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Abstract The determination of the most unstable areas in oil fields is critical for addressing engi-

neering problems of wellbore and sand production as well as geologic problems such as understand-

ing dynamic constraints on hydrocarbon migration and fracture permeability. In this research

work, coherency seismic attribute has been used for the determination of the most critical areas

in terms of drilling stabilities in the DQ oil field, Iran. The results obtained have shown that the

(1) predominant features are the SSE–NNW and N–S trends (2) the central part of the DQ structure

shows the highest concentration of segment bundles, (3) the segment bundles seem to be aligned

along some lineaments oriented SE–NW and SSE–NNW, and (4) on the eastern and western mar-

gins of the map there is an anomalous concentration of segments oriented E–W. It can be concluded

that coherency attribute is a valuable tool for structural analysis highlighting those areas containing

unstable features.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Egyptian Petroleum Research

Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Tensile and shear failure are the major mechanisms resulting in
borehole instability problems such as blowout, lost circulation,

stuck tools and collapse of borehole. The complicated acci-
dents caused by borehole instability give rise to serious drilling
quality and safety problems. More than six billion dollars are

spent in controlling borehole instability in the global petro-
leum industry every year. For achieving safe, high quality
and highly efficient drilling, it is vital to understand properly
and estimate effectively the stress state of enclosing rock of
borehole, explore mechanisms of borehole instability and

establish prediction theory of borehole stability.
Analyzing borehole stability through rock mechanics

theory is a major way to research on borehole stability [1–5].
Many accurate ways have been found to determine petrophys-

ical, elastic and strength parameters of formation via seismic
and well log data [6]. Based on the above parameters, the stress
state of the enclosing rock of the borehole can be analyzed and

calculated through the mechanics theory of the porous med-
ium and the calculation model of the in situ stress.

Conventional researches on borehole stability are usually

carried out after drilling, which can help determine the major
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Oil Field 

Figure 1 Geographical location of oil field.
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mechanism of borehole instability, propose improvement mea-
sures and guide succeeding drilling through comprehensive
analysis of drilling, well log and core data. However, from

the perspective of engineering practicality, borehole instability
problems must be predicted in advance, found at the earliest
possible time and solved as soon as possible. Meanwhile,

because of the deficiency of available information, the pre-
drilling prediction is a difficult frontier technology, in which
major resources available are seismic data of prospecting area

and well log and test data of offset wells. In this regard, the
research on borehole stability prediction before drilling is of
great significance.

A methodology for determining the orientation and relative

magnitude of crustal stresses is now well-established (e.g.,
[7–9]) and has been utilized at literally thousands of sites,
e.g., [10]. In many research works, it has been shown that frac-

tures and faults play an important role in controlling the
strength properties of rocks but not all of them are equally
important for failure and deformation processes. In situ stres-

ses, at depth, including orientation and magnitude, have a
dominant effect on well completion and production processes.
In this regard, the issue of wellbore stability has gained partic-

ular importance in the last 10 years as a response to the
increase in the exploration of complex areas which represent
major engineering challenges in drilling and production [11].

A seismic attribute is a quantitative measure of a seismic

characteristic of interest. An analysis of attributes has been
integral to reflection seismic interpretation since the 1930s when
geophysicists started to pick travel times to coherent reflections
on seismic field records [12]. There are now more than 50 dis-

tinct seismic attributes calculated from seismic data and applied
to the interpretation of geologic structure, stratigraphy, and
rock/pore fluid properties [13]. The coherency attribute is a

mathematical measure of similarity between adjacent seismic
traces. The coherence cube calculated on 3D seismic presents
similarity (or dissimilarity) of the seismic waveforms, and hence

in what the seismic waveforms represent. That is, coherence
cube processing reveals shapes of subsurface reflectors such
as pinchouts, unconformities, and channel boundaries, and
subtle sedimentological features that are difficult to interpret

on traditional seismic volumes [14]. Hence, the aim of this
paper is to use seismic attributes, more specifically coherency
attribute, for fracture analysis and determination of the most

critical areas for drilling program in the DQ oil field, Iran.

2. Study area

This study uses the data belonging to an oilfield located in the
Iranian Province of Kuzestan, onshore the Ahwaz region, near
the Iran–Iraq frontier. The field is a north–south oriented gen-

tle anti-cline, located in the Dezful Embayment, which is a sec-
tor associated with the closing of the Neo-Tethys Sea and the
Tertiary formation of the Zagros–Taurus Mountains. The oil-

field is close to the west of the Basrah area. The structures in



Figure 2 Basic principle of coherency. The clouds of points are an indicator of the similarity of two adjacent well correlated traces. The

first ellipse represents a higher continuity between the two adjacent traces than the second ellipse.

Table 1 Vertical analysis window picked for analysis.

Time range (ms) Windows size (ms)

0–1000 60

1000–2000 90

2000–3000 120
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the Basrah area consist of gentle anti-clines showing a north–
south general trend which is the same to this field. The trend of

these anticlines follows the old north–south oriented basement
lines. The presence of Precambrian and early Cambrian salt in
the Northern Persian Gulf area and Saudi Arabia is considered

as a reason to explain the possible origin of these structures.
However, the development of these anticlines seems related
to the reactivation of basement faults which can be responsible

for their structural evolution. The structural growth of the field
area may have already started during the Mesozoic Era or ear-
lier and continue through the time. The Fahliyan formation is
well exposed in the Zagros Mountains in Fars Province [15].

At the same time of the sedimentation of the Fahliyan, in
the area located between the oilfield and the Khuzestan
Province, the intra-shelf basin of the Garau formation takes

place. The current oilfield area at the time of the Fahliyan sed-
imentation must belong to an articulate carbonate ramp com-
plex, partly controlled by local tectonics, partly by sea level

changes, probably limited eastward by a more subsiding area
that has undergone a deeper sedimentation. Argillaceous lime-
stones and shales of deep environment are also developed off-
shore Kuwait, suggesting that this area belongs to the same

intra-shelf basin. The sedimentation of these units is related
to the significant sea level rise that started during the late
Tithonian and continued to the early Berriasian [16]. The shal-

low water sequences of Fahliyan and equivalent units of north-
ern Persian Gulf underlay the shale and bioclastic limestone of
the Ratawi formation.

These structures continue southwards to Kuwait showing
the same orientation. Fig. 1 shows the geographical location
of the DQ oil field in Iran.
3. Seismic and well logs data

The DQ Field is covered by 3D seismic survey acquired by

NIOC over an area of about 500 km2. The two released final
volumes (spike and gapped Deconvolution) were confirmed
to be of high quality data. To carry out the following
study, a specific post-migration reprocessing was performed.

In this regard, Spike Deconvolution, Spectral Whitening,
Stratigraphic Deconvolution and Notch dimensional spatial
filter in the frequency domain were applied to improve the

vertical resolution and to attenuate the acquisition footprint.
Complete well log datasets (including calibrated ‘‘compres-

sional’’ sonic curves) were considered and loaded on

Hampson–Russel software in order to study the quantitative
relationships between acoustic and litho-petrophysical proper-
ties and to support seismic lithology activities (inversion and

calibration). At the same time, a set of acoustic and petrophys-
ical curves, including the generated synthetic seismograms,
were used to correlate well and seismic information.

4. Seismic attributes

The seismic attributes extracted from pre-stack or post-stack
seismic data by mathematical transformations are specific

parameters which reflect intrinsic characteristics of seismic
wave. Seismic attributes can be used to analyze and predict
geologic information because spatial changes of properties of

stratigraphic rock and fluid can result in changes of seismic
attributes which reflect geometry, kinematics, dynamics, and
statistics characteristics of seismic information. Through seis-

mic attribute analysis, the hidden information about litholog-
ical, structural, sequential, petrophysical and petroliferous
characteristics of formations can be picked up from seismic
data so that the potential of seismic data can be explored fully

[17–26]. There are many different types of attributes used for
geological and petrophysical modeling including instantaneous
amplitude, instantaneous phase, instantaneous frequency,

root-mean-square amplitude, average absolute amplitude,



Figure 3 Linear features traced using contrast differences, texture variations and color spectra shifts.
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Figure 4 Resulting pattern map comprises 10,670 segments highlighting all lineaments interpreted on the chosen time slices.
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Figure 5 Rosette diagram of the total population, weighted for length of the features. The total numbers of considered segments (10,670)

are subdivided into 90 classes (range is 02�). The rosette diagram has highlighted the presence of seven different trends (The main

displayed trends are: 350� N–028� N Trend N–S (green), 028� N–066� N Trend NE–SW (red), 066� N–080� N Trend ENE–WSW (orange)

080� N–102� N Trend E–W (magenta), 0102� N–126� N Trend ESE–WNW (blue), 0126� N–142� N Trend SE–NW (cyan), 0142� N–170�
N Trend SSE–NNW (yellow)).
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coherency, autoregressive coefficients, etc. Coherency is the
one usually used for structural mapping and highlighting faults

on seismic volume. Coherence values also announce changes in
seismic response due to lithology, or due to spatial changes in
rock physical properties such as porosity, pore fluid, perme-

ability, and elastic properties. Specifically, faults and strati-
graphic boundaries exhibit the greatest amount of trace-to-
trace dissimilarity.

The basic principle of the coherency attribute is exposed in
Fig. 2. As shown, if we crossplot the amplitudes of two adja-
cent well correlated trace snaps, a cloud of much thinner points
will be obtained than the one obtained if the two traces were

less similar.
Coherency (continuity) is a quantitative measurement of
such property, locally computed on a small cube centered on

each sample contained in a seismic volume.
In this paper, the seismic attributes used to construct the

structural model are extracted from weighted stacking trace

of borehole-side seismic traces. In the first place, the time–
depth correspondence relationship between seismic and well
log data must be determined by acoustic log data or VSP data

of drilled wells to calibrate horizons accurately. With the
exception of instantaneous attributes, the choice of the size
of time-limited moving window has a significant impact on
calculating attributes. Practical application indicates the appro-

priate size range of the time window is 60–120 ms (Table 1).



Figure 6 Rosette diagram of the entire segments population, weighted for length of the features, before the application of filtering. The

predominant distribution of segments in the classes 000�–002� and 180�–182� due to the seismic acquisition direction (seismic footprint)

can be observed.

Table 2 Main trends displayed in the rosette diagram.

Trend Color

350� N–028� N Trend N–S Green

028� N–066� N Trend NE–SW Red

066� N–080� N Trend ENE–WSW Orange

080� N–102� N Trend E–W Magenta

0102� N–126� N Trend ESE–WNW Blue

0126� N–142� N Trend SE–NW Cyan

0142� N–170� N Trend SSE–NNW Yellow
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In addition, mild dip compensation has been allowed (±2
samples, with a ‘‘dip window’’ of 90 traces).
5. Fracture analysis

From the entire coherency cube, nineteen time slices have been

extracted, sampled every 40 ms between 2200 and 2920 ms.
This time window has been chosen to fully cover the time
interval characterized by the presence of a Formation
named Fahliyan, which represents the reservoir in the

DQ structure.Time-slice 2200 ms, time-slice 2240 ms, time-
slice 2280 ms, time-slice 2320 ms, time-slice 2360 ms,
time-slice 2400 ms, time-slice 2440 ms, time-slice

2480 ms, time-slice 2520 ms, time-slice 2560 ms, time-slice
2600 ms, time-slice 2640 ms, time-slice 2680 ms,
time-slice 2720 ms, time-slice 2760 ms, time-slice 2800 ms,

time-slice 2840 ms, time-slice 2880 ms, time-slice 2920 ms.



Figure 7 Resulting pattern map after the color coded operation.
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Figure 8 Fracture Potential Contour Map can be interpreted as reflecting the areal variation of fracture potential or total strain.
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Figure 9 A comparison between the Pattern Map and the Fracture Potential Contour Map. There are some areas of maximum potential

that can coincide with the segment bundles.

128 S. Maleki et al.



Seismic attributes in structural study and fracture analysis of DQ oil field 129
On each time-slice, linear features (i.e. potential fracture
zone) were traced using contrast differences, texture variations
and color spectrum shifts (Fig. 3). The interpreted lineaments

were subsequently exported to a Geographical Information
System (GIS) for geographically linking to a UTM frame.

The resulting pattern map (Fig. 4) comprises 10,670 seg-

ments and can be considered as a transparent image of all lin-
eaments interpreted on the chosen time slices. The number of
segments considered in this analysis is the result of a filtering

operation. In fact, to avoid problems related to the seismic
acquisition (possible presence of residual acquisition foot-
print), the data comprised in the range of 000�–002� and
180�–182� (the seismic acquisition direction) have been not

considered in the computation.
The first analysis performed comprises the generation of a

rosette diagram for the total population, weighted for the

length of the features (Figs. 5 and 6). In the rosette diagram,
we consider the main trends recognized. The main displayed
trends are given in Table 2.

The analysis of this Rosette diagram shows that lineaments
are fairly distributed, even if the N–S, NNW–SSE and E–W
seem to be lightly predominant.

Successively, the lineaments on the total map were color
coded according to the seven trends classified above. The
resulting map (Fig. 7) shows the lineament pattern colored fol-
lowing the recognized trends and can be utilized to discrimi-

nate the zones with a high density of sub-parallel features.
These zones show the presence of more persistent (at time) lin-
eaments which can be coinciding with faults.

6. Strike domain and fracture potential analysis

In order to discretize the information present in the compiled

Lineament Map, a calculation was performed using the follow-
ing procedures:

A grid was overlain on the area with 500 m grid cell size in

both x and y direction; for each grid cell center, P21s [27] den-
sity was calculated using the following relationship:

P21s ¼
X Ls

Ac
ð1Þ

where P21s (1/m) is the density of the 1D element (linear fea-
tures) in a 2D (area) domain, Ls (m) is the length of the part of

the segment which resides within the circle defined by the
search radius S, inversely scaled for distance to the cell center,
Ac (m2) is surface area of the search circle and S (m) is the

radius of the search circle (for the current study S= 1000 m).
Furthermore for each grid cell center, a rosette was gener-

ated representing P21s values for 10 degrees of strike direction,

normalized to 100%, and drawn normalized to the rosette
radius (Rs = 500 m). Border effects of the investigated area
were filtered-out by means of a special technique (using the
finite elements) which compares the investigated region with

the search radius. The results are presented as a Fracture
Potential Contour Map (Fig. 8).

The Fracture Potential Contour Map can be interpreted as

reflecting the areal variation of fracture potential or total
strain. Within the Fracture Potential Contour Map, there are
some areas of maximum potential that can coincide with the

feature alignments described in Fig. 7.
A subsequent discretization was performed by outlining the

domains where each of the fracture sets comprises a
statistically significant portion of the total range of strikes.
The result of this calculation is the Fracture Domain Map
(Fig. 9), where the statistical cut-off is represented by 25%; this

means that in this map only the trends that perceptually exceed
these values are displayed.

7. Conclusions

The DQ oil field is located in an active plate zone in Iran.
Hence, structural and fracture analysis of this field should never

be ignored. Undoubtedly, doing such work will significantly be
helpful for identification of the most hazardous area in terms of
drilling instability. In this regard, current research work

attempts to provide a contour map highlighting the most criti-
cal area (i.e., total strain) for drilling. Coherency seismic attri-
bute has successfully been used for the purpose of this study

and the results obtained have shown that (1) the predominant
features are the SSE–NNW and N–S trends identified as yellow
and green in the rosette diagram respectively, (2) the central
part of the DQ structure shows the highest concentration of

segment bundles, (3) the segment bundles seem to be aligned
along some lineaments oriented SE–NW and SSE–NNW,
and (4) on the eastern and western margins of the map there

is an anomalous concentration of segments oriented E–W. It
is concluded that the coherency attribute can be used for a wide
range of structural analysis and it is truly able to provide mean-

ingful results about the most unstable regions of drilling.
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