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Abstract 

Black carbon aerosols (BC) are emitted by biomass burning and fossil fuel combustion and 

are present throughout the troposphere and the stratosphere. These aerosols have substantial 

direct and indirect effects on the atmosphere and climate and contribute to climate sensitivity 

and future climate change estimate uncertainties. Tropospheric BC has a relatively short 

residence time in the atmosphere (days to weeks) and exhibits large spatial and temporal 

gradients associated with emission sources, atmospheric transport, aging, and wet deposition. 

Once emitted, BC absorbs solar radiation warming the surrounding atmosphere and altering 

atmospheric circulation and cloud properties. Deposited to snowfields, ice caps, and alpine 

glaciers, BC reduces surface albedo and enhances surface melt, changing the energy balance 

of the glacier. Before the advent of fossil fuel combustion, BC emissions were from biomass 

burning due to both human activity and natural variability. Past BC emissions and the 

resulting atmospheric distribution are largely unconstrained. Greater knowledge of past BC is 

required to reduce uncertainties in climate sensitivity estimates. This thesis investigates long-

range transported BC in the Southern Hemisphere using the Antarctic ice cap as an archive 

for BC from the recent past to the late 19th Century. The deposition rates and characteristics 

of BC in Australian rainfall were also studied to investigate wet removal rates and latitudinal 

differences in wet deposited BC particle morphology, chemical composition, and insoluble 

coatings.  

Mass concentrations of BC in Antarctic snow and ice are extremely low, typically at the 

parts-per-trillion level. Detailed analysis of individual BC particles required the development 

of new methods to concentrate and isolate BC for analysis by electron microscopy. This 

investigation resulted in the first elemental analysis of BC in Antarctic ice and revealed new 

information on tropical and Antarctic BC size, morphology and chemical impurities from ice 

core samples spanning the industrial revolution. As part of the International Roosevelt Island 

Climate Evolution Project (RICE), an annual BC deposition time series spanning 1887 to 

2012 CE was reconstructed to investigate spatial and temporal variability. The time series 

included BC concentrations from two overlapping ice cores and two snow pits. The ice core 

and snow pit records revealed a significant increase in BC deposition to Roosevelt Island, 

West Antarctica, from 1990 CE through 2013 CE, likely due to a change in BC emissions 

combined with changes in atmospheric circulation. Comparison with previously published 

BC data from the West Antarctic Ice Sheet Divide (WAIS) ice core revealed that decadal 
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variability in concentration and deposition to the two sites is inversely correlated. We 

conclude that the inverse correlation between the two records is likely due to decadal shifts in 

the location and intensity of the Amundsen Sea Low in response to El Niño-Southern 

Oscillation. 
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Chapter 1. Introduction 

 

1.1 Significance and Rationale – Black carbon in the Southern Hemisphere 

Black carbon aerosol particles (BC) affect the climate in multiple ways, including optical 

absorption, snow albedo reduction, and atmospheric chemistry effects. BC is produced by 

biomass burning and fossil fuel combustion, and is irregularly distributed in the atmosphere. 

While there are a growing number of modeling studies regarding the atmospheric transport 

and climate forcing of these particles, models are limited by the lack of spatially distributed 

data of depositional flux (Bond et al., 2013). The interaction of BC with water and its 

removal from the atmosphere by wet deposition is crucial to understanding BC residence 

times in the atmosphere, and consequently it's variability in the atmosphere. However, there 

is a distinct lack of knowledge on BC particles in snow and rain. Consequently, the models 

poorly represent the temporal evolution of BC particles and deposition rates during 

atmospheric transport. The Southern Hemisphere is distinct from the Northern Hemisphere in 

that emissions are dominated by biomass burning (Lamarque et al., 2010). Little is known 

regarding the recent history of BC aerosols in the atmosphere of the Southern Hemisphere. 

Ice caps contain the only reliable record of BC in the past atmosphere.  

 

1.2 Research Objectives 

This thesis aims to investigate the history and physical characteristics of black carbon 

aerosols in the southern hemisphere from the late 19th century to the near-present. This is 

achieved by studying past precipitation in the form of Antarctic snow and ice, as well as 

modern rain samples from two different Australian sites. 

The following outline describes the primary objections of this research, sample selection, and 

employed techniques. 

1. Develop a method to isolate and characterize black carbon aerosols present in trace 

concentrations in rainwater, snow, and ice samples (Chapter 3); 
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a. Sample selection: Archived ice core samples previously drilled on Law Dome, 

East Antarctica during the 2005/2006 austral summer (collected by A. Smith, 

2005-2006). 

b. Isolate ultra-trace concentrations of black carbon aerosols in Australian rain 

and Antarctic ice. 

c. Validate the method using electron microscopy. 

 

2. Characterize historical black carbon particles in Antarctic ice dated to pre- to post-

industrialization of the Southern Hemisphere and in modern precipitation (Chapter 4); 

a. Sample selection: Archived ice core samples previously drilled on Law Dome, 

East Antarctica during the 2005/2006 austral summer (collected by A. Smith, 

2005-2006). Australian rain samples were collected for this study in Darwin, 

Northern Territories. 

b. Using the method described in Chapter 3, identify and characterize black 

carbon particles using electron microscopy, detailing the variability in black 

carbon particles found in historic ice core samples from 1759, 1838, and 

1930 CE as well as modern rainwater samples.  

 

3. Investigate the record of black carbon deposition in West Antarctica and identify the 

variables in long-range transported particle deposition over the 20th century 

(Chapter 5); 

a. Sample selection: Ross Ice Shelf ice, firn, and snow pit samples collected 

during the 2011/2012 and 2012/2013 austral summers as part of the Roosevelt 

Island Climate Evolution (RICE) project. 

b. Quantify BC concentrations from 1890 CE to 2013 CE using the single-

particle soot photometer (SP2). 

 

4. Investigate deposition of black carbon particles in rain, including particle morphology 

and flux (Chapter 6). 

a. Sample selection: Australian rain samples were collected for this project in 

Darwin, Northern Territories and Perth, Western Australia. 

b. Study the wet deposition of black carbon in rain through flux measurements 

using the SP2 and particle characterization using the methods developed in 

Chapters 1 and 2. 
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1.3 Thesis Structure 

This main body of this thesis is presented as a series of manuscripts, including one published 

paper, one submitted paper, and two papers in preparation for submission. Due to the format 

of this thesis as a collection of intended publications, there is some repetition of concepts 

within the text. 

Chapter 1: Introduction 

This chapter introduces the topic of black carbon in the southern hemisphere, 

describes the research objectives, and outlines the structure of this thesis. 

Chapter 2: Literature Review 

This chapter provides a review of the role of black carbon in the atmosphere and the 

variety of methods used to quantify it. 

Chapter 3: Paper 1 

Ellis, A., R. Edwards, M. Saunders, R. K. Chakrabarty, R. Subramanian, A. van 

Riessen, A. M. Smith, D. Lambrinidis, L. J. Nunes, P. Vallelonga, I. D. Goodwin, A. 

D. Moy, M. A. J. Curran and T. D. van Ommen (2015). Characterizing black carbon 

in rain and ice cores using coupled tangential flow filtration and transmission electron 

microscopy, Atmospheric Measurement Techniques, 8(9), 3959-3969. 

doi:10.5194/amt-8-3959-2015 

Chapter 4: Paper 2 

Ellis, A., Edwards, R., Saunders, M., Chakrabarty, R. K., Subramanian, R., Timms, 

N. E., van Riessen, A., Smith, A. M., Lambrinidis, D., Nunes, L. J., Vallelonga, P., 

Goodwin, I. D., Moy, A. D., Curran, M. A. J., & van Ommen, T. D. (2016). 

Individual particle morphology, coatings, and impurities of black carbon aerosols in 

Antarctic ice and tropical rainfall. Geophysical Research Letters, 43(22), 11,875-

811,883. doi:10.1002/2016GL071042 �  
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Chapter 5: Paper 3 

Roosevelt Island Climate Evolution Project: Black carbon deposition to Roosevelt 

Island, West Antarctica approaches Arctic levels (to be submitted to Journal of 

Geophysical Research: Atmospheres). 

Chapter 6: Paper 4 

Black carbon in rain: case studies from northern and western Australia (to be 

submitted to Journal of Geophysical Research: Atmospheres). 

Chapter 7: Conclusions 

This chapter describes and connects the results of the studies detailed in Chapters 3-6, 

and addresses the objectives outlined above. These results are also placed in the 

greater context of black carbon literature. 

Chapter 8: Bibliography 

Copyright agreements were obtained in order to reproduce publications, text, and images 

from publications resulting from this thesis. Copyright agreements can be found in 

Appendix B. 

 

1.4 References 

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., 
Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, 
M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., 
Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., 
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., & Zender, C. S. (2013). Bounding 
the role of black carbon in the climate system: A scientific assessment. Journal of 
Geophysical Research: Atmospheres, 118(11), 5380-5552. 

Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, 
C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van 
Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, 
K., & van Vuuren, D. P. (2010). Historical (1850–2000) gridded anthropogenic and biomass 
burning emissions of reactive gases and aerosols: methodology and application. Atmos. 
Chem. Phys., 10(15), 7017-7039. 
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Chapter 2. Literature review 

 

2.1 Introduction 

Black carbon nanoparticles (BC) pervade the Earth system and are present throughout the 

atmosphere, soils and sediments, and terrestrial waters. They are formed through incomplete 

combustion of fuel sources, including human use of fossil fuels and solid fuels and biomass 

burning (Murr, 2008). BC is transported as atmospheric aerosols and are found in high 

concentrations in the urban environment. It constitutes a substantial portion of particulate 

matter (PM) in the <2.5 nm particle diameter range, and has been linked to significant health 

risks in urban environments (IPCC, 2013; Janssen et al., 2011).  

BC can be transported on a hemispheric scale in the troposphere and globally in the 

stratosphere (Koch et al., 2007; Koch & Hansen, 2005), and is found in both remote deep 

ocean sediments and glacial snow and ice (Schmidt & Noack, 2000; Warren & Clarke, 1990). 

The presence of BC in the atmosphere influences regional and global climate (Bond et al., 

2013; Ramanathan & Carmichael, 2008). These aerosol particles impact the radiative, 

physical, and chemical properties of the atmosphere, affecting climate directly due to solar 

radiation absorption and indirectly through changes in cloud formation and structure (Hansen 

et al., 2000; Jacobson, 2000; McFiggans et al., 2006). When deposited to snow and ice, BC 

decreases surface albedo and contributes to surface melting (Flanner et al., 2007; Hansen & 

Nazarenko, 2004; Quinn et al., 2008). Historic records of BC are needed to understand past 

emissions, atmospheric distribution, and deposition, and ice cores contain those records.  

The global climate forcing impact of BC is studied using General Circulation Models 

(GCMs). However, there are large uncertainties associated with these studies due to 

incomplete understanding of BC emissions, physical and chemical processes in the 

atmosphere, and removal rates (Koch et al., 2007; Reddy & Boucher, 2007; Stier et al., 

2007). Small changes in the BC characteristics used by particle-resolved models can have 

large effects on model results (Fierce et al., 2016; Hodnebrog et al., 2014), suggesting that 

accurate particle studies in both local and remote environments are critical to understanding 

the global significance of BC.  
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2.2 Black Carbon in the atmosphere 

2.2.1 Sources of black carbon 

Black carbon is composed of primary particles formed from the gaseous products of 

incomplete combustion. Primary particles are comprised of ~30 nm concentric-layered, semi-

graphitic carbon spherules joined into larger, semi-fractal aggregates (Li et al., 2003). 

Combustion sources include fossil fuels, solid fuels, and biomass burning. Fuel source, 

combustion temperature, oxygen availability, and atmospheric turbulence can all affect the 

characteristics of primary BC particles and the extent of graphitization of the carbon spheres 

(Murr, 2008). 

Black carbon is a common component of ‘soot,’ though both have various definitions in the 

literature (Bond et al., 2013). Ramanathan and Carmichael (2008) describe soot as the 

combination of BC (light-absorbing elemental carbon particles) and various organics 

condensed from the gas phase. 

There has been some inconsistency in the history of naming and identification of black 

carbon, so in this text we adopt the criteria listed in (Bond et al., 2013), namely that:  

• the primary particles are refractory, with a vaporization temperature of 4000 K; 

• the primary spheres cluster into larger aggregate particles; 

• aggregates are insoluble in organic solvents as well as water; 

• aggregates have strong absorption of visible light of at least 5 m2 g-1 at 550 nm (Bond 

& Bergstrom, 2006);  

• the refractive index of BC is constant across the visible spectrum. 

The lack of consistency with BC terminology has limited the ability to compare 

measurements and modeling results, as studies have often included a broader range of 

particles than this definition. 
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2.2.2 Measurement techniques 

There have been many methods used to measure BC concentrations in the atmosphere, 

including optical absorption, thermal-optical analysis, laser-induced incandescence, 

photoacoustic spectrometry, and aerosol mass spectrometry (Moosmuller et al., 2009; Slowik 

et al., 2007). BC has also been quantified in the atmosphere using optical depth measured by 

absorption photometers (Sato et al., 2003). As these methods measure different properties of 

BC, quantitative intercomparison of different study results must consider potentially large 

discrepancies in measurements (Slowik et al., 2007). 

Thermal-optical analysis (TOA) is a quartz filter-based technique to measure the organic 

carbon (OC) and elemental carbon (EC) fractions of aerosol samples (Birch & Cary, 1996; 

Chow et al., 2007; Jeong et al., 2004). Optical absorption instruments measure the aerosol 

absorption coefficient (babs) by depositing aerosols on a quartz filter and optically measuring 

the change in transmittance through the filter. Instruments include the aethalometer and the 

Multi-Angle Absorption Photometer (MAAP). This method is limited, however, in 

converting optical measurements to BC mass by the conversion factor used in instrument 

calibration.  

The radiative impact of BC is often discussed in terms of mixing state, or how the BC 

aggregate has been incorporated into or onto complex aerosol particles including sulfates and 

organic material. Mixing state and coating can have substantial effects on BC absorption, 

thereby affecting the resulting concentrations from optical measurement techniques such as 

the aethalometer and MAAP (Knox et al., 2009). 

Single particle mass concentration and particle size can be measured in real-time by single 

particle intra-cavity laser-induced incandescence (SP2, Droplet Measurement Technologies, 

Boulder, Colorado; Baumgardner et al., 2004; Stephens et al., 2003). Single particle 

measurements using the SP2 can detect very low concentrations of BC in the atmosphere 

(~10 ng m-3). These measurements are limited by the particle size detection range of the SP2 

(~100 nm to 650 nm mass-equivalent diameter), but this size range represents approximately 

90% of the accumulation mode of BC (Schwarz et al., 2010a). The SP2 has been used to 

measured BC abundance (as number and mass concentrations) in the atmosphere (Schwarz et 

al., 2006).  



 
8 

BC aggregates are small and their structure complex; therefore, the study of the individual 

aggregate particles has been imperative to understand their optical effects. Imaging and 

spectroscopy of individual particles has been facilitated by electron microscopy techniques 

such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). 

Electron microscopy technology has already shown to be a valuable resource for the study of 

atmospheric nanoparticles (Adachi et al., 2010), and has historically been used to characterize 

individual BC particles (Pósfai et al., 1999).  

Transmission electron microscopy (TEM) coupled with electron energy loss spectrometry 

(EELS) and energy-dispersive X-ray spectrometry (EDS) have been used to determine the 

size, morphological, and elemental characteristics of atmospheric aerosols (Pósfai et al., 

1999). Scanning transmission electron microscopy (STEM) coupled with EDS has been used 

to study aerosol particles (Utsunomiya & Ewing, 2003), with high-resolution imaging and 

STEM EDS mapping revealing nano-scale inclusions in larger aerosols that would go 

unnoticed with traditional TEM imaging. A recent study has also used synchrotron-generated 

x-rays to study the organic and inorganic composition and mixing state of urban aerosols, 

including BC (O'Brien et al., 2015). 

Although there is substantial variation in BC aggregate morphology, there appears to be some 

consistency in particle formation. The atomic structure of graphitic carbon bonds, particularly 

the extent of sp2 orbital hybridization, determine its strong light absorption properties 

(Andreae and Gelencsér, 2006). Laboratory-generated BC from fossil fuel combustion was 

studied using various electron microscopy methods, indicating that the average 

sp2 hybridization state of the carbon atoms was consistent for coal, oil, and diesel fuels (Chen 

et al., 2005).  

2.2.3 Behavior in the atmosphere: BC particle evolution 

The physical and chemical properties of BC are highly dynamic, and evolve rapidly in the 

atmosphere in response to atmospheric conditions, formation conditions, and co-emitted 

species (Browne et al., 2015; Shen et al., 2014; Wang et al., 2014). In the atmosphere, the 

black carbon aggregates are mixed and coated with various organic materials, including 

hydrophilic coatings (Figure 2.1). The coatings and particle mixing states have a direct effect 

on global climate forcing through the absorption of solar radiation (Jacobson, 2001), and an 

indirect effect through nucleation of ice and water particles (DeMott et al., 1999; Lammel & 
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Novakov, 1995). Particle mixing can occur rapidly at some locations, within a few hours of 

emission (Moffet & Prather, 2009; Moteki et al., 2007), and can amplify the mass absorption 

coefficient (MAC) by a factor of up to 2.9 (Jacobson, 2012). Coatings become thicker the 

higher up in the atmosphere BC has travelled from the emission source, and these coatings 

can affect the light absorption of the atmospheric column by more than 30% (Schwarz et al., 

2008).  

 

 

Figure 2.1: The atmospheric evolution of a BC aggregate after emission, including (a) the 
uncoated, freshly emitted BC aggregate, (b) the addition of an organic matter coating to the 
aggregate, (c) the incorporation of sulfate aerosols into and around the coated aggregate, and 
(d) a 3-D reconstruction of the aged aerosol. Black, blue, and red are BC (“soot” in the original 
text), organic matter, and sulfate, respectively. Source: Adachi et al. (2010), reproduced with 
permission. 

 

2.2.4 Behavior in the atmosphere: transport, distribution, and removal 

Once emitted, atmospheric nanoparticles such as BC can stay suspended from days to weeks 

in the troposphere and for over a year in the stratosphere (Bauer et al., 2013; Buseck & 

Adachi, 2008) while being transported hemispherically and globally. It is important to 

understand the behavior of BC in the remote atmosphere in order to better inform general 
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circulation models, as model estimates often vary widely from observations (Hodnebrog et 

al., 2014; Koch et al., 2009). Recent SP2 studies of BC aerosol loading in the atmosphere 

over the remote Pacific indicated significant latitudinal and vertical variability (Schwarz et 

al., 2010b). Additionally, modeling of the BC aging timescale constrained by observations 

from Schwarz et al. (2010b) indicates that different source regions have significantly 

different lifetimes in the atmosphere, likely due to the prevalence and composition of co-

emitted species (Zhang et al., 2015).  

BC particles are irregularly distributed in the atmosphere, further contributing to uncertainties 

in model parameters of atmospheric loading. Figure 2.2 demonstrates the strong regional 

variability, with large emissions from biofuels in Southeast Asia, India, Europe, and the 

United States (Bond et al., 2004; Ramanathan & Carmichael, 2008). In contrast, BC 

emissions from biomass burning dominate in the Southern Hemisphere, with seasonal bush 

and forest fires in South America, Africa and Australia. 
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Figure 2.2 Black carbon emissions from (a) fossil and biofuels combustion (data from 1996), and 
(b) annual average of open biomass burning. Color scale is logarithmic, and units are ng m-2 s-2. 
Source: Bond et al. (2004), reproduced with permission. 

 

Carbonaceous aerosols and other particles in the accumulation mode (particle size between 

100 nm and 1 µm) are removed from the atmosphere by wet and dry deposition processes. 

Dry deposition processes generally governing BC aerosols include gravitational 

sedimentation, impaction, and Brownian diffusion, whereas wet deposition describes particles 

removed from the atmosphere through scavenging by precipitation such as rain and snow 

(Seinfeld & Pandis, 2016). BC particles also function as cloud and ice nuclei (Koehler et al., 

2009), providing a mechanism for nucleation scavenging. The worldwide dry deposition of 

BC accounts for approximately 0.46% of the total BC deposition, indicating that the 

overwhelming majority of BC particles are wet deposited (Jacobson, 2012). There are a 
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number of critical uncertainties in studying the effect of BC on the global climate, due in part 

to uncertainties in atmospheric removal through wet removal processes (Vignati et al., 2010). 

While there are a growing number of modeling studies regarding the atmospheric transport of 

these particles, there is a lack of field measurement data characterizing removal rates from 

the atmosphere, or wet deposition flux. As a result, the models are largely unconstrained with 

respect to removal rates (Bauer et al., 2013). The removal of BC from the atmosphere and 

deposition in rain and snow has a significant effect on global climate models, as it is crucial 

to understanding BC residence times in the atmosphere, and consequently its influence on 

climate forcing (Bond et al., 2013). Deposition of BC to the ocean has also been modeled but 

not conclusively measured, which could be significantly aided by a study of BC in rainwater 

over the oceans (Jurado et al., 2008).  

The ultrasonic nebulizer coupled to the SP2 system has been used in the past to measure BC 

particles wet deposited in rain and melted snow samples, though the effectiveness of the 

measurement drops substantially with larger particle size (>500 nm, Ohata et al., 2011). 

Consequently, studies suggest that SP2 methods to measure BC in rainwater consistently 

underestimate BC mass (Ohata et al., 2011; Torres et al., 2013), but systematic loss can be 

controlled for by using aqueous BC standards. 

 

2.3 Black carbon in the cryosphere 

Black carbon has been measured in snow packs around the world, including remote locations 

far from source emissions and as far as the South Pole (Hansen et al., 1988; Hegg et al., 2009; 

Warren & Clarke, 1990). BC plays an important and distinct role in the cryosphere, including 

seasonal snow packs and glaciated regions such as the Arctic, Antarctica, and alpine regions 

such as the Himalayas. When deposited to reflective surfaces such as snow, BC decreases the 

albedo of the surface, thereby absorbing heat and contributing to climate forcing (Hansen & 

Nazarenko, 2004; McConnell et al., 2007). Studies have suggested that BC snow 

concentrations as low as 10 ppb are enough to decrease snow albedo by 1%, accelerating 

melting (Flanner et al., 2007; Hadley & Kirchstetter, 2012; Hansen & Nazarenko, 2004), but 

these concentrations are unlikely in Antarctica where BC in snow has been measured in the 

parts-per-trillion (ppt) range (Bisiaux et al., 2012). 
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The IPCC Fifth Assessment Report review suggests that BC has a net climate forcing of +0.4 

W m-2, with BC-induced darkening of snow and ice around the globe contributing an 

estimated +0.04 W m-2 (IPCC, 2013), though there are distinct regional variations in the 

climate forcing estimations, with one model reporting that emissions from Southeast Asia 

induced forcing of up to 20 W m−2 in regions of the Tibetan plateau (Flanner et al., 2007). 

2.3.1 Transport to the Antarctic atmosphere 

Latitudinal gradients are particularly pronounced in the Southern Hemisphere (SH, Figure 

2.3), with emissions dominated by austral dry season fires in the tropical belt (Dwyer et al., 

1998). Emissions in the lower latitudes (potential source regions for Antarctica) are also 

primarily from biomass burning (Lamarque et al., 2010). Biomass burning is also one of the 

largest sources of insoluble nanoparticle emissions in the SH (Crutzen & Andreae, 1990; 

Reddington et al., 2016).  

Pósfai et al. (2003) detailed the complexity of particles generated by biomass burning in 

Southern Africa, a potential source of BC to Antarctica. The study found BC, tar balls 

(amorphous, carbon-rich spheres emitted from smoldering fires), and other organic aerosols 

in smoke plumes. Pósfai et al. (1999) conducted TEM characterization of BC aerosol 

particles collected in the remote Southern Ocean troposphere, near Antarctica. These particles 

were predominately internally mixed with sulfate aerosols and show significant atmospheric 

aging, as expected for long-range transported particles. 
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Figure 2.3 Black carbon emissions by latitude and source type, showing the dramatic difference 
between BC sources in the Northern and Southern hemispheres, with the Northern Hemisphere 
consisting of predominantly industrial and residential fuel combustion, while the Southern 
Hemisphere is dominated by biomass burning. Source: Bond et al. (2013), reproduced with 
permission. 

 

Once emitted, atmospheric transport mechanisms carry the particles to Antarctica where the 

particles are deposited in snow and preserved in the ice caps (Fiebig et al., 2009). Meridional 

transport from the SH to Antarctica is governed by the cyclonic systems that circle the 

Southern Ocean as well as the Southern Annular Mode (SAM; Abram et al., 2014; Wang & 

Cai, 2013). SAM governs the latitudinal expansion and contraction of subpolar westerly 

winds and is the main contributor to variability in atmospheric circulation patterns around 

Antarctica (Marshall, 2003). A large factor in meridional transport efficiency of aerosols to 

Antarctica is distance – while Africa and South America dominate in BC emissions, Australia 

contributes a disproportionate amount of BC to Antarctica simply due to its proximity (Stohl 

& Sodemann, 2010). 
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Several atmospheric aerosol studies of BC in Antarctica have identified strong seasonality in 

coastal BC aerosol concentrations, in both East and West Antarctica (Caiazzo et al., 2017; 

Weller et al., 2013; Wolff & Cachier, 1998). These papers reported primary peaks in BC 

concentration in the austral winter/spring, a period associated with dry-season biomass 

burning on nearby continents. One record on the Ekström Ice Shelf in Dronning Maud Land 

contained secondary peaks in BC concentration during the austral summer (Weller et al., 

2013). High-temporal resolution ice core studies found similar seasonality in West and East 

Antarctic ice concentrations during the past 200 years (Bisiaux et al., 2012). The seasonality 

of BC deposition to Antarctica and atmospheric meridional transport suggests that biomass 

burning emissions from the SH are the primary source of BC in Antarctica (Bisiaux et al., 

2012; Stohl & Sodemann, 2010). 

2.3.2 Ice cores 

Ice cores recovered from glaciers around the world have provided invaluable records of the 

past atmosphere and climate on Earth. Ice cores have been particularly instrumental to 

demonstrating the impact of human activities on the climate (Legrand & Mayewski, 1997; 

Lorius et al., 1990). Ice cores are atmospheric record keepers: ambient air samples are 

preserved in the small bubbles trapped in the ice for hundreds of thousands of years. The data 

stored in the ice and bubbles allows us to reconstruct atmospheric conditions: a landmark 

420 kyr ice core record from Antarctica contained the evidence that modern methane and 

carbon dioxide levels are unprecedented in the last four glacial cycles (Petit et al., 1999). This 

was later reinforced by the longer European Project for Ice Coring in Antarctica (EPICA) 

Dome C record, extending the record of atmospheric methane and carbon dioxide to 650 kyr 

before present (Luthi et al., 2008; Spahni et al., 2005). 

Ice core drilling sites are selected by parameters such as glacier stability, bedrock 

topography, and snow accumulation rate (Legrand & Mayewski, 1997). The low 

accumulation rate at sites such as Vostok and Dome C on the East Antarctic Ice Sheet 

contributes to records that span 800 kyr but with low temporal resolution, such that annual 

and seasonal patterns are difficult or impossible to distinguish (EPICA Community 

Members, 2004; Petit et al., 1999). Conversely, the high accumulation rate at Roosevelt 

Island on the Ross Ice Shelf allows for sub-annual time resolution but a substantially shorter 

record (Tuohy et al., 2015). Additionally, ice core records are spatially limited and reflect 

highly variable atmospheric transport conditions. As such, many different records are needed 
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to build robust conclusions (Bauer et al., 2013; Masson-Delmotte et al., 2011; Sigl et al., 

2015). 

Ice core records are reconstructed by developing a depth-age comparison. Seasonal cycles in 

the water isotope fractionation (ratio of stable isotopes 18O and 16O, or δ18O), non-sea salt 

sulfur (nssS), hydrogen peroxide from summer photochemistry, and sodium from sea salt 

allow for annual layer counting of the ice core record (Legrand & Mayewski, 1997). Sulfate 

aerosols from volcanic events can provide age-scale validation for ice core records as they 

represent absolute time horizons. Due to the global transport of some eruptions, volcanic 

events can also facilitate intercomparison between ice core locations around the world (Sigl 

et al., 2015). Nevertheless, there can be significant uncertainties in ice core dating due to 

several factors, including inaccurate layer counting (i.e. questionable layers, missing layers), 

ice core loss during core processing, and insufficient instrument and sampling resolution 

(Rasmussen et al., 2006).  

Many modern ice core studies have moved away from time-intensive discrete sampling 

procedures involving manual partitioning and decontamination, and now use a continuous-

flow analysis (CFA) system that allows for high-resolution sampling (Bigler et al., 2011; 

Hiscock et al., 2013; McConnell et al., 2002; Röthlisberger et al., 2000). A CFA system 

usually consists of mounting the ice core vertically on top of a heated plate, or melting plate, 

and pumping the melt-water from the clean center of the ice core directly to instrument 

analysis.  

2.3.3 Historical records of atmospheric black carbon 

Ice cores can provide significantly longer records of atmospheric BC than direct observation 

and measurement in the atmosphere. Human activity has had a significant and ongoing effect 

on atmospheric black carbon, through fossil fuel combustion, contained burning of biomass, 

and increased land use activities affecting biomass burning patterns (Marlon et al., 2008). 

Greenland ice cores reveal a dramatic shift to coal burning in the northern hemisphere in the 

mid-1800s (McConnell et al., 2007), and ice cores from the Tibetan Plateau suggest an 

increased deposition of BC corresponding to increasing industrial activity in the 1990s in 

Southeast Asia, with BC concentrations accelerating melting of the glaciers (Xu et al., 2009). 

Black carbon has been measured in the atmosphere in Antarctica (Warren & Clarke, 1990; 

Weller et al., 2013), and snow and ice cores from these regions have recently been used to 
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reconstruct century scale records of black carbon at several sites (Bisiaux et al., 2012). The 

deposition of biomass burning BC in Antarctica varies on decadal to millennial time scales 

and is affected by climate variability and meteorological conditions such as the El Niño-

Southern Oscillation, or ENSO (Bisiaux et al., 2012).  

Ice cores provide a unique opportunity to study the properties of historical BC particles that 

have been long-range transported in the atmosphere and deposited in Antarctica. Though 

numerous studies exist on individual aerosol particle morphology and composition, a single 

study was found that investigates the morphology of carbonaceous aerosols in global 

precipitation. Murr et al. (2004) used TEM to image particles in ice cores from the Greenland 

ice cap by depositing the ice core melt-water on a TEM grid, but this study did not identify 

BC aggregates. 

 

2.4 Global significance 

2.4.1 Role of black carbon in global climate models 

The global climate forcing impact of BC is studied using numerous General Circulation 

Models (GCMs), using variables such as emissions rate, atmospheric lifetime, vertical 

distribution, internal vs external mixing state, mass absorption coefficient (MAC), and 

aerosol optical depth (AOD, Bond et al., 2013). Uncertainties in the characteristics, 

distribution, and lifetime of BC, as well as its historical variability, impairs our ability to 

model and forecast its contribution to climate change. Global climate models (GCMs) rely on 

a detailed understanding of the physical and chemical nature of the particles, their 

atmospheric effects, and past records of climate variability and forcings. Climate forcing due 

to aerosols represents a major uncertainty in both our understanding of past climate 

variability and our ability to model future climate change scenarios (IPCC, 2013). This is 

particularly true of aerosols emitted by biomass burning, which are modulated on decadal 

scales by hydroclimate variability and human land use activity (Marlon et al., 2008).  

A comprehensive analysis of the treatment of BC in GCMs is available in Bond et al. (2013), 

including various iterations of the NCAR Community Atmosphere Model (CAM; Allen et al., 

2012; Ban-Weiss et al., 2012; Collins et al., 2004; Hodnebrog et al., 2014; Neale et al., 2010) 

the Reading Intermediate General-Circulation Model (IGCM, Cook & Highwood, 2004), the 
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Canadian Centre for Climate modeling and analysis (CCCma) model (Croft et al., 2005), and 

the Goddard Institute for Space Studies (GISS) modelE2 (Bauer et al., 2013). However, there 

are large uncertainties associated with these studies due to incomplete understanding of BC 

emissions, physical and chemical processes in the atmosphere, and removal rates (Koch et al., 

2007; Reddy & Boucher, 2007; Stier et al., 2007). Changes in BC characteristic such as 

particle coating used by particle-resolved models can have large effects on model results 

(Fierce et al., 2016; Hodnebrog et al., 2014).   

The Industrial Revolution brought about a marked change in aerosol composition and 

chemistry due to the introduction of anthropogenically emitted inorganic aerosol precursors 

and secondary organic aerosol (SOA) formation (Tsigaridis et al., 2006). A shift in particle 

emissions has also altered climate forcing in the arctic in the 20th century through deposition 

of industrial BC on the snow surface (McConnell et al., 2007). To understand the influence of 

BC on climate change on a global scale and to validate model simulations, it is critical to 

account for the past variability of atmospheric BC using ice core records.  

2.4.1.1 Black carbon particle treatment in models 

Gustav Mie published a method in 1908 to estimate the optical absorption of aerosol particles 

through scattering of an electromagnetic wave on a simplified, homogeneous sphere (Mie, 

1908). Mie theory has since been regularly used to model the optical absorption and 

consequent radiative forcing of BC (Bond & Bergstrom, 2006; Lack & Cappa, 2010). More 

complex models use fractal morphology for the BC particles rather than a spherical 

approximation. Simulation results of the radiative forcing using fractal morphology indicates 

that the radiative impact of aggregate models can be up to twice as high as the homogenous 

sphere method (Kahnert & Devasthale, 2011). Consequently, non-spherical corrections are 

beginning to appear in aggregate absorption and scattering models of BC (Liou et al., 2011). 

The light absorption of aerosol particles has been modeled based on particle size and 

wavelength, using spherical and spherically symmetric core-shell particle models 

(Moosmuller et al., 2009). Scattering and absorption of atmospheric BC is often calculated 

using the fractal dimensions of the particles, which change as the aggregates collapse and are 

mixed with other species in the atmosphere (Chakrabarty et al., 2007). 

Some field studies support substantial increases in BC absorption relative to coating thickness 

(Liu et al., 2015), whereas others have shown that coating thickness has limited impact on 
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absorption (Cappa et al., 2012). The most recent evidence suggests that changes in individual 

particle composition and diversity of the population has a large effect on global estimates of 

BC climate forcing potential, reinforcing the need to understand the composition and 

morphology of BC (Fierce et al., 2016). Regardless, there are insufficient experimental 

measurements of BC to determine the spatial variability of internal mixing in atmosphere 

(Bond et al., 2013).  

2.4.2 Black carbon in the changing climate 

BC has a complicated relationship with climate, as it is both influenced by climate change 

and a climate forcer itself. Global sedimentary charcoal records, a measure of past biomass 

burning, suggest that anthropogenic effects have had a marked influence on global biomass 

burning (Marlon et al., 2008). There are also many indications of the direct impact of aerosol 

emissions on synoptic and global scales, including the Australian climate, a significant source 

region for Antarctica. Recent modeling work has suggested that aerosols may have a 

comparable climate forcing effect to greenhouse gases in Australia (Rotstayn et al., 2009). 

Indeed, the recent increase in northwest Australia rainfall and continental cloudiness appear 

to be linked to the increase in aerosols generated in the Northern Hemisphere (Rotstayn et al., 

2007; Shi et al., 2008). BC emissions may have already contributed to large-scale changes in 

atmospheric circulation, with models suggesting that the Northern Hemisphere tropics 

expand linearly with increasing radiative forcing from BC emissions (Allen et al., 2012; 

Kovilakam & Mahajan, 2015). 

The Australian continent is particularly sensitive to climate variations, with historical peaks 

in the charcoal record closely coordinated with maximum El Niño and La Niña frequency 

(Lynch et al., 2007). Variability associated with ENSO may drive a ‘boom and bust’ cycle in 

Australia, characterized by heavy rainfall during La Niña years causing significant fuel 

loading, followed by dry conditions where the new growth is subject to severe bushfires 

(Letnic & Dickman, 2006). Climate change may amplify drought conditions in Australia 

(Nicholls, 2004), and models suggest an increasing risk for extreme bushfires in Australia 

with rising temperatures and lower relative humidity (Pitman et al., 2007). Southern Africa, 

another strong emissions source region for Antarctica, has also experienced a drying trend 

since the 1950s, although it is likely caused by natural climate variability (Hoerling et al., 

2006).  
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Recent studies have shown a likely increase in frequency of La Niña events, coupled with an 

increase in frequency of El Niño events, and a more frequent oscillation between the two (Cai 

et al., 2015). Southeast Australia has been affected by persistent drought from 1997 to 2010 

known as the ‘Big Dry,’ potentially influenced by the positive phase of the southern annular 

mode (SAM) and subsequent amplification of ENSO events (Verdon-Kidd & Kiem, 2009).  

In a rapidly changing environment, it is increasingly important to understand the long-term 

effects of climate change on the generation and transport of atmospheric BC in the Southern 

Hemisphere.  
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Abstract 

Antarctic ice cores have been used to study the history of black carbon (BC), but little is 

known with regards to the physical and chemical characteristics of these particles in the 

remote atmosphere. Characterization remains limited by ultra-trace concentrations in ice core 

samples and the lack of adequate methods to isolate the particles unaltered from the melt 

water. To investigate the physical and chemical characteristics of these particles, we have 

developed a tangential flow filtration (TFF) method combined with transmission electron 

microscopy (TEM). Tests using ultrapure water and polystyrene latex particle standards 

resulted in excellent blanks and significant particle recovery. This approach has been applied 

to melt water from Antarctic ice cores as well as tropical rain from Darwin, Australia with 

successful results: TEM analysis revealed a variety of BC particle morphologies, insoluble 

coatings, and the attachment of BC to mineral dust particles. The TFF-based concentration of 

these particles has proven to give excellent results for TEM studies of BC particles in 

Antarctic ice cores and can be used for future studies of insoluble aerosols in rainwater and 

ice core samples. 
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3.1 Introduction 

Carbonaceous aerosols emitted by combustion processes are comprised of black carbon (BC) 

and organic matter. These aerosols can stay suspended from days to weeks in the troposphere 

and for over a year in the stratosphere (Buseck and Adachi, 2008; Stohl and Sodemann, 

2010). They impact the radiative, physical, and chemical properties of the atmosphere, 

affecting climate through direct optical effects and indirectly through changes in cloud 

formation and structure (Johnson et al., 2004). The contribution of BC to radiative forcing is 

significantly affected by particle shape, size, and mixing state, which is in turn affected by 

emission source and aging in the atmosphere (Jacobson, 2001; Moffet and Prather, 2009). 

Understanding the behavior of BC and other carbonaceous aerosols in the remote atmosphere 

is important for validating aerosol parameterization in general circulation models (Koch et 

al., 2009). Wet deposition through rain and snow is the primary removal process of BC from 

the atmosphere (Bond et al., 2013), and has a large impact on BC’s atmospheric residence 

time and distribution (Hodnebrog et al., 2014). Furthermore, when deposited to highly 

reflective surfaces such as snow, the presence of BC can decrease surface albedo and 

accelerate melting (Flanner et al., 2007; Hansen and Nazarenko, 2004; McConnell et al., 

2007). Therefore, studies of BC in modern and historic rain, snow, and ice samples are 

needed to understand their modern atmospheric distribution and their presence in the paleo-

atmosphere, and in turn to study their impact on paleoclimate forcing and future climate 

change.  

Several methods exist for determining BC concentrations in the atmosphere, such as optical 

absorption methods, thermo-optical analysis, photoacoustic absorption spectroscopy, and 

aerosol mass spectrometry (Slowik et al., 2007). Single particle mass concentration and 

particle size can be measured in real-time by single particle intracavity laser-induced 

incandescence (SP2, Droplet Measurement Technologies, Boulder, Colorado). Black carbon 

particles can also be characterized individually using electron microscopy (Pósfai et al., 

1999). Many studies have measured BC abundance (as number and mass concentrations) in 

the atmosphere (Schwarz et al., 2006). Transmission electron microscopy (TEM) coupled 

with electron energy loss spectrometry (EELS) and energy-dispersive X-ray spectrometry 

(EDS) have long been used to determine the size, morphological, and elemental 

characteristics of atmospheric aerosols (Pósfai et al., 1999). Scanning transmission electron 

microscopy (STEM) coupled with EDS has been used to study aerosol particles (Utsunomiya 
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and Ewing, 2003), with high resolution imaging and STEM EDS mapping revealing 

nanoscale inclusions in larger aerosols that would go unnoticed with traditional TEM 

imaging. 

Previous studies have investigated BC mass concentrations in rainwater (Ohata et al., 2011; 

Torres et al., 2013), snow packs (Hegg et al., 2009; Warren and Clarke, 1990), and ice cores 

(Bisiaux et al., 2012; McConnell et al., 2007), but little data exists regarding the morphology, 

chemical composition, and insoluble coatings of BC particles in rain and snow. This is 

particularly true of aged, long-range transported particles that have been deposited at the 

polar ice caps. 

To the best of our knowledge, only one study has previously studied the morphology of 

carbonaceous aerosols in precipitation. Murr et al. (2004) analyzed particles in ice cores from 

the Greenland ice cap by melting the ice and depositing 180 mL of sample on a 5 mm TEM 

grid, a few microliters at a time. As evident by this process, isolating these particles for 

characterization is technically challenging, especially in ultra-clean Antarctic ice where their 

abundance is often less than 0.1 µg kg-1 (Bisiaux et al., 2012). As Antarctic ice cores have 

substantially lower BC concentrations than that observed in Greenland ice, larger sample 

volumes (>1 L melt water) are necessary to acquire sufficient particles for characterization, 

making this drop-by-drop method impractical. Salts and other dissolved species cause 

additional problems with the drop-by-drop method because they are also deposited on the 

grid, coating it with large amounts of unwanted material. When concentrated on TEM grids, 

these precipitated particles can hinder the detection and analysis of BC simply by obscuring 

particle morphology, especially when BC is present in ultra-trace concentrations. 

An ideal preconcentration method for insoluble BC particles in polar ice should be 

reasonably quick, concentrate large volumes of ice melt water, remove salts, and keep the 

particles in motion to limit aggregation. Tangential flow filtration (TFF) is a technique that 

uses a continuous flow of solution tangentially across a filter membrane to avoid sample 

build-up on the surface of the membrane (and subsequent sample loss). Hollow fiber filters 

have been employed to concentrate environmental water samples (Benner et al., 1997; 

Giovannoni et al., 1990) as well as nanoparticles for pharmaceutical applications (Dalwadi et 

al., 2005). TFF has a high particle recovery, can concentrate large sample volumes (>1 L) 

without membrane fouling, does not cause nanoparticle aggregation, and can preserve fragile 

aerosol structures (Benner et al., 1997; Dalwadi et al., 2005). An important benefit of TFF to 
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the study of BC particles is that it can concentrate particles whilst removing dissolved salts 

and other species, depending on the pore size of the filter.  

To study individual BC particles and other carbonaceous aerosols in global precipitation, we 

investigated the use of TFF to concentrate BC prior to analysis by TEM. Particle recovery 

rates and blanks were investigated using polystyrene latex (PSL) particle standards and 

ultrapure water. Test samples included tropical rainwater from Darwin, Australia as well as 

Antarctic ice cores. The rainwater provided an example of equatorial wet deposition of 

particles, whereas Antarctic ice provides both a modern example of polar deposition as well 

as a historical record of these particles in the global atmosphere. 

 

3.2 Methodology 

3.2.1 Clean room laboratory environment 

Sample preparation and cleaning of laboratory and field equipment was performed in the 

Trace Research and Advanced Clean Environment (TRACE) laboratory at Curtin University. 

The TRACE facility is a 450 square meter clean-air laboratory facility described by Burn et 

al. (2009). The facility includes a large positive pressure clean-air exclusion space (ISO Class 

5) housing five smaller clean-air laboratory modules (ISO Class 4) including a cold 

laboratory module. With the exception of the cold laboratory module, the modules draw clean 

air from the exclusion space through a series of high-efficiency particle air (HEPA) filters in 

the module roof. Module air passes through the floor and either recirculates back into the 

module and the exclusion space or is exhausted through the base of clean air hood. Air inside 

the cold laboratory module is filtered by a recirculating cryogenic air filtration HEPA system. 

The BC concentration in the exclusion space air was determined using an Single-Particle 

Soot Photometer (SP2) and found to be less than 1 BC particle / m3 STP for particles with a 

mass equivalent diameter range of 70 to 700 nm (assuming a constant density of 1.8 g/cc as 

in Schwarz et al. (2013)).  

Mechanical decontamination of ice core samples was conducted in the TRACE cold 

laboratory module at -12o C. All other sample preparation and TEM grid preparation 

activities were conducted in a clean-air bench inside a laboratory module. 
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The modules are fitted with an ultrapure water (UP, ρ >18.2 mΩ) system fed by a laboratory-

wide reverse osmosis and deionized water supply. This water was used for cleaning all 

laboratory benches, fittings, tubing, and plastic ware. Melted samples were kept in Teflon or 

low-density polyethylene (LDPE) bottles, filled and rinsed multiple times with UP water. All 

surfaces were cleaned with UP water prior to sample decontamination. 

3.2.2 Reagents and materials  

Blanks: The entirety of this concentration method was blank-tested with laboratory-made UP 

ice. The blank ice was made by freezing UP water in a cleaned 3 L perfluoro alkoxyalkane 

container (PFA, Savillex). The ice was removed from the container, cut into rectangles on a 

clean band saw in the cold laboratory module, and bagged in plastic layflat bags. This was to 

mimic the condition and treatment of the Antarctic ice core samples. 

Polystyrene latex particles: 200 nm polystyrene latex (PSL) spheres (SPI) were used to test 

the filtration and microscopy method, as they can be suspended in water and are readily 

identified on TEM grids. 

Filters: 50 kD pore size mPES Hollow Fiber Filters (HFF, Spectrum Laboratories, California) 

with 20 cm2 membrane surface area, gamma irradiated for sterility, were used to concentrate 

samples. The 50 kD (~10 nm) pore size was selected to retain as many particles as possible 

while minimizing filtration time. Any soluble species or particulates smaller than 10 nm are 

removed from the solution during filtration, including dissolved salts. 

Grids: The TEM grids used for the study were SPI ™ 300-mesh gold grids with a continuous 

(non-porous) SiO2/SiO support film. Gold was selected due to its resistance to corrosive UP 

water. Additionally, the carbon coating on the traditional copper TEM grids had irregularities 

that made distinguishing the actual carbonaceous sample difficult, and silicon dioxide 

coatings did not interfere with identification of carbonaceous particles using EDS spectra. 

3.2.3 Instrumentation 

A scanning electron microscope (SEM) was used to look at TEM grids prior to TEM 

analysis, to verify that sufficient particles were present on the grid. Scanning electron 

microscopy was performed with a Zeiss Neon 40EsB FIBSEM operated at 5 kV, located at 

Curtin University’s Microscopy & Microanalysis Facility. 
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The transmission electron microscopy was performed on a FEI Titan G2 80-200 TEM/STEM 

with ChemiSTEM Technology, which incorporates scanning transmission electron 

microscopy (STEM) with ~1 nm resolution EDS mapping. Samples were imaged using both 

TEM and STEM, both operating at 80 kV. This instrument is located at the University of 

Western Australia. Additional imaging and spectroscopy was performed on a JEOL 2100 

TEM operated at 120 kV and equipped with a GATAN Tridiem energy filter for EELS and 

energy filtered transmission electron microscopy (EFTEM) work. 

3.2.4 Samples 

Ice core samples: 

The DSS0506 ice core samples used in this study were collected in the 2005-2006 austral 

summer from Law Dome, East Antarctica. The ice core drilling location was at Dome 

Summit South (DSS), and provides overlapping ice core to the main DSS ice core 

(66°46′11′′ S, 112°48′25′′ E, 1,370 m elevation). Ice and snow from this site have been the 

subjects of a large number of studies (Burn-Nunes et al., 2011; Curran et al., 1998; Etheridge 

et al., 1996; Palmer et al., 2001; Pedro et al., 2012; Vallelonga et al., 2002; van Ommen and 

Morgan, 1996; van Ommen and Morgan, 2010). The flux of BC deposition at the same 

sampling site in Law Dome, East Antarctica has been quantified using an SP2 (Bisiaux et al., 

2012). The ice core used in this study was cut longitudinally into two parallel sections, 1 m 

long with a 5 cm by 5 cm cross-section. One section was used for measuring trace ion 

chemicals and stable isotopes, and the matching section was transported to the TRACE 

facility at Curtin University for BC studies. The ice was dated by matching the dissolved ion 

chemistry and water stable isotope records (δ18O) to the main DSS ice core record to produce 

a depth age scale for DSS0506. The main DSS ice core record was dated using annual layer 

counting and identification of volcanic horizons (Plummer et al., 2012). The cores used in 

this study are DSS0506-38U from 70.5 m and dated to 1930 CE, DSS0506-69U from 131.5 

m and dated to 1838 CE, and DSS0506-93U from 178.3 m and dated to 1759 CE. 

Approximately 1 cm of ice was removed from all sides during decontamination, resulting in 

~1.5 to 2 L of melt water. 

Rain samples: 

Monsoon rain samples were collected in Darwin, in tropical northern Australia. The region 

experiences a dry season (May-November) and a monsoonal wet season in the summer 
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months (December-March) (Holland, 1986; Kaars et al., 2000), and is in close proximity to 

equatorial Asian biomass burning as well as annually occurring northern Australian bushfires. 

The samples used to test this method were collected on 08 April 2014 and 11 April 2014, 

during the end of the wet period in Darwin when large volumes of rain could be collected in 

short periods of time. Rain was collected using an UP water cleaned Teflon funnel with a 1 L 

cleaned low density polyethylene bottle (LDPE, Nalgene) attached via a threaded cap. The 

funnel was placed on a bucket in an open field, with no overhead obstructions. 

3.2.5 Decontamination and concentration method 

The ice core decontamination procedure was adapted from the methods of Burn et al. (2009), 

Candelone et al. (1994), and Edwards et al. (2006), using materials described in Section 2.1 

of this paper.  

Ice core sections were placed on a cleaned plastic covered surface in the TRACE facility cold 

laboratory module. The exterior of the ice core was progressively removed and discarded 

using an acid-cleaned stainless steel chisel. The chisel was cleaned with 2% nitric acid before 

use and rinsed with UP water in between different ice core samples. Approximately 5 mm 

were removed from all surfaces of the ice using the chisel. After removing the exterior, the 

ice samples were transferred into an acid-cleaned colander made from a 3 L fluorinated high-

density polyethylene bottle with large holes drilled into the bottom. The colander was cleaned 

in 10% nitric acid and rinsed with UP water before use. The ice samples were then rinsed 

with large amounts of UP water to remove a further ~5 mm from all surfaces. Finally the 

samples were removed from the colander with acid-cleaned polypropylene tongs and 

transferred into a 3 L perfluoro alkoxyalkane container. Ice pieces were added periodically to 

the perfluoro alkoxyalkane melt water container over the course of the filtration, as to keep 

the sample cold while filtering to avoid possible aggregation. Rain samples were filtered 

directly from the sampling container (1 L LDPE Nalgene bottle). 

The TFF setup consisted of a recirculating HFF connected to a multichannel peristaltic pump 

(Ismatec IPC pump, IDEX Health & Science), detailed in Figure 3.1. Samples were pumped 

through filters with standard PVC two-stop pump tubing and PFA tubing.  
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Figure 3.1: Tangential flow filtration setup for concentration of rain or melted ice core sample 
H2O. Water sample recirculates through the hollow fiber filter, with H2O and dissolved species 
removed through open side port of filter cartridge.  

 

During concentration, sample water was recirculated from the bottle using the peristaltic 

pump, through a HFF, and then back into the sample bottle. One of two side ports on the HFF 

was left open over a waste container to allow filtrate to be removed with little backpressure, 

as backpressure on the filtrate removal line would have slowed the filtration rate. The sample 

bottle was elevated above the filter, and the height difference between filter and sample bottle 

was used to increase or decrease backpressure on the filter, speeding or slowing filtrate 

removal as required. Fitrate was removed at 250 mL/hour, resulting in a concentration of 2 L 

to 1.5 mL in approximately 8 hours. 
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Figure 3.2: Backflush of hollow fiber filter membrane setup, performed by stopping the 
peristaltic pump and injecting 1 mL of ultrapure water into the open side port using a syringe. 

 

The pump direction was periodically reversed, with the sample moving backwards through 

the filter, for ~5 seconds to avoid particle build-up on the membrane surface. The filter is also 

backflushed immediately prior to collecting the final concentrated sample with 1 mL of water 

(Figure 3.2) to remove any additional particles from the membrane. Samples were 

concentrated to 1.5 mL in the sample bottle, transferred to a cleaned polypropylene centrifuge 

vial, and gently shaken to avoid particle size separation. Concentrated samples were then 

deposited on 5mm TEM grids, 30 µL at a time using a clean PP pipette tip. The TEM grid 

was held elevated off the laboratory bench surface by SPI stainless steel tweezers in the 

TRACE module clean air hood at room temperature (~22° C) while the sample was 

evaporating down. Each 30 µL drop was left to evaporate fully between drops, depositing 

particles on the surface of the grid. To avoid particle separation in the solution, the sample 

vial was shaken immediately before each deposition. The sample vial was stored at 2° C 

between drops. Approximately 0.18 mL of sample was deposited to each grid.  
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3.2.6 Particle characterization using electron microscopy  

Insoluble particles were characterized using electron microscopy, initially to check for 

sample recovery, and eventually for quantification of particle size, morphology, and 

composition. During recovery method development, secondary electron imaging in the SEM 

was used to look for particles remaining on filters as well as for inspecting TEM grids for 

particles recovered through filtration.  

The silicon-coated grid exhibited some charging effects under the electron beam, and 

damaged squares of film (i.e. holes from handling with tweezers) could collapse completely 

when imaged in normal TEM mode. Often, spreading the beam out over a large section of 

grid and waiting a few minutes before imaging at higher magnification could prevent sample 

jumping. Film squares with large objects, such as bacteria or dust particles >10 µm, were 

more susceptible to complete collapse from charging. 

On the TEM, the entire area of each grid was initially surveyed at 200-500x magnification to 

locate particles, which were then imaged at higher magnifications and EELS/EDS spectra 

were acquired to characterize particle types. Particles were imaged at ~10,000x magnification 

for complex, larger aggregates, and 100,000-200,000x magnification for fine structure and 

individual particle morphology. Seemingly empty portions of the grid were also surveyed at 

higher magnification, to verify that potential deposits of smaller particles were not 

overlooked.  

BC was identified using various TEM results, including spherule aggregate structure, the 

presence of carbon peaks in EDS or EELS spectra, size of primary spherules (~30 nm), and 

‘onion-ring’ structure of spherules. STEM imaging and EDS were used to preserve beam-

sensitive structures, such as coatings on the particles. EFTEM elemental maps were acquired 

using the traditional three-window technique using energy windows adjusted to provide 

optimum signal-to-noise (Brydson, 2001). 

3.2.7 Testing the cleanliness of the system 

As the concentration method will concentrate both sample and contaminants, blanks were 

tested on each major step of the procedure to exclude the possibility of procedural 

contamination. Unused TEM grids were scanned prior to use for sampling. To test the 

cleanliness of the water, blank UP water was concentrated and deposited on TEM grids for 
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imaging. Laboratory-made UP water blank ice was decontaminated and concentrated using 

the method in section 2.5. The TEM samples were prepared from the concentrated solution. 

 

3.3 Results and Discussion 

3.3.1 Blanks 

No BC was found on any of the unused TEM grids or in any of the UP water tests. An UP 

water blank on the hollow fiber filter after filtering a rain sample was inspected on the TEM, 

and there was little evidence of cross contamination. Three, ~500 nm alumina silicate dust 

particles were found on the entire grid, surveying at 500x magnification.  

3.3.2 Tangential flow filtration 

Using TFF, the ice core samples were concentrated from an average initial volume of ~2 L to 

a final volume of 1.5 ± 0.1 mL, a factor of ~1300. The concentration factor varied slightly 

due to the initial volume of the ice core melt water, which was different for each ice core 

sample used. This was due to variations in the size of each ice core.  

The TFF method was tested with polystyrene latex (PSL) spheres (200 nm diameter). A 

prepared standard of 1 L of 1 µg kg-1 (1 ppb) PSL particles was concentrated from 1 L to ~1.5 

mL using the method in Section 2.5, resulting in a final concentration of ~670 µg kg-1. This 

concentrated standard was then deposited on a SiO2/SiO coated TEM grid. SEM images of 

the prepared sample grid showed significant sample recovery for characterization, with areas 

of the grid completely obscured with spheres (Figure 3.3).  
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Figure 3.3: SEM image of PSL spheres from concentration method test on SiO2/SiO coated grid 
surface, concentrated from 1 µg kg-1to ~667 µg kg-1using TFF. 

 

Using an average BC concentration of 0.08 µg kg-1 from the same Law Dome location in 

Antarctica (Bisiaux et al., 2012) and a concentration ratio of 2 L to 1.5 mL, the final BC 

concentration of the ice core samples was ~100 µg kg-1. A number of methods were tested to 

extract particles from water samples in this study, and these methods are detailed in the 

Supplementary Information. Comparison of this TFF method with the ‘failed’ methods in 

Supplementary Information indicate that particle recovery from TFF is more effective at both 

concentrating particles and keeping particles suspended in a solution, which can then be 

deposited on a TEM grid for characterization. Given that the melting of snow samples does 

not affect the size distribution of BC aerosols (Schwarz et al., 2013), the only information lost 

in the melting of the ice core would be any possible soluble constituents of the BC aerosols, 

such as soluble coatings. 
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3.3.3 Transmission electron microscopy 

Results presented from this study pertaining to the relative and absolute abundance of 

different particle types are qualitative only, because a statistically rigorous survey of all 

particles on the grid was not completed. Nevertheless, the images included in this paper have 

been chosen to be representative of particles commonly seen while scanning the grid. 

Sample charging on the SiO2/SiO-coated grids caused difficulty with TEM and STEM 

imaging, as the grid would periodically shift abruptly while collecting an image. The silicon 

and oxygen provided a useful background when looking for carbon in EDS and EELS 

spectra, but a carbon-coated grid would be more stable for high-resolution imaging on the 

nanometer scale. 

Black carbon aggregates were readily identified by their onion structure and morphology on 

TEM grids from both rain samples and ice core samples. In addition, STEM EDS revealed 

coatings and inclusions in the aggregates that would have otherwise been overlooked. STEM 

EDS also preserved beam-sensitive sample, including nitrogen and oxygen coatings up to 5 

nm thick on the BC aggregates (Figure 3.4).  

 

Figure 3.4: An example of a BC aggregate with nitrogen and oxygen coating and aluminum-rich 
silicate inclusions from Law Dome, Antarctica ice core dated to 1759 CE. a) STEM image, scale 
bar = 300 nm. b-f) a series of STEM EDS maps for C, N, O, Si and Al, respectively. Element 
maps shown are from same field of view as image a. 
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Various mineral dust particles were also successfully identified in both sample suites via 

imaging coupled with EELS and EDS analysis (Figures 3.5 and 3.6) and EELS and EFTEM 

analysis helped characterize complex dust particles containing Al, Si, Fe, and C (Figure 3.6). 

The mixing of BC and other particulates shown in Figures 3.5-3.7 is significant, as internal 

mixing of BC with other particles such as dust can affect their radiative forcing (Clarke et al., 

2004; Scarnato et al., 2015). STEM-EDS can distinguish variations in BC composition that 

may routinely be overlooked. 

 

Figure 3.5: TEM image of a particle from Darwin rain sample collected 11 April 2014, with 
accompanying STEM EDS maps of carbon, silicon, and aluminum. Element maps are from the 
same field of view as the TEM image. 
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Both the rain and ice cores had a large quantity of BC particles, with graphitic carbon 

‘onions’ of ~30 nm in diameter aggregated into larger particles of ~80 to >1000 nm in 

diameter. These particles often showed association with aluminosilicate dust particles (Figure 

3.5). Black carbon particles in both the rain and ice cores appeared to be significantly aged in 

the atmosphere as indicated by the collapsed structure of the carbon spherules (Figures 3.4-

3.7).  

 

 

Figure 3.6: Examples of particles concentrated from a Law Dome, Antarctica ice core dated to 
1930 CE. a) TEM image and b) EFTEM map of a complex aggregate particle where red is iron, 
blue is silicon, and yellow is carbon. 

 

The surveys in this study permitted qualitative comparisons between samples. For example, 

in general, the rain samples had many larger BC aggregates (>200 nm) whereas BC 

aggregates found in the ice cores were significantly smaller (~100 nm) and displayed a much 

more compact structure. Rain samples also contained numerous superaggregates as described 

in Chakrabarty et al., 2014. These superaggregates were >1 µm in diameter and were absent 

in the ice cores (Figure 3.7). Given the high particle yields from the TFF concentration 

method, it is anticipated that more systematic TEM surveys could facilitate more statistically 

robust data on particle type and size distributions. However, this is beyond the scope of this 

study. 
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Figure 3.7: Aged superaggregate from Darwin rain sample collected 08 April 2014. Inset is of an 
enlarged section of aggregate, showing individual BC sphere structure. 

 

The tangential flow filtration concentration method has been used to preserve fragile 

structures of particles and to avoid aggregation of nanoparticles. Nevertheless, 

disaggregation, aggregation, and aggregate collapse are still possible outcomes of the method. 

However, we see no obvious evidence that these factor significantly into the results. 

Tests of bond strength between carbon spheres in BC show that aggregates are unlikely to 

fragment into smaller units (Rothenbacher et al., 2008). Hence, disaggregation from this 

method is unlikely. Additionally, both the rain samples and the ice core melt water samples 

were processed in an identical way, including the filtration technique to concentrate the 

samples and the evaporation technique to deposit particles on the TEM grids. Both rain and 

ice core samples contained significant variations in particle size, including large amounts of 

smaller BC aggregates (~100 nm). This variety suggests that method-induced aggregation did 

not result in significant changes to the particle population. 

The collapsed structure of the black carbon aggregates seen in the ice core samples is 

supported by reports of BC aging in the atmosphere (Johnson et al., 1991; Li et al., 2003; 
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Martins et al., 1998). The BC contained in Antarctic ice cores has aged significantly from 

emission to deposition and would therefore likely contain collapsed aggregates. As BC is wet 

deposited in the rain samples, the particles are likely hydrophilic. The transition from 

hydrophobic to hydrophilic is a result of atmospheric aging (Stier et al., 2006), suggesting 

that the BC in rain has also aged significantly before deposition and will contain collapsed 

aggregates as well. 

While post-deposition processes within the glacier cannot be ruled out, volume equivalent 

diameters of BC particles found in the ice (Bisiaux et al., 2012) are similar to those 

determined over the remote Southern Ocean by the HIPPO project (Schwarz et al., 2010). 

Snow densification and ice metamorphosis are more likely to aggregate BC particles into 

crystal junctions. If this were significant, larger particles would be expected rather than 

smaller ones. The differences between the BC found in rain and Antarctic ice likely reflect 

the loss of large aggregates during long-distance transport to Antarctica. 

 

3.4 Conclusion 

The results presented herein clearly show that the combination of tangential flow filtration 

and transmission electron microscopy methods provides an effective way to characterize both 

centuries-old atmospheric aerosols preserved in Antarctic ice and modern aerosols in 

rainwater. Using a clean decontamination procedure and tangential flow filtration method, 

aerosols in rain and Antarctic ice have been concentrated by a factor of ~1300. Tangential 

flow filtration method tests with polystyrene latex particle standards have shown sufficient 

particle recovery for transmission electron microscopy characterization, and blank tests with 

ultrapure laboratory ice indicate that this process does not introduce any measureable 

contaminants. The results in this paper indicate that black carbon particles can form around or 

aggregate with dust and other mineral particulates, and aggregates can develop thin (<5 nm) 

insoluble coatings of nitrogen and oxygen.  

An important potential future development includes the possibility of quantification of 

particle sizes and types through systematic grid surveys of samples prepared from specific ice 

core depths. This type of survey could provide a statistically significant analysis of black 

carbon morphologies and chemical compositions in Antarctic ice, which could potentially 

reveal changes in black carbon over time. 
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Supplementary Information 

Unsuccessful concentration methods 

Drop by drop evaporation without preconcentration 

Murr et al. (2004) used a drop-by-drop method to deposit Greenland ice core melt water on a 

TEM grid, ~3 µL at a time. The drop-by-drop method might work on higher concentration 

samples (i.e. temperate ice cores or snow samples), but due to low concentrations of BC in 

Antarctic ice cores, characterization of the particles necessitates concentrating the melted ice 

core prior to depositing it on a TEM grid. To preserve the largest amount of particles, the 

sample should be processed as quickly as possible. The longer the sample sits melted, the 

greater chance of losing black carbon to aggregation or diffusion to the walls of the sample 

container. Depending on concentration of BC in sample, the drop-by-drop method would 

require a significant amount of sample deposition to grid before there are sufficient particles 

to image (~1 L, deposited 3 µL at a time), potentially losing particles in the sample as each 

drop dries on the grid.  

Vacuum ablating ice  

We attempted to vacuum ablate ice, to avoid putting the BC into solution where it might lose 

soluble portions of the structure. This was tested on a Christ Alpha 1-2 LD Freeze Dryer. It 

took approximately six hours for a 5 cm3 piece of blank ice to halve in size. A substantially 

larger ice core sample is required to obtain sufficient particles for characterization in low-

concentration Antarctic ice.  

Anopore filtration followed by back flushing  

Preconcentration was attempted using a 200 nm pore-size Anopore polycarbonate filter. An 

ice core sample was melted and filtered using the peristaltic pump and an Anopore filter in a 

Teflon filter holder. The filter was then backflushed with ~5 mL of Milli-q water using a 

syringe.  

SEM imaging of TEM grids made from the backflushed sample solution indicates only a 

small fraction of particles were recovered from the filter. Further SEM imaging of the filter 

itself showed large amounts of particulates remained stuck to the filter surface and were not 

removed through backflushing (Figure S3.1). Ultrasonication was not used to dislodge 
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particles due to the possible separation of aerosol aggregates, compromising the 

characterization results of BC aggregates. This could be a useful method for a lower-

magnification scanning electron microscopy (SEM) study of larger aerosols, but large pore 

size and complicated filter structure makes locating smaller BC aggregates difficult. 

 

Figure S3.1: SEM image of Anopore filter after filtering 1 L of ice core melt water, and 
backflushing the filter to remove filtered particles. 
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Chapter 4. Individual particle morphology, coatings, and 

impurities of black carbon aerosols in Antarctic ice and  

tropical rainfall 

 

This chapter been published in Geophysical Research Letters. Co-author contributions can be 

found in Appendix A2.  

This article is published as:  

Ellis, A., Edwards, R., Saunders, M., Chakrabarty, R. K., Subramanian, R., Timms, N. E., 

van Riessen, A., Smith, A. M., Lambrinidis, D., Nunes, L. J., Vallelonga, P., Goodwin, I. D., 

Moy, A. D., Curran, M. A. J., and van Ommen, T. D. (2016), Individual particle morphology, 

coatings, and impurities of black carbon aerosols in Antarctic ice and tropical rainfall, 

Geophys. Res. Lett., 43, doi:10.1002/2016GL071042. �  

 

Abstract 

Black carbon (BC) aerosols are a large source of climate warming, impact atmospheric 

chemistry, and are implicated in large-scale changes in atmospheric circulation. Inventories 

of BC emissions suggest significant changes in the global BC aerosol distribution due to 

human activity. However, little is known regarding BC’s atmospheric distribution or aged 

particle characteristics before the twentieth century. Here we investigate the prevalence and 

structural properties of BC particles in Antarctic ice cores from 1759, 1838, and 1930 

Common Era (CE) using transmission electron microscopy and energy-dispersive X-ray 

spectroscopy. The study revealed an unexpected diversity in particle morphology, insoluble 

coatings, and association with metals. In addition to conventionally occurring BC aggregates, 

we observed single BC monomers, complex aggregates with internally, and externally mixed 

metal and mineral impurities, tar balls, and organonitrogen coatings. The results of the study 

show BC particles in the remote Antarctic atmosphere exhibit complexity that is unaccounted 

for in atmospheric models of BC.  
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4.1 Introduction 

Black carbon aerosols (BC) are primary particles emitted by fossil fuel combustion and 

biomass burning. They have a multitude of effects on the global atmosphere and Earth’s 

surface, which result in the second largest contribution to climate change after carbon dioxide 

(CO2) (Bond et al., 2013). Unlike CO2 and methane gas (CH4), BC’s atmospheric residence 

time is relatively short (weeks as opposed to decades) and its atmospheric concentration is 

highly variable (Kaufman et al., 2002). BC emissions may have already contributed to large-

scale changes in atmospheric circulation, with models suggesting that the Northern 

Hemisphere tropics expand linearly with increasing radiative forcing from BC emissions 

(Kovilakam and Mahajan, 2015). The physical, chemical, and optical properties of BC are 

dynamic and evolve during atmospheric transport (Browne et al., 2015; Shen et al., 2014; 

Wang et al., 2014). Estimates of BC climate sensitivity are complicated by hemispheric 

differences in both emission sources (fossil fuels or biomass burning) and co-emitted 

chemical species, which coat and react with BC in the atmosphere. Indeed, BC from East 

Asian fossil fuel may be removed from the atmosphere faster than expected due to co-emitted 

sulfate (Shen et al., 2014).  

Morphologically, BC particles are semi-fractal aggregates composed of small, ~30 nm semi-

graphitic carbon nanospheres (Andreae and Gelencsér, 2006). Graphitic carbon consists of 

randomly oriented graphite crystallites with a mean inter-crystallite distance of 2.5 nm, 

embedded in a matrix of amorphous carbon (Franklin, 1950, 1951). After emission, BC 

rapidly ages in the atmosphere. The fractal dimensions of BC aggregates increase and their 

surfaces become coated and partially oxidized, affecting both their optical properties and 

their interaction with water (McFiggans et al., 2006; Oshima et al., 2009). The evolution of 

the BC surface from hydrophobic to hydrophilic has a major influence on its aerodynamic 

size, its removal from the atmosphere by wet deposition, and its subsequent transport and 

residence time in the atmosphere (Shen et al., 2014). Other insoluble particles may become 

externally and internally mixed with BC, thereby changing its optical properties (Scarnato et 

al., 2015). While there have been many characterization studies of freshly emitted BC 

aggregates (Chakrabarty et al., 2006a; Chakrabarty et al., 2006b; Pósfai et al., 2003; Zhu et 

al., 2013), few studies have investigated the morphology and characteristics of aged BC 

aggregates in the remote Southern Hemisphere (Pósfai et al., 1999). Consequently, the full 

range of properties of BC and their climate forcing effects remain uncertain. Furthermore, 
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little is known with regards to historic records of atmospheric BC before the last few decades. 

Polar ice-cores preserve an extensive history of atmospherically transported and aged BC 

particles and provide an opportunity to study changes in the physical and chemical properties 

of long-distance transported BC during and before the industrial revolution. Building upon 

the development of a method to concentrate BC particles in water (Ellis et al., 2015), we 

investigated individual particles in an Antarctic ice core using electron microscopy.  

Previous studies of BC in Antarctica have included bulk aerosol measurements, mass 

concentrations, and optical properties of Antarctic snow and ice (Bisiaux et al., 2012; Warren 

and Clarke, 1990; Weller et al., 2013; Wolff and Cachier, 1998). These studies identified 

large seasonal variations in coastal East and West Antarctic BC aerosol concentrations with a 

primary peak in October that is associated with dry-season biomass burning on nearby 

continents. A smaller secondary peak in BC concentration is observed during austral summer 

fire season (Weller et al., 2013) with minimum concentrations in March – April. High-

temporal resolution ice core studies found similar seasonality in West and East Antarctic ice 

concentrations during the past 200 years (Bisiaux et al., 2012). The seasonality and 

atmospheric circulation associated with BC in the Antarctic atmosphere (Bisiaux et al., 2012; 

Stohl and Sodemann, 2010) suggests that long-range transported SH biomass burning 

emissions are the primary source of BC to Antarctica.  

Although ultra-trace BC concentrations (0.08 µg kg-1) have been determined in Antarctic ice 

and snow, little is known with regards to individual particle morphology, coatings, and 

impurities. These characteristics impact the particles’ optical and radiative properties, 

residence time in the atmosphere, and climatic impacts. Here we present results from the 

detailed analysis of individual particles found in an East Antarctic ice core and modern 

tropical rain samples from northern Australia. Three samples were prepared from ice core 

samples from the Law Dome ice cap, East Antarctica dated from 1759, 1838 and 1930 

Common Era (CE), predating and postdating global industrialization and western 

colonization of Australia. Tropical rain samples were collected in northern Australia to 

provide a complementary modern comparison to Antarctic ice, as wet-deposited BC close to 

potential source emissions. All samples were analyzed using High-Resolution Transmission 

Electron Microscope Imaging (HR-TEM) and Scanning Transmission Electron Microscope 

Energy-Dispersive x-ray Spectroscopy (STEM-EDS, hereafter EDS).  
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4.2 Materials and Methods 

4.2.1 Ice core samples 

Antarctic ice core samples consisted of ice sections sub-sampled from the Dome Summit 

South site (DSS0506, 66°46′ S, 112°48′  E, 1,370  m elevation) drilled on Law Dome, East 

Antarctica during the 2005-2006 austral summer. The site has been described and studied in 

detail (Curran et al., 1998; Edwards et al., 2006; Etheridge et al., 1996; van Ommen and 

Morgan, 1996). The depth/age scale of the ice core was constructed by matching dissolved 

ion chemistry and water stable isotope records (δ18O) to the main DSS ice core record, which 

was dated using annual layer counting and validated by well-characterized volcanic horizons 

(Plummer et al., 2012). 

4.2.2 Rain samples 

Tropical rain samples were collected in Darwin, Northern Territory, Australia, to compare 

modern BC in wet deposition, close to BC sources. Two rain samples of ~1 L each were 

collected in April 2014, a period of significant monsoonal rainfall in the Northern Territory. 

Boundary layer atmospheric circulation to the sampling site during April 2014 was 

predominately East-West, passing over northern Queensland and the Gulf of Carpentaria 

before arriving in the Northern Territory. 

Samples were collected in low-density polyethylene (LDPE) bottles, rinsed with ultra-pure 

(UP) water (ρ > 18.2 MΩcm). A full account of sample collection and handling is described 

in Ellis et al. (2015). 

4.2.3 Ice core decontamination and liquid preconcentration 

Mass concentrations of BC in Antarctic snow and ice are typically found in the parts-per-

trillion (ppt) level and require preconcentration before analysis by Transmission Electron 

Microscopy (TEM). While Antarctic snow BC concentrations are low, the concentrations of 

other species, such as sea salts, may be present at the high parts-per-billion (ppb) level, 

depending on the location. The presence of relatively high concentrations of dissolved salts 

species complicates sample preconcentration and obscures BC particles loaded on TEM 

grids. To concentrate BC particles from ice core samples and rain without concentrating 

dissolved salts, we used the Tangential Flow Filtration (TFF) preconcentration method (Ellis 
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et al., 2015). Melt water from 1 m x 5 cm x 5 cm ice core sections, representing 

approximately two years of deposition to the site, were concentrated by approximately a 

factor of 1000 using hollow fiber filters (10 nm pore size, Spectrum Labs, USA). The TFF 

concentrate from each sample was transferred to a TEM grid (SPI 300-mesh gold grids with a 

continuous SiO/SiO2 support film) and evaporated down within an ISO 10 clean hood. 

Tropical rainwater samples were processed identically to the ice core melt-water.  

4.2.4 TEM characterization 

Characterization (imaging of external morphology and internal structure, size, and 

composition) of the insoluble particles and their coatings was completed on an FEI Titan G2 

80-200 TEM/STEM with ChemiSTEM Technology at The University of Western Australia, 

operating at 80 kV to minimize the risk of structural damage to the carbon spheres. High-

Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) 

imaging and element mapping were also carried out at 80 kV on the same instrument. The 

element maps were obtained by energy dispersive X-ray spectroscopy using the Super-X 

detector on the Titan with a sub-nm probe size, a probe current of ~0.25 nA, a dwell time of 

15 microseconds, and total acquisition time of 20 to 30 minutes. Statistical evaluation of the 

proportions and size distribution of the various BC morphologies was inhibited because the 

TEM grids were not surveyed systematically – irregular deposition of particles on the grids 

and the limited field of view (< 10 µm) resulting from the high magnification of the 

instrument makes location and characterization of BC particles time intensive, and 

acquisition of significant BC morphotype population statistics difficult. Therefore, the images 

selected for this paper represent common BC morphologies and characteristics seen while 

imaging the TEM grid. Images of additional particle types can be found in the supporting 

information. 

 

4.3 Results 

In all samples, abundant single BC nanospheres (Figure 4.1) in addition to conventional 

multi-spherule aggregates were observed. The nanoparticles were identified by their ~30 nm 

diameter, concentric ‘onion’ carbon layering with short-range order, and the Kα carbon peak 

in the EDS spectra. Single BC nanospheres are not thought to exist individually in the 

atmosphere (Andreae and Gelencsér, 2006) and to our knowledge have not previously been 



 
60 

observed in ice or snow. However, their presence in Antarctic ice suggests that they must be 

ubiquitous in the global atmosphere. Because of their small size and the confounding 

presence of larger BC aggregates and other dust particles, the single spheres are difficult to 

discern without the use of STEM-EDS mapping. They have too little mass to be quantified by 

real-time single BC particle analysis instruments used in other studies (Slowik et al., 2007). It 

would be difficult to distinguish the single nanospheres in the presence of concentrated salts 

or sulfates. The preconcentration method used in this study removes dissolved salts and other 

water-soluble species, retaining insoluble particles. Our method is also extremely gentle 

(mechanically), and unlikely to provide enough mechanical force to separate the aggregates 

(Rothenbacher et al., 2008). Further investigation has revealed many examples of doublet and 

triplet BC nanospheres of various primary particle sizes (Figure 4.1b-d). Single BC 

nanospheres were found in all ice core samples (dated to 1759, 1838, and 1930 CE) via HR-

TEM. The rain samples also contained all of the nanosphere varieties that were seen in the ice 

cores, indicating their possible global presence.  
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Figure 4.1: Black carbon nanospheres in Antarctic ice dated to 1838 CE: a) single BC 
nanosphere showing concentric ring structure with short-range internal structure, b) enlarged 
section of a), showing the concentric layers with 0.34 nm spacing between layers, c) BC particle 
with two spherules, arrows indicating spheres, and d) BC particle with three spherules, arrows 
indicating spheres. Additional examples of single spheres from 1759 CE and 1930 CE are 
included in the supporting information. 

 

Although quantification is difficult for irregularly distributed nanoparticles on TEM grids, a 

preliminary estimate of the prevalence of single BC nanospheres can be obtained using a 

single particle soot photometer (SP2, Droplet Measurement Technologies). Indeed, BC size 

distribution data in 20th century ice from the same location in East Antarctica indicates a 

substantial fraction of BC particles exist below 0.7 fg (90 nm mass-equivalent diameter 

assuming a BC density of 1.8 g cm-3), the lower mass limit where the SP2 begins to detect 

less than 100% of BC aerosols, supporting the existence of these individual nanospheres in 
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great numbers – primary nanospheres may outnumber the larger BC aggregates that have 

previously been reported.  

This observation raises significant questions about the prevalence of single BC nanospheres, 

as well as the undescribed effects of single nanospheres on the environment. Modern 

scattering calculations for BC suggest that variations in size distribution, composition, or 

shape could have substantial effects on common spherical and Rayleigh-Debye-Gans (RDG) 

simplifications (Smith and Grainger, 2014). Though the individual nanospheres are likely to 

be too small to function as cloud condensation nuclei (CCN), aerosol chamber experiments 

have shown 30 nm metallic nanoparticles (Saunders et al., 2010) as well as conventional BC 

aggregates (DeMott et al., 1999) acting as ice nuclei in the atmosphere. This suggests the 

possibility that individual 30 nm BC nanospheres may contribute to the formation of ice 

particles in the atmosphere, thereby having an as yet unmeasured climate affect. 

In addition to the single spherules, many other distinct BC characteristics were observed in 

the ice cores. We found a continuum of BC aggregate sizes ranging from doublet and triplet 

BC spherules (Figures 4.1c, d) up to many hundred nanometers (Figures 4.2 and 4.3). While 

the fractal dimension of the aggregates was not determined, they appeared to be relatively 

compact as would be expected of BC that has been substantially aged in the atmosphere and 

suspended in liquid water during the concentration procedure. All BC aggregates exhibited 

some form of thin insoluble coating (~5 nm) that connected the individual spherules, similar 

to the thin ‘film’ of carbon found on remote BC aerosols by Pósfai et al. (1999). EDS 

analysis revealed that the coatings appear to be composed predominately of amorphous 

carbon combined with varying amounts of nitrogen and oxygen-rich materials.  
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Figure 4.2: TEM images and STEM-EDS maps to show compositional complexity of a black 
carbon aggregate, from ice dated to 1838 CE, with EDS maps taken from the same field of view 
as a). a) TEM image of BC aggregate, with tar ball incorporated into the aggregate, b) STEM-
EDS map overlay of carbon and iron, to highlight the iron particle connected with a carbon 
coating, c) carbon map, d) nitrogen map, e) various aluminum-rich inclusions within the BC 
aggregate, f) iron map. 

 

These coatings appeared to be unaffected by high vacuum (10-5 Pa) or an 80 kV electron 

beam. While we have no definitive way of ascertaining when the coatings formed, it is likely 

that coatings are part of the atmospheric aging process and may have formed through aqueous 

cloud chemistry (Lee et al., 2013). The presence of oxygen in the coatings suggests that they 

are hydrophilic. The presence of a thin hydrophilic coating influences the BC particles’ 

interaction with atmospheric water, its atmospheric residence time, and optical properties. 

Coated BC aggregates were routinely found in association with mineral dust particles 

composed of aluminum-rich silicates and iron. Magnesium, potassium, and zinc were also 

present in some attached minerals (Figure S4.6, Supplementary Information). Many of the 

dust particles were found to be connected to the outside of BC aggregates by thin films of 

carbon, nitrogen, and oxygen (Figure 4.2b, 4.4), as well as being incorporated within the BC 
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aggregate structure (Figure 4.3b). The external connections of the BC to the dust particles 

suggest that they are ice residual nuclei, as expected of wet deposited BC in ice cores. 

Mineral dusts are common ice nuclei (DeMott et al., 2003), and ice crystal scavenging of BC 

could explain the external connection (Baumgardner et al., 2008). 

Small iron particles (~10 nm in diameter) were often found adhered to the surface of BC 

aggregates (Figures 4.3, 4.5). These attachments can be difficult to distinguish without the 

use of EDS or HAADF-STEM, in which heavier element inclusions stand out brightly. 

 

 

Figure 4.3: Dust particle and BC aggregate dated to 1838 CE, with aluminum and iron dust 
particles incorporated within the BC aggregate, and EDS maps taken from the same field of 
view as a). a) TEM image, b) carbon, nitrogen, and iron STEM-EDS maps, overlaid to show the 
connection of the iron particles to the BC aggregate with a nitrogen-rich coating, c-f) carbon, 
nitrogen, aluminum, and iron STEM-EDS maps, respectively. 
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Figure 4.4: Large silica-rich dust particle from ice dated to 1838 CE, with BC attached and 
mixed into the silica structure, with all components connected with thin (<5 nm), amorphous 
carbon and nitrogen rich coating, with EDS maps taken from the same field of view as a). a) 
TEM image, b) carbon, silicon, and nitrogen STEM-EDS maps overlaid to show connection of 
silicon and BC aggregates, with nitrogen-rich coating, c-f) carbon, silicon, nitrogen, and 
aluminum STEM-EDS maps, respectively. 

 

BC has previously been imaged with larger dust particles in East Asian outflows (Clarke et 

al., 2004) and African biomass burning plumes (Li et al., 2003), and the results of our study 

show that external BC and dust can be connected by insoluble coatings and can be 

transported long distances without disaggregating. These organic coatings and dust inclusions 

may have significant affects on BC’s optical properties as well as functioning as cloud and 

ice nuclei in the atmosphere (Lohmann and Diehl, 2006).  

The iron attached to the BC is of particular interest with respect to the biogeochemistry of 

iron in surface waters of the SH and potentially for the formation of water insoluble organic 

coatings through catalytic polymerization of organic species in biomass burning plumes 

(Slikboer et al., 2015).  
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Figure 4.5: BC aggregate from ice dated to 1930 CE attached to aluminosilicate and iron 
particles with nitrogen-rich coating, with EDS map taken from the same field of view as a). a) 
High-angle annular dark-field (HAADF) image of the particle, b) energy-dispersive x-ray 
spectroscopy (EDS) maps of C, Al, Fe, and N, indicating the aluminosilicate and iron particles 
are attached to the black carbon aggregate with a nitrogen-rich coating. 

 

Tar balls, amorphous, carbon-rich spheres emitted from smoldering fires, also accompanied 

the BC aggregates, both attached to the outside (Figure 4.6) and incorporated within the BC 

aggregates (Figure 4.2). Chakrabarty et al. (2006b) noted the existence of tar balls in 

laboratory combustion tests of biomass fuels, supporting their formation at the emission 

source. The presence of tar balls in Antarctic ice suggests that the particles were emitted by 

smoldering biomass burning (Adachi and Buseck, 2011; Chakrabarty et al., 2010). To the 

best of our knowledge, this is the first determination of tar balls in Antarctica. They represent 

a previously unaccounted-for component of light absorbing aerosols deposited to the 

Antarctic ice sheet. If tar balls are present in Antarctic ice they are likely present in air masses 

over the Southern Ocean and, presumably, the global troposphere. Further evidence of 

coatings, dust and metals, and single BC nanospheres in all samples are provided in the 

supporting information, as well as all additional STEM-EDS element maps for the particles 

described above. 
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Figure 4.6: a) High-angle annular dark-field (HAADF) image of a tar ball from ice dated to 
1838 CE with BC aggregate attached, b) EDS map of carbon from the same field of view as a). 
Additional EDS maps are included in the supporting information. 

 

4.4 Conclusions 

In this study, we found evidence for the deposition of single black carbon (BC) nanospheres 

over East Antarctica and northern Australia. By extrapolation, we would expect to find these 

particles throughout the Southern Hemisphere, if not globally. The presence of single BC 

nanospheres in Antarctic ice dated to 1759 CE, prior to industrialization, suggests the source 

is likely grass or bush fires. We also found tar balls and BC with nitrogen and oxygen rich 

insoluble coatings and associated with mineral particles and iron. The coatings appear to 

cover and connect the BC and many of the mineral particles. This suggests that the coatings 

and dust inclusions could form in a number of ways: rapidly close to the fire source, due to 

aqueous chemistry, and physical and chemical ice formation processes. These mixed particles 

also undergo long-range transport without disaggregating. The impact of the coatings and the 

external and internal mixing of the mineral particles may impact BC’s optical properties and 

residence time in the atmosphere.  

Knowledge of the long-range evolution of BC aerosol characteristics is critical for predicting 

the associated climate forcing. Mineral inclusions, metal impurities, and insoluble, nitrogen-

rich coatings suggest a complex evolution in BC optical properties during transport. The 
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diversity of particle properties observed in this study demonstrates the complexity of BC in 

the environment that is as yet unaccounted for in atmospheric chemistry and climate models. 

The BC particles analyzed by the study did not display discernible differences between the 

different time periods, which may reflect the biomass burning-dominated emissions from the 

Southern Hemisphere. However, the small sample number and limited time span precludes 

conclusions regarding any systematic changes to BC morphology from the preindustrial 

period through the 20th Century. Northern Hemisphere shifts from natural biomass burning 

to anthropogenic industrial emissions during the industrial revolution could be recorded in 

BC characteristics, suggesting Arctic ice core investigations as an important future 

application of this study.  
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Supplementary Information  

This supplementary addendum contains additional electron microscopy images, energy 

dispersive x-ray spectroscopy (EDS) information, and high-angle annular dark-field images 

(HAADF) to support the data in the corresponding paper. It also contains HYSPLIT (Hybrid 

Single Particle Lagrangian Integrated Trajectory Model) trajectories for airmass transport to 

the rain sampling site in Darwin, Northern Territory, Australia. 

Electron microscopy images were processed using ImageJ software. The particles described 

in this paper are meant to be qualitative, as detailed statistical analysis of particle composition 

and morphology was not conducted. Due to the small field of view (<1 µm) relative to the 

full sample size (3 mm), statistical analysis of particles would take significant instrument 

time. 

Rain samples were collected in an open field, free from overhead obstructions. Sample 

bottles and funnel were all triple-rinsed in ultra-pure (UP) water (ρ > 18.2 MΩ�cm). 

HYSPLIT back-trajectories for the rain samples were calculated for heights of 500 m, 

1000 m, and 2000 m to account for different cloud heights originating the sampled rain. For 

all days, the particle trajectories did not differ dramatically for each of the possible heights.  
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Figure S4.1: Additional image of a single BC spheres found in an ice core dated to 1759 CE 
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Figure S4.2: Additional image of a single BC sphere found in a rain sample collected in Darwin, 
Northern Territory, Australia on April 11, 2014. 
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Figure S4.3: Additional HAADF image for Figure 4.2. 
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Figure S4.4: Additional STEM-EDS maps for Figure 4.2. 
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Figure S4.5: Additional HAADF image for Figure 4.3. 
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Figure S4.6: Additional STEM-EDS maps for Figure 4.3. 
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Figure S4.7: Additional HAADF image for Figure 4.4. 
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Figure S4.8. Additional STEM-EDS maps for Figure 4.4. 

 

 

 

 

 

 

 



 
82 

 

 

Figure S4.9: Additional STEM-EDS map for Figure 4.5. 
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Figure S4.10: Additional STEM-EDS maps for Figure 4.6.  
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Figure S4.11: Additional STEM-EDS maps for Figure 4.6. 
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Figure S4.12: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 4, 2014 for a final atmospheric height of 500 m above ground 
level.  
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Figure S4.13: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 4, 2014 for a final atmospheric height of 1000 m above ground 
level. 
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Figure S4.14: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 4, 2014 for a final atmospheric height of 2000 m above ground 
level.  
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Figure S4.15: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 8, 2014 for a final atmospheric height of 500 m above ground 
level.  
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Figure S4.16: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 8, 2014 for a final atmospheric height of 1000 m above ground 
level.  
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Figure S4.17: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 8, 2014 for a final atmospheric height of 2000 m above ground 
level. 
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Figure S4.18: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 11, 2014 for a final atmospheric height of 500 m above ground 
level. 
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Figure S4.19: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 11, 2014 for a final atmospheric height of 1000 m above ground 
level. 
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Figure S4.20: HYSPLIT back-trajectories of air-mass transport to Darwin, Northern 
Territories, Australia for April 4, April 8, and April 22, 2014 for final atmospheric heights of 
500 m, 1000 m, and 2000 m above ground level. 

 
 

 

 



 
94 

Chapter 5. Roosevelt Island Climate Evolution Project: 

Black carbon deposition to Roosevelt Island, West 

Antarctica approaches Arctic levels 

 

This chapter is in preparation for submission to Journal of Geophysical Research: 

Atmospheres. 

 

Abstract  

Refractory black carbon (rBC) aerosols convert solar radiation to thermal energy contributing 

to climate change. Unlike the major greenhouse gasses such as CO2, rBC aerosols exhibit 

significant spatial and temporal variability, complicating efforts to constrain aerosol climate 

forcing. Paleorecords of rBC at remote sites are needed to investigate past feedbacks between 

the global atmosphere, climate, and rBC emissions. As part of the Roosevelt Island Climate 

Evolution Project (RICE), we have developed snow pit and ice core rBC records from West 

Antarctica spanning 1890 to 2013 CE. Annual rBC deposition to the region was relatively 

stable from 1890 to 1998 CE. After 1998, the annual rBC deposition rate increased 

dramatically with peak snow rBC concentrations and annual deposition rate in late 2011 

similar to present-day Greenland (~ 1 ng g-1, 96 µg m-2 yr-1). The maximum annual rBC 

deposition in 2011 was ~7 times that of the 1887-1987 geometric mean. Satellite observations 

of biomass burning emissions and atmospheric transport models suggest Southern 

Hemisphere biomass burning from Australia, Southern Africa and South America to be the 

primary source of rBC to the region. While, mixing in the atmosphere prevents definitive 

source apportionment, the increase in annual rBC deposition occurred during a period of 

increased biomass burning in central and eastern Australia and southern Africa coinciding 

with southerly atmospheric transport towards West Antarctica from Australia. If the trend in 

rBC deposition continues, regional snow albedo will be impacted altering surface snow 

properties and the radiation budget.  
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5.1 Introduction 

Refractory black carbon aerosols (rBC) are the dominant light-absorbing particle in the 

atmosphere and are emitted by the combustion of biomass and fossil fuels. Light absorbed by 

rBC is transformed into thermal energy, warming the surrounding air, altering the global 

radiation budget, and affecting atmospheric dynamics (Moosmuller et al., 2009). The global 

mean radiative forcing attributed to rBC is uncertain (IPCC, 2013), but recent studies suggest 

that it represents the second largest anthropogenic contribution to climate change after carbon 

dioxide (CO2, Bond et al., 2013). Unlike greenhouse gasses, the distribution of rBC in the 

atmosphere is highly variable, and regional forcing can be significantly higher than the global 

mean (Ramanathan & Carmichael, 2008). The particulate nature of rBC results in both direct 

(light absorption) and indirect effects (changes in snowpack albedo and cloud microphysics). 

High concentrations of rBC in surface snowpacks (>20 ng g-1) due to high snowfall rBC 

levels, dry deposition or post-deposition preconcentration darken snow packs resulting in a 

significant indirect forcing (Flanner et al., 2007; Hansen & Nazarenko, 2004; Ramanathan & 

Carmichael, 2008). Conversely, climate change can influence the generation of rBC from 

biomass burning and affect its atmospheric distribution (Flannigan et al., 2000). For example, 

recent biomass burning reconstructions suggest that anthropogenic climate change has 

already resulted in an increase in global biomass burning (Marlon et al., 2008). Decadal rBC 

emission estimates from 1850 to 2000 C.E suggest an increase in both biomass burning and 

fossil fuel emissions (Lamarque et al., 2010) with emissions from 2000 to 2010 

approximately five times that of 1850 to 1860. However, historical rBC emission 

reconstructions remain highly uncertain. 

To investigate the historical climate impact of rBC, over the past 150 years, estimates of both 

global emissions and the global atmospheric rBC deposition are required. Global historical 

emission estimates (Bond et al., 2007; Junker & Liousse, 2008; Lamarque et al., 2010) have 

been reconstructed based on time-varying emission factors for different anthropogenic 

sources. For the recent past, global uncontained biomass burning emission estimates such as 

Global Fire Emissions Database (GFED; Giglio et al., 2013; van der Werf et al., 2010) and 

Fire Inventory from NCAR (FINN; Wiedinmyer et al., 2011) have been developed from 

biomass emission factors applied to satellite observations of burnt areas. Longer paleo-

records of global biomass burning have come from ensembles of sedimentary charcoal 

records (Marlon et al., 2008) and tree-ring burn scars (Marlon et al., 2012). In contrast to 
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paleo-emission records, ice core and snow pit rBC records provide a history of rBC 

deposition from the atmosphere. Recently, high-temporal resolution (sub-annual) ice core 

records have been developed for locations in Greenland and Antarctica (Bisiaux et al., 2012; 

McConnell et al., 2007). rBC deposition to these sites occurs from a combination of so-called 

wet and dry deposition processes. In the absence of melt or other ablation processes, polar ice 

cores preserve a record of rBC deposition from annual to glacial time scales. These records 

have the potential to connect paleo-emission estimates to the global atmospheric distribution 

and deposition using general circulation models (GCMs) and may provide information on the 

physical characteristics of individual rBC particles after long-range transport (Ellis et al., 

2016; Ellis et al., 2015).  

 

Figure 5.1 Map of Antarctica, with location of Roosevelt Island noted on the Ross Ice Shelf, 
West Antarctica. Another prominent ice core location, WAIS Divide on the West Antarctic Ice 
Sheet, is also noted for comparison.  

 

As part of the Roosevelt Island Climate Evolution (RICE) project (http://www.rice.aq/), we 

have reconstructed ice core and snow pit records of rBC deposition to the Roosevelt Island 

ice cap (Figure 5.1) in the Eastern Ross Ice Shelf, West Antarctica (Conway et al., 1999). The 

RICE project is an international, multi-institution collaboration to reconstruct the climate and 

glacial history of the Roosevelt Island ice cap, and by inference, the Ross Ice Shelf and the 
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West Antarctic ice sheet. During the austral summers of 2011/2012 and 2012/2013, the 

project drilled a deep ice core (748 m depth), several shallow ice cores and snow pits from 

near the ice cap divide. A major aim of the RICE rBC study was to investigate the local 

spatial variability in rBC deposition to assess the uncertainty in the deep ice core record. Here 

we show the results of the rBC study with respect to deposition variability over the past 

~150 years. 

 

5.2 Methods 

5.2.1 Ice core and snow pit samples  

Roosevelt Island is a coastal ice dome located in the Eastern Ross Ice Shelf, West Antarctica, 

adjacent to the Ross Sea. The dome is 130 km long (running NW to SE) and 65 km wide with 

a maximum ice thickness of ~763 m. The ice dome has a maximum elevation of ~550 m and 

a base ~200 m below sea-level. Roosevelt Island is a high-accumulation site, with annual 

snow accumulation of ~0.25 m water equivalent (WEQ, Tuohy et al., 2015). The Ross Sea 

region experiences significant synoptic-scale weather systems from the Southern Ocean 

(Sinclair et al., 2010), as well as significant periods of fog and rime ice formation in the 

summer, and potentially throughout the year (Tuohy et al., 2015). 

Two RICE ice cores were used in the study. These included upper sections (top 38 m) of the 

RICE deep core (RICE 11/12A, -79.36286N, -161.70059W, 550 m above sea level) and a 

shallow ice core (RICE 12/13B, -79.36211N, -161.69839W) drilled during the 2012-2013 

field season ~90 m to the South East of the RICE11/12A core site. Ice core sections used by 

the study were drilled without the use of drilling fluid. These sections were cut into 1 m 

intervals in the field and transported to GNS Science, in Lower Hutt, New Zealand, where 

each meter was cut length-wise into multiple replicated sub-samples.  

Two snow pits were sampled during the 2012-2013 field season. These were located ~300 m 

(Ellis pit) and ~500 m (Winton pit) to the south of the RICE 11/12A site. The Winton pit has 

been described by Winton et al. (2016). These snow pits provide both a known depth horizon 

to calibrate the ice core data and an assessment of localized spatial reproducibility. The Ellis 

pit (-79.364930N, -161.70073W) was sampled in January 2013, while the Winton pit 

(-79.36645N, -161.70053W) was sampled in November 2012. Both snow pits were upwind 
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from the field camp (-79.36086N, -161.64600W). A map of site and orientation of sampling 

areas is provided in the supplementary information (Figure S5.1). Samples from the Ellis Pit 

were collected using ultra-clean protocols at 1 cm resolution from the bottom of the snow pit 

up to the surface, with the sampling face removed in 50 cm intervals to allow for a clean 

surface immediately prior to sampling. Winton pit snow samples were collected at 3 cm 

resolution. Both snow pits were sampled wearing full-coverage clean suits and nitrile gloves. 

Snow was collected with acid-cleaned plastic trays and ceramic knives and stored in 

Whirlpak™ bags, unsealed immediately before use. Procedural field blanks were collected 

for the sampling bags, by opening and resealing bags in the manner used for sampling.  

5.2.2 Sample analysis 

Ice core rBC concentrations were determined continuously as a component of RICE 

continuous flow ice core analysis (CFA) campaigns conducted at GNS Science, in Lower 

Hutt, New Zealand. Analysis of the top 48 m of the RICE 11/12 core took place in 2012 

using a CFA system based on that of Osterberg et al., 2006. However, significant problems 

were found with the ice core meter head, and the rBC data from the 2012 CFA analysis was 

found to be unreliable. Subsequent CFA campaigns in 2013, and 2014 were based on the 

University of Copenhagen Centre for Ice and Climate CFA system described in detail by 

Bigler et al., 2011. Analysis of a duplicate piece of the upper RICE 11/12 core (8 – 48 m) and 

the RICE 12/13B shallow ice core occurred in 2014. The rBC analytical component of the 

CFA system was similar to that described by McConnell et al. (2007), Bisiaux et al. (2011), 

and Bisiaux et al. (2012) with the exception that bubbles were introduced into the sample line 

close to the melter head to produce segmented flow. The segmented flow bubbles were added 

to reduce dispersion and were removed close to the rBC analysis system. The rBC analysis 

system consisted of a Single Particle Soot Photometer (SP2, Droplet Measurement 

Technologies) coupled with an ultrasonic desolvation system (CETAC UT5000) to nebulize 

melt water and aerosolize the rBC for analysis by single particle intracavity laser induced 

incandescence. Ice core data depth resolution using the CFA system was ~1 cm. Snow 

samples were analyzed in the Trace Research Advanced Clean Air Environment (TRACE) at 

Curtin University, Perth, Australia using the rBC analysis system. Concentrations of rBC 

measured by the SP2 for both the ice and snow samples were calibrated using rBC standards 

based on a commercial 100% carbon ink Ebony-6 ink (MIS Associates). Laboratory ultrapure 

water (UP water, ρ >18.2 mΩ) blanks and rBC standards were analyzed at regular intervals 
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during the melting campaign to assess contamination and to monitor for potential 

instrumental drift. The sensitivity of the SP2, high quality blanks and standards, and 

laboratory procedure permitted detection of rBC at ultra-trace levels in the samples (e.g. 

>0.01 ng g-1 in Antarctic ice) with rBC particle volume equivalent diameters from 100 to 

650 nm (Schwarz et al., 2010). Concentrations of rBC determined by the method were 

comparable to those reported by Bisiaux et al. (2011) for Antarctic ice cores.  

5.2.3 Ice core and snow pit timescales 

The RICE ice core depth-age relationship spanning the past 2000 years are described in detail 

by Winstrup et al., 2017 (in prep.). Briefly, the chronology was constructed by annual-layer 

counting in multiple ice-core impurity records, including black carbon. Both manual and 

automatic layer counting methods (Winstrup et al., 2012, Winstrup 2016) were employed, 

with the automated layer-counting routine, StratiCounter, also providing confidence intervals 

for the resulting age scale. 

High levels of sulfate (SO4) in Roosevelt Island snow from local biogenic and volcanic 

emissions complicated the designation of ice-core sulfate horizons from large tropical 

volcanic eruptions. This precluded the use of traditional methods for synchronizing RICE to 

other Antarctic ice cores. A sparse set of volcanic horizons detected in the RICE pH record 

was used for validation of the timescale, along with synchronization of high-resolution RICE 

methane (CH4) measurements to a similar record from the well-dated WAIS Divide ice core. 

Age scales for the two snow pits were constructed and aligned using annual layers in rBC and 

non-sea-salt-sulfur (nssS) profiles (Winton et al., 2016).  

5.2.4 Flux calculations 

Snow pit net-annual snow accumulation was calculated using snow density measurements 

and annual layer counting from the Winton snow pit. Based on the snow pit record and depth-

age scale, the estimated net annual accumulation rate for 2011 was ~0.33 m yr -1 WEQ from 

January 2011 to January 2012. An independent net annual accumulation estimate for the 

calendar year 2011 from the ice core (~250 m to the south) depth-age scale (RICE_2KA) and 

ice core density was 0.32 m yr -1 WEQ for 2011. Black carbon net atmospheric fluxes (here 

after flux) for the snow pits and the ice core records were estimated from monthly rBC mass 
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concentration data assuming linear intra-annual depth-age and constant snow accumulation at 

the sites.  

 

5.3 Results and Discussion 

5.3.1 Correlation of rBC concentrations across snow pits and ice cores 

 

Figure 5.2 RICE rBC concentration records RICE ice core (black) and snow pit records 
(Winton snow pit blue and Ellis snow pit red). RICE ice core has been resampled to monthly 
resolution. Snow pit records have not been resampled. 

 

The snow pit rBC records spanned approximately 2.5 years and show significant seasonality 

in rBC concentration and deposition (Figure 5.2). A large peak in rBC concentration 

(>1 ng g-1) was found in both the snow pits and the ice core record (RICE 12/13) 

corresponding to the late spring austral summer of 2011/2012. This 2012 peak has also been 

measured at a site in Eastern Wilkes Land, East Antarctica, suggesting significant spatial 
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extent to the rBC deposition (Caiazzo et al., 2017). The measurement of this peak in Eastern 

Antarctica also suggests that the rBC measured at Roosevelt Island was not due to 

contamination from camp activities. Peak rBC concentrations varied between 0.8 ng g-1 in the 

Ellis snow pit and ~1.2 ng g-1 in both the Winton snow pit and the ice core record. The peak 

rBC concentrations are ~7 to 15 times higher than mean rBC concentrations at Law Dome or 

WAIS in Antarctica (Bisiaux et al., 2012) and are similar to concentrations found in present-

day Greenland snow (McConnell et al., 2007). No signs of surface melt were found in the 

snow pit or ice core record to suggest that post-deposition preconcentration or ablation had 

occurred (Doherty et al., 2013). The increase in rBC deposition also occurred before the 

beginning of the RICE field seasons, ruling out contamination from camp activity and 

logistics. The Ellis snow pit rBC record was mapped to the Winton snow pit depth-age 

relationship (Winton et al., 2016) using both black carbon and sulfur data (Winton et al., 

2016) and has a similar peak width to the Winton snow pit due to the mapping. The snow pit 

depth-age relationship places the peak in rBC to ~January 2012 based on the pits non-sea-salt 

sulfur record and constant accumulation. However, the RICE ice core depth-age record 

suggests that the peak dates to November-December 2011, again assuming constant snow 

accumulation at the site. It is highly likely that these exceptional peaks in rBC are the same 

event and that the temporal difference in both the peak height and peak width reflects 

uncertainty in the intra-annual dating of both the snow pits and ice core. The records show 

that rBC deposition to RICE was relatively uniform at the 100 m scale. 

 



 
102 

5.3.2 Comparison of snow pits and ice core records with GFED 4.1 fire emission 

estimates  

 

Figure 5.3. RICE ice core and snow pit rBC records and GFED 4.1 fire emissions. (a) RICE ice 
core (black) and snow pit reconstructed rBC concentrations (Winton pit red and Ellis pit blue); 
(b) Central and eastern Australia GFED fire emissions as Tg carbon; (c) Southwestern Africa 
GFED fire emissions; and (d) Southeastern Australia GFED fire emissions.  
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Assuming that the large peak in rBC was deposited in late 2011, it may be associated with 

large-scale fires in the interior of Australia and Southern Africa that occurred from 

September to November of 2011. From 2010 to 2011, Central Australia and arid regions of 

Southern Africa (Namibia, Botswana, and South Africa) experienced historic rainfall due to a 

strong La Niña Modokai phase (Boening et al., 2012). Terrestrial primary productivity and 

biomass build up in these arid and semi-arid regions is limited by water (Ma et at., 2016). 

Therefore, the increased rainfall resulted in a greening of central Australia (and presumably 

Southern Africa; (Ma et al., 2016). At the end of the wet period in 2011, large-scale fires 

occurred in central and Eastern Australia and Southwestern Africa.  

Figure 5.3 shows the temporal variability of the ice core and snow pit rBC concentration 

records with respect to GFED 4.1 fire emissions in Tg of carbon 

(http://www.globalfiredata.org/, Giglio et al., 2013). The central and eastern Australia 

emission data (Figure 5.3b, calculated from region encompassed by bounding box corner 

coordinates 131.00E, -21.00N and 155.00E, -35.00N) and Southwestern Africa emissions 

data (Figure 5.3c, calculated from bounding box corner coordinates 12.00E, -19.00N and 

28.00E, -19.00N) show large fire emissions from August to November 2011. The central and 

eastern Australian GFED emissions peaked in September 2011, while the Southwestern 

African emissions peaked in October. The broad duration of the 2011 fire emissions may 

have contributed to the record large RICE rBC peak by spanning multiple meridional 

atmospheric transport events. Fire emission data from Southeastern Australia (Figure 5.3d, 

bounding box corners 131.00E, -35.00N and 153.50E, -45.00N) show large forest fire 

emissions in January 2003 and December 2006 (Figure 5.3d). Peaks associated with these 

fires were not found in the record. As the uncertainty in the ice core record for 2006 is ±1 

year, it is possible that the January peak in rBC from December 2005 reflects rBC from the 

December 2006 fires.  

5.3.3 RICE Ice core 20th Century trend. 

The RICE ice core rBC concentration and annual flux records spanning the 20th Century 

(1887 to 2012 CE) are shown in Figure 5.4. The rBC concentration record (Figure 5.4a) is 

composed of highly seasonal events superimposed on decadal scale variations (Figure 5.4c). 

The annual rBC flux displayed similar decadal variability to the rBC concentration record. 

Underlying trends in both the annual rBC flux and the monthly rBC concentration were 

nearly identical, which suggests that variability in the snow accumulation is a smaller 
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contribution to flux than the variability in inter-annual rBC concentration (Figure S5.3, 

Supplementary Information).  

Both records are characterized by decadal scale oscillations in rBC concentration before a 

rapid rise from ~1995 to 2012. The rBC concentration trend maximum (0.224 ng g-1) 

represents an increase of ~ 3 times the 1887 to 1995 trend mean (0.078 ng g-1). The flux trend 

also increased by a factor of 3 with an 1887 to 1995 trend mean of 17 µg m2 yr -1 and a 

maximum flux of 54 µg m2 yr -1. The maximum rBC flux in 2011 (96 µg m2 yr -1) was ~6 

times the 1887 to 1995 mean (17 µg m2 yr -1). While the hydrological event that impacted 

Australia in 2010 – 2011 was extreme, other events (Letnic & Dickman, 2006; Verdon-Kidd 

& Kiem, 2009; Yates et al., 2009) have occurred during the period covered by the record, but 

do not have a significant impact on the rBC record. Because of the remoteness of the ice core 

site and the relatively short residence time of rBC in the atmosphere, atmospheric transport 

and deposition of rBC from the atmosphere are significant sources of variability. The large 

increase in rBC deposition found in the ice core record likely reflects both changes in 

emissions and meridional transport.   
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Figure 5.4. RICE ice core and snow pit rBC concentration and atmospheric flux. (a) RICE ice 
core (black) and snow pit rBC concentration records (Winton snow pit red and Ellis snow pit 
blue); (b) RICE ice core annual rBC atmospheric flux; and (c) RICE rBC atmospheric flux 
trend (black) and WAIS ice core rBC atmospheric flux trend (red) determined through single 
spectrum analysis.  

 

The last 50 years of the WAIS Divide ice core rBC record (Figure 5.4c) hints at a potential 

increase matching the Roosevelt Island record (Bisiaux et al., 2012), but the record ends 

before the largest increase from 1998 CE onward. Recent snow pits and shallow cores from 

WAIS Divide are necessary to demonstrate the spatial extent of the increase in rBC 

deposition. 

5.3.4 Potential causes of increase in rBC deposition to Roosevelt Island 

There are a number of potential mechanisms for this increase, summarized below. 

1. Increase in emissions from a source region. 

WAIS
RICE
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Fire emissions peak in November in Australia (Edwards et al., 2006), significantly later in the 

year than other southern hemisphere sources. Coupled with modeled aerosol trajectories to 

Roosevelt Island (Neff & Bertler, 2015), seasonal summer burning in Australia’s higher 

latitudes are a possible source. Biomass burning in the Australian continent, a likely 

emissions source for Roosevelt Island, is sensitive to climate variations. Historical peaks in 

the charcoal record are closely associated with climate variability, such as maximum El Niño 

and La Niña frequency (Lynch et al., 2007). Variability associated with the El Niño Southern 

Oscillation (ENSO) may also drive a ‘boom and bust’ cycle in Australia, characterized by 

heavy rainfall during La Niña years causing significant fuel loading, followed by dry 

conditions where the new growth is subject to severe bushfires (Letnic & Dickman, 2006).  

Climate change may amplify drought conditions in Australia (Nicholls, 2004), and models 

suggest an increasing risk for extreme bushfires in Australia with rising temperatures and 

lower relative humidity (Pitman et al., 2007). Recent studies have shown a likely increase in 

frequency of La Niña events, coupled with an increase in frequency of El Niño events, and 

more rapid oscillation between the two (Cai et al., 2014; Cai et al., 2015). Additionally, 

Southeast Australia has been affected by persistent drought from 1997 to 2010 known as the 

‘Big Dry’ (Verdon-Kidd & Kiem, 2009), potentially influenced by the positive phase of the 

southern annular mode (SAM) and subsequent amplification of ENSO events. Southeast and 

Southwest Australia were the most affected regions by this drought.  

2. Shift in transport conditions in the Southern Hemisphere 

While emissions may be a factor in the increase, the stronger variable in rBC deposition to 

Antarctica is transport. rBC removal from the atmosphere happens non-linearly; therefore, a 

shortening of the trip to Antarctica might significantly increase the concentration of rBC in 

the airmass that arrives (Bauer et al., 2013). There are several large-scale atmospheric 

processes that could modulate transport of rBC emissions to Antarctica, and there are some 

processes that have had significant changes in the last 10-15 years (in conjunction with the 

increase of rBC at Roosevelt Island): 

- The formation of a strong Amundsen Sea low-pressure system and a corresponding 

“blocking” high-pressure system near New Zealand is a major force in meridional 

transport, forcing airmasses from Australia south to Antarctica (Neff & Bertler, 2015). 

This is typical feature of the La Niña phase of ENSO (De Deckker et al., 2010). 
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- The formation of the Antarctic ozone hole in the late 1970s has had a pronounced 

effect on SAM, particularly influencing the summertime amplitude of SAM 

(Thompson et al., 2011). The Australian SAM signature includes variability in 

precipitation and prevailing winds, though a transport pathway to Antarctica remains 

unclear. 

3. Less precipitation = less removal? 

Many of the atmospheric processes above modulate hydroclimate in the SH. Variability in 

SAM is considered as strong influencer of rainfall over Australia (Hendon et al., 2007). There 

was a decade-long drought in Australia from 2000 to 2010, a period corresponding to the 

elevated rBC concentrations at Roosevelt Island. This drought has been linked to climate 

change-induced variability in the Indian Ocean Dipole (IOD), SAM, and ENSO (Cai et al., 

2014). Considering rBC is predominately removed from the atmosphere through wet 

deposition, a decrease in rainfall in the SH could potentially increase the mass loading of rBC 

in the atmosphere. 

 

5.4 Conclusions 

Ice core and snow pit records from Roosevelt Island, West Antarctica show annual 

seasonality on BC deposition that is dominated by biomass burning in the southern 

hemisphere. The results are reproducible across two snow pits and a shallow ice core, 

suggesting significant spatial correlation. There has been a tripling of BC deposition flux to 

the site from 1998 CE onward, likely due to a change in BC emissions combined with 

changes in atmospheric circulation.  

There are several potential mechanisms for this increase, including an increase in biomass 

burning emissions in source regions, a shift in transport conditions promoting meridional 

transport, or a decrease is precipitation over the Southern Ocean thereby affecting removal 

rates of rBC and concentrations in the airmass. Many extreme hydroclimate and fire events of 

the last ~100 years are not recorded in the RICE rBC record, suggesting transport conditions 

are the dominant contribution to the increase. Utilization of a global atmospheric transport 

model may constrain the transport mechanism. Comparison of the RICE rBC record with 

previously published rBC data from the West Antarctic Ice Sheet Divide (WAIS) ice core 
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revealed that decadal variability in concentration and deposition to the two sites is inversely 

correlated. This inverse correlation signifies distinct transport conditions to the two sites, 

potentially due to decadal shifts in the location and intensity of the Amundsen Sea Low in 

response to the El Niño-Southern Oscillation. 

Measurements in austral summer 2011-2012 indicate rBC concentrations reached 1.2 ng g-1, 

approaching concentrations seen in Greenland. Summer deposition of rBC on the Ross Ice 

Shelf is of particular importance, as 24-hour daylight could amplify the albedo affect. Studies 

have suggested that rBC snow concentrations as low as 10 ppb are enough to decrease snow 

albedo by 1%, accelerating melting (Flanner et al., 2007; Hadley & Kirchstetter, 2012; 

Hansen & Nazarenko, 2004). Given that rBC can be concentrated in snow melt (Sterle et al., 

2013), coupled with increasing temperatures in West Antarctica (Steig et al., 2009), suggest 

that 10 ppb concentrations are a possibility for surface snow on the Ross Ice Shelf. If the 

increasing trend of deposition continues, rBC has the potential to affect snow albedo on the 

Ross Ice Shelf, a major drainage pathway of the West Antarctic Ice Sheet.  
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Supplementary Information 

Supplementary figures for Chapter 5 are included below. 

 

Figure S5.1 Configuration of RICE field camp (with generator), drill site for the main ice core 
(11/12A), the shallow core (12/13B) and two snow pits.  
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Figure S5.2 Depth-age scale for the shallow core 12/13B, from Ross Edwards (personal 
communication).  
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Figure S5.3 A comparison of monthly rBC concentration (a) and annual rBC flux (b) from the 
ice core record at Roosevelt Island. Underlying trends in both the rBC flux and the monthly 
rBC concentration are nearly identical, suggesting that annual snow accumulation variability is 
less of a contribution to flux than the rBC concentration inter-annual variability.  
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Chapter 6. Black carbon in rain: case studies from  

northern and western Australia 

 

This chapter is in preparation for submission to Journal of Geophysical Research: 

Atmospheres.  

 

Abstract  

Black carbon aerosols (BC) are emitted by combustion and affect radiative and chemical 

properties of the atmosphere. There are significant uncertainties regarding the lifetime of 

black carbon in the atmosphere due to the aging of the aerosols and its subsequent interaction 

and removal from the atmosphere by water. Measurements of BC in rainfall are needed to 

develop geospatial estimates of BC deposition. Here, we describe a case study of refractory 

black carbon (rBC) wet deposition measured at two different sites in Australia by single 

particle laser-induced incandescent photometry. To our knowledge this is the first study of 

rBC in Australian rainfall. Rain samples were collected from Perth, Western Australia and 

Darwin in the Northern Territory. Perth samples were collected as the remnants of tropical 

cyclone Owlyn passed through the region in March, 2015. Darwin samples were collected 

during the Northern Territory monsoon season from November 2014 through February 2015. 

Concentrations of rBC in the rainfall varied from ~0.5 – 6 µg L-1 for Perth and ~1 – 22 µg L-1 

for Darwin, with 24-hour wet depositional flux ranging from ~0.8 – 41 µg m-2 and ~1 –

 314 µg m-2, respectively. Perth rBC deposition rates decreased as continental winds from the 

north east shifted to south west winds from off the southern Indian Ocean. Higher rBC 

concentrations and deposition from Darwin may reflect biomass burning emissions from 

Indonesia and northern Australia.  
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6.1 Introduction 

Black carbon aerosols are emitted into the atmosphere during the combustion of biomass and 

fossil fuels. In the atmosphere, they have direct and indirect effects on the climate through 

radiative absorption and changes in cloud formation (Johnson et al., 2004). BC has a large 

impact on net climate forcing estimates due to a positive climate forcing comparable to the 

greenhouse gases (Bond et al., 2013). However, it is relatively short-lived in the atmosphere, 

with a lifetime of days to a few weeks (Rodhe et al., 1972). The large-scale distribution of BC 

in the atmosphere is a product of emissions and deposition during atmospheric transport. 

Initially hydrophobic, BC particles age in the atmosphere and eventually become hydrophilic 

acting as cloud and ice nuclei (Koehler et al., 2009). Dry deposition of BC occurs 

immediately after emission; however, wet deposition is thought to exceed dry deposition by 

an order of magnitude (Bond et al., 2013; Jacobson, 2012). Wet deposition is therefore a 

major factor determining the longevity of BC in the atmosphere. A growing number of 

modeling studies address the atmospheric transport, aging and deposition of BC, but the 

studies are constrained by limited field measurements of wet deposition. Additionally, 

modeling of the BC aging timescales using available observations (Schwarz et al. (2010) 

suggests that different source regions have significantly different lifetimes in the atmosphere, 

partly due to the prevalence and composition of co-emitted species (Zhang et al., 2015). The 

removal of BC from the atmosphere by wet deposition is crucial to understanding BC 

residence times in the atmosphere, and consequently global climate forcing models (Bond et 

al., 2013).  

Previous studies have used a number of techniques to measure insoluble carbon in rainwater, 

including thermal-optical analysis (TOA), single-particle soot photometry (SP2), ultraviolet–

visible spectrophotometry, and total organic carbon (TOC) analysis (Torres et al., 2013). 

Early studies calculated the removal rate of elemental carbon (EC, similar to BC) from the 

atmosphere through wet deposition at urban sites in Seattle and rural sites in Sweden using 

quartz-fiber filtration and TOA (Ogren et al., 1984), but the studies were limited by low BC 

concentrations and required large rain sample volumes for filtration. TOA of organic carbon 

(OC) and EC in rain at mountainous background sites across a European transect measured 

EC concentrations ranging from 2.8 ± 4.3 µg C L−1 to 28 ± 38 µg C L−1 (Cerqueira et al., 

2010). 
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The single particle soot photometer (SP2) uses particle incandescence to measure the mass 

and particle size of the refractory black carbon (rBC) component of aerosol samples (SP2, 

Droplet Measurement Technologies, Boulder, Colorado). A real-time analysis system 

consisting of an ultrasonic nebulizer coupled to the SP2 has been used in the past to measure 

rBC particles in rain, snow, and ice samples (McConnell et al., 2007; Ohata et al., 2011; 

Schwarz et al., 2012; Torres et al., 2013). There is evidence that the effectiveness of the rBC 

measurement using this method drops substantially with larger particle size (>500 nm) 

through size-dependent nebulization efficiency, and is associated with significant uncertainty 

due to differences in particle size in snow samples compared to atmospheric measurements 

(Ohata et al., 2011; Schwarz et al., 2012). Consequently, these studies suggest that SP2 

methods to measure rBC in rainwater consistently underestimate rBC mass, but systematic 

loss can be controlled for through the use of rBC standards. Though TOC analyzer 

measurements are more accurate at higher concentrations (200 – 5000 µg L-1, detection limit 

40 µg L-1), the SP2 is required for measurements of low rBC concentrations (Torres et al., 

2013). The SP2 has been used to measure rBC concentrations in the atmosphere and 

rainwater in outflows from China, with significant seasonal variability (Mori et al., 2014). 

Urban rain rBC measurements were also made in Tokyo using the SP2 (Ohata et al., 2011). 

Ducret and Cachier (1992) measured air and rain organic and black carbon concentrations at 

multiple locations in Europe and noticed significant regional variability, suggesting that 

removal rates varied due to changes in hygroscopicity of the particles. 

BC emissions in the Southern Hemisphere are dominated by biomass burning, whereas 

industrial emissions dominate in the Northern Hemisphere. The vast majority of BC rain 

studies have been conducted in the Northern Hemisphere, often downwind from major urban 

emissions. Mixing state and co-emitted species substantially affect BC behavior in the 

atmosphere, including cloud and ice formation, and therefore affect BC lifetime in the 

atmosphere (Stier et al., 2006). Wet deposition rates in the Southern Hemisphere are 

necessary in order to constrain global models of atmospheric BC lifetime. 

Australian rain samples from Perth, Western Australia and Darwin, Northern Territory were 

collected and analyzed for rBC concentration using an SP2. Predominant airmass transport to 

Perth is from the Indian Ocean to the west. Bushfires in Africa and South America are likely 

sources of long-range transported aerosols over the Indian and Southern Oceans. Black 
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carbon deposited in Darwin is likely sourced from biomass and industrial emissions in 

Indonesian and northern Queensland, with significantly shorter BC atmospheric lifetime. 

 

6.2 Methods 

6.2.1 Sample collection and handling 

Rain samples were collected in Darwin, Northern Territory, and Perth, Western Australia 

(Figure 6.1). Perth is the largest city in Western Australia with a population of 2 million and 

predominant wind patterns are from the Indian Ocean. Darwin is the largest city in Northern 

Territory with a smaller population of 142,000. Darwin is located close to Indonesia and 

Papua New Guinea, and experiences seasonal monsoon rainfall. The Northern portion of 

Australia experiences a dry season in winter, May through November, and a monsoonal wet 

season in the summer months, December through March (Holland, 1986; Kaars et al., 2000). 

This site was selected as large volumes of rain could be collected in short periods of time.  

 

Figure 6.1 A map of Australia, with sampling locations marked in Perth, Western Australia, 
and Darwin, Northern Territory. Perth is located on the Indian Ocean with predominant winds 
from the West. Darwin is in close proximity to seasonal biomass burning in northern Australia 
and Indonesia. 
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The Perth and Darwin rain samples were collected using a low-density polyethylene (LDPE) 

funnel with a 1 L cleaned LDPE (Nalgene) bottle attached via a threaded cap. All sampling 

equipment was cleaned with ultra-pure (UP, ρ >18.2 mΩ) water. In Darwin, the funnel was 

placed on a bucket in an open field, with no overhead obstructions. In Perth, the sampling 

occurred on the roof of a building, similarly with no obstructions. 

Darwin rain samples were collected at (-12.370541, 130.867107). The Darwin rain samples 

were initially collected for nanoparticle separation, and were not weighed for total sample 

volume. Rain samples were therefore compared to the automatic weather station (AWS) data 

recorded at the Darwin International Airport (-12.4239, 130.8925), the closest weather station 

to the sampling site with rainfall measurements and 6.52 km from the AWS location. 

Weather station data was recorded every minute, with 0.2 mm rainfall resolution (where 

1 mm of rainfall = 1 L m-2). AWS rainfall data was aggregated for the sampling period, to 

provide an approximation of rainfall in the absence of direct measurements at the rain 

sampling site. 

There are several limitations with this approach, namely the assumption that the rainfall in 

the two locations is comparable. Research on storm cells in Darwin suggests that the mode in 

storm cell diameter is ~5 km (May & Ballinger, 2007), and a number of the collected samples 

did not have corresponding rain measurements at the AWS site, indicating that only some of 

the storm cells covered both the rain sampling site and the AWS. Therefore, any flux 

estimates come with significant uncertainties. 

Perth rain samples were collected at (-32.007513, 115.895350), on a building rooftop on the 

Curtin University campus. Perth rain samples were collected in the aftermath of Cyclone 

Olwyn, which decreased in intensity prior to passing over Perth, and caused rapid variations 

in atmospheric transport conditions. Perth rain samples were weighed after collection for 

sample volume. Twenty-four-hour total rainfall measurements were made at the Perth Airport 

AWS (-31.93, 115.98). Total rainfall during the sampling period was calculated from AWS 

data in Darwin and measured from collected sample volume in Perth. All weather station data 

can be found at the Australian Bureau of Meteorology website (www.bom.gov.au). 

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 72-hour back-

trajectories (Rolph, 2016; Stein et al., 2015) were calculated at each sampling location and 

for each sample collection time. Trajectories were also calculated at 500 m, 1000 m, and 
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2000 m for the Perth samples to account for potential air mass sources for precipitation, as 

BC wet removal can occur through both nucleation and scavenging during rainfall. 

6.2.2 TEM imaging 

Rain samples were processed according to the method detailed in Ellis et al. (2015). Briefly, 

after rBC measurement using the SP2, rain samples were filtered and concentrated using 

Tangential Flow Filtration (TFF). This technique retains insoluble particles, while removing 

water and soluble species. The resulting concentrated solution was deposited on a gold 

Si/SiO2-coated TEM grid and imaged using a Titan G2 80-200 TEM/STEM with 

ChemiSTEM Technology. This instrument incorporates scanning transmission electron 

microscopy (STEM) and ~1 nm resolution EDS mapping for elemental composition. 

6.2.3 SP2 analysis 

Rain samples were refrigerated immediately after collection to slow particle aggregation or 

loss to the walls of the sample bottle. Rain samples collected in Darwin were shipped in a 

cooler with ice packs to Perth. There is likely a small fraction of particle loss due to the 

shipment time between sample collection in Darwin and rBC analysis in Perth, therefore rBC 

concentrations reported here should be treated as a minimum value for the sample.  

Rainwater samples were analyzed using a single-particle soot photometer (SP2) located at 

Curtin University, in Perth, Australia. Samples were pumped into an ultrasonic nebulizer and 

desolvator (Cetac) and subsequently into the SP2 (Sterle et al., 2013). Relative SP2 rBC 

concentrations for the rain samples were calibrated using a standard suite of set 

concentrations made of Ebony-6 ink, and run before and after sample analysis to account for 

possible SP2 drift. 

6.2.4 Uncertainty 

Perth rain samples were weighed after collection for total sample volume. The funnel used 

for collection was not measured directly, and instead estimated at ~30 cm in diameter. Rain 

deposition in units of kg m-2 was calculated using this estimated diameter. This value was 

given an uncertainty of ± 50% to account for the potential large variation in collected rainfall 

with changes in funnel diameter, to avoid suggesting high precision in calculated rBC 

deposition rates. It should be noted that variability in the diameter of the funnel could 
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substantially alter the rBC deposition rates calculated in this paper, but as the Perth samples 

were all collected using the same equipment, the relative deposition rates will be unchanged. 

Several duplicate sub-samples were taken in Darwin and Perth to test uncertainty in the 

sample handling and SP2 analysis. This method does not account for uncertainties in sample 

collection, as duplicates were taken from a single rain collection sample. Though limited in 

number, these duplicates were used to calculate standard deviation, which was applied to the 

additional samples. The duplicated samples include Darwin_9, Darwin_10, Perth_1, Perth_2, 

and Perth_3. The uncertainties in rBC deposition rates are dominated by the error in 

estimated rainfall measurements. For calculations, uncertainties in individual measurements 

were combined using the standard formulas for propagation of uncertainties. 

Weather station rain measurement uncertainty was estimated as the instrument resolution, 

0.2 kg m-2, as provided by the Australian Bureau of Meteorology. 

 

6.3 Results and Discussion 

6.3.1 Black carbon wet deposition in Darwin, Northern Territory and Perth, Western 

Australia 

rBC deposition rates were calculated for individual events (Table 6.1) and extrapolated for 

24-hour periods (Table 6.2). Darwin showed variability in rBC concentrations, ranging from 

0.8 ± 0.3 µg L-1 to 21.8 ± 0.3 µg L-1. This range is substantially lower than rBC 

measurements in Rain from Asian outflows, which ranged from 8.0 ± 4.1 µg L-1 to 92 ± 

76 µg L-1 (Mori et al., 2014). 

Concentrations in Perth were lower on average (Table 6.1), with concentration at the 

beginning of the storm system (Figure 6.3) reaching 5.74 ± 0.01 µg L-1 and decreasing to 

0.57 ± 0.03 µg L-1 when the storm system had dissipated and transport was from offshore 

(Figure 6.4). On two days where multiple rain samples were collected during a single weather 

event, rBC depositional flux decreased over the course of the event for both Perth and Darwin 

rainwater. This is consistent with the trend from the sub-event flux measurements made in 

Tokyo rainwater in Ohata et al. (2011). 



 
124 

While acknowledging that the wet deposition data set is small, the extrapolated 24-hour wet 

depositional fluxes for Darwin and Perth were comparable to global, latitudinally averaged 

BC wet deposition rates described by Jurado et al. (2008). This study used a simple washout 

ratio of 2 · 105, derived from Jurado et al. (2005), to calculate a wet deposition rates. It should 

be noted that estimated washout ratios in the literature vary by over an order of magnitude, in 

part due to the uncertainty associated with wet scavenging of particles. Jurado et al. (2008) 

predicted BC wet deposition flux of 180 µg m−2 d−1 for 0–30°N, 70 µg m−2 d−1 for 0-30°S, 

and 20 µg m−2 d−1 for 60°S–30°S. rBC wet deposition flux in Darwin (12°S) ranged from 1 –

 314 µg m−2 d−1, with the highest rBC concentrations occurring in November, close to 

biomass burning season in Indonesia. rBC flux in Perth (32°S) ranged from 0.8 –

 41 µg m−2 d−1, comparable to predicted daily flux values for the latitude.  
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Figure 6.2 HYSPLIT back trajectory for the Darwin sampling site for the samples collected on 
20 Feb 2015. Airmass transport was predominately over the Northern Territory, Queensland, 
and Western Australia before deposition in Darwin. Additional trajectories for a starting 
airmass height of 500 m and 2000 m are included in the Supplementary Information. 
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Figure 6.3 HYSPLIT back trajectory for 14 March 2015, for the Perth sampling site, 
demonstrating transport from Western Australia mobilized by Cyclone Olwyn which passed 
southward along the west coast on the continent. Additional trajectories for a starting airmass 
height of 500 m and 2000 m are included in the Supplementary Information. 
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Figure 6.4 HYSPLIT back trajectory for 16 March 2015, for the Perth sampling site, 
demonstrating long-range remote transport from the Indian Ocean, a common weather pattern 
in Perth. Additional trajectories for a starting airmass height of 500 m and 2000 m are included 
in the Supplementary Information. 

 

6.3.2 Particle characterization using electron microscopy 

Many uncommon particle morphologies and compositions were found in the Darwin rain 

samples, detailed in Ellis et al. (2015) and Ellis et al. (2016). A number of morphologies and 

compositions are relevant to this study, and are therefore included. Numerous BC 

superaggregates were found in Darwin samples, which are unlikely to be detected by the SP2 

system (Figure 6.3). This is due both to the instrument particle size detection range and to the 

size-limited transport efficiency of the ultrasonic nebulizer, as there is lower nebulization 
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efficiency for particles greater than 600 nm (Schwarz et al., 2012). These particles may 

constitute a disproportionate amount of BC mass in the sample. 

 

Figure 6.5 Black carbon superaggregates were found in Darwin rain, many of which are larger 
than the SP2 detection size range. This superaggregate was also attached to a large 
aluminosilicate dust particle, and contained iron spherules incorporated into the carbon 
aggregate (inset). 

 

Many particles contained iron spherules and aluminum-rich silicate dust particles 

incorporated into the BC aggregates, which likely formed shortly after emission and suggest a 

biomass burning origin (Figure 6.5 inset, Figures 6.6 and 6.7). BC scavenged through rainfall 

is a likely source of soluble iron in the Southern Ocean, which could have significant 

implications for iron-limited algae growth (Winton et al., 2016). 
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Figure 6.6 A black carbon aggregate from Darwin rain with multiple distinct carbon 
morphologies present and iron spherules attached to the carbon aggregate (bottom-right). 
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Figure 6.7 HAADF image of the black carbon aggregate in Figure 6.5 (top), along with STEM-
EDS spectra maps of carbon (bottom-left) and iron (bottom-right).  
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6.4 Conclusions 

The rain samples from this study were initially collected for method development and 

electron microscopy characterization; therefore, there are several significant contributions to 

uncertainty in the study. Never-the-less, there are a number of interesting findings from these 

case studies: 

- A wide range of concentrations ranging from 0.8 ± 0.3 µg L-1 to 21.8 ± 0.3 µg L-1 

were found in rBC deposition in Darwin, but substantially lower concentrations 

overall than measured in East Asian outflows and rainwater in Tokyo; 

- There was a significant drop in rBC concentration from 5.74 ± 0.01 µg L-1 to 

0.57 ± 0.03 µg L-1 in Perth as airmass transport shifted from primarily over land to 

over the Southern and Indian Oceans. 

- BC superaggregates are found in Australian rain samples, and due to measurement 

inefficiencies by the coupled ultrasonic-nebulizer and SP2 system, measurements 

likely underestimate total BC mass concentration in the rainwater. 

rBC wet deposition flux in Darwin (12°S) ranged from 1 – 314 µg m−2 d−1, whereas rBC flux 

in Perth (32°S) ranged from 0.8 – 41 µg m−2 d−1. While limited in scope, extrapolated 24-hour 

rBC wet depositional fluxes for Darwin and Perth were comparable to global model 

predictions. All rBC concentrations measured in the study were substantially lower than SP2 

measurements done with rain in the Northern Hemisphere, as expected from BC emission 

inventories and modelled wet deposition rates. Biomass burning emissions and rainfall in 

Darwin are out of phase, with monsoonal rainfall in the summer months (wet season) and 

seasonal bushfires in the winter months (dry season). Therefore, the months with the largest 

BC emissions have the least amount of rain for wet removal processes.  

These rain samples were limited in scope both temporally and spatially, but this study 

supports the suggestion that global wet deposition is highly variable, and more measurements 

are needed to accurately constrain BC lifetime in global models. Future studies in the 

Southern Hemisphere should incorporate measurements for multiple seasons, to help account 

for the potentially strong effects of rain and biomass burning seasonality on BC wet 

deposition rates. 
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Supplementary Information 

Additional HYSPLIT trajectories for the rain samples are included below. 

 

Figure S6.1 HYSPLIT back trajectory for Perth, 14 March 2015 with starting height of 500 m. 
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 Figure S6.2 HYSPLIT back trajectory for Perth, 14 March 2015 with starting height of 2000 m. 
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 Figure S6.3 HYSPLIT back trajectory for Perth, 15 March 2015 with starting height of 500 m. 
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Figure S6.4 HYSPLIT back trajectory for Perth, 15 March 2015 with starting height of 1000 m.  
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Figure S6.5 HYSPLIT back trajectory for Perth, 15 March 2015 with starting height of 2000 m.  
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Figure S6.6 HYSPLIT back trajectory for Perth, 16 March 2015 with starting height of 2000 m. 
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Figure S6.7 HYSPLIT back trajectory for Darwin, 25 November 2014 with starting height of 
1000 m. 
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Figure S6.8 HYSPLIT back trajectory for Darwin, 23 November 2014 with starting height 
of1000 m.   
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Figure S6.9 HYSPLIT back trajectory for Darwin, 30 January 2015 with starting height of 
1000 m. 
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Figure S6.10 HYSPLIT back trajectory for Darwin, 23 February 2015 with starting height of 
1000 m. 
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Figure S6.11 HYSPLIT back trajectory for Darwin, 24 February 2015 with starting height of 
1000 m. 
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Figure S6.12 Plot of BC concentration vs date of sample collection for Darwin (red) and Perth 
(blue). 
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Chapter 7. Thesis summary and conclusions 

 

7.1 Summary and significance 

The overarching goal of this project is to constrain the characteristics and concentrations of 

BC particles in Southern Hemisphere rain, snow, and ice during the Anthropocene, a period 

of significant human influence on atmospheric composition and climate. This thesis provides 

a compilation of research regarding the recent history of BC in the atmosphere as well as wet 

removal processes. As detailed conclusions are included in each individual chapter, this 

chapter seeks to summarize and connect the results of the research. 

We characterized the morphology and composition of individual BC particles in modern 

Australian rainwater and Antarctic ice dated to pre- to post-industrialization of the Southern 

Hemisphere. There is limited data on characteristics and wet removal rates of BC in the 

Southern Hemisphere, where BC emissions are dominated by grass and forest fires in South 

America, Africa, and Australia. This is partly because BC particles exist in low 

concentrations in precipitation, including snow, ice, and rainwater. To image these particles, 

they must first be removed from solution, which necessitated the development of a new 

tangential flow filtration (TFF) technique to isolate the trace concentrations of insoluble 

particles. This filtration method was then coupled with particle characterization by various 

transmission electron microscopy (TEM) techniques, a method also used to characterize 

individual BC aerosols. The TFF technique is recommended for use in future studies of 

insoluble aerosols in rainwater and ice core samples, and for potential studies of insoluble 

particulates in sea-water as the technique can remove soluble salt species while retaining 

insoluble particles.  

TEM imaging and spectroscopy revealed new information on BC particles in ice cores from 

East Antarctica and rainwater from northern Australia. Using sections of an archived ice core 

that had been previously analyzed and age constrained, black carbon particles were imaged 

from historic ice core samples dated to 1759, 1838, and 1930 CE from Law Dome in East 

Antarctica. Rain samples from Darwin, Australia, provided modern BC particles as a 

comparison with the historical particles preserved in ice. High resolution TEM spectroscopy 

revealed ~5 nm nitrogen-rich coatings, often including amorphous carbon. These coatings 
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connected BC aggregates with dust and iron particles. Significantly, previously unreported 

single black carbon nanospheres were detected in both ice and rainwater samples. These 

~30 nm particles are below the limit of detection for instruments that are used to quantify 

black carbon, and may be unaccounted for in atmospheric and ice core studies. One 

significant difference between ice core and rainwater samples was the existence of BC 

superaggregates in Australian rain. This result has important implications for the 

measurement of BC in rain using an SP2/ultrasonic nebulizer system, as transport efficiency 

of the nebulizer drops substantially for particles over ~500 nm, thereby leading to an 

underestimation of total BC mass in a sample.  

Wet deposition was studied through particle morphology and flux in rainwater collected in 

Perth, Western Australia, and Darwin, Northern Territories. Rain samples in Darwin were 

collected during the monsoonal rain season with regular rainfall, whereas Perth samples were 

collected during a cyclone period, where meteorological conditions shifted rapidly from 

moving over the Australian continent to long-range transport across the Indian and Southern 

Oceans. The locally-sourced rainfall in Perth and Darwin contained BC likely sourced from 

biomass and industrial emissions in Indonesian and northern Australia. As expected, the 

rainwater from terrestrially-sourced airmasses contained significantly higher concentrations 

of BC than rainfall from the Indian and Southern Oceans. Additionally, BC aggregates in 

Darwin rain were substantially larger in size than particles in Antarctic ice, potentially due to 

closer proximity to source regions and/or tropical nucleation scavenging efficiency. 

To better understand history of BC deposition in Antarctica, snow pits were sampled and ice 

cores were extracted from Roosevelt Island, West Antarctica, as part of the Roosevelt Island 

Climate Evolution (RICE) project. This chapter presents a high temporal resolution 

reconstruction of the record of black carbon concentrations from 1890 to 2013 CE. 

Periodicity in black carbon preservation reflects biomass burning patterns in the southern 

hemisphere on seasonal and decadal timescales. Significantly, the record shows that black 

carbon deposition has increased dramatically from 1995 CE to 2013 CE paralleling global 

temperature rise, suggesting a combination of increasing emissions and/or faster transport 

from biomass burning in the Southern Hemisphere, though the individual contribution of 

either factor has yet to be determined. The most recent (austral summer 2012) peak at 

Roosevelt Island has BC concentrations that approach Greenland levels.  
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7.2 Future work 

The results from this research are both significant and timely, given the increasing awareness 

of the role of BC in the climate system. The following are suggestions for future avenues of 

research that would provide additional and important insight into the questions raised in this 

thesis. 

The small sample number and limited time span limits conclusions regarding any systematic 

changes to BC morphology from the preindustrial period through the 20th Century. The 

Northern Hemisphere paleo record indicates a stronger shift from natural biomass burning to 

anthropogenic industrial emissions during the industrial revolution, suggesting that Arctic ice 

cores should be studied for possible variations in BC particle characteristics over time using 

the techniques developed in our research. 

With regards to the Antarctic ice core BC record, periodic follow-up snow pits at Roosevelt 

Island are needed to determine if the trend of increased deposition is continuing. A follow-up 

snow pit and shallow core at WAIS Divide and other nearby ice core sites are important to 

determine spatial extent of the black carbon deposition, as regional extent has significant 

implications on atmospheric transport conditions as well as potential albedo effects. The 

increase in BC deposition to Roosevelt island is likely driven by changing atmospheric 

transport conditions, but there are several potential contributing factors for this increase that 

need to be accounted for. These include a possible increase in biomass burning emissions and 

changes in precipitation over the Southern Ocean thereby affecting BC removal rates and 

atmospheric loading. Utilization of a global atmospheric transport model may help constrain 

this uncertainty.  

Finally, the rain case studies reported in Chapter 6 provide interesting isolated observations 

of BC wet deposition rates, but to better inform global climate models, a comprehensive 

study needs to be conducted. Consistent rain sample collection at established weather stations 

over the course of a year could account for potential seasonal variability in BC wet deposition 

flux. As Africa is the dominant emitter of biomass burning BC, measurements of BC flux in 

rain from African outflows would be beneficial for constraining BC removal rates in the 

Southern Hemisphere. 
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Abstract. Antarctic ice cores have been used to study the
history of black carbon (BC), but little is known with re-
gards to the physical and chemical characteristics of these
particles in the remote atmosphere. Characterization remains
limited by ultra-trace concentrations in ice core samples and
the lack of adequate methods to isolate the particles unaltered
from the melt water. To investigate the physical and chemical
characteristics of these particles, we have developed a tan-
gential flow filtration (TFF) method combined with transmis-
sion electron microscopy (TEM). Tests using ultrapure water
and polystyrene latex particle standards resulted in excellent
blanks and significant particle recovery. This approach has
been applied to melt water from Antarctic ice cores as well
as tropical rain from Darwin, Australia with successful re-
sults: TEM analysis revealed a variety of BC particle mor-
phologies, insoluble coatings, and the attachment of BC to
mineral dust particles. The TFF-based concentration of these
particles has proven to give excellent results for TEM stud-
ies of BC particles in Antarctic ice cores and can be used for
future studies of insoluble aerosols in rainwater and ice core
samples.

1 Introduction

Carbonaceous aerosols emitted by combustion processes are
comprised of black carbon (BC) and organic matter. These
aerosols can stay suspended from days to weeks in the tro-
posphere and for over a year in the stratosphere (Buseck
and Adachi, 2008; Stohl and Sodemann, 2010). They impact
the radiative, physical, and chemical properties of the atmo-
sphere, affecting climate through direct optical effects and
indirectly through changes in cloud formation and structure
(Johnson et al., 2004). The contribution of BC to radiative
forcing is significantly affected by particle shape, size, and
mixing state, which is in turn affected by emission source
and aging in the atmosphere (Jacobson, 2001; Moffet and
Prather, 2009). Understanding the behavior of BC and other
carbonaceous aerosols in the remote atmosphere is important
for validating aerosol parameterization in general circulation
models (Koch et al., 2009). Wet deposition through rain and
snow is the primary removal process of BC from the atmo-
sphere (Bond et al., 2013), and has a large impact on BC’s at-
mospheric residence time and distribution (Hodnebrog et al.,
2014). Furthermore, when deposited to highly reflective sur-
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faces such as snow, the presence of BC can decrease surface
albedo and accelerate melting (Flanner et al., 2007; Hansen
and Nazarenko, 2004; McConnell et al., 2007). Therefore,
studies of BC in modern and historic rain, snow, and ice sam-
ples are needed to understand their modern atmospheric dis-
tribution and their presence in the paleo-atmosphere, and in
turn to study their impact on paleoclimate forcing and future
climate change.
Several methods exist for determining BC concentra-

tions in the atmosphere, such as optical absorption meth-
ods, thermo-optical analysis, photoacoustic absorption spec-
troscopy, and aerosol mass spectrometry (Slowik et al.,
2007). Single particle mass concentration and particle size
can be measured in real-time by single particle intracav-
ity laser-induced incandescence (SP2, Droplet Measurement
Technologies, Boulder, CO, USA). Black carbon particles
can also be characterized individually using electron mi-
croscopy (Pósfai et al., 1999). Many studies have mea-
sured BC abundance (as number and mass concentrations)
in the atmosphere (Schwarz et al., 2006). Transmission elec-
tron microscopy (TEM) coupled with electron energy loss
spectrometry (EELS) and energy-dispersive X-ray spectrom-
etry (EDS) have long been used to determine the size,
morphological, and elemental characteristics of atmospheric
aerosols (Pósfai et al., 1999). Scanning transmission elec-
tron microscopy (STEM) coupled with EDS has been used to
study aerosol particles (Utsunomiya and Ewing, 2003), with
high resolution imaging and STEM EDS mapping revealing
nanoscale inclusions in larger aerosols that would go unno-
ticed with traditional TEM imaging.
Previous studies have investigated BCmass concentrations

in rainwater (Ohata et al., 2011; Torres et al., 2013), snow
packs (Hegg et al., 2009; Warren and Clarke, 1990), and ice
cores (Bisiaux et al., 2012; McConnell et al., 2007), but little
data exists regarding the morphology, chemical composition,
and insoluble coatings of BC particles in rain and snow. This
is particularly true of aged, long-range transported particles
that have been deposited at the polar ice caps.
To the best of our knowledge, only one study has previ-

ously studied the morphology of carbonaceous aerosols in
precipitation. Murr et al. (2004) analyzed particles in ice
cores from the Greenland ice cap by melting the ice and de-
positing 180mL of sample on a 5mm TEM grid, a few mi-
croliters at a time. As made evident by this process, isolating
these particles for characterization is technically challeng-
ing, especially in ultra-clean Antarctic ice, where their abun-
dance is often less than 0.1 µg kg�1 (Bisiaux et al., 2012).
As Antarctic ice cores have substantially lower BC concen-
trations than that observed in Greenland ice, larger sample
volumes (> 1 L melt water) are necessary to acquire suffi-
cient particles for characterization, making this drop-by-drop
method impractical. Salts and other dissolved species cause
additional problems with the drop-by-drop method because
they are also deposited on the grid, coating it with large
amounts of unwanted material. When concentrated on TEM

grids, these precipitated particles can hinder the detection
and analysis of BC simply by obscuring particle morphology,
especially when BC is present in ultra-trace concentrations.
An ideal preconcentration method for insoluble BC par-

ticles in polar ice should be reasonably quick, concentrate
large volumes of ice melt water, remove salts, and keep the
particles in motion to limit aggregation. Tangential flow fil-
tration (TFF) is a technique that uses a continuous flow of
solution tangentially across a filter membrane to avoid sam-
ple build-up on the surface of the membrane (and subsequent
sample loss). Hollow fiber filters have been employed to con-
centrate environmental water samples (Benner et al., 1997;
Giovannoni et al., 1990) as well as nanoparticles for phar-
maceutical applications (Dalwadi et al., 2005). TFF has a
high particle recovery, can concentrate large sample volumes
(> 1 L) without membrane fouling, does not cause nanoparti-
cle aggregation, and can preserve fragile aerosol structures
(Benner et al., 1997; Dalwadi et al., 2005). An important
benefit of TFF to the study of BC particles is that it can con-
centrate particles whilst removing dissolved salts and other
species, depending on the pore size of the filter.
To study individual BC particles and other carbonaceous

aerosols in global precipitation, we investigated the use of
TFF to concentrate BC prior to analysis by TEM. Particle re-
covery rates and blanks were investigated using polystyrene
latex (PSL) particle standards and ultrapure water. Test sam-
ples included tropical rainwater from Darwin, Australia as
well as Antarctic ice cores. The rainwater provided an exam-
ple of equatorial wet deposition of particles, whereas Antarc-
tic ice provides both a modern example of polar deposition
as well as a historical record of these particles in the global
atmosphere.

2 Methodology

2.1 Clean room laboratory environment

Sample preparation and cleaning of laboratory and field
equipment was performed in the Trace Research and Ad-
vanced Clean Environment (TRACE) laboratory at Curtin
University. The TRACE facility is a 450m2 clean-air labo-
ratory facility described by Burn et al. (2009). The facility
includes a large positive pressure clean-air exclusion space
(ISO Class 5) housing five smaller clean-air laboratory mod-
ules (ISO Class 4) including a cold laboratory module. With
the exception of the cold laboratory module, the modules
draw clean air from the exclusion space through a series of
high-efficiency particle air (HEPA) filters in the module roof.
Module air passes through the floor and either recirculates
back into the module and the exclusion space or is exhausted
through the base of clean air hood. Air inside the cold labo-
ratory module is filtered by a recirculating cryogenic air fil-
tration HEPA system. The BC concentration in the exclusion
space air was determined using a single-particle soot pho-
tometer (SP2) and found to be less than 1 BC particlem�3
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for particles with a mass equivalent diameter range of 70
to 700 nm (assuming a constant density of 1.8 g cc�1 as in
Schwarz et al., 2013).
Mechanical decontamination of ice core samples was con-

ducted in the TRACE cold laboratory module at �12 �C. All
other sample preparation and TEM grid preparation activi-
ties were conducted in a clean-air bench inside a laboratory
module.
The modules are fitted with an ultrapure water (UP,

⇢ > 18.2m�) system fed by a laboratory-wide reverse os-
mosis and deionized water supply. This water was used for
cleaning all laboratory benches, fittings, tubing, and plastic
ware. Melted samples were kept in Teflon or low-density
polyethylene (LDPE) bottles, filled and rinsed multiple times
with UP water. All surfaces were cleaned with UP water prior
to sample decontamination.

2.2 Reagents and materials

2.2.1 Blanks

The entirety of this concentration method was blank-tested
with laboratory-made UP ice. The blank ice was made by
freezing UP water in a cleaned 3 L perfluoro alkoxyalkane
container (PFA, Savillex). The ice was removed from the
container, cut into rectangles on a clean band saw in the cold
laboratory module, and bagged in plastic layflat bags. This
was to mimic the condition and treatment of the Antarctic
ice core samples.

2.2.2 Polystyrene latex particles

200 nm polystyrene latex (PSL) spheres (SPI Supplies, Struc-
ture Probe, Inc., West Chester, PA) were used to test the fil-
tration and microscopy method, as they can be suspended in
water and are readily identified on TEM grids.

2.2.3 Filters

50 kD pore size modified polyethersulfone (mPES) Hollow
Fiber Filters (HFFs, Spectrum Laboratories, California) with
20 cm2 membrane surface area, gamma irradiated for steril-
ity, were used to concentrate samples. The 50 kD (⇠ 10 nm)
pore size was selected to retain as many particles as possible
while minimizing filtration time. Any soluble species or par-
ticulates smaller than 10 nm are removed from the solution
during filtration, including dissolved salts.

2.2.4 Grids

The TEM grids used for the study were SPI™ 300-mesh gold
grids with a continuous (non-porous) SiO2/SiO support film.
Gold was selected due to its resistance to corrosive UP wa-
ter. Additionally, the carbon coating on the traditional copper
TEM grids had irregularities that made distinguishing the ac-
tual carbonaceous sample difficult, and silicon dioxide coat-

ings did not interfere with identification of carbonaceous par-
ticles using EDS spectra.

2.3 Instrumentation

A scanning electron microscope (SEM) was used to look at
TEM grids prior to TEM analysis, to verify that sufficient
particles were present on the grid. Scanning electron mi-
croscopy was performed with a Zeiss Neon 40EsB FIBSEM
operated at 5 kV, located at Curtin University’s Microscopy
& Microanalysis Facility.
The transmission electron microscopy was performed on a

FEI Titan G2 80-200 TEM/STEM with ChemiSTEM Tech-
nology, which incorporates scanning transmission electron
microscopy (STEM) with ⇠ 1 nm resolution EDS mapping.
Samples were imaged using both TEM and STEM, both op-
erating at 80 kV. This instrument is located at the University
of Western Australia. Additional imaging and spectroscopy
was performed on a JEOL 2100 TEM operated at 120 kV and
equipped with a Gatan Tridiem energy filter for EELS and
energy filtered transmission electron microscopy (EFTEM)
work.

2.4 Samples

2.4.1 Ice core samples

The DSS0506 ice core samples used in this study were col-
lected in the 2005–2006 austral summer from Law Dome,
East Antarctica. The ice core drilling location was at Dome
Summit South (DSS), and provides overlapping ice core to
the main DSS ice core (66�4601100 S, 112�4802500E, 1370m
elevation). Ice and snow from this site have been the subjects
of a large number of studies (Burn-Nunes et al., 2011; Cur-
ran et al., 1998; Etheridge et al., 1996; Palmer et al., 2001;
Pedro et al., 2012; Vallelonga et al., 2002; van Ommen and
Morgan, 1996, 2010). The flux of BC deposition at the same
sampling site in Law Dome, East Antarctica has been quanti-
fied using an SP2 (Bisiaux et al., 2012). The ice core used in
this study was cut longitudinally into two parallel sections,
1m long with a 5 cm by 5 cm cross-section. One section was
used for measuring trace ion chemicals and stable isotopes,
and the matching section was transported to the TRACE fa-
cility at Curtin University for BC studies. The ice was dated
by matching the dissolved ion chemistry and water stable
isotope records (�18O) to the main DSS ice core record to
produce a depth age scale for DSS0506. The main DSS ice
core record was dated using annual layer counting and iden-
tification of volcanic horizons (Plummer et al., 2012). The
cores used in this study are DSS0506-38U from 70.5m and
dated to 1930CE, DSS0506-69U from 131.5m and dated
to 1838CE, and DSS0506-93U from 178.3m and dated to
1759CE. Approximately 1 cm of ice was removed from all
sides during decontamination, resulting in ⇠ 1.5 to 2 L of
melt water.
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Hollow Fiber Filter cartridge

Filtrate (H2O, NaCl)
To waste

Preconcentrating
Sample

RetentateHollow Fibers

Figure 1. Tangential flow filtration setup for concentration of rain or
melted ice core sample H2O. Water sample recirculates through the
hollow fiber filter, with H2O and dissolved species removed through
open side port of filter cartridge.

2.4.2 Rain samples

Monsoon rain samples were collected in Darwin, in tropi-
cal northern Australia. The region experiences a dry season
(May–November) and a monsoonal wet season in the sum-
mer months (December–March) (Holland, 1986; Kaars et al.,
2000), and is in close proximity to equatorial Asian biomass
burning as well as annually occurring northern Australian
bushfires. The samples used to test this method were col-
lected on 8 and 11 April 2014, during the end of the wet pe-
riod in Darwin when large volumes of rain could be collected
in short periods of time. Rain was collected using an UP
water cleaned Teflon funnel with a 1 L cleaned low density
polyethylene bottle (LDPE, Nalgene) attached via a threaded
cap. The funnel was placed on a bucket in an open field, with
no overhead obstructions.

2.5 Decontamination and concentration method

The ice core decontamination procedure was adapted from
the methods of Burn et al. (2009), Candelone et al. (1994),
and Edwards et al. (2006), using materials described in
Sect. 2.1 of this paper.
Ice core sections were placed on a cleaned plastic cov-

ered surface in the TRACE facility cold laboratory mod-
ule. The exterior of the ice core was progressively removed
and discarded using an acid-cleaned stainless steel chisel.
The chisel was cleaned with 2% nitric acid before use and
rinsed with UP water in-between different ice core sam-
ples. Approximately 5mm were removed from all surfaces
of the ice using the chisel. After removing the exterior, the
ice samples were transferred into an acid-cleaned colander

made from a 3L fluorinated high-density polyethylene bot-
tle with large holes drilled into the bottom. The colander was
cleaned in 10% nitric acid and rinsed with UP water before
use. The ice samples were then rinsed with large amounts
of UP water to remove a further ⇠ 5mm from all surfaces.
Finally the samples were removed from the colander with
acid-cleaned polypropylene tongs and transferred into a 3 L
perfluoro alkoxyalkane container. Ice pieces were added pe-
riodically to the perfluoro alkoxyalkane melt water container
over the course of the filtration, as to keep the sample cold
while filtering to avoid possible aggregation. Rain samples
were filtered directly from the sampling container (1 L LDPE
Nalgene bottle).
The TFF setup consisted of a recirculating HFF connected

to a multichannel peristaltic pump (Ismatec IPC pump, IDEX
Health & Science), detailed in Fig. 1. Samples were pumped
through filters with standard PVC two-stop pump tubing and
PFA tubing.
During concentration, sample water was recirculated from

the bottle using the peristaltic pump, through a HFF, and
then back into the sample bottle. One of two side ports on
the HFF was left open over a waste container to allow fil-
trate to be removed with little backpressure, as backpressure
on the filtrate removal line would have slowed the filtration
rate. The sample bottle was elevated above the filter, and the
height difference between filter and sample bottle was used
to increase or decrease backpressure on the filter, speeding or
slowing filtrate removal as required. Filtrate was removed at
250mLh�1, resulting in a concentration of 2 L to 1.5mL in
approximately 8 h.
The pump direction was periodically reversed, with the

sample moving backwards through the filter, for ⇠ 5 s to
avoid particle build-up on the membrane surface. The filter
is also backflushed immediately prior to collecting the final
concentrated sample with 1mL of water (Fig. 2) to remove
any additional particles from the membrane. Samples were
concentrated to 1.5mL in the sample bottle, transferred to
a cleaned polypropylene centrifuge vial, and gently shaken
to avoid particle size separation. Concentrated samples were
then deposited on 5mm TEM grids, 30 µL at a time using a
clean PP pipette tip. The TEM grid was held elevated off
the laboratory bench surface by SPI stainless steel tweez-
ers in the TRACE module clean air hood at room tempera-
ture (⇠ 22�C) while the sample was evaporating down. Each
30 µL drop was left to evaporate fully between drops, de-
positing particles on the surface of the grid. To avoid particle
separation in the solution, the sample vial was shaken imme-
diately before each deposition. The sample vial was stored at
2�C between drops. Approximately 0.18mL of sample was
deposited to each grid.

2.6 Particle characterization using electron microscopy

Insoluble particles were characterized using electron mi-
croscopy, initially to check for sample recovery, and eventu-
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Hollow Fiber Filter cartridge
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Figure 2. Backflush of hollow fiber filter membrane setup, per-
formed by stopping the peristaltic pump and injecting 1mL of ul-
trapure water into the open side port using a syringe.

ally for quantification of particle size, morphology, and com-
position. During recovery method development, secondary
electron imaging in the SEM was used to look for particles
remaining on filters as well as for inspecting TEM grids for
particles recovered through filtration.
The silicon-coated grid exhibited some charging effects

under the electron beam, and damaged squares of film (i.e.,
holes from handling with tweezers) could collapse com-
pletely when imaged in normal TEMmode. Often, spreading
the beam out over a large section of grid and waiting a few
minutes before imaging at higher magnification could pre-
vent sample jumping. Film squares with large objects, such
as bacteria or dust particles > 10 µm, were more susceptible
to complete collapse from charging.
On the TEM, the entire area of each grid was initially sur-

veyed at 200–500⇥ magnification to locate particles, which
were then imaged at higher magnifications and EELS/EDS
spectra were acquired to characterize particle types. Parti-
cles were imaged at ⇠ 10 000⇥ magnification for complex,
larger aggregates, and 100 000–200 000⇥ magnification for
fine structure and individual particle morphology. Seemingly
empty portions of the grid were also surveyed at higher mag-
nification, to verify that potential deposits of smaller particles
were not overlooked.
BC was identified using various TEM results, including

spherule aggregate structure, the presence of carbon peaks in
EDS or EELS spectra, size of primary spherules (⇠ 30 nm),
and “onion-ring” structure of spherules. STEM imaging and
EDS were used to preserve beam-sensitive structures, such
as coatings on the particles. EFTEM elemental maps were
acquired using the traditional three-window technique using

energy windows adjusted to provide optimum signal-to-noise
(Brydson, 2001).

2.7 Testing the cleanliness of the system

As the concentration method will concentrate both sample
and contaminants, blanks were tested on each major step of
the procedure to exclude the possibility of procedural con-
tamination. Unused TEM grids were scanned prior to use for
sampling. To test the cleanliness of the water, blank UP water
was concentrated and deposited on TEM grids for imaging.
Laboratory-made UP water blank ice was decontaminated
and concentrated using the method in Sect. 2.5. The TEM
samples were prepared from the concentrated solution.

3 Results and discussion

3.1 Blanks

No BC was found on any of the unused TEM grids or in any
of the UP water tests. An UP water blank on the hollow fiber
filter after filtering a rain sample was inspected on the TEM,
and there was little evidence of cross contamination. Three,
⇠ 500 nm alumina silicate dust particles were found on the
entire grid, surveying at 500⇥ magnification.

3.2 Tangential flow filtration

Using TFF, the ice core samples were concentrated from
an average initial volume of ⇠ 2 L to a final volume of
1.5± 0.1mL, a factor of ⇠ 1300. The concentration factor
varied slightly due to the initial volume of the ice core melt
water, which was different for each ice core sample used.
This was due to variations in the size of each ice core.
The TFF method was tested with polystyrene latex (PSL)

spheres (200 nm diameter). A prepared standard of 1 L of
1 µg kg�1 (1 ppb) PSL particles was concentrated from 1L
to ⇠ 1.5mL using the method in Sect. 2.5, resulting in a fi-
nal concentration of ⇠ 670 µg kg�1. This concentrated stan-
dard was then deposited on a SiO2/SiO coated TEM grid.
SEM images of the prepared sample grid showed significant
sample recovery for characterization, with areas of the grid
completely obscured with spheres (Fig. 3).
Using an average BC concentration of 0.08 µg kg�1 from

the same Law Dome location in Antarctica (Bisiaux et al.,
2012) and a concentration ratio of 2 L to 1.5mL, the final
BC concentration of the ice core samples was⇠ 100 µg kg�1.
A number of methods were tested to extract particles from
water samples in this study, and these methods are detailed
in Appendix A. Comparison of this TFF method with the
“failed” methods in Appendix A indicate that particle recov-
ery from TFF is more effective at both concentrating par-
ticles and keeping particles suspended in a solution, which
can then be deposited on a TEM grid for characterization.
Given that the melting of snow samples does not affect the
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Figure 3. SEM image of PSL spheres from concentration method
test on SiO2/SiO coated grid surface, concentrated from 1 to ⇠
667 µgkg�1 using TFF.

size distribution of BC aerosols (Schwarz et al., 2013), the
only information lost in the melting of the ice core would be
any possible soluble constituents of the BC aerosols, such as
soluble coatings.

3.3 Transmission electron microscopy

Results presented from this study pertaining to the relative
and absolute abundance of different particle types are quali-
tative only, because a statistically rigorous survey of all parti-
cles on the grid was not completed. Nevertheless, the images
included in this paper have been chosen to be representative
of particles commonly seen while scanning the grid.
Sample charging on the SiO2/SiO-coated grids caused dif-

ficulty with TEM and STEM imaging, as the grid would pe-
riodically shift abruptly while collecting an image. The sili-
con and oxygen provided a useful background when looking
for carbon in EDS and EELS spectra, but a carbon-coated
grid would be more stable for high-resolution imaging on the
nanometer scale.
Black carbon aggregates were readily identified by their

onion structure and morphology on TEM grids from both
rain samples and ice core samples. In addition, STEM EDS
revealed coatings and inclusions in the aggregates that would
have otherwise been overlooked. STEM EDS also preserved
beam-sensitive sample, including nitrogen and oxygen coat-
ings up to 5 nm thick on the BC aggregates (Fig. 4).
Various mineral dust particles were also successfully iden-

tified in both sample suites via imaging coupled with EELS
and EDS analysis (Figs. 5 and 6) and EELS and EFTEM
analysis helped characterize complex dust particles contain-
ing Al, Si, Fe, and C (Fig. 6). The mixing of BC and other
particulates shown in Figs. 5–7 is significant, as internal mix-
ing of BC with other particles such as dust can affect their
radiative forcing (Clarke et al., 2004; Scarnato et al., 2015).

a b c

d e f

Figure 4. An example of a BC aggregate with nitrogen and oxy-
gen coating and aluminum-rich silicate inclusions from Law Dome,
Antarctica ice core dated to 1759CE. (a) STEM image, scale bar=
300 nm. (b–f) a series of STEM EDS maps for C, N, O, Si and Al,
respectively. Element maps shown are from same field of view as
image (a).

Figure 5. TEM image of a particle from Darwin rain sample col-
lected 11 April 2014, with accompanying STEM EDS maps of car-
bon, silicon, and aluminum. Element maps are from the same field
of view as the TEM image.
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C
Si

Fea b

Figure 6. Examples of particles concentrated from a Law Dome,
Antarctica ice core dated to 1930CE. (a) TEM image and (b)
EFTEMmap of a complex aggregate particle where red is iron, blue
is silicon, and yellow is carbon.

Figure 7. Aged superaggregate from Darwin rain sample collected
8 April 2014. Inset is of an enlarged section of aggregate, showing
individual BC sphere structure.

STEM-EDS can distinguish variations in BC composition
that may routinely be overlooked.
Both the rain and ice cores had a large quantity of BC par-

ticles, with graphitic carbon “onions” of ⇠ 30 nm in diame-
ter aggregated into larger particles of ⇠ 80 to > 1000 nm in
diameter. These particles often showed association with alu-
minosilicate dust particles (Fig. 5). Black carbon particles in
both the rain and ice cores appeared to be significantly aged
in the atmosphere as indicated by the collapsed structure of
the carbon spherules (Figs. 4–7).
The surveys in this study permitted qualitative compar-

isons between samples. For example, in general, the rain
samples had many larger BC aggregates (> 200 nm), whereas
BC aggregates found in the ice cores were significantly
smaller (⇠ 100 nm) and displayed a much more compact
structure. Rain samples also contained numerous superag-
gregates as described in (Chakrabarty et al., 2014). These su-
peraggregates were > 1 µm in diameter and were absent in the
ice cores (Fig. 7). Given the high particle yields from the TFF

concentration method, it is anticipated that more systematic
TEM surveys could facilitate more statistically robust data on
particle type and size distributions. However, this is beyond
the scope of this study.
The tangential flow filtration concentration method has

been used to preserve fragile structures of particles and to
avoid aggregation of nanoparticles. Nevertheless, disaggre-
gation, aggregation, and aggregate collapse are still possible
outcomes of the method. However, we see no obvious evi-
dence that these factor significantly into the results.
Tests of bond strength between carbon spheres in BC show

that aggregates are unlikely to fragment into smaller units
(Rothenbacher et al., 2008). Hence, disaggregation from this
method is unlikely. Additionally, both the rain samples and
the ice core melt water samples were processed in an identi-
cal way, including the filtration technique to concentrate the
samples and the evaporation technique to deposit particles
on the TEM grids. Both rain and ice core samples contained
significant variations in particle size, including large amounts
of smaller BC aggregates (⇠ 100 nm). This variety suggests
that method-induced aggregation did not result in significant
changes to the particle population.
The collapsed structure of the black carbon aggregates

seen in the ice core samples is supported by reports of BC
aging in the atmosphere (Johnson et al., 1991; Li et al., 2003;
Martins et al., 1998). The BC contained in Antarctic ice cores
has aged significantly from emission to deposition and would
therefore likely contain collapsed aggregates. As BC is wet
deposited in the rain samples, the particles are likely hy-
drophilic. The transition from hydrophobic to hydrophilic is
a result of atmospheric aging (Stier et al., 2006), suggesting
that the BC in rain has also aged significantly before deposi-
tion and will contain collapsed aggregates as well.
While post-deposition processes within the glacier cannot

be ruled out, volume equivalent diameters of BC particles
found in the ice (Bisiaux et al., 2012) are similar to those
determined over the remote Southern Ocean by the HIPPO
project (Schwarz et al., 2010). Snow densification and ice
metamorphosis are more likely to aggregate BC particles
into crystal junctions. If this were significant, larger particles
would be expected rather than smaller ones. The differences
between the BC found in rain and Antarctic ice likely reflect
the loss of large aggregates during long-distance transport to
Antarctica.

4 Conclusion

The results presented herein clearly show that the combina-
tion of tangential flow filtration and transmission electron
microscopy methods provides an effective way to charac-
terize both centuries-old atmospheric aerosols preserved in
Antarctic ice and modern aerosols in rain water. Using a
clean decontamination procedure and tangential flow filtra-
tion method, aerosols in rain and Antarctic ice have been
concentrated by a factor of ⇠ 1300. Tangential flow filtration
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method tests with polystyrene latex particle standards have
shown sufficient particle recovery for transmission electron
microscopy characterization, and blank tests with ultrapure
laboratory ice indicate that this process does not introduce
any measureable contaminants. The results in this paper in-
dicate that black carbon particles can form around or aggre-
gate with dust and other mineral particulates, and aggregates
can develop thin (< 5 nm) insoluble coatings of nitrogen and
oxygen.

An important potential future development includes the
possibility of quantification of particle sizes and types
through systematic grid surveys of samples prepared from
specific ice core depths. This type of survey could provide
a statistically significant analysis of black carbon morpholo-
gies and chemical compositions in Antarctic ice, which could
potentially reveal changes in black carbon over time.
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Appendix A: Unsuccessful concentration methods

A1 Drop by drop evaporation without
preconcentration

Murr et al. (2004) used a drop-by-drop method to deposit
Greenland ice core melt water on a TEM grid, ⇠ 3 µL at a
time. The drop-by-drop method might work on higher con-
centration samples (i.e., temperate ice cores or snow sam-
ples), but due to low concentrations of BC in Antarctic ice
cores, characterization of the particles necessitates concen-
trating the melted ice core prior to depositing it on a TEM
grid. To preserve the largest amount of particles, the sample
should be processed as quickly as possible. The longer the
sample sits melted, the greater chance of losing black car-
bon to aggregation or diffusion to the walls of the sample
container. Depending on concentration of BC in sample, the
drop-by-drop method would require a significant amount of
sample deposition to grid before there are sufficient particles
to image (⇠ 1 L, deposited 3 µL at a time), potentially losing
particles in the sample as each drop dries on the grid.

A2 Vacuum ablating ice

We attempted to vacuum ablate ice, to avoid putting the BC
into solution where it might lose soluble portions of the struc-
ture. This was tested on a Christ Alpha 1–2 LD Freeze Dryer.
It took approximately 6 hours for a 5 cm3 piece of blank
ice to halve in size. A substantially larger ice core sample
is required to obtain sufficient particles for characterization
in low-concentration Antarctic ice.

A3 Anopore filtration followed by back flushing

Preconcentration was attempted using a 200 nm pore-size
Anopore polycarbonate filter. An ice core sample was melted
and filtered using the peristaltic pump and an Anopore filter
in a Teflon filter holder. The filter was then backflushed with
⇠ 5mL of Milli-q water using a syringe.

!
!
!
!
Ellis!et!al!Figure!A1!
Figure A1. SEM image of Anopore filter after filtering 1 L of ice
core melt water, and backflushing the filter to remove filtered parti-
cles.

SEM imaging of TEM grids made from the backflushed
sample solution indicates only a small fraction of particles
were recovered from the filter. Further SEM imaging of the
filter itself showed large amounts of particulates remained
stuck to the filter surface and were not removed through
backflushing (Fig. A1). Ultrasonication was not used to dis-
lodge particles due to the possible separation of aerosol ag-
gregates, compromising the characterization results of BC
aggregates. This could be a useful method for a lower-
magnification scanning electron microscopy (SEM) study of
larger aerosols, but large pore size and complicated filter
structure makes locating smaller BC aggregates difficult.

www.atmos-meas-tech.net/8/3959/2015/ Atmos. Meas. Tech., 8, 3959–3969, 2015



3968 A. Ellis et al.: Characterizing black carbon in rain and ice cores

Acknowledgements. This work was supported by Australian
Antarctic Sciences Grant 4144. The authors acknowledge the
use of Curtin University’s Microscopy & Microanalysis Facility,
whose instrumentation has been partially funded by the University,
State and Commonwealth Governments. The authors acknowledge
the facilities, and the scientific and technical assistance of the
Australian Microscopy & Microanalysis Research Facility at
the Centre for Microscopy, Characterisation & Analysis, The
University of Western Australia, a facility funded by the University,
State, and Commonwealth Governments.

Edited by: P. Herckes

References

Benner, R., Biddanda, B., Black, B., andMcCarthy, M.: Abundance,
size distribution, and stable carbon and nitrogen isotopic com-
positions of marine organic matter isolated by tangential-flow
ultrafiltration, Mar. Chem., 57, 243–263, doi:10.1016/S0304-
4203(97)00013-3, 1997.

Bisiaux, M. M., Edwards, R., McConnell, J. R., Curran, M. A. J.,
Van Ommen, T. D., Smith, A. M., Neumann, T. A., Pas-
teris, D. R., Penner, J. E., and Taylor, K.: Changes in black car-
bon deposition to Antarctica from two high-resolution ice core
records, 1850–2000AD, Atmos. Chem. Phys., 12, 4107–4115,
doi:10.5194/acp-12-4107-2012, 2012.

Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T.,
DeAngelo, B., Flanner, M., Ghan, S., Kärcher, B., and Koch, D.:
Bounding the role of black carbon in the climate system: a sci-
entific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
2013.

Brydson, R.: Electron Energy Loss Spectroscopy, Bios in associa-
tion with the Royal Microscopical Society, Oxford, 2001.

Burn, L. J., Rosman, K. J. R., Candelone, J.-P., Vallelonga, P., Bur-
ton, G. R., Smith, A. M., Morgan, V. I., Barbante, C., Hong, S.,
and Boutron, C. F.: An ultra-clean technique for accurately
analysing Pb isotopes and heavy metals at high spatial resolution
in ice cores with sub-pg g(-1) Pb concentrations, Anal. Chim.
Acta, 634, 228–236, doi:10.1016/j.aca.2008.11.067, 2009.

Burn-Nunes, L. J., Vallelonga, P., Loss, R. D., Burton, G. R.,
Moy, A., Curran, M., Hong, S., Smith, A. M., Edwards, R., Mor-
gan, V. I., and Rosman, K. J. R.: Seasonal variability in the input
of lead, barium and indium to Law Dome, Antarctica, Geochim.
Cosmochim. Ac., 75, 1–20, doi:10.1016/j.gca.2010.09.037,
2011.

Buseck, P. R. and Adachi, K.: Nanoparticles in the atmosphere, El-
ements, 4, 389–394, doi:10.2113/Gselements.4.6.389, 2008.

Candelone, J.-P., Hong, S., and Boutron, C. F.: An improved
method for decontaminating polar snow or ice cores for heavy
metal analysis, Anal. Chim. Acta, 299, 9–16, doi:10.1016/0003-
2670(94)00327-0, 1994.

Chakrabarty, R. K., Beres, N. D., Moosmuller, H., China, S., Maz-
zoleni, C., Dubey, M. K., Liu, L., and Mishchenko, M. I.: Soot
superaggregates from flaming wildfires and their direct radiative
forcing, Sci. Rep. 4, 5508, doi:10.1038/srep05508, 2014.

Clarke, A. D., Shinozuka, Y., Kapustin, V. N., Howell, S., Huebert,
B., Doherty, S., Anderson, T., Covert, D., Anderson, J., Hua, X.,
Moore, K. G., McNaughton, C., Carmichael, G., and Weber, R.:

Size distributions and mixtures of dust and black carbon aerosol
in Asian outflow: Physiochemistry and optical properties, J. Geo-
phys. Res.-Atmos., 109, D15S09, 2004.

Curran, M. A., Van Ommen, T. D., and Morgan, V.: Seasonal char-
acteristics of the major ions in the high-accumulation Dome
Summit South ice core, Law Dome, Antarctica, Ann. Glaciol.,
27, 385–390, 1998.

Dalwadi, G., Benson, H. E., and Chen, Y.: Comparison of diafiltra-
tion and tangential flow filtration for purification of nanoparticle
suspensions, Pharm. Res., 22, 2152–2162, doi:10.1007/s11095-
005-7781-z, 2005.

Edwards, R., Sedwick, P., Morgan, V., and Boutron, C.: Iron in
ice cores from Law Dome: a record of atmospheric iron de-
position for maritime East Antarctica during the Holocene and
Last Glacial Maximum, Geochem. Geophy. Geosy., 7, Q12Q01,
doi:10.1029/2006GC001307, 2006.

Etheridge, D., Steele, L., Langenfelds, R., Francey, R.,
Barnola, J. M., and Morgan, V.: Natural and anthropogenic
changes in atmospheric CO2 over the last 1000 years from
air in Antarctic ice and firn, J. Geophys. Res.-Atmos., 101,
4115–4128, 1996.

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.:
Present-day climate forcing and response from black car-
bon in snow, J. Geophys. Res.-Atmos., 112, D11202,
doi:10.1029/2006jd008003, 2007.

Giovannoni, S., DeLong, E., Schmidt, T., and Pace, N.: Tangential
flow filtration and preliminary phylogenetic analysis of marine
picoplankton, Appl. Environ. Microb., 56, 2572–2575, 1990.

Hansen, J. and Nazarenko, L.: Soot climate forcing via snow
and ice albedos, P. Natl. Acad. Sci. USA, 101, 423–428,
doi:10.1073/Pnas.2237157100, 2004.

Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., Lar-
son, T. V., and Clarke, A. D.: Source attribution of black car-
bon in Arctic snow, Environ. Sci. Technol., 43, 4016–4021,
doi:10.1021/es803623f, 2009.

Hodnebrog, Ø., Myhre, G., and Samset, B. H.: How shorter black
carbon lifetime alters its climate effect, Nat. Commun., 5, 6065,
doi:10.1038/ncomms6065, 2014.

Holland, G. J.: Interannual variability of the Aus-
tralian summer monsoon at Darwin: 1952–82, Mon.
Weather Rev., 114, 594–604, doi:10.1175/1520-
0493(1986)114<0594:IVOTAS>2.0.CO;2, 1986.

Jacobson, M. Z.: Strong radiative heating due to the mixing state
of black carbon in atmospheric aerosols, Nature, 409, 695–697,
2001.

Johnson, B., Shine, K., and Forster, P.: The semi-direct aerosol ef-
fect: impact of absorbing aerosols on marine stratocumulus, Q.
J. Roy. Meteor. Soc., 130, 1407–1422, 2004.

Johnson, D. W., Kilsby, C. G., McKenna, D. S., Saunders, R. W.,
Jenkins, G. J., Smith, F. B., and Foot, J. S.: Airborne observations
of the physical and chemical characteristics of the Kuwait oil
smoke plume, Nature, 353, 617–621, 1991.

Kaars, S. v. d., Wang, X., Kershaw, P., Guichard, F., and Se-
tiabudi, D. A.: A Late Quaternary palaeoecological record
from the Banda Sea, Indonesia: patterns of vegetation, cli-
mate and biomass burning in Indonesia and northern Aus-
tralia, Palaeogeogr. Palaeocl., 155, 135–153, doi:10.1016/S0031-
0182(99)00098-X, 2000.

Atmos. Meas. Tech., 8, 3959–3969, 2015 www.atmos-meas-tech.net/8/3959/2015/

http://dx.doi.org/10.1016/S0304-4203(97)00013-3
http://dx.doi.org/10.1016/S0304-4203(97)00013-3
http://dx.doi.org/10.5194/acp-12-4107-2012
http://dx.doi.org/10.1016/j.aca.2008.11.067
http://dx.doi.org/10.1016/j.gca.2010.09.037
http://dx.doi.org/10.2113/Gselements.4.6.389
http://dx.doi.org/10.1016/0003-2670(94)00327-0
http://dx.doi.org/10.1016/0003-2670(94)00327-0
http://dx.doi.org/10.1038/srep05508
http://dx.doi.org/10.1007/s11095-005-7781-z
http://dx.doi.org/10.1007/s11095-005-7781-z
http://dx.doi.org/10.1029/2006GC001307
http://dx.doi.org/10.1029/2006jd008003
http://dx.doi.org/10.1073/Pnas.2237157100
http://dx.doi.org/10.1021/es803623f
http://dx.doi.org/10.1038/ncomms6065
http://dx.doi.org/10.1016/S0031-0182(99)00098-X
http://dx.doi.org/10.1016/S0031-0182(99)00098-X


A. Ellis et al.: Characterizing black carbon in rain and ice cores 3969

Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R.,
Balkanski, Y., Bauer, S., Berntsen, T., Bond, T. C., Boucher, O.,
Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T.,
Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D.,
Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L.,
Iversen, T., Kirkevåg, A., Klimont, Z., Kondo, Y., Krol, M.,
Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G.,
Penner, J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L.,
Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, Ø., Stier, P.,
Takegawa, N., Takemura, T., Textor, C., van Aardenne, J. A.,
and Zhao, Y.: Evaluation of black carbon estimations in
global aerosol models, Atmos. Chem. Phys., 9, 9001–9026,
doi:10.5194/acp-9-9001-2009, 2009.

Li, J., Pósfai, M., Hobbs, P. V., and Buseck, P. R.: Individual aerosol
particles from biomass burning in southern Africa: 2, Composi-
tions and aging of inorganic particles, J. Geophys. Res.-Atmos.,
108, 8484, doi:10.1029/2002JD002310, 2003.

Martins, J. V., Artaxo, P., Liousse, C., Reid, J. S., Hobbs, P. V., and
Kaufman, Y. J.: Effects of black carbon content, particle size, and
mixing on light absorption by aerosols from biomass burning in
Brazil, J. Geophys. Res.-Atmos., 103, 32041–32050, 1998.

McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G.,
Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. R.,
Carter, M. M., and Kahl, J. D. W.: 20th-century industrial black
carbon emissions altered arctic climate forcing, Science, 317,
1381–1384, doi:10.1126/Science.1144856, 2007.

Moffet, R. C. and Prather, K. A.: In-situ measurements of the mix-
ing state and optical properties of soot with implications for ra-
diative forcing estimates, P. Natl. Acad. Sci. USA, 106, 11872–
11877, 2009.

Murr, L. E., Esquivel, E. V., Bang, J. J., de la Rosa, G., and Gardea-
Torresdey, J. L.: Chemistry and nanoparticulate compositions of
a 10,000 year-old ice core melt water, Water Res., 38, 4282–
4296, doi:10.1016/J.Watres.2004.08.010, 2004.

Ohata, S., Moteki, N., and Kondo, Y.: Evaluation of a method for
measurement of the concentration and size distribution of black
carbon particles suspended in rainwater, Aerosol Sci. Tech., 45,
1326–1336, doi:10.1080/02786826.2011.593590, 2011.

Palmer, A. S., van Ommen, T. D., Curran, M. A., Mor-
gan, V., Souney, J. M., and Mayewski, P. A.: High-precision
dating of volcanic events (AD1301–1995) using ice cores
from Law Dome, Antarctica, J. Geophys. Res., 106, 28089,
doi:10.1029/2001JD000330, 2001.

Pedro, J. B., McConnell, J. R., van Ommen, T. D., Fink, D.,
Curran, M. A. J., Smith, A. M., Simon, K. J., Moy, A. D.,
and Das, S. B.: Solar and climate influences on ice core
10Be records from Antarctica and Greenland during the neu-
tron monitor era, Earth Planet. Sc. Lett., 355, 174–186,
doi:10.1016/j.epsl.2012.08.038, 2012.

Plummer, C. T., Curran, M. A. J., van Ommen, T D., Ras-
mussen, S. O., Moy, A. D., Vance, T. R., Clausen, H. B.,
Vinther, B. M., and Mayewski, P. A.: An independently dated
2000 yr volcanic record from Law Dome, East Antarctica, in-
cluding a new perspective on the dating of the 1450s CE eruption
of Kuwae, Vanuatu, Clim. Past, 8, 1929–1940, doi:10.5194/cp-8-
1929-2012, 2012.

Pósfai, M., Anderson, J. R., Buseck, P. R., and Sievering, H.: Soot
and sulfate aerosol particles in the remote marine troposphere, J.
Geophys. Res.-Atmos., 104, 21685–21693, 1999.

Rothenbacher, S., Messerer, A., and Kasper, G.: Fragmentation and
bond strength of airborne diesel soot agglomerates, Particle and
fibre toxicology, 5, 9, doi:10.1186/1743-8977-5-9, 2008.

Scarnato, B. V., China, S., Nielsen, K., and Mazzoleni, C.: Perturba-
tions of the optical properties of mineral dust particles by mixing
with black carbon: a numerical simulation study, Atmos. Chem.
Phys., 15, 6913–6928, doi:10.5194/acp-15-6913-2015, 2015.

Schwarz, J., Gao, R., Fahey, D., Thomson, D., Watts, L., Wil-
son, J., Reeves, J., Darbeheshti, M., Baumgardner, D., and
Kok, G.: Single-particle measurements of midlatitude black car-
bon and light-scattering aerosols from the boundary layer to
the lower stratosphere, J. Geophys. Res.-Atmos., 111, D16207,
doi:10.1029/2006JD007076, 2006.

Schwarz, J. P., Spackman, J. R., Gao, R. S., Watts, L. A., Stier,
P., Schulz, M., Davis, S. M., Wofsy, S. C., and Fahey, D. W.:
Global-scale black carbon profiles observed in the remote at-
mosphere and compared to models, Geophys. Res. Lett., 37,
L18812, doi:10.1029/2010GL044372, 2010.

Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., and
Fahey, D. W.: Black carbon aerosol size in snow, Sci. Rep., 3,
1356, doi:10.1038/srep01356, 2013.

Slowik, J. G., Cross, E. S., Han, J.-H., Davidovits, P., Onasch, T. B.,
Jayne, J. T., Williams, L. R., Canagaratna, M. R., Worsnop, D. R.,
and Chakrabarty, R. K.: An inter-comparison of instruments
measuring black carbon content of soot particles, Aerosol Sci.
Tech., 41, 295–314, 2007.

Stier, P., Seinfeld, J. H., Kinne, S., Feichter, J., and Boucher, O.:
Impact of nonabsorbing anthropogenic aerosols on clear-sky at-
mospheric absorption, J. Geophys. Res.-Atmos., 111, D18201,
doi:10.1029/2006JD007147 2006.

Stohl, A. and Sodemann, H.: Characteristics of atmospheric trans-
port into the Antarctic troposphere, J. Geophys. Res.-Atmos.,
115, D02305, doi:10.1029/2009jd012536, 2010.

Torres, A., Bond, T. C., Lehmann, C. M. B., Subramanian, R., and
Hadley, O. L.: Measuring organic carbon and black carbon in
rainwater: evaluation of methods, Aerosol Sci. Tech., 48, 239–
250, doi:10.1080/02786826.2013.868596, 2013.

Utsunomiya, S., and Ewing, R. C.: Application of high-
angle annular dark field scanning transmission electron mi-
croscopy, scanning transmission electron microscopy-energy
dispersive X-ray spectrometry, and energy-filtered transmis-
sion electron microscopy to the characterization of nanoparti-
cles in the environment, Environ. Sci. Technol., 37, 786–791,
doi:10.1021/es026053t, 2003.

Vallelonga, P., Van de Velde, K., Candelone, J.-P., Morgan, V.,
Boutron, C., and Rosman, K.: The lead pollution history of Law
Dome, Antarctica, from isotopic measurements on ice cores:
1500AD to 1989AD, Earth Planet. Sc. Lett., 204, 291–306,
2002.

van Ommen, T. D. and Morgan, V.: Peroxide concentrations in the
Dome summit south ice core, Law Dome, Antarctica, J. Geo-
phys. Res.-Atmos., 101, 15147–15152, 1996.

van Ommen, T. D. andMorgan, V.: Snowfall increase in coastal East
Antarctica linked with southwest Western Australian drought,
Nature Geosci., 3, 267–272, 2010.

Warren, S. G. and Clarke, A. D.: Soot in the atmosphere and snow
surface of Antarctica, J. Geophys. Res.-Atmos., 95, 1811–1816,
doi:10.1029/JD095iD02p01811, 1990.

www.atmos-meas-tech.net/8/3959/2015/ Atmos. Meas. Tech., 8, 3959–3969, 2015

http://dx.doi.org/10.5194/acp-9-9001-2009
http://dx.doi.org/10.1029/2002JD002310
http://dx.doi.org/10.1126/Science.1144856
http://dx.doi.org/10.1016/J.Watres.2004.08.010
http://dx.doi.org/10.1080/02786826.2011.593590
http://dx.doi.org/10.1029/2001JD000330
http://dx.doi.org/10.1016/j.epsl.2012.08.038
http://dx.doi.org/10.5194/cp-8-1929-2012
http://dx.doi.org/10.5194/cp-8-1929-2012
http://dx.doi.org/10.1186/1743-8977-5-9
http://dx.doi.org/10.5194/acp-15-6913-2015
http://dx.doi.org/10.1029/2006JD007076
http://dx.doi.org/10.1029/2010GL044372
http://dx.doi.org/10.1038/srep01356
http://dx.doi.org/10.1029/2006JD007147
http://dx.doi.org/10.1029/2009jd012536
http://dx.doi.org/10.1080/02786826.2013.868596
http://dx.doi.org/10.1021/es026053t
http://dx.doi.org/10.1029/JD095iD02p01811


Individual particle morphology, coatings,
and impurities of black carbon aerosols
in Antarctic ice and tropical rainfall
Aja Ellis1,2, Ross Edwards1, Martin Saunders3, Rajan K. Chakrabarty4, R. Subramanian2,
Nicholas E. Timms5, Arie van Riessen1, Andrew M. Smith6, Dionisia Lambrinidis7, Laurie J. Nunes1,
Paul Vallelonga8, Ian D. Goodwin9, Andrew D. Moy10,11, Mark A. J. Curran10,11, and
Tas D. van Ommen10,11

1Physics and Astronomy, Curtin University, Perth, Western Australia, Australia, 2Department of Mechanical Engineering,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 3Centre for Microscopy, Characterisation, and Analysis,
University of Western Australia, Perth, Western Australia, Australia, 4Department of Energy, Environmental & Chemical
Engineering, Washington University in St. Louis, St. Louis, Missouri, USA, 5Department of Applied Geology, Curtin University,
Perth, Western Australia, Australia, 6Australian Nuclear Science and Technology Organisation, Sydney, New South Wales,
Australia, 7Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory,
Australia, 8Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 9Marine
Climate Risk Group, Department of Environmental Sciences, Macquarie University, Sydney, New South Wales, Australia,
10Australian Antarctic Division, Kingston, Tasmania, Australia, 11Antarctic Climate and Ecosystems Cooperative Research
Centre, University of Tasmania, Hobart, Tasmania, Australia

Abstract Black carbon (BC) aerosols are a large source of climate warming, impact atmospheric chemistry,
and are implicated in large-scale changes in atmospheric circulation. Inventories of BC emissions suggest
significant changes in the global BC aerosol distribution due to human activity. However, little is known
regarding BC’s atmospheric distribution or aged particle characteristics before the twentieth century. Here
we investigate the prevalence and structural properties of BC particles in Antarctic ice cores from 1759, 1838,
and 1930 Common Era (C.E.) using transmission electron microscopy and energy-dispersive X-ray
spectroscopy. The study revealed an unexpected diversity in particle morphology, insoluble coatings, and
association with metals. In addition to conventionally occurring BC aggregates, we observed single BC
monomers, complex aggregates with internally, and externally mixed metal and mineral impurities, tar balls,
and organonitrogen coatings. The results of the study show BC particles in the remote Antarctic atmosphere
exhibit complexity that is unaccounted for in atmospheric models of BC.

1. Introduction
Black carbon (BC) aerosols are primary particles emitted by fossil fuel combustion and biomass burning.
They have a multitude of effects on the global atmosphere and Earth’s surface, which result in the second
largest contribution to climate change after carbon dioxide (CO2) [Bond et al., 2013]. Unlike CO2 and
methane gas (CH4), BC’s atmospheric residence time is relatively short (weeks as opposed to decades)
and its atmospheric concentration is highly variable [Kaufman et al., 2002]. BC emissions may have already
contributed to large-scale changes in atmospheric circulation, with models suggesting that the Northern
Hemisphere tropics expand linearly with increasing radiative forcing from BC emissions [Kovilakam and
Mahajan, 2015]. The physical, chemical, and optical properties of BC are dynamic and evolve during
atmospheric transport [Browne et al., 2015; Shen et al., 2014; Wang et al., 2014]. Estimates of BC climate sen-
sitivity are complicated by hemispheric differences in both emission sources (fossil fuels or biomass burn-
ing) and coemitted chemical species, which coat and react with BC in the atmosphere. Indeed, BC from
East Asian fossil fuel may be removed from the atmosphere faster than expected due to coemitted sulfate
[Shen et al., 2014].

Morphologically, BC particles are semifractal aggregates composed of small, ~30 nm semigraphitic carbon
nanospheres [Andreae and Gelencsér, 2006]. Graphitic carbon consists of randomly oriented graphite
crystallites with a mean intercrystallite distance of 2.5 nm, embedded in a matrix of amorphous carbon
[Franklin, 1950, 1951]. After emission, BC rapidly ages in the atmosphere. The fractal dimensions of BC
aggregates increase, and their surfaces become coated and partially oxidized, affecting both their optical
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properties and their interaction with water [McFiggans et al., 2006; Oshima et al., 2009]. The evolution of
the BC surface from hydrophobic to hydrophilic has a major influence on its aerodynamic size, its removal
from the atmosphere by wet deposition, and its subsequent transport and residence time in the atmo-
sphere [Shen et al., 2014]. Other insoluble particles may become externally and internally mixed with
BC, thereby changing its optical properties [Scarnato et al., 2015]. While there have been many character-
ization studies of freshly emitted BC aggregates [Chakrabarty et al., 2006a; Chakrabarty et al., 2006b; Pósfai
et al., 2003; Zhu et al., 2013], few studies have investigated the morphology and characteristics of aged BC
aggregates in the remote Southern Hemisphere (SH) [Pósfai et al., 1999]. Consequently, the full range of
properties of BC and their climate forcing effects remain uncertain. Furthermore, little is known with
regard to historic records of atmospheric BC before the last few decades. Polar ice cores preserve an
extensive history of atmospherically transported and aged BC particles and provide an opportunity to
study changes in the physical and chemical properties of long-distance transported BC during and before
the industrial revolution. Building upon the development of a method to concentrate BC particles in water
[Ellis et al., 2015], we investigated individual particles in an Antarctic ice core using electron microscopy.

Previous studies of BC in Antarctica have included bulk aerosol measurements, mass concentrations, and
optical properties of Antarctic snow and ice [Bisiaux et al., 2012; Warren and Clarke, 1990; Weller et al., 2013;
Wolff and Cachier, 1998]. These studies identified large seasonal variations in coastal East and West
Antarctic BC aerosol concentrations with a primary peak in October that is associated with dry-season bio-
mass burning on nearby continents. A smaller secondary peak in BC concentration is observed during austral
summer fire season [Weller et al., 2013] with minimum concentrations in March–April. High-temporal resolu-
tion ice core studies found similar seasonality in West and East Antarctic ice concentrations during the past
200 years [Bisiaux et al., 2012]. The seasonality and atmospheric circulation associated with BC in the Antarctic
atmosphere [Bisiaux et al., 2012; Stohl and Sodemann, 2010] suggest that long-range transported SH biomass
burning emissions are the primary source of BC to Antarctica.

Although ultratrace BC concentrations (0.08μg kg!1) have been determined in Antarctic ice and snow, little is
known with regard to individual particle morphology, coatings, and impurities. These characteristics impact
the particles’ optical and radiative properties, residence time in the atmosphere, and climatic impacts. Here
we present results from the detailed analysis of individual particles found in an East Antarctic ice core and
modern tropical rain samples from northern Australia. Three samples were prepared from ice core samples
from the Law Dome ice cap, East Antarctica, dated from 1759, 1838, and 1930 Common Era (C.E.), predating
and postdating global industrialization and western colonization of Australia. Tropical rain samples were
collected in northern Australia to provide a complementary modern comparison to Antarctic ice, as
wet-deposited BC close to potential source emissions. All samples were analyzed using high-resolution trans-
mission electron microscope imaging (HR-TEM) and scanning transmission electron microscope energy-
dispersive X-ray spectroscopy (STEM-EDS, hereafter EDS).

2. Materials and Methods
2.1. Ice Core Samples

Antarctic ice core samples consisted of ice sections subsampled from the Dome Summit South site (DSS0506,
66°46′ S, 112°48′E, 1370m elevation) drilled on Law Dome, East Antarctica, during the 2005–2006 austral sum-
mer. The site has been described and studied in detail [Curran et al., 1998; Edwards et al., 2006; Etheridge et al.,
1996; van Ommen and Morgan, 1996]. The depth/age scale of the ice core was constructed by matching dis-
solved ion chemistry and water stable isotope records (δ18O) to the main DSS ice core record, which was
dated using annual layer counting and validated by well-characterized volcanic horizons [Plummer
et al., 2012].

2.2. Rain Samples

Tropical rain samples were collected in Darwin, Northern Territory, Australia, to compare modern BC in wet
deposition, close to BC sources. Two rain samples of ~1 L each were collected in April 2014, a period of sig-
nificant monsoonal rainfall in the Northern Territory. Boundary layer atmospheric circulation to the sampling
site during April 2014 was predominately east-west, passing over northern Queensland and the Gulf of
Carpentaria before arriving in the Northern Territory.
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Samples were collected in low-density polyethylene bottles, rinsed with ultrapure (UP) water
(ρ> 18.2MΩ cm). A full account of sample collection and handling is described in Ellis et al. [2015].

2.3. Ice Core Decontamination and Liquid Preconcentration

Mass concentrations of BC in Antarctic snow and ice are typically found in the parts per trillion level and
require preconcentration before analysis by transmission electron microscopy (TEM). While Antarctic snow
BC concentrations are low, the concentrations of other species, such as sea salts, may be present at the
high parts per billion level, depending on the location. The presence of relatively high concentrations of
dissolved salts species complicates sample preconcentration and obscures BC particles loaded on TEM
grids. To concentrate BC particles from ice core samples and rain without concentrating dissolved salts,
we used the tangential flow filtration (TFF) preconcentration method [Ellis et al., 2015]. Meltwater from
1m× 5 cm× 5 cm ice core sections, representing approximately 2 years of deposition to the site, was con-
centrated by approximately a factor of 1000 using hollow fiber filters (10 nm pore size, Spectrum Labs,
USA). The TFF concentrate from each sample was transferred to a TEM grid (SPI 300-mesh gold grids with
a continuous SiO/SiO2 support film) and evaporated down within an ISO 10 clean hood. Tropical rainwater
samples were processed identically to the ice core meltwater.

2.4. TEM Characterization

Characterization (imaging of external morphology and internal structure, size, and composition) of the
insoluble particles and their coatings was completed on an FEI Titan G2 80-200 TEM/STEM with
ChemiSTEM Technology at The University of Western Australia, operating at 80 kV to minimize the risk
of structural damage to the carbon spheres. High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) imaging and element mapping were also carried out at 80 kV on the same
instrument. The element maps were obtained by energy-dispersive X-ray spectroscopy using the Super-
X detector on the Titan with a subnanometer probe size, a probe current of ~0.25 nA, a dwell time of
15ms, and total acquisition time of 20 to 30min. Statistical evaluation of the proportions and size distri-
bution of the various BC morphologies was inhibited because the TEM grids were not surveyed systema-
tically—irregular deposition of particles on the grids and the limited field of view (<10μm) resulting from
the high magnification of the instrument makes location and characterization of BC particles time inten-
sive, and acquisition of significant BC morphotype population statistics difficult. Therefore, the images
selected for this paper represent common BC morphologies and characteristics seen while imaging the
TEM grid. Images of additional particle types can be found in the supporting information.

3. Results

In all samples, abundant single BC nanospheres (Figure 1) in addition to conventional multispherule aggre-
gates were observed. The nanoparticles were identified by their ~30 nm diameter, concentric “onion” car-
bon layering with short-range order, and the Kα carbon peak in the EDS spectra. Single BC nanospheres
are not thought to exist individually in the atmosphere [Andreae and Gelencsér, 2006] and to our knowl-
edge have not previously been observed in ice or snow. However, their presence in Antarctic ice suggests
that they must be ubiquitous in the global atmosphere. Because of their small size and the confounding
presence of larger BC aggregates and other dust particles, the single spheres are difficult to discern with-
out the use of STEM-EDS mapping. They have too little mass to be quantified by real-time single BC par-
ticle analysis instruments used in other studies [Slowik et al., 2007]. It would be difficult to distinguish the
single nanospheres in the presence of concentrated salts or sulfates. The preconcentration method used in
this study removes dissolved salts and other water-soluble species, retaining insoluble particles. Our
method is also extremely gentle (mechanically) and unlikely to provide enough mechanical force to sepa-
rate the aggregates [Rothenbacher et al., 2008]. Further investigation has revealed many examples of doub-
let and triplet BC nanospheres of various primary particle sizes (Figures 1b–1d). Single BC nanospheres
were found in all ice core samples (dated to 1759, 1838, and 1930 C.E.) via HR-TEM. The rain samples also
contained all of the nanosphere varieties that were seen in the ice cores, indicating their possible
global presence.

Although quantification is difficult for irregularly distributed nanoparticles on TEM grids, a preliminary
estimate of the prevalence of single BC nanospheres can be obtained using a single particle soot
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photometer (SP2, Droplet Measurement Technologies). Indeed, BC size distribution data in twentieth cen-
tury ice from the same location in East Antarctica indicate that a substantial fraction of BC particles exists
below the below 0.7 fg (90 nm mass-equivalent diameter assuming a BC density of 1.8 g/cm3), the lower
mass limit where the SP2 begins to detect less than 100% of BC aerosols, supporting the existence of
these individual nanospheres in great numbers—primary nanospheres may outnumber the larger BC
aggregates that have previously been reported.

This observation raises significant questions about the prevalence of single BC nanospheres, as well as the
undescribed effects of single nanospheres on the environment. Modern scattering calculations for BC sug-
gest that variations in size distribution, composition, or shape could have substantial effects on common
spherical and Rayleigh-Debye-Gans simplifications [Smith and Grainger, 2014]. Though the individual
nanospheres are likely to be too small to function as cloud condensation nuclei, aerosol chamber experi-
ments have shown 30 nm metallic nanoparticles [Saunders et al., 2010] as well as conventional BC aggre-
gates [DeMott et al., 1999] acting as ice nuclei in the atmosphere. This suggests the possibility that
individual 30 nm BC nanospheres may contribute to the formation of ice particles in the atmosphere,
thereby having an as yet unmeasured climate affect.

In addition to the single spherules, many other distinct BC characteristics were observed in the ice cores. We
found a continuum of BC aggregate sizes ranging from doublet and triplet BC spherules (Figures 1c and 1d)
up to many hundred nanometers (Figures 2 and 3). While the fractal dimension of the aggregates was not
determined, they appeared to be relatively compact as would be expected of BC that has been substantially
aged in the atmosphere and suspended in liquid water during the concentration procedure. All BC aggre-
gates exhibited some form of thin insoluble coating (~5 nm) that connected the individual spherules, similar

Figure 1. Black carbon nanospheres in Antarctic ice dated to 1838 C.E.: (a) single BC nanosphere showing concentric ring
structure with short-range internal structure, (b) enlarged section of Figure 1a, showing the concentric layers with 0.34 nm
spacing between layers, (c) BC particle with two spherules, arrows indicating spheres, and (d) BC particle with three
spherules, arrows indicating spheres. Additional examples of single spheres from 1759 CE and 1930 CE are included in the
supporting information.
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to the thin “film” of carbon found on remote BC aerosols by Pósfai et al. [1999]. EDS analysis revealed that the
coatings appear to be composed predominately of amorphous carbon combined with varying amounts of
nitrogen and oxygen-rich materials. These coatings appeared to be unaffected by high vacuum (10!5 Pa)
or an 80 kV electron beam. While we have no definitive way of ascertaining when the coatings formed, it is
likely that coatings are part of the atmospheric aging process and may have formed through aqueous cloud
chemistry [Lee et al., 2013]. The presence of oxygen in the coatings suggests that they are hydrophilic. The
presence of a thin hydrophilic coating influences the BC particles’ interaction with atmospheric water, its
atmospheric residence time, and optical properties.

Coated BC aggregates were routinely found in association with mineral dust particles composed of
aluminum-rich silicates and iron. Magnesium, potassium, and zinc were also present in some attached miner-
als (Figure S6 in the supporting information). Many of the dust particles were found to be connected to the
outside of BC aggregates by thin films of carbon, nitrogen, and oxygen (Figures 2b and 4), as well as being
incorporated within the BC aggregate structure (Figure 3b). The external connections of the BC to the dust
particles suggest that they are ice residual nuclei, as expected of wet-deposited BC in ice cores. Mineral dusts
are common ice nuclei [DeMott et al., 2003], and ice crystal scavenging of BC could explain the external con-
nection [Baumgardner et al., 2008].

Small iron particles (~10 nm in diameter) were often found adhered to the surface of BC aggregates (Figures 3
and 5). These attachments can be difficult to distinguish without the use of EDS or HAADF-STEM, in which
heavier element inclusions stand out brightly.

BC has previously been imaged with larger dust particles in East Asian outflows [Clarke et al., 2004] and
African biomass burning plumes [Li et al., 2003], and the results of our study show that external BC and dust

Figure 2. TEM images and STEM-EDS maps to show compositional complexity of a black carbon aggregate, from ice dated
to 1838 C.E., with EDS maps taken from the same field of view as Figure 2a. (a) TEM image of BC aggregate, with tar ball
incorporated into the aggregate, (b) STEM-EDS map overlay of carbon and iron, to highlight the iron particle connected
with a carbon coating, (c) carbon map, (d) nitrogen map, (e) various aluminum-rich inclusions within the BC aggregate, and
(f) iron map.
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Figure 3. Dust particle and BC aggregate dated to 1838 C.E., with aluminum and iron dust particles incorporated within the
BC aggregate, and EDS maps taken from the same field of view as Figure 3a. (a) TEM image, (b) carbon, nitrogen, and iron
STEM-EDSmaps overlaid to show the connection of the iron particles to the BC aggregate with a nitrogen-rich coating, (c–f)
carbon, nitrogen, aluminum, and iron STEM-EDS maps, respectively.

Figure 4. Large silica-rich dust particle from ice dated to 1838 C.E., with BC attached and mixed into the silica structure,
with all components connected with thin (<5 nm), amorphous carbon and nitrogen-rich coating, with EDS maps taken
from the same field of view as Figure 4a. (a) TEM image, (b) carbon, silicon, and nitrogen STEM-EDS maps overlaid to show
connection of silicon and BC aggregates, with nitrogen-rich coating, (c–f) carbon, silicon, nitrogen, and aluminum STEM-
EDS maps, respectively.
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can be connected by insoluble coatings and can be transported long distances without disaggregating.
These organic coatings and dust inclusions may have significant affects on BC’s optical properties as well
as functioning as cloud and ice nuclei in the atmosphere [Lohmann and Diehl, 2006].

The iron attached to the BC is of particular interest with respect to the biogeochemistry of iron in surface
waters of the SH and potentially for the formation of water insoluble organic coatings through catalytic poly-
merization of organic species in biomass burning plumes [Slikboer et al., 2015].

Tar balls, amorphous, carbon-rich spheres emitted from smoldering fires, also accompanied the BC aggre-
gates, both attached to the outside (Figure 6) and incorporated within the BC aggregates (Figure 2).
Chakrabarty et al. [2006b] noted the existence of tar balls in laboratory combustion tests of biomass fuels,
supporting their formation at the emission source. The presence of tar balls in Antarctic ice suggests that
the particles were emitted by smoldering biomass burning [Adachi and Buseck, 2011; Chakrabarty et al.,
2010]. To the best of our knowledge, this is the first determination of tar balls in Antarctica. They represent
a previously unaccounted for component of light absorbing aerosols deposited to the Antarctic ice sheet.
If tar balls are present in Antarctic ice, then they are likely present in air masses over the Southern Ocean

Figure 5. BC aggregate from ice dated to 1930 C.E. attached to aluminosilicate and iron particles with nitrogen-rich coat-
ing, with EDS map taken from the same field of view as Figure 5a. (a) High-angle annular dark-field (HAADF) image of the
particle, (b) energy-dispersive X-ray spectroscopy (EDS) maps of C, Al, Fe, and N, indicating the aluminosilicate and iron
particles are attached to the black carbon aggregate with a nitrogen-rich coating.

Figure 6. (a) High-angle annular dark-field (HAADF) image of a tar ball from ice dated to 1838 C.E. with BC aggregate
attached, (b) EDS map of carbon from the same field of view as Figure 6a. Additional EDS maps are included in the sup-
porting information.
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and, presumably, the global troposphere. Further evidence of coatings, dust and metals, and single BC nano-
spheres in all samples are provided in the supporting information, as well as all additional STEM-EDS element
maps for the particles described above.

4. Conclusions

In this study we found evidence for the deposition of single black carbon (BC) nanospheres over East
Antarctica and northern Australia. By extrapolation, we would expect to find these particles throughout
the Southern Hemisphere, if not globally. The presence of single BC nanospheres in Antarctic ice dated to
1759 C.E., prior to industrialization, suggests that the source is likely grass or bush fires. We also found tar balls
and BC with nitrogen and oxygen-rich insoluble coatings and associated with mineral particles and iron. The
coatings appear to cover and connect the BC and many of the mineral particles. This suggests that the coat-
ings and dust inclusions could form in a number of ways: rapidly close to the fire source, due to aqueous
chemistry, and physical and chemical ice formation processes. These mixed particles also undergo long-
range transport without disaggregating. The impact of the coatings and the external and internal mixing
of the mineral particles may impact BC’s optical properties and residence time in the atmosphere.

Knowledge of the long-range evolution of BC aerosol characteristics is critical for predicting the associated
climate forcing. Mineral inclusions, metal impurities, and insoluble, nitrogen-rich coatings suggest a complex
evolution in BC optical properties during transport. The diversity of particle properties observed in this study
demonstrates the complexity of BC in the environment that is as yet unaccounted for in atmospheric chem-
istry and climate models.

The BC particles analyzed by the study did not display discernable differences between the different time
periods, which may reflect the biomass burning-dominated emissions from the Southern Hemisphere.
However, the small sample number and limited time span precludes conclusions regarding any systematic
changes to BC morphology from the preindustrial period through the twentieth century. Northern
Hemisphere shifts from natural biomass burning to anthropogenic industrial emissions during the industrial
revolution could be recorded in BC characteristics, suggesting Arctic ice core investigations as an important
future application of this study.
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used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers

clearing permission under the terms of the STM Permissions Guidelines only, the

terms of the license are extended to include subsequent editions and for editions

in other languages, provided such editions are for the work as a whole in situ and

does not involve the separate exploitation of the permitted figures or extracts,

You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have

http://myaccount.copyright.com/
http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/


no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU. 

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN. 

Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 



This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns. 

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.
The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-
Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.
Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or
+1­978­646­2777.
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