jiang, Tang, 
Zhang, Ma, & 
Ding, 2009) 

Taihu Lake, 
China 0–170 ( )3431.3)2(ln(3568.010 += BRrsTSS  0.81 ARE = 20.5% 56 

MOD-
E36 

Liu and 
Rossiter 
(2008) as 
cited in (Chen 
et al., 2015a) 

Poyang Lake, 
China 15.6–518.8 0.42)1(7167 −= BTSS ρ  0.91 - 25 



  

 

183 

 

MOD-
E37 

(Wang et al., 
2008) 

Hangzhou 
Bay, China 17–6949 ( )396.1)2(233.43exp += BRrsTSS  0.76 RMSE = 424mg/L 25 

MOD-
E38 

Wu and Cui 
(2008) as 
cited in (Chen 
et al., 2015a) 

Poyang Lake, 
China 0-142 

67.15))1((29.1005

2))1((70.158583))1((23.86236

−+

−=

BRrs

BRrsBRrsTSS

 
0.92 - 42 

MOD-
E39 

(Kutser et al., 
2007) 

Muuga and 
Sillmae Port, 
Estonia 

2–8 9663.2)1(83.349 += BTSS ρ

 
0.86 - 11 

MOD-
E40 

(Liu et al., 
2006) 

Middle 
Yangtze 
River, China 

23.4–61.2 
)2()1(
)2()1(

)81.1495.2exp(

BB
BB

x

xTSS

ρρ
ρρ

+
−

=

+=

 0.72 RE = 34.7% 41 

MOD-
E41 

(Sipelgas et 
al., 2006) 

Parki Bay, 
Finland 3–10  0.58 - 48 

MOD-
E42 

(Miller & 
McKee, 
2004) 

Northern Gulf 
of Maxico, 
USA 

1.0–55.0  0.89 RMSE = 4.74mg/L 52 

MOD-A1 (Dorji et al., 
2016) 

Onslow, 
Western 
Australia 

2.4–69.6 

( )

))1(7.152.0/()1()1(,17.02,084.01

22

)1(24211
)1(

)1(1
)1(69.01

)1(1
)1(47.23

BRrsBRrsBrsrandgg

g

B
rs
rggg

Bx

Bx
Bx
Bx
Bx

TSS

+===

++−
=

−
−

−
=

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

 

0.85 MARE = 33.33% 48 

TSS =110.3ρ(B1)+ 2.0

TSS =1140.25×Rrs (B1)−1.91
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MOD-A2 (Han et al., 
2016) 

Europe, 
French 
Guiana, 
Vietnam, 
North 
Canada, and 
China 

0.154–2627 

3394.0/)1(1

)1(669.1214

5.0/)1(1

)1(4.404

),03.0(10log))1((10log

104.0)1(,1

103.0)1(0

)),1((10log)04.0(10log

104.0)1(,0

103.0)1(,1

Bw

Bw
HTSS

Bw

Bw
LTSS

HWLW
HTSSHWLTSSLWTSS

otherwiseBRrs

srBRrsif

srBRrsif

HW

otherwiseBRrs

srBRrsif

srBRrsif

LW

ρ

ρ

ρ

ρ

−
=

−
=

+

⋅+⋅
=

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−
≥

−
≤

=

−

−
≥

−
≤

=  
- MRAD = 51.9-59% 

TSSL = 
366 
TSSH = 
46 

MOD-A3 (Shen et al., 
2014) 

Yangtze 
estuary, 
China 

- 
} 8042.1,1038.0)2(

211

==

×++×+

×
=

βα

ββ

αβ

BRrs

TSSTSS
TSS

Rrs

 

0.91 RMSE = 0.0048 (sr−1) 144 

MOD-A4 
(Vanhellemon
t & Ruddick, 
2014) 

Southern 
North Sea, 
UK 

0.5–100 
)1(529.0)1(

1641.0/)1(1
)1(85.258

BrsrB

B
B

TSS

××=

−
=

πρ

ρ
ρ

 
- - - 

MOD-A5 (Chen et al., 
2013a) 

Changjiang 
River 
Estuary, 
China 

70–710 0912.01)1)15(1)16((7492.1 +−−−−= BRrsBRrsTSS  0.89 MRE = 28.99% 20 

MOD-A6 (Katlane et 
al., 2013) Gulf of Gabes 0.7–30 

( )
)1()1(

))1(1736.0(
)1(86.62

BRrsB

B
BTSS

πρ

ρ
ρ

=

−=
 - - 56 

MOD-A7 (Nechad et 
al., 2010) 

Southern 
North Sea 1.24–110.27 

)1(539.0)1(

02.1
1774.0/)1(1
)1(75.400

BrsrB

B
B

TSS

πρ

ρ
ρ

×=

+
−

=  0.80 RMSE = 11.23 mg/L 
MRE = 38.9% 72 

LAN-E1 (Cai et al., 
2015b) 

Hangzho 
Bay, China 203–481 794229.4)4(01113115.0)ln( +×= TMLTSS  0.951 - 35 

LAN-E2 
(Cai, Tang, 
Levy, & Liu, 
2015a) 

Hangzho, 
Bay 179–389.58 314.435 ( 3) 3805.982 ( 4) 28.54TSS ρ TM ρ TM= + +  0.976 - 27 
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LAN-E3 (Kong et al., 
2015a) 

Gulf of Bohai 
Sea 2.1–208.7 2

5.184 1349.63 ( 4) 614561.673 ( 4)TSS R TM R TMrsrs
⎡ ⎤
⎢ ⎥⎣ ⎦

= + +  0.844 RMSE = 5.59 70 

LAN-E4 (Kong et al., 
2015b) 

Caofeidian, 
Bohai Sea 4.3–104.1  

)2(/)3(

939.7062.272229.296

TMrsRTMrsRx

xxTSS

=

+−=

 
0.977 RMSE = 7.22 mg/L 

MRE = 25.35  

LAN-E5 (Lim & Choi, 
2015) 

Nakdong 
River, South 
Korea 

~3–14 
)3(/)5(764.4

)5(58.14)2(608.5080.11

OLIOLI

OLIOLITSS

ρρ

ρρ

−

+−=  0.74 RMSE = 1.40 48 

LAN-E6 (Wu et al., 
2015) 

Dongting 
Lake, China 0–63.2 ))4(61.23exp(1034.1 OLITSS ρ××=  0.91 RMSE = 4.41 mg/L 52 

LAN-E7 (Zheng et al., 
2015) 

Dongting 
Lake, China 4.0–101 362.4)4(4.4616 −×= TMrsRTSS  0.82 MAPE = 21.3% 

RMSE = 7.01 mg/L 42 

LAN-E8 

(In-Young, 
Lang, & 
Vermote, 
2014) 

Old Women 
Creek 
Estuary, 
Ohio, US 

1.0–278 54.303.1
61.7)4(%,44.14

−=
+×=

TSSTurb
ETMTurb ρ

 0.65  11 

LAN-E9 (Zhang et al., 
2014) 

Yellow river 
estuary 1.0–1500 )1591.03(072.44)(

10
log +×= TMrsRTSS  

0.967
2 MRE = 26.1% 44 

LAN-
E10 

Hao, et al. 
(2013)  

Yangtze 
Estuary, 
China 

~40.0–750 
( )[ ]

( )[ ]
( 4) 0.0444 32.7736 / 51.6753

32.7260 / 51.6753 exp( 0.0000012081 )

R B TSS TSS

TSS TSS TSS

= + × +

− × + × − ×

 

0.817
5 ARE = 36.83 17 

LAN-
E11 

(Hicks et al., 
2013) 

Waikato 
River, New 
Zealand  

2.0–962 )4(4.1449817.52 ETMTSS ρ+−=  0.939 RMSE = 21.3 35 

LAN-
E12 

(Min et al., 
2012) 

Saemangeum 
coastal area, 
Korea 

0.1–55 0.24exp(188.3 ( 2))TSS R TMrs=  0.90 - 88 

LAN-
E13 

(Miller et al., 
2011) 

Albemarle-
Pamlico 
Estuarine 
System, 
North 
Carolina, 

~5.0–30 1.7 684.76 (%, 3)TSS ρ ETM= +  0.87 - 599 
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USA 

LAN-
E14 

(Li et al., 
2010) 

Changjiang 
Estuary ~1.5–560 [ ]

[ ])3(/)2(
)3()2(

2244.6892.0)(101

ETMETM
ETMETM

x

xTSSog

ρρ
ρρ +

=

+=
 0.915 - 21 

LAN-
E15 

(Wang et al., 
2009b) 

Yangtze river, 
China 22–2610 ))4(ln(%,18236.3)ln( ETMwTSS ρ×=

 
0.88 MRE = 14.83% 24 

LAN-
E16 

(Onderka & 
Pekárová, 
2008) 

Danube 
River, 
Slovakia 

19.5–57.5 22.43)4(17.4 −×= ETMLTSS  0.93 SE = 3.2 mg/L 10 

LAN-
E17 

(Teodoro et 
al., 2008) 

Douro River 
and Mira 
Lagoon, 
Portugal  

14–449 )3(495.44)1(688.12483.15 TMTMTSS ρρ +−=  0.995 RMSE = 25.3 mg/L 11 

LAN-
E18 

(Alparslan, 
Aydöner, 
Tufekci, & 
Tüfekci, 
2007) 

Omerli Dam, 
Turkey 0.4–2.9 

)4(1247.0)3(05.1

)2(3716.0)1(8694.02671.42

ETMETM

ETMETMTSS

ρρ

ρρ

++

−−=
 0.99 SE = 0.0085mg/L 6 

LAN-
E19 

(Wang, Lu, & 
Zhou, 2007) 

Yangtze 
River, China 0–900 48.272)4(%,392.71 −×= ETMTSS ρ

 
0.92 MAE = 68.9 

RMSE = 83.2 14 

LAN-
E20 

(Doxaran et 
al., 2006) 

Gironde 
Estuary, 
France 

10–2000 )(%)2()4(

)0335.0exp(022.29

ETM
rs
RETM

rs
Rx

xTSS

=

×=

 
0.88 SD = 21% 132 

LAN-
E21 

(Wang et al., 
2006) 

Lake 
Reelfoot, 
USA 

11.5–33.5 
)4(66.45

)3(62.147)2(202.15674.22

TM

TMTMTSS

ρ

ρρ

−

−+=
 0.52 - 18 

LAN-
E22 

(Zhou et al., 
2006) 

Lake Taihu, 
China 48.32–120.80 ( ) 37.10)1(

)4(1.3044.122 ++−= TM
TMTSS ρ

ρ  0.74 MPE = 65.40%  

LAN-A1 (Dorji et al., 
2016) 

Onslow, 
Western 
Australia 

2.4–69.6 

( )
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LAN-A2 (Han et al., 
2016) 

Europe, 
French 
Guiana, 
Vietnam, 
North 
Canada, and 
China 

0.154–2627 

3329.0/)4(1

)4(390.1221
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- MRAD = 51.9%–
59% 

TSSL = 
366 
TSSH = 
38 

LAN-A3 Zhang et al. 
(2016b) 

Xinánjiang 
Resevoir, 
China 

0.67–5.66 
138.08 [0.42 (( ( 2) ( 3))

1( ( 3) ( 4)) ) ( ( 4) 0.24] 3.39

TSS Rrs OLI Rrs OLI

Rrs OLI Rrs OLI Rrs OLI

−= × × +

−− + × + −  >0.8 MRE = 24.3% 45 

LAN-A4 Kong et al. 
(2015a) 

Gulf of Bohai 
Sea 2.1–208.7 2)4(14.900713)4(26.1805602.8 TMRrsTMRrsTSS ++=  0.844 RMSE = 4.53 70 

LAN-A5 
Vanhellemont 
and Ruddick 
(2014) 

Southern 
North Sea, 
UK 

0.5–100 
)4(529.0)4(

1686.0)4(1

)4(29.289

OLIrsrOLIw

OLIw

OLIwTSS

××=

−
=

πρ

ρ

ρ

 
- - - 

MRE = Mean Relative Error, MARE = Mean Absolute Relative Error, MAE = Mean Absolute Error, MPE = Mean Percentage Error, SD = Standard Deviation, 

MRAD = Mean Relative Absolute Difference, RMSE = Root Mean Square Error, SE = Standard Error, ARE = Absolute Relative Error, RPD = Relative 

Percentage Difference, APD = Absolute Percentage Difference, RRMSE = Relative Root Mean Square Error 
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Appendix D 
Table D.1: Mean of Total Point and Final Scores of MODIS TSS models across different water classes as derived from different sediment types, 

backscattering ratios and Solar Zenith Angles. The top five and bottom five scores from each water types and the final scores are in bold (top) and bold italics 

(bottom) 

MODEL 

Mean Total Score from 

Sediment 

Mean Total Score from Backscattering Ratio 

(bb/b) 

Mean Total Score from Solar Zenith 

Angles 

Final 

Score 
Error Final Score 

I II III IV V I II III IV V I II III IV V   
Lower 

bound 

Upper 

Bound 

MOD-E6 1.69 1.61 1.66 1.61 1.63 2.00 1.72 1.98 1.75 1.72 1.71 1.60 1.67 1.53 1.59 1.70 1.64 1.76 
MOD-A1 1.46 1.53 1.50 1.56 1.46 1.54 1.71 1.57 1.82 1.67 1.54 1.67 1.55 1.73 1.65 1.60 1.55 1.63 
MOD-E28 1.53 1.51 1.53 1.51 1.51 1.71 1.71 1.71 1.74 1.71 1.52 1.55 1.52 1.51 1.56 1.59 1.56 1.63 
MOD-A4 1.47 1.55 1.48 1.42 1.43 1.57 1.71 1.57 1.59 1.51 1.61 1.62 1.60 1.54 1.57 1.55 1.51 1.60 
MOD-E10 1.54 1.54 1.54 1.54 1.54 1.57 1.57 1.57 1.57 1.57 1.59 1.50 1.55 1.47 1.50 1.54 1.54 1.56 
MOD-E42 1.48 1.49 1.46 1.42 1.47 1.57 1.16 1.57 1.76 1.57 1.61 1.17 1.60 1.51 1.62 1.50 1.40 1.63 
MOD-E21 1.57 1.50 1.58 1.49 1.50 1.73 1.46 1.76 1.51 1.53 1.68 1.24 1.37 1.20 1.29 1.49 1.40 1.60 
MOD-E31 1.45 1.46 1.43 1.42 1.42 1.55 1.60 1.52 1.46 1.46 1.55 1.51 1.51 1.48 1.55 1.49 1.38 1.58 
MOD-A6 1.47 1.46 1.49 1.42 1.40 1.43 1.57 1.43 1.57 1.43 1.47 1.54 1.49 1.50 1.47 1.48 1.44 1.53 
MOD-A7 1.50 1.47 1.54 1.47 1.44 1.44 1.53 1.57 1.55 1.43 1.53 1.31 1.59 1.28 1.25 1.46 1.39 1.51 
MOD-E44 1.32 1.30 1.31 1.26 1.30 1.57 1.56 1.57 1.51 1.55 1.58 1.47 1.57 1.44 1.56 1.46 1.39 1.49 
MOD-E27 1.38 1.42 1.37 1.41 1.41 1.46 1.57 1.47 1.57 1.54 1.49 1.33 1.49 1.27 1.35 1.44 1.38 1.50 
MOD-E4 1.47 1.41 1.47 1.40 1.42 1.57 1.43 1.57 1.43 1.45 1.49 1.36 1.47 1.32 1.39 1.44 1.41 1.49 

MOD-E34 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.45 1.43 1.49 1.43 1.50 1.44 1.43 1.44 1.43 1.46 
MOD-E41 1.41 1.40 1.41 1.40 1.41 1.43 1.43 1.43 1.43 1.43 1.46 1.34 1.45 1.32 1.46 1.41 1.41 1.43 
MOD-E20 1.36 1.40 1.33 1.46 1.46 1.33 1.47 1.30 1.57 1.52 1.37 1.30 1.33 1.43 1.53 1.41 1.34 1.49 
MOD-E35 1.15 1.52 1.15 1.56 1.23 1.29 1.58 1.29 1.68 1.39 1.29 1.53 1.28 1.56 1.40 1.39 1.33 1.51 
MOD-E39 1.31 1.31 1.31 1.31 1.31 1.28 1.29 1.29 1.29 1.29 1.31 1.26 1.30 1.25 1.31 1.29 1.29 1.30 
MOD-E25 1.15 1.19 1.14 1.32 1.20 1.31 1.40 1.24 1.15 1.34 1.39 1.36 1.31 1.32 1.39 1.28 1.10 1.49 
MOD-E3 0.99 1.21 0.83 1.25 1.10 1.39 1.75 1.09 1.67 1.53 1.29 1.33 1.03 1.23 1.53 1.28 1.09 1.48 

MOD-E19 1.39 1.22 1.42 1.26 1.24 1.30 1.12 1.40 1.36 1.14 1.38 0.90 1.43 0.98 1.22 1.25 1.05 1.36 
MOD-E40 1.14 1.20 1.14 1.23 1.20 1.14 1.29 1.14 1.29 1.29 1.16 1.25 1.15 1.29 1.24 1.21 1.20 1.22 
MOD-E11 1.15 1.19 1.12 1.21 1.18 1.23 1.26 1.16 1.18 1.26 1.26 1.19 1.15 1.18 1.25 1.20 1.11 1.28 
MOD-E37 1.13 1.09 1.13 1.09 1.10 1.24 1.22 1.25 1.27 1.23 1.14 1.11 1.14 1.11 1.14 1.16 1.08 1.23 
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MOD-E36 1.18 1.17 1.19 1.17 1.16 1.14 1.14 1.14 1.14 1.14 1.16 1.11 1.15 1.10 1.11 1.15 1.12 1.17 
MOD-A5 1.14 1.12 1.14 1.12 1.13 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.13 1.14 1.14 1.14 1.13 1.14 
MOD-E5 1.30 1.16 1.32 1.18 1.19 1.19 0.90 1.20 1.08 0.96 1.33 0.94 1.22 1.01 0.97 1.13 1.02 1.26 

MOD-E30 1.12 1.09 1.12 1.08 1.09 1.14 1.14 1.14 1.14 1.14 1.16 1.14 1.16 1.13 1.14 1.13 1.10 1.16 
MOD-E17 1.22 1.06 1.24 1.06 1.07 1.27 1.00 1.29 1.00 1.00 1.30 0.81 1.31 0.75 1.10 1.10 1.07 1.12 
MOD-E18 1.23 1.12 1.08 1.05 1.11 1.32 1.16 1.12 0.84 0.92 1.47 1.01 1.28 0.71 0.88 1.09 0.88 1.30 
MOD-E7 1.17 1.13 1.19 1.15 1.15 0.98 1.04 1.01 1.13 1.02 0.99 1.05 0.99 1.09 1.05 1.08 0.93 1.19 

MOD-E14 1.18 1.03 1.21 1.03 1.03 1.16 1.00 1.22 1.00 1.00 1.20 0.80 1.24 0.75 1.07 1.06 1.02 1.11 
MOD-E13 0.85 1.02 0.82 1.08 1.03 0.84 1.25 0.81 1.41 1.28 0.97 1.11 0.93 1.17 1.16 1.05 0.87 1.22 
MOD-E16 1.11 1.04 1.06 1.16 1.12 1.00 1.00 1.00 1.14 1.05 1.04 0.80 1.05 0.85 1.15 1.04 1.01 1.07 
MOD-E12 1.00 1.14 1.04 1.14 1.13 0.88 1.00 0.89 1.07 1.09 0.99 0.97 0.99 1.01 0.96 1.02 0.88 1.16 
MOD-E33 0.94 1.03 0.91 1.07 1.03 0.90 1.10 0.82 1.14 1.12 0.93 1.02 0.88 1.03 1.07 1.00 0.90 1.09 
MOD-E29 1.00 0.91 1.03 0.87 0.92 1.14 1.00 1.14 1.00 1.00 1.10 0.81 1.10 0.78 0.94 0.98 0.92 1.03 
MOD-E45 0.94 1.09 0.94 1.09 0.93 0.87 1.13 0.87 1.22 0.93 0.82 0.98 0.80 0.98 0.86 0.96 0.88 1.08 
MOD-E1 0.91 0.85 0.92 0.84 0.86 0.76 0.72 0.78 0.72 0.72 0.82 0.82 0.85 0.83 0.86 0.82 0.77 0.93 

MOD-E26 0.85 0.79 0.86 0.83 0.78 0.62 0.50 0.64 0.72 0.55 0.80 0.65 0.82 0.80 0.76 0.73 0.55 0.92 
MOD-E15 0.45 0.86 0.44 0.85 0.58 0.35 0.96 0.35 0.98 0.67 0.49 0.85 0.49 0.82 0.77 0.66 0.52 0.88 
MOD-E9 0.60 0.71 0.59 0.75 0.73 0.48 0.49 0.47 0.58 0.56 0.68 0.57 0.68 0.67 0.60 0.61 0.49 0.80 

MOD-E38 0.45 0.52 0.42 0.61 0.56 0.50 0.64 0.50 0.75 0.63 0.62 0.62 0.58 0.73 0.66 0.59 0.47 0.89 
MOD-E23 0.75 0.44 0.79 0.44 0.44 0.75 0.30 0.80 0.53 0.30 0.80 0.27 0.86 0.34 0.57 0.56 0.43 0.69 
MOD-E8 0.51 0.41 0.51 0.35 0.48 0.62 0.60 0.59 0.24 0.55 0.60 0.44 0.56 0.24 0.40 0.47 0.18 0.67 
MOD-E2 0.51 0.42 0.51 0.34 0.48 0.63 0.59 0.60 0.23 0.54 0.61 0.45 0.56 0.24 0.40 0.47 0.17 0.67 

MOD-E24 0.46 0.45 0.45 0.48 0.46 0.44 0.44 0.43 0.55 0.47 0.45 0.49 0.44 0.57 0.51 0.47 0.43 0.58 
MOD-E22 0.44 0.23 0.54 0.32 0.24 0.31 0.11 0.42 0.37 0.16 0.46 0.09 0.58 0.25 0.40 0.33 0.17 0.52 
MOD-E32 0.38 0.31 0.49 0.42 0.32 0.04 0.14 0.36 0.45 0.18 0.29 0.15 0.53 0.40 0.39 0.32 0.18 0.57 
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Table D.2: Mean of Total Point and Final Scores of Landsat TSS models across different water classes as derived from different sediment types, 

backscattering ratios and Solar Zenith Angles. The top five and bottom five scores from each water types and the final scores are in bold and bold italics.  

MODEL 

Mean Total Score from 

Sediment 

Mean Total Score from Backscattering Ratio 

(bb/b) 

Mean Total Score from Solar Zenith 

Angles Final 

Score 

Error  

Final Score 

I II III IV V I II III IV V I II III IV V 
Lower 

bound 

Upper 

bound 

LAN-E3 1.66 1.69 1.67 1.69 1.70 1.85 1.81 1.86 1.82 1.84 1.79 1.61 1.74 1.61 1.64 1.73 1.60 1.77 
LAN-A4 1.54 1.63 1.54 1.63 1.64 1.62 1.69 1.64 1.71 1.67 1.59 1.50 1.56 1.48 1.50 1.60 1.46 1.69 
LAN-E9 1.28 1.38 1.24 1.36 1.39 1.74 1.94 1.65 1.97 1.98 1.47 1.54 1.39 1.55 1.62 1.57 1.47 1.64 
LAN-A5 1.38 1.51 1.39 1.52 1.43 1.52 1.60 1.53 1.59 1.49 1.52 1.54 1.52 1.52 1.52 1.51 1.44 1.59 
LAN-A1 1.33 1.53 1.34 1.58 1.45 1.54 1.69 1.46 1.80 1.63 1.52 1.27 1.48 1.33 1.59 1.50 1.43 1.56 
LAN-E14 1.47 1.32 1.46 1.33 1.45 1.76 1.37 1.78 1.42 1.56 1.75 1.09 1.74 1.12 1.56 1.48 1.35 1.60 
LAN-E20 1.56 1.57 1.53 1.61 1.60 1.52 1.45 1.52 1.48 1.48 1.54 1.17 1.51 1.16 1.49 1.48 1.37 1.59 
LAN-E4 1.53 1.42 1.42 1.33 1.58 1.41 1.54 1.46 0.91 1.45 1.51 1.21 1.46 0.68 1.50 1.36 1.23 1.48 
LAN-E1 1.36 1.36 1.36 1.36 1.36 1.37 1.34 1.36 1.35 1.35 1.29 1.33 1.29 1.32 1.30 1.34 1.28 1.40 
LAN-E8 1.31 1.35 1.32 1.35 1.35 1.35 1.36 1.36 1.41 1.36 1.29 1.26 1.27 1.28 1.28 1.33 1.18 1.42 

LAN-E13 1.36 1.39 1.38 1.35 1.37 1.30 1.28 1.35 1.27 1.30 1.35 1.20 1.35 1.12 1.35 1.31 1.28 1.37 
LAN-E2 1.33 1.33 1.32 1.34 1.33 1.34 1.30 1.33 1.32 1.30 1.16 1.26 1.21 1.26 1.23 1.29 1.27 1.35 
LAN-A2 1.18 1.08 1.19 1.11 1.12 1.38 1.04 1.43 1.20 1.23 1.42 1.08 1.41 1.16 1.26 1.22 1.13 1.38 
LAN-E21 1.16 1.11 1.20 1.10 1.11 1.28 1.13 1.43 1.01 1.08 1.25 1.16 1.40 1.05 1.15 1.17 1.07 1.24 
LAN-E7 1.11 0.93 1.09 0.93 0.85 1.38 1.04 1.39 1.09 0.89 1.47 0.79 1.46 0.74 0.91 1.07 0.83 1.31 

LAN-E17 1.09 1.04 1.10 1.08 1.09 1.00 0.99 1.01 1.02 1.00 0.89 0.97 0.89 0.97 0.94 1.01 0.98 1.03 
LAN-E12 1.13 1.02 0.96 1.12 1.24 1.09 0.74 1.11 0.61 1.05 1.25 0.71 1.19 0.50 0.75 0.96 0.73 1.20 
LAN-E15 0.98 0.91 0.97 0.99 0.97 1.04 0.92 1.02 0.97 0.99 1.06 0.71 1.09 0.69 0.99 0.95 0.83 1.04 
LAN-E5 0.97 0.95 0.95 0.99 0.99 0.94 0.88 0.90 0.89 0.96 0.97 0.70 0.94 0.72 1.03 0.92 0.76 1.05 
LAN-A3 0.93 0.93 0.90 0.93 0.89 0.92 0.85 0.88 0.66 0.61 0.92 0.91 0.90 0.72 0.69 0.84 0.68 1.02 
LAN-E19 0.66 0.67 0.67 0.69 0.64 0.64 0.73 0.80 0.87 0.76 0.60 0.65 0.66 0.70 0.67 0.69 0.45 1.07 
LAN-E6 0.59 0.68 0.57 0.73 0.66 0.61 0.61 0.56 0.76 0.63 0.68 0.58 0.62 0.69 0.65 0.64 0.53 0.81 
LAN-E10 0.42 0.45 0.39 0.45 0.45 0.65 0.59 0.61 0.65 0.48 0.66 0.44 0.60 0.44 0.36 0.51 0.28 0.78 
LAN-E11 0.40 0.46 0.40 0.48 0.41 0.45 0.37 0.46 0.52 0.38 0.42 0.30 0.40 0.36 0.27 0.41 0.23 0.67 
LAN-E22 0.99 0.84 1.02 0.67 0.75 0.56 0.00 0.19 0.00 0.00 0.47 0.05 0.34 0.00 0.00 0.39 0.31 0.51 
LAN-E16 0.29 0.20 0.30 0.30 0.31 0.43 0.30 0.43 0.42 0.45 0.36 0.27 0.41 0.32 0.44 0.35 0.16 0.62 
LAN-E18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Appendix E 
The statistical measures used in assessing the accuracy of the results 

between modeled and the true value are as follow:  

( )
%100

/
MARE 1 ×

−
=
∑
=

n

yyx
n

i
iii

 
(E1) 

where n is the total number of samples, xi is the predicted value and yi is the 

true value. 

 The Absolute Relative Error that was used to gauge the tolerance of 

each TSS model is defined as follows: 

%×
-

=ARE 100
x
yx

 (E2) 

where x is the TSS MARE results from the HydroLight validation and y is the 

MARE result from the TSS distribution generated from the 1000 data points 

in the Gaussian distribution of errors for 10%, 20% and 50% Rrs uncertainty.  
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Appendix F 
This Supplementary contains materials related to MODIS and Landsat TSS 

models for Chapter 4  
MODIS TSS models: 

 
Figure F.1: Total scores for different sediments and the average scores across all five 
sediments in CLASS-I. 

 

 
Figure F.2: Total scores for different sediments and the average scores across all five 
sediments in CLASS-II water. 
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Figure F.3: Total scores for different sediments and the average scores across all five 
sediments in CLASS-III water. 

 

 
Figure F.4: Total scores for different sediments and the average scores across all five 
sediments in CLASS-IV water. 
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Figure F.5: Total scores for different sediments and the average scores across all five 
sediments in CLASS-V water. 

 

 
Figure F.6: Total scores for different backscattering ratios and the average scores across all 
backscattering ratios in CLASS-I water for Calcareous sand. 
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Figure F.7: Total scores for different backscattering ratios and the average scores across all 
backscattering ratios in CLASS-II water for Calcareous sand. 

 

 
Figure F.8: Total scores for different backscattering ratios and the average scores across all 
backscattering ratios in CLASS-III water for Calcareous sand. 
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Figure F.9: Total scores for different backscattering ratios and the average scores across all 
backscattering ratios in CLASS-IV water for Calcareous sand. 

 

 
Figure F.10: Total scores for different backscattering ratios and the average scores across 
all backscattering ratios in CLASS-V water for Calcareous sand. 
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Figure F.12: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-II water for Calcareous sand. 

 

 
Figure F.11: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-I water for Calcareous sand. 
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Figure F.13: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-III water for Calcareous sand. 

 

 
Figure F.14: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-IV water for Calcareous sand. 
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Figure F.15: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-V water for Calcareous sand. 

 
Landsat TSS Models: 

 
Figure F.16: Total scores for different sediments and the average scores across all five 
sediments in CLASS-I water. 
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Figure F.17: Total scores for different sediments and the average scores across all five 
sediments in CLASS-II water. 

 

 
Figure F.18: Total scores for different sediments and the average scores across all five 
sediments in CLASS-III water. 
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Figure F.19: Total scores for different sediments and the average scores across all five 
sediments in CLASS-IV water. 

 

 
Figure F.20: Total scores for different sediments and the average scores across all five 
sediments in CLASS-V water. 
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Figure F.21: Total scores for different backscattering ratios and the average scores across 
all backscattering ratios in CLASS-I water for Calcareous sand. 

 

 
Figure F.22: Total scores for different backscattering ratios and the average scores across 
all backscattering ratios in CLASS-II water for Calcareous sand. 
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Figure F.23: Total scores for different backscattering ratios and the average scores across 
all backscattering ratios in CLASS-III water for Calcareous sand. 
 

 
Figure F.24: Total scores for different backscattering ratios and the average scores across 
all backscattering ratios in CLASS-IV water for Calcareous sand. 
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Figure F.25: Total scores for different backscattering ratios and the average scores across 
all backscattering ratios in CLASS-V water for Calcareous sand. 

 

 
Figure F.26: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-I water for Calcareous sand. 
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Figure F.27: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-II water for Calcareous sand. 

 

 
Figure F.28: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-III water for Calcareous sand. 
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Figure F.29: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-IV water for Calcareous sand. 

 

 
Figure F.30: Total scores for different solar zenith angles and the average scores across all 
solar zenith angles in CLASS-V water for Calcareous sand. 
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Appendix G 
 

G.1 Inter-Sensor TSS Variability in Dredge, Moderate Turbid, and Clear 
Area  
 Figures G1-G3 shows the variability in TSS concentration at 250 m, 

500 m, 1000 m, and 2000 m spatial resolutions for MODIS-Aqua, WV2 and 

Landsat-8 OLI in the DA, MTA and CA respectively. From Figures G1 – G3, 

we observe that in the MTA and CA (see Figures G2 and G3), TSS 

concentrations derived by each individual sensor remained similar across 

different spatial resolutions. In the DA (Figure G1) the MODIS-Aqua derived 

TSS concentration at 250 m spatial resolution is lower than the Landsat-8 

OLI and WV2 sensor, but as the spatial resolution gets coarser all sensors’ 

derived TSS concentrations are similar within the respective error bars. In 

the turbid region (Figure G1) the MODIS-Aqua sensors displayed little 

variability as the resolutions were decreased and the spatial extent was 

increased, but Landsat-OLI and WV2 both displayed a decrease in the mean 

TSS values. However, Figures G2 and G3 shows that the TSS 

concentrations derived by the individual sensors were similar across different 

spatial resolutions, but overall the WV2-derived TSS concentration remained 

high and Landsat-8 OLI-derived TSS concentration remained low across all 

spatial resolutions. 

 
 

(a) 
 Figure G.1: TSS concentration variability at different spatial resolutions derived from 
MODIS-Aqua, WV2 and Landsat-8 OLI for Moderate Turbid Area (MTA). 
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(b)  
Figure G.2: TSS concentration variability at different spatial resolutions derived from 
MODIS-Aqua, WV2 and Landsat-8 OLI for Moderate Turbid Area (MTA). 

 
 

(c) 
Figure G.3: TSS concentration variability at different spatial resolutions derived from 
MODIS-Aqua, WV2 and Landsat-8 OLI for Clean Area (CA). 
 

  In Figures G1-G3, across different spatial resolution grids (250 m – 

2000 m), the DA, MTA and CA region of the study site was quantified to 

have mean TSS concentration of 12.67±2.15 mg/L, 1.89±0.04 mg/L, and 

0.51±0.02 mg/L respectively for MODIS-Aqua sensor. Likewise, for Landsat-

8 OLI and WV2 sensors mean TSS concentration in DA, MTA and CA 



  

 

209 

 

regions were quantified to be 11.34±6.13 mg/L, 1.61±0.07 mg/L, and 

0.16±0.02 mg/L and be 22.04.34±2.65 mg/L, 3.85±0.19 mg/L, and 1.84±0.06 

mg/L respectively. Further, the range of TSS concentration observed were in 

CA were 0.70 mg/L to 4.02 mg/L, 0.05 mg/L to 3.2 mg/L, and 0.35 mg/L to 

1.9 mg/L for WV2, Landsat-8 OLI and MODIS-Aqua sensors respectively. 

Likewise, in the turbid regions (DA, SG and RP) the TSS concentrations 

varied in the ranges of 19.12 mg/L to 41.02 mg/L, 4.06 mg/L to 29.16 mg/L, 

and 3.77 mg/L to 16.09 mg/L based on WV2, Landsat-8 OLI and MODIS-

Aqua sensors respectively. In terms of relative error, MODIS-Aqua, Landsat-

8 OLI and WV2 in DA, CA and MTA were 16.96%, 54.09%, and 12.05%, 

3.1%, 10.39% and 2.99%, and 2.3%, 4.54% and 4.82% respectively.   

 

 

 

 



  

 

210 

 

Appendix H  
 

 
Figure H.1: Daily TSS concentration variability from 10:00 hrs – 15:00 hrs at location, Box A, B and C derived using SWIR atmospheric correction 
method (Left) July 5th 2015, (Middle) July 7th 2015, and (Right) July 9th 2015. NEL (TSS) and Δρa(TSS) are error derived from AHI sensor noise and 
aerosol estimation. 
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Figure H.2: Daily TSS concentration variability from 10:00 hrs – 15:00 hrs at location, Box A, B and C derived using NIR-SWIR atmospheric correction 
method (Top Left) July 4th 2015, (Top Middle) July 5th 2015, and (Top Right) July 6th 2015, (Bottom Left) July 8th 2015, (Bottom Middle) July 9th 2015 
and (Bottom Right) July 10th 2015. NEL (TSS) and Δρa (TSS) are error derived from AHI sensor noise and aerosol estimation. 
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Appendix I 
 

 
Figure I: Spectral plot of in situ ρw of validation data points (Plot from the top-left the every 10th random validation data points).   
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