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Chapter 1 | Introduction 

Rise of Non-Model Organisms 

Early efforts in the field of molecular biology were focused on the general properties of genetics 

and molecular systems. The organisms used as subjects of study were often chosen because of 

logistical or technical characteristics such as genetic tractability, phenotypic stability and low 

generation times. Establishing key molecular techniques in the 1970s and 80s such as 

transformation in a handful of model organisms such as Saccharomyces cerevisiae (Beggs 1978, Hinnen, 

Hicks et al. 1978), Neurospora crassa (Case, Schweizer et al. 1979), Schizosaccharomyces pombe (Beach 

and Nurse 1981), and Aspergillus nidulans (Ballance, Buxton et al. 1983, Tilburn, Scazzocchio et al. 

1983) were important breakthroughs. However, genome characteristics that made these species 

appealing as a laboratory workhorses - such as the replication origin sequences and small 

centromeres in S. cerevisiae, were often difficult points of difference when it came to translating 

knowledge and techniques to other organisms.  

Gradual decreases in the cost of nucleotide sequencing and generalisation of molecular techniques 

allowed a shift towards biological research that favoured investigation of representative organisms 

much closer to the specific species of interest (if not the direct species itself), rather than a model 

organism proxy. Traditional model organisms have not been supplanted in this transition and the 

resources invested in these systems continue to pay dividends, but a class of ‘neo-model’ organisms 

has also developed. Small research groups with limited resources can now apply genomic, 

transcriptomic and/or proteomic techniques to previously non-model organisms. This pattern of 

expanded academic focus is broadly observed in fungi (Dujon, Sherman et al. 2004, Loftus, Fung 

et al. 2005, Hane, Lowe et al. 2007), invertebrates (Zhang, Fang et al. 2012, Simakov, Marletaz et 

al. 2013), plants (Bennetzen, Schmutz et al. 2012, Brenchley, Spannagl et al. 2012, Consortium 

2012, Guo, Zhang et al. 2013), insects (Consortium 2012, You, Yue et al. 2013), fish(Jones, 

Grabherr et al. 2012), birds (Ellegren, Smeds et al. 2012, Shapiro, Kronenberg et al. 2013), primates 

(Prüfer, Munch et al. 2012) and other mammals (Qiu, Zhang et al. 2012, Zhang, Cowled et al. 

2013). Fungi have been particularly attractive targets because many species are amenable to 

laboratory handling, are causative agents of disease (Brown, Denning et al. 2012, Fisher, Henk et 

al. 2012), and have genomes with smaller sizes and reduced complexity (Noble and 

Andrianopoulos 2013) compared to most higher eukaryotes. 

The rise in ‘neo-model’ organisms has been particularly valuable in systems where important 

genetic mechanisms are not well conserved across taxa or are idiosyncratic to one or a few species. 
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Consequently, many exciting questions about population structure, host specific pathology, or the 

evolutionary relationship between host and pathogen can now be answered through the direct 

study of a species of interest. 

Effector Biology and Discovery 

Early investigations into the genetic components of bacterial pathogenicity revealed that a single 

locus of an avirulent Pseudomonas syringae strain was sufficient to convert a virulent strain into an 

avirulent strain (Staskawicz, Dahlbeck et al. 1984). Inoculation of strains that produced this 

‘avirulence factor’ would trigger a hypersensitive response in some soybean cultivars. It would be 

discovered later that the production of an ‘avirulence factor’ could increase virulence when infecting 

a host cultivar lacking a corresponding resistance (R) gene.  This has come to be termed a ‘gene-

for-gene’ interaction (Flor 1942). The term ‘effector’ was borrowed from medical literature 

(Birnbaumer 1992), and is also now widely used (Figure 1) to avoid the potential confusion caused 

by using the term ‘avirulence gene’ to describe an element that is simultaneously a factor that 

promotes virulence in some hosts and avirulence in others. The more general term also allows 

inclusion of a large class of genes with products that have huge diversity of function – an effector 

can be defined as any molecule produced by the pathogen that has an effect on its interaction with 

the host.  
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Figure 1: Usage of the terms “effector” and “avirulence” in titles and abstracts from MPMI, PLoS 

Pathogens, and Fungal Genetics and Biology from 1990 to 2015 

The knowledge that a pathogen’s effector must be externalised and then mobilised into host cells 

was used as a basis to uncover bacterial effectors. Early discoveries were made during investigation 

of protein products delivered via the bacterial type III secretion system (T3SS) (Abramovitch, 

Anderson et al. 2006). Proteins utilising T3SSs modulate host defences and/or induce disease 

responses via diverse enzymatic processes, including ubiquitin-like protease (Roden, Eardley et al. 

2004), protein phosphatase (Espinosa, Guo et al. 2003), and cysteine protease (Shao, Merritt et al. 

2002) activity. Bacterial research established a simple molecular basis for plant pathogenicity, but 

pathogen-derived molecules that modulate host defence mechanisms are certainly not limited to 

the prokaryotic kingdom.  Effector-host interactions are an important part of many fungal and 

oomycete pathosystems. 

Fungal Phytopathology 

Successful fungal infection requires that the fungus first gain entry into the plant tissue. The 

stomata can provide an easy natural pore for fungal access, but more direct host cell penetration 

of leaf cuticles is possible via the specialised infections cells appressoria (Ryder and Talbot 2015). 

Once inside the cell, the fungus needs to negotiate a complex interaction with host defence 

mechanisms. Basal plant immune responses detect well conserved molecular features characteristic 
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of pathogen presence, called pathogen-associated molecular patterns (PAMPs) or microbe-

associated molecular patterns (MAMPs). A class of leucine-rich repeat (LRR) containing 

transmembrane receptor kinases and receptor-like proteins collectively called pattern recognition 

receptors (PRRs) detect MAMPs in the apoplastic space. Detection of MAMPs by a PRR can 

rapidly initiate basal defence responses including the production of reactive oxygen species (ROS) 

and compounds with antimicrobial function such as chitinases, proteinases and nonproteinaceous 

antimicrobial molecules (Macho and Zipfel 2014). PRRs can also be triggered by damage 

associated molecular patterns (DAMPs) (Albert 2013). Successful deployment of the MAMP-

triggered defences is described as MAMP-triggered immunity (MTI) (Zipfel 2008), and is often a 

successful strategy for defence against pathogens without host-specific adaptations (Uma, Rani et 

al. 2011). Circumvention of MTI requires intervention by the pathogen. The type of intervention 

can be grouped into a number of broad strategies. Effectors can also act to mask the pathogen’s 

presence so as to avoid or reduce the MTI response. The Slp1 effector from Magnaporthe oryzae 

binds the MAMP chitin and reduces its availability for detection by the host (Mentlak, Kombrink 

et al. 2012). If the pathogen is unable to prevent MTI, effectors can help guard against the basal 

defence mechanisms. The biotroph Cladosporium fulvum proteins Avr4 and Avr2 do so by providing 

protection from host chitinases and proteases, respectively (van den Burg, Harrison et al. 2006, 

van Esse, van't Klooster et al. 2008). Effectors can supress host immune response, such as the 

Ustilago maydis effector Cmu1. Chorismate is a metabolite required for the production of salicylic 

acid (SA), a key phytohormone used to induce cell death. Cmu1 is a chorismate mutase, catalysing 

the conversion of chorismate to prephenate and in doing so, redirects this important SA synthesis 

metabolic intermediate towards an alternative biochemical fate (Djamei, Schipper et al. 2011). The 

effector Pep1, again in Ustilago maydis, also acts to supress host immune response by inhibition of 

POX12 in maize, which is required for the generation of reactive oxygen species.  

When MTI is overcome by fungal effectors, the plant requires a new strategy to develop resistance. 

Receptors for specific effector recognition rather than the broadly conserved patterns of microbial 

presence compose an effective second tier to the plant’s immune surveillance. Detection of a 

biotrophic fungal effector allows the plant to mount a hypersensitive response resulting in localised 

cell death which inhibits the growth of biotrophic pathogens. The resistance conferred by the 

presence of an effector/receptor pairing is described as effector-triggered immunity (ETI).  

Inverse Gene-for-Gene Effectors 

In contrast to the gene-for-gene system observed in biotrophic pathogens, many necrotrophs 

produce effectors that do not function to evade or interrupt the MTI response, but instead operate 
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to trigger an apoptotic response in the host (Lorang, Kidarsa et al. 2012). In an ‘inverse gene-for-

gene’ system, infection requires the production of an effector by the pathogen and the presence 

of a corresponding susceptibility allele in the host.  

Effector delivery to the host can occur by secretion into the apoplastic space between host cells 

or by translocation into the host cell where they can interact directly with intracellular components 

(Birch, Rehmany et al. 2006). Many oomycete effectors include a well conserved RXLR domain 

within 60 amino acids of the protein N-terminus. The domain is not required for effector activity 

(Bos, Kanneganti et al. 2006), but it mediates the translocation of the effector into the host cell 

(Kale 2012). Just as T3SS was used as the key to uncover effectors in bacterial systems, the RXLR 

motif was used to identify oomycete effectors. High levels of RXLR motif conservation amongst 

the oomycetes allowed for genome-wide searches that return hundreds of RXLR effectors in a 

single genome (Tyler, Tripathy et al. 2006). 

Effectors of fungi also interact with intracellular components in the host, but no domain as clear 

and conserved as RXLR has been identified. Functional RXLR variants that bound components 

of the plant cell plasma membrane were observed in some fungal effectors (Kale 2012), but the 

diversity even in confirmed RXLR-like domains was too high to be useful for screening whole 

genomes for candidates. As fungal effectors were uncovered (Baker, Kroken et al. 2006, Gout, 

Fudal et al. 2006, Walton 2006, Staats, van Baarlen et al. 2007, Liu, Faris et al. 2009), it became 

apparent that they shared very little sequence identity and were very rarely homologous. Effector 

discovery strategies from oomycetes would need to be modified to be successful in fungal 

pathosystems. The common characteristics of some fungal effectors were their genomic context, 

population structure, and evolutionary history rather than the presence of conserved effector 

domains. Genes such as Avr1-9 in L. maculans (Gout, Fudal et al. 2006), and effectors ToxA 

(Friesen, Stukenbrock et al. 2006) and Tox3 (Liu, Faris et al. 2009) in P. nodorum are all located near 

repetitive sequences. NIP1 in R. secalis (Schürch, Linde et al. 2004), Avr1-9 in L. maculans (Gout, 

Fudal et al. 2006), and NEP1-like effector in B. cinerea (Staats, van Baarlen et al. 2007) are under 

positive selection. It was characteristics such as these that became popular for fungal effector 

identification rather than homology or sequence conservation. Effector discovery has been greatly 

aided by genome sequencing of organisms that are not considered traditional model systems as it 

allows observation of the genomic context of potential effector genes. 

A stark exception to this rule of effector identification by means other than sequence identity was 

the discovery of ToxA in P. nodorum (Friesen, Stukenbrock et al. 2006). ToxA was already 

established as an effector in P. tritici-repentis, and the possession of the full genome sequence of 
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both allowed Friesen et al. to identify a near-perfect homolog in P. nodorum. Patterns of sequence 

diversity in populations of the two species suggests that ToxA gene and flanking sequence had 

been laterally transferred from P. nodorum to P. tritici-repentis. Subsequent instances of effector 

discovery in P. nodorum were made possible by the availability of the genome sequence. Tox1 was 

identified by assessing each of the predicted proteins against a set of criteria common to effectors. 

Top candidates from this ranking system were assessed for activity via expression in a yeast 

expression system. Tox3 was identified by matching proteomic fragments from an extracellular 

sample to the reference genome assembly. The recent rise in available genome sequences has 

expanded the opportunities for in-silico prediction of effector candidates. New techniques such as 

predictions that do not rely on a priori assumptions about the characteristics of effectors (Saunders, 

Win et al. 2012, Sperschneider, Gardiner et al. 2013) are made possible by the wealth of genome 

data available for comparison. 

Dothideomycete Genomics 

The Dothideomycetes are a large class of fungi that include many phytopathogens infecting a 

broad range of hosts including many economically important crops. The orders Pleosporales and 

Capnodiales contain the largest number of phytopathogens (Ohm, Feau et al. 2012), and are the 

most well studied and well sequenced clades. 

The first published Dothideomycete genome was that of P. nodorum in 2007 (Hane, Lowe et al. 

2007), establishing the organism as a research focus for necrotrophic fungal pathologens. The 

Pyrenophora teres f. teres genome was published in 2010 (Ellwood, Liu et al. 2010), followed by 

Leptosphaeria maculans (Rouxel, Grandaubert et al. 2011) and Mycosphaerella graminicola (Goodwin, 

M'Barek et al. 2011) in 2011. Dothistroma septosporum (de Wit, Van Der Burgt et al. 2012), 

Cladosporium fulvum (de Wit, Van Der Burgt et al. 2012), Macrophomina phaseolina (Islam, Haque et al. 

2012), Zymoseptoria ardabiliae (Stukenbrock, Christiansen et al. 2012) and Zymoseptoria pseudotritici 

(Stukenbrock, Christiansen et al. 2012) were published in 2012 as well as a large-scale comparison 

of 18 Dothideomycete species accompanied by the release of 14 new genome sequences (Ohm, 

Feau et al. 2012). The Joint Genome Institute’s “MycoCosm” fungal sequencing portal currently 

hosts 482 fungal genome sequencing projects. 

At the commencement of this PhD, P. nodorum had a draft genome assembly for a single 

representative isolate, and neither P. avenae nor Pyrenophora teres f. teres had genomic resources 

available. The work presented in this thesis leverages the rapidly expanding array of techniques 

and technology available to researchers working in molecular biology to more fully understand the 

genome dynamics, evolutionary history and molecular arsenal of these agronomically important 
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fungal species. The assembly of a P. teres f. teres genome and comparison assembly allowed the 

phylogenetic comparison with other Pyrenophora spp. (Chapter 3), and now 12 P. avenaria genome 

sequences are available for comparison (Chapter 6). The P. nodorum genomic infrastructure has 

grown to include multiple omics resources aggregated from multiple studies leading to a refined 

reference genome sequence, carefully annotated gene models, RNA-seq transcription data and 25 

alternate genome assemblies (Chapters 2, 5, and 6). The advancing technology and tools available 

for the P. nodorum and P. avenaria pathosystems have provided opportunities for intra-species 

introspection as well as comparisons to other species in the Dothideomycetes. The comparisons 

have yielded insight into the evolutionary history of pathogen and host (Chapter 4), insights into 

the mechanisms of genome evolution (Chapter 6), and repeated rounds of effector prediction 

(Chapters 2 and 6).  
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Background  

The cost of DNA sequencing has decreased to the point where it no longer represents a significant 

hindrance to obtaining a genomic assembly (Chain, Grafham et al. 2009). Despite the ease with 

which raw reads are procured, obtaining an accurately assembled and annotated eukaryotic genome 

remains a significant challenge. Genome assembly can be hampered by errors arising from the 

sequencing chemistry which can introduce incorrect bases or by repetitive regions, which can lead 

to truncated contigs and a fragmented assembly. Genes and other features are typically annotated 

using homology-based methods or are predicted ab initio. Experimental gene validation techniques 

are required to complement in silico methods to obtain high quality gene model annotations. 

Parastagonospora nodorum [Teleomorph: Phaeosphaeria (Hedjar.) syn. Leptosphaeria nodorum (Müll.), syn. 

Septoria nodorum (Berk.), syn. Stagonospora nodorum (Berk.)] is a filamentous Ascomycete and member 

of the Dothideomycetes, a taxonomic class that consists of several agriculturally-damaging 

phytopathogens (Murray and Brennan 2009, Crook, Friesen et al. 2012, Stergiopoulos, Collemare 

et al. 2013). P. nodorum causes the wheat disease septoria nodorum blotch (SNB syn. glume blotch) 

(Oliver, Tan et al. In Press) and is responsible for substantial yield losses in many regions around 

the world. As part of the infection process, the fungus produces an arsenal of proteinaceous 

effectors that induce tissue necrosis and/or chlorosis on hosts expressing the corresponding 

susceptibility gene (Tan, Oliver et al. 2010). Analysis of the P. nodorum / Triticum pathosystem has 

revealed the necrotrophic effectors SnToxA (Friesen, Stukenbrock et al. 2006), SnTox1 (Liu, Faris 

et al. 2004), SnTox3 (Liu, Faris et al. 2009), SnTox4 (Abeysekara, Friesen et al. 2009) and SnTox6 

(Gao, Faris et al. 2015). The presence of undiscovered effectors in P. nodorum is evident by 

observation of disease symptoms in wheat cultivars challenged with culture filtrate from the 

reference strain devoid of known effectors (Tan, Waters et al. 2014) and culture filtrate from other 

P. nodorum populations (Crook, Friesen et al. 2012). In addition to effectors, P. nodorum genes 

involved in primary metabolism, secondary metabolism, and signal transduction have been studied. 

Characterised metabolic enzymes include malate synthase (Solomon, Lee et al. 2004), δ-

aminolevulinic acid synthase (Solomon, Jörgens et al. 2006), pantoate-β-alanine ligase (Ipcho, Hane 

et al. 2012), mannitol 2-dehydrogenase (Solomon, Waters et al. 2006), mannitol 1-phosphate 

dehydrogenase (Solomon, Tan et al. 2005), and trehalose 6-phosphate synthase (Lowe, Lord et al. 

2009). P. nodorum signal transduction and regulatory loci that have been studied in depth include 

the transcription factor StuA (IpCho, Tan et al. 2010), a MAP kinase (Solomon, Waters et al. 2005), 

the calcium/calmodulin-dependent protein kinases Cpk1/Cpk2/Cpk3 (Solomon, Rybak et al. 

2006), G-protein  subunits Gα (Solomon, Tan et al. 2004), Gβ and Gγ (Gummer, Trengove et al. 

2012), and putative short-chain dehydrogenases (Tan, Heazlewood et al. 2008, Casey, Solomon et 
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al. 2010) revealed to be necessary for the formation of the mycotoxin altenariol and sporulation 

(Tan, Trengove et al. 2009). 

The first published Dothideomycete whole genome assembly was of P. nodorum strain SN15. The 

original sequence was obtained in 2004 using 1 kb, 4 kb, and 40 kb Sanger shotgun sequenced 

paired-end reads assembled as 37.1 Mb of nuclear DNA in 107 scaffolds and the complete 49.8 

kbp mitochondrial genome (Hane, Lowe et al. 2007). Initial gene-structure annotation relied 

heavily on automated methods, but was subsequently revised after analysis of proteogenomic 

(Bringans, Hane et al. 2009), and microarray data (Ipcho, Hane et al. 2012) (Figure 1) to give a 

total of 10761 gene models with a mean exon count of 2.6, mean CDS length of 1400 bp, mean 

intergenic distance of 1685 bp, and a mean intron length of 91 bp. In addition to the 10761 gene 

models with some experimental support, an additional 1621 low-confidence genes (total count of 

12382) were incorporated in analysis by Syme, Hane et al. (2013) to minimise the possibility of 

missing potential effectors. Repetitive sequence comprised 4.52% of the genome in 5 subtelomeric 

repeat classes, 1 ribosomal DNA repeat and 20 transposon or transposon-like clusters (Hane, 

Lowe et al. 2007). Repeat-induced point (RIP) mutations in repeat instances were subsequently 

reversed in-silico to allow classification of the repeat X26 as a RecQ helicase, R25 as a pseudogene, 

and repeats X3 and X8 as members of the same ancestral class (Hane and Oliver 2010). 

 

Figure 1: Overview of P. nodorum reference genome and annotation history. 
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The initial assembly was found to contain a homolog of the Pyrenophora tritici-repentis necrotrophic 

effector ToxA, providing evidence of a horizontal gene transfer event from P. nodorum to P. tritici-

repentis (Friesen 2006). The ToxA-containing transfercon was initially estimated to be 11 kbp, but it 

has been suggested that at least 72 kbp was transferred including P. nodorum sequence 

corresponding to scaffolds 68, 55, 51, 46, 64, and 73 (Syme, Hane et al. 2013). 

The genomics resources available to P. nodorum researchers were expanded to include the genomes 

of two more strains - one isolated from the grass Agropyron, unable to infect wheat and a wheat 

pathogen known to produce a different suite of effectors to the SN15 reference strain. In 

comparing the three strains, the analysis by Syme, Hane et al. (2013) included 1621 lower 

confidence genes to the 10761 genes from Bringans, Hane et al. (2009) to minimise the possibility 

of missing potential effector loci, bringing the total number of putative genes used in that 

comparison to 12382. Clustering of the predicted proteomes from the three strains revealed a core 

set of 10464 conserved proteins and 2421 proteins exclusive to strains able to infect wheat (Syme, 

Hane et al. 2013). 

The accuracy and completeness of a genome assembly can be improved by the addition of new 

sequencing data. Error characteristics and shortcomings of one sequencing technique may be 

overcome by a complementary chemistry (Shendure and Ji 2008, Zhang, Chiodini et al. 2011). The 

long read lengths available from Sanger are useful to resolve repetitive regions and provide the 

large-scale structural assembly whereas the depth and accuracy of Illumina short-reads delivers the 

ability to correct remaining SNPs and small insertions or deletions (Chevreux, Wetter et al. 1999). 

Comparison of the chromosomes of filamentous ascomycetes has shown that related 

chromosomes tend to conserve gene content, but with shuffled gene order (Hane, Rouxel et al. 

2011). The resulting syntenic patterns are described as mesosynteny and can be explained by 

frequent chromosomal inversions but infrequent translocations (Hane, Rouxel et al. 2011, Ohm, 

Feau et al. 2012).When describing the process, Hane, Rouxel et al. (2011) also suggested that 

mesosynteny may resolve the order and orientation of scaffolds in a fragmented genome assembly 

and thereby identify groups of scaffolds that comprise a single chromosome. The utility of this 

technique is most obvious when a finished genome can be used to improve the fragmented 

assembly of a closely related species or strain. 

Homing endonucleases are mobile genetic elements with highly specific DNA nuclease activity. 

The elements are encoded inside the introns of other functional genes (the ‘host gene’). If the 

translated endonuclease encounters a copy of the host gene without the insertion, it will introduce 

a double stranded cut at a specific point (Belfort and Perlman 1995, Belfort and Roberts 1997). 
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The coding sequence for the endonuclease can be introduced into the cut site during repair. While 

most homing endonucleases are purely selfish elements, some have been co-opted into performing 

biologically helpful functions for the host, such as a mating-type switch in yeast (Jin, Binkowski et 

al. 1997).  

In this study, we report extensive correction of SNP and indel base-calling errors in the P. nodorum 

SN15 reference assembly, the closing of assembly gaps, extensive automated and manual gene 

annotation, and improvements to the functional characterisation of gene models. The new 

experimental data comprises RNA sequencing, DNA sequencing, and multiple sets of proteomic 

data which were used to inform comprehensive manual curation of gene models. Using these 

complementary approaches, we have generated an improved genome assembly, gene and protein 

datasets set and have re-predicted potential pathogenicity effector genes of P. nodorum with higher 

accuracy. These bioinformatic resources represent a substantial knowledge-base that will support 

future research in plant pathology. 

Methods 

Fungal culture 

P. nodorum SN15 was maintained on V8-PDA medium. For the induction of extracellular and 

intracellular proteins, 1 x 106 P. nodorum SN15 spores were grown in Fries broth (Liu, Faris et al. 

2004). For genomic DNA, RNA and protein extraction experiments involving the intracellular and 

cell-wall/membrane sub-proteomes, 1 x 106 S. nodorum SN15 spores were grown in minimal 

medium broth for 3 days (Solomon, Tan et al. 2004). The mycelium was harvested and freeze-

dried prior to further manipulations. 

Genomic DNA extraction and Illumina sequencing 

P. nodorum SN15 genomic DNA was extracted using a modified high-salt cetyltrimethylammonium 

bromide (CTAB) protocol (Clarke 2009). Briefly, freeze-dried mycelia were ground to a fine 

powder using a chilled mortar and pestle. Genomic DNA was extracted using an extraction buffer 

that consisted of 100 mM Tris, 50 mM EDTA, 2M NaCl, 0.4% (v/v) -mercaptoethanol, 2% (w/v) 

polyvinylpyrrolidone and 2% (w/v) CTAB. The genomic DNA was subjected to 

phenol/chloroform extraction, ethanol precipitation and washes. A paired-end library with an 

average insert size of 439 bp and read lengths of 100 bp was generated from SN15 genomic DNA 

and used for sequencing. Sequencing of the genomic DNA was carried by the Australian Genome 

Research Facility (Melbourne, Australia) using an Illumina HiSeq 2000 (Illumina, CA, USA). 



 
PhD Thesis: Robert Andrew Syme | SCHOOL OF SCIENCE 60 

RNA extraction and Illumina sequencing 

P. nodorum SN15 total RNA was extracted using the Trizol reagent (Invitrogen, CA, USA) and 

DNase-treated. PCR was used to check that the sample is free of genomic DNA (Tan, Heazlewood 

et al. 2008).  RNA sequencing was carried out by Macrogen (Seoul, South Korea) using an Illumina 

HiSeq 2000 platform to generate 100 bp paired-end reads.  

Raw Illumina sequencing reads were inspected with FastQC (Andrews 2010). Adapter sequence 

and low quality ends were removed with Cutadapt v1.0 (Martin 2011). Parameters and run details 

are available in appendix A5-1. 

Proteomic datasets 

The extracellular proteome was extracted as described by Vincent et al. (Vincent, Tan et al. 2012), 

using a modified TCA/acetone protein precipitation procedure. Briefly. Proteins from the 

extracellular culture filtrate were precipitated, collected by centrifugation and washed with 100% 

acetone. The protein pellet was subsequently air-dried at room temperature and suspended in 20 

mM Tris pH 7. Residual TCA was progressively removed by dialysis of the suspension using D-

Tube™ Dialyzer Maxi, MWCO 3.5 kDa (Novagen, Darmstadt, Germany) in several changes of 

20 mM Tris pH 7 at 4°C for 48 hrs. Solubilised proteins were retained and stored at -80°C until 

further manipulation. 

The intracellular proteome was extracted as previously described by the authors of this study (Tan, 

Heazlewood et al. 2008). Briefly, intracellular proteins from mechanically ground freeze-dried 

mycelia were solubilised in 20 mM Tris-Cl pH 7 and de-salted using a PD10 chromatography 

column (GE Healthcare, UK). Solubilised proteins were retained and stored at -80°C until required. 

To facilitate cell wall/membrane proteome extraction, freeze-dried fungal mycelia were ground 

with a mortar and pestle and washed three times with 20 mM Tris-Cl pH 7 to release and remove 

soluble intracellular proteins.  The pellet was then washed three times with 0.1 M Na2CO3 to 

further remove soluble and peripherally-attached proteins. The pellet was then resuspended in 20 

mM Tris-Cl pH 7 and subjected to 3 cycles of slow freeze and thaw to further break up the cellular 

material. Membrane-bound proteins were extracted using two methods.  

Extraction Procedure 1 (EP1): One hundred milligrams of membrane enriched pellet was 

extracted with 2% (w/v) SDS, 100 mM EDTA and 50 mM DTT in 100 mM Tris/HCl (pH7.8) by 

vortexing and boiling for 5 minutes followed by 5 minutes on ice (based on methods presented in 

Meijer et al., 2006 and Feiz et al., 2006). 
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Extraction Procedure 2 (EP2):  One hundred milligrams of membrane enriched pellet was 

extracted with 2% (w/v) SDS, 7 M urea, 2 M thiourea and 50 mM DTT in 125 mM 

triethylammonium bicarbonate (TEAB, pH 8.5) by vortexing and sonication for 15 minutes in an 

ice-coeld sonication bath followed by resting for 30 minutes on ice. Vortexing and sonication steps 

were repeated. Subsequent sample processing for suspensions derived from ‘Extraction Procedure’ 

EP1 and EP2 were identical. Suspensions were centrifuged at 16,000 x g for 5 minutes (4°C) and 

the supernatants removed.  Pellets were washed twice with either 100 mM Tris/HCl (pH 7.8) for 

EP1 or 100 mM TEAB (pH 8.5) for EP2. Respective supernatants were pooled, centrifuged at 

20,000 x g for 15 minutes (4°C) and collected for further processing. Proteins were precipitated 

from supernatants by the addition 100% TCA (tricholoacetic acid) to 20% (v/v) and incubated on 

ice for 30 minutes. Protein precipitates were harvested by centrifugation at 20,000 x g for 10 

minutes (4°C). Pellets were washed twice with 90% (v/v) acetone and centrifuged each time as 

before. Protein pellets were briefly dried under a gentle stream of nitrogen and used immediately. 

The final pellets were re-suspended in 45 µL of EP2 extraction buffer (without DTT) and 5 µL of 

1 M TEAB (pH 8.5) by repeated vortexing and incubating the tubes for 10 min in an ice cold 

sonication bath. Samples were centrifuged at 20,000 x g for 10 minutes (4°C) and supernatants 

collected for further processing. Protein concentration of all samples was determined using the 

2D-Quant kit (GE Healthcare) according to the manufacturer’s ‘Standard procedure’ protocol. 

CWM proteins were digested without prior fractionation. 

Intracellular and extracellular proteins were separated into 24 fractions, based on their isoelectric 

point using OFFGEL fractionation (Agilent 3100 Offgel fractionators) followed by trypsin-

digestion and LCMS analysis of peptides. Offgel separations were performed using high resolution 

pH 3-10 separation kits (Agilent) wieth 1 mg of protein per strip as described previously (Hastie, 

Headlam et al. 2012). CWM proteins were digested without any fractionation. Recovered Offgel 

fractions and CWM preparations were reduced by addition of tris (2-carboxyethyl) phosphine to 

22 mM and alkylated by addition of iodoacetamide to 122 mM.  Reduced and alkylated proteins 

were co-precipitated overnight with 1 ug of trypsin by addition of ice-cold methanol.  The 

recovered protein pellet was proteolytically digested in two steps with a second addition of 1 µg 

trypsin as described in Hastie et al.    Peptides were separated on a C18 reversed-phase column 

and data collected using a Hybrid LTQ Orbitrap mass spectrometer (Thermo Fischer Scientific, 

Bremen, Germany).  Offgel fraction digests were separated by reverse phase capillary HPLC using 

a Prominence nano HPLC system (Shiumadzu, Kyoto, Japan), Vydac Everest C18 5 µm 150 µm 

x 150 mm column and analysed on an LTQ Orbitrap XL as described in Morrison et al (Morrison, 

Hastie et al. 2012). The separation gradient was 2-30% B over 78 minutes (A- 0.1% (v/v) aqueous 
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formic acid; B-80% (v/v) ACN, 0.1% (v/v) aqueous formic acid) followed by a 95% B wash step, 

with a total run time 110 minutes.  Data was acquired in the Orbitrap XL as described by Hastie 

(Hastie, Headlam et al. 2012).  

CWM digests were loaded onto a Reprosil aq C18 3 μm, 120 A, 300 μm trap (SGE pn-2222066) 

at 30μL/min in 2% (v/v) acetonitrile 0.1% (v/v) aqueous formic acid for 3.5 minutes at 50 oC, 

then switched in-line with an analytical column (15 cm x 75 μm fused silica, self-packed) reprosil 

aq C18 2.4um (pn-r124.aq batch-9756, Dr. Maisch GmbH) using a flow rate of 1μL/min and 98% 

solvent A (0.1%(v/v) aqueous formic acid) , 2% solvent B (80%(v/v) ACN, 0.1% (v/v) aqueous 

formic acid). Peptides were separated at 50 °C using a sequence of linear gradients: to 7% B over 

3.5 minutes; to 35% B over 166.5 minutes; to 45% B over 10 minutes; to 95% B over 10 minutes 

and then holding the column at 95% B for 10 minutes.  

Eluate from the analytical columns was introduced into the LTQ-Velos Orbitrap throughout the 

entire run via a Nanospray Flex Ion Source (Thermo Fisher Scientific) and a 30 μm inner diameter 

uncoated silica emitter (New Objective). Typical spray voltage was 1.4 kV with no sheath, sweep 

or auxiliary gases used. The heated capillary temperature was set to 250oC. The LTQ- Velos 

Orbitrap ETD was controlled using Xcalibur 2.2 software (Thermo Fisher Scientific) and operated 

in a data-dependent acquisition mode to automatically switch between Orbitrap-MS and ion trap- 

MS/MS as described previously. 

These spectra were then searched using the tide search engine (Diament and Noble 2011) 

implemented in the crux toolkit (Park, Klammer et al. 2008) with specifications as follows: spectra 

mapped against: 6-frame translations of both the new and the old genome assemblies and the set 

of predicted protein sequences from both the new and the old annotations. The search parameters 

used were: variable modifications, oxidation (M); and deamidation (NQ); fixed modification, 

carbamidomethyl (C); peptide tolerance, 20 ppm; MS/MS tolerance: ±0.8 Da; Digestion enzyme: 

trypsin; maximum missed cleavages: 1. Peptide-spectrum matches were refined using Percolator 

(Käll, Canterbury et al. 2007), again as implemented in the crux toolkit.  

For 1D-LC MALDI MS/MS analysis of the SN15 extracellular proteome, SN15 trypsin-digested 

peptides were resuspended in 20 µl of 2% acetonitrile and 0.05% trifluoroacetic acid. Peptides 

were loaded onto a C18 PepMap100, 3 mm column (Dionex, CA, USA) through the Ultimate 

3000 nano HPLC system (Dionex, CA, USA). Mass spectrometry analysis was carried out on a 

4800 MALDI TOF/TOF Analyser as previously described (Casey, Solomon et al. 2010). These 

spectra were also searched using the tide search engine (Diament and Noble 2011) with 
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specifications: variable modifications, oxidation (M); fixed modification, carbamidomethyl (C) and 

other parameters and post-processing as above. 

Conflicts with existing annotations were identified where proteomic spectra searched against the 

six-frame translation of the genome mapped into intergenic regions, intronic annotations, coding 

regions in the wrong frame. 

Improvements to the SN15 Genome Assembly 

SNP and indel errors in the P. nodorum SN15 assembly sequence (Hane, Lowe et al. 2007) were 

corrected by MIRA (v3.4.1.1) (Chevreux, Wetter et al. 1999), using its mapping algorithm to 

assemble Illumina gDNA reads onto the pre-existing scaffolds. The original Sanger-sequenced 

reads were also re-mapped to the corrected assembly using BWA v0.7.3a-r367 (Bringans, Hane et 

al. 2009). 

Groups of putative scaffold linkage groups were predicted by comparison to Pyrenophora tritici-

repentis (Manning, Pandelova et al. 2013) using the synteny-based cumulative binomial test 

described by Hane, Rouxel et al. (2011). 

In order to assess the outcomes of genome sequence and gene annotation corrections, various 

diagnostic tests were performed.  Changes made to the corrected genome were calculated with the 

dnadiff tool distributed with MUMmer (Kurtz, Phillippy et al. 2004).  Improvements of WGS read 

mapping to the corrected assembly were calculated by alignment with BWA v0.7.5a-r405 using the 

default parameters and summary statistics calculated with Picard v1.9.4 (Simakov, Marletaz et al. 

2013)(Simakov, Marletaz et al. 2013)(Simakov, Marletaz et al. 2013). Improvements of RNA read 

mapping to the corrected assembly were calculated by alignment with TopHat v2.0.12 (Kim, Pertea 

et al. 2013) and summary statistics calculated with Picard v1.9.4 and from the TopHat reports. 

Improvements to the Genome Annotations 

Errors in P. nodorum SN15 gene annotations were corrected using a combination of supporting 

data from RNA-seq and proteogenomic peptide alignments to the corrected assembly. RNA-seq 

reads were mapped to the corrected genome using TopHat v2.0.8 (Kim, Pertea et al. 2013). Manual 

correction of gene models and was performed using WebApollo (Lee, Helt et al. 2013). JBrowse 

(Skinner, Uzilov et al. 2009), through WebApollo was used to visualise the various omics data 

sources that informed the manual correction.  

RNA sequencing reads were aligned to the genome, and the gene models identified by Bringans et 

al (Bringans, Hane et al. 2009) were checked to ensure they matched all introns supported by 5 or 

more RNA-seq reads. Introns were introduced or removed from the annotations to match the 
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RNA-seq data. New genes were annotated where transcription levels exceeded 5x when a suitable 

open reading frame (ORF) could be found. Gene annotations were split when the RNA-seq depth 

dropped to 0 and the concatenated protein’s blast hits showed two moieties of hit coverage.  

RNA-seq depth was also used to correct events where an open reading frame occurred inside the 

intron of another gene. These events were identified by large changes in read depth at a single 

locus. For each intronic insertion annotation, the translated region of the splice site skipping over 

the internal ORF was checked for consistency with blast results and with InterProScan-predicted 

domains that spanned that splice site. 

Exported and cleaned gff3 and fasta files were checked into git version control for distributed 

backup, sharing and review (https://github.com/robsyme/Parastagonospora_nodorum_SN15).  

Genome-wide support for gene annotations was summarised according to evidence type, requiring 

80% coverage of coding sequence length and 5 X coverage for RNA-seq support, peptides 

mapping within the coding region for proteogenomic support and four or more for microarray 

probes showing with expression levels at or above the cut-off determined by Ipcho, Hane et al. 

(2012). 

All gene annotations were manually reviewed and curated using the WebApollo platform, checking 

for consistency with RNA-seq, proteomics, microarray, blast hits against nr and conserved protein 

domain structures.  Matches to conserved protein domains identified from translated gene models 

using InterProScan v5.8-49.0 (Jones, Binns et al. 2014) were compared between previously 

published and corrected datasets. Each protein set was submitted to dbCAN (Yin, Mao et al. 2012) 

for CAZyme enzyme family identification. GO functional annotations assigned by InterProScan 

were analysed for functional enrichment of the new protein set using the Fisher’s test implemented 

in the goatools package (Haibao Tang 2015). 

Annotation and Comparison with Alternate Strains 

P. nodorum strains SN4 and SN79 were re-annotated using Maker v2.31.8. Evidence supplied to 

Maker included the updated SN15 protein set and ab-initio predictions from the ab-initio mode 

of gene predictor CodingQuarry (Testa, Hane et al. 2015) using parameters generated from training 

on the updated SN15 annotations. 

The predicted protein set from the three P. nodorum strains were clustered using ProteinOrtho 

v5.11 using the synteny option. Execution of many parts of the analysis including the ProteinOrtho 

clustering were aided by GNU parallel (Tange 2011) and BioRuby scripts and gems (Goto, Prins 

et al. 2010, Bonnal, Aerts et al. 2012). 
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Results 

Genome Assembly Sequence Correction 

The genome of P. nodorum SN15 was re-sequenced using 100 bp paired-end Illumina libraries 

yielding 11.0 Gbp of raw sequence data equivalent to approximately 290x coverage. Short-reads 

were reassembled using the MIRA mapping algorithm to resolve or remove 37,501 Ns and correct 

12,911 SNPs, 1005 deletions, and 16,820 insertions (Table 1).  

The genome annotations as described by Bringans, Hane et al. (2009) were supplied as input to 

the MIRA assembly so that gene coordinates and identifiers could be preserved despite the 

correction of insertions and deletions to the underlying assembly. 
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Table 1: Summary statistics comparing changes to the genome assembly and annotation. Correction of the 

original assembly with deep sequencing with short reads increases the number of reads that align to the 

genome, reduces the number of unknown bases and allows for new scaffold joins. An insertion corrected is 

a deletion of erroneous sequence from the original assembly and a deletion corrected is the insertion of 

sequence missing from the original assembly. 37501 base pairs of unknown sequence have been resolved in 

the corrected genome sequence. WGS and RNA read mismatch rate is the rate of bases mismatching the 

reference for all bases aligned to the reference sequence. WGS and RNA indel rate is the number of short 

insertions/deletions seen in reads / total aligned bases. The percentage of reads aligned in pairs is the 

percentage of reads whose mate pair was also aligned to the reference. 

Description Before After Change 

Number of nuclear scaffolds 108 91 -17 

SNP changes n/a n/a 12911 

Single bp insertion corrected n/a n/a 16820 

Single bp deletion corrected n/a n/a 1005 

Ns count 164388 126887 -37501 

WGS Reads mapping to genome >=q20 (bp) 93867773 94594136 726363 

WGS read mismatch rate (%) 0.5623 0.4851 -0.0772 

WGS indel rate (%) 0.0615 6.2e-03 -0.0553 

WGS reads aligned in pairs (%) 99.6402 99.6427 2.5e-3 

RNA Reads mapping to genome >=q20 (bp) 5872361103 10842396864 4970035761 

RNA indel rate (%) 0.0348 0.0043 -0.0305 

RNA reads aligned in pairs (%) 95.0119 96.1274 1.1155 

 

The corrected genome sequence allowed for an additional 726 kb of DNA reads to be mapped.  

Similarly, an additional 4,970 Mb of RNA reads were able to be mapped to the corrected assembly 

compared to the uncorrected assembly. The reads mapped with lower rates of mismatch (0.4851% 

for DNA), and insertions/deletions (0.0062% for DNA and 0.0043% for RNA). The number of 

reads mapping in concordant pairs increased to 99.6% for DNA and 96.1% for RNA (Table 1).  

Proteomic mass spectral matches from extracellular, membrane-bound and intracellular protein 

fractions were pooled. Matches isolated by more than 200 bp from another match were discarded 

as likely false-positives. Existing annotations were checked for reading-frame consistency with the 

remaining spectral matches and new proteins were annotated or existing annotations extended 

where spectral search results fell outside the coding regions.  
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Sanger-sequenced reads from 4 and 40 kb libraries were aligned to the corrected assembly and 

paired-end information was used to join and orient scaffolds (Table 2). We identified read-

supported scaffold pairings and orientation by filtering Sanger reads where each read in a pair 

mapped to a different scaffold, where each of the pairs mapped at only one position in the genome, 

and where each of the pairs mapped within 40 kb of the scaffold ends. We excluded scaffold joins 

where multiple read pairs suggested conflicting pairs or orientation, leaving only unambiguous 

joins. This process linked 16 scaffolds.  

Scaffolds 76, 92, and 106 were identified by blast as misassembled high-identity matches (>95%) 

to the mitochondrial genome sequence and were excluded from the nuclear genome assembly.  

The repeat content of the new assembly was reassessed. Subtelomeric repeats R22 and X48 (Hane, 

Lowe et al. 2007) are modestly expanded in the corrected assembly, but repeat content remains 

largely unchanged (Appendix A5-2). 

Table 2: Additional scaffolds joined by long insert libraries after correction. The indicated orientation is 

relative to the original assembly scaffolds. 

Left scaffold Right scaffold             Orientation 

scaffold_2 scaffold_107 ← →  

scaffold_7 scaffold_105 → → 

scaffold_8 scaffold_26 → → 

scaffold_17 scaffold_36 → → 

scaffold_18 scaffold_77 ← ← 

scaffold_20 scaffold_49 → → 

scaffold_29 scaffold_48 ← ← 

scaffold_54 scaffold_64 ← ← 

scaffold_60 scaffold_72 ← ← 

scaffold_28 scaffold_61 ← → 

scaffold_29 scaffold_85 → → 
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scaffold_33 scaffold_17 ← → 

scaffold_51 scaffold_55 ← → 

 

Gene Model Correction Summary 

After genome corrections, there were 13,563 predicted nuclear genes (Table 3), of which 866 are 

new genes at new loci and 1936 are confirmed genes that had been regarded as doubtful in earlier 

revisions. New genes are numbered starting at 30,001.  

In total, 12,143 (89%) genes in the current list possess some form of experimental support (Figure 

2). Microarray probe intensity supported the transcription of 9961 loci (Figure 2). RNA-seq 

supported the exon structure of 10544 gene models, including 299 loci with at least one 

alternatively spliced transcript, bringing the total number of predicted protein-coding genes to 

13,949. 8,366 existing genes have had their protein sequence modified, 1936 previously deprecated 

loci have been reinstated, and 866 new genes were introduced when the previous genome 

annotation had incorrectly split genes (55 occurrences, Appendix A5-3), joined genes (356 

occurrences, Appendix A5-3) or where there was no previous annotation (455 occurrences) (Table 

3, Appendix A5-5). Four intronic insertion events were annotated where an open reading frame 

occurred within another gene (SNOG_30297, SNOG_30841, SNOG_14322, and SNOG_16073) 

(Figure 3). Blasting the inserted endonuclease protein sequences to the NCBI non-redundant 

protein database returns only hits to fragments of loci annotated as the host gene.   
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Figure 2: Sources of evidence for corrected annotations. Using a variety of omics sources to guide genome 

annotation gave 12143 annotations some level of experimental support. The remaining annotations are 

supported by non-experimental sources such as the presence of conserved domains or homology to genes 

in other species. 
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Table 3: Summary statistics showing results to changes to key gene model metrics from Bringans et al to 

the updated set of annotations. 

 
Bringans et al Corrected 

Gene model count 10761 13563 
Average exon count 2.6 2.5 

Average CDS length (bp) 1400.6 1372.3 

Intergenic distance mean (bp) 1685 1011 

Intergenic distance std dev (bp) 2590 2063 

Intron length mean (bp) 91.3 66.6 

Models with peptide support 2665 4352 

Models with peptide conflict 150 0 

Genes with alternative transcripts 0 299 

PKS genes 19 24 

Interproscan   

 Proteins with Pfam domains 11111 13245 

 Proteins with Gene3D domains 11181 13180 

 Proteins with SignalP predictions  1029 1476 

 Proteins with SMART predictions  4160 5400 

 Proteins with ProSite Profiles  4115 5279 

Promoted genes - 1936 

New or promoted genes - 866 

 Correcting split genes - 55 

 Correcting joined genes - 356 

 At new loci - 455 

CAZyme Family   

 Auxiliary Activity 122 139 

 Carbohydrate-Binding Module Family 64 110 

 Carbohydrate Esterase Family 142 174 

 Dockerin 1 1 

 Glycoside Hydrolase Family 264 280 

 Glycosyl Transferase Family 96 105 

 Polysaccharide Lyase 10 10 

 

Clustering the 13,949 SN15 proteins with the re-annotated SN4 and SN79 (proteome sizes 13,899 

and 13,746) derived from the improved reference annotation reveals a core P. nodorum protein set 

of 11,849 clusters (Figure 4). 
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Figure 3: CDS annotation, RNA-seq depth and PFam domains of the four genes with targeted ORF intronic 

insertions. RNA-seq depth is shown on a log scale. Three of the four genes hosting insertions encode HSP70 

proteins. 
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Figure 4: Protein cluster membership across the three sequenced P. nodorum strains showing 11,849 core 

conserved protein clusters. Orthologous clusters were derived from predicted proteomes with sizes 13,949, 

13,899 and 13,746 for SN15, SN4, and SN79 respectively. 

Functional Annotation Improvements 

Comparison of each predicted protein to their top BLAST hit not belonging to the Parastagonospora 

genus reveals the new annotation set to be more concordant with annotations in other species 

(Figure 5). In particular, we observe a dramatic shift from shorter annotations to longer 

annotations that represent a higher proportion of the length of their best-matching homolog. 

Manual correction has eliminated occurrences of conflict between the predicted protein set and 

the mapped location of proteomic spectra (Table 3). 
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Figure 5: Coverage of the top blast hit for each predicted protein. Contours of the kernel density estimate 

are shown in blue. Only proteins smaller than 2000 amino acids are shown. The change from the original set 

(left) to the corrected set (right) is characterised by a general upwards shift towards more complete coverage 

of each protein’s top hit. 

Compared to the gene annotations from Bringans, Hane et al. (2009), the new set includes 1784 

more proteins with predicted Pfam domains (Finn, Bateman et al. 2013), 1897 more with Gene3D 

domains (Lees, Lee et al. 2014), and 354 more with SignalP - predicted signal peptides (Bendtsen, 

Nielsen et al. 2004) (Table 3). CAZyme classifications show an increase in the number of proteins 

belonging to the carbohydrate-binding module (46), carbohydrate esterase (32), glycoside 

hydrolase (16), and glycosyl transferase (9) families (Table 3). 

Genes and Domains of Interest 

Known P. nodorum effectors SnToxA, SnTox1, and SnTox3 are not homologous but do share 

common characteristics. They are small (13 kDa, 10 kDa and 17 kDa respectively), contain signal 

peptides to target the protein to the secretory system and have a high number of cysteine residues 

which may form disulphide bridges that help maintain protein stability once secreted. Their genes 

are positioned close to repeats. It has been suggested that effector proximity to repeats may expose 

them to an elevated level of mutation due to leakage of the RIP process outside truly repetitive 

sequence (Rouxel, Grandaubert et al. 2011). The known P. nodorum effectors are absent from the 

SN79 strain, and are highly expressed early in infection (Ipcho, Hane et al. 2012). The 866 proteins 

annotated at new loci are a set enriched for elements that have the properties we expect of 

necrotrophic effectors. The newly annotated proteins have products with a higher average cysteine 

content than the unchanged or modified proteins (Figure 6). Of the 54 proteins in the corrected 

set with more than 4% cysteine content, 16 are from genes at previously unannotated loci, and 51 
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have no blast hits to nr (Table 4). The corrected set revealed 187 extra proteins with blast hits to 

entries in the PHIbase pathogen-host interaction database (Urban, Pant et al. 2014) that are 

experimentally shown to influence pathogenicity (Table 5). Included among the cysteine-rich genes 

at new loci is a putative degraded copy of P. nodorum effector Tox1 (Table 4, Appendix A5-8). 

 

Figure 6: Comparison of the distribution of protein cysteine content between genes found at previously 

unannotated loci (right) and all other genes (left). Horizontal bars in boxplot are mean, 1st quartile and 3rd 

quartile. Outliers greater than 1.5 x interquartile range are shown as points. Proteins at newly annotated loci, 

unannotated by automated methods are more likely to be cysteine rich. 
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Table 4: Cysteine-rich genes annotated at previously unannotated loci. 

Gene name Protein 

length 

Cysteine 

count 

Cysteine 

percentage 

Blast hits 

SNOG_30077 66 9 13.6 No 

SNOG_30525 74 10 13.5 No 

SNOG_30316 94 11 11.7 No 

SNOG_30335 70 8 11.4 No 

SNOG_30888 53 6 11.3 No 

SNOG_30837 56 6 10.7 No 

SNOG_30741 355 37 10.4 Carbohydrate-binding 

SNOG_30253 58 6 10.3 No 

SNOG_30352 79 8 10.1 No 

SNOG_30019 60 6 10 No 

SNOG_30451 62 6 9.7 Fungal hypothetical genes 

SNOG_30925 104 10 9.6 No 

SNOG_30828 84 8 9.5 No 

SNOG_30466 84 8 9.5 Tox1 

SNOG_30530 76 7 9.2 No 

SNOG_30989 55 5 9.1 No 

 

Effectors and other components of pathogenicity are likely to be members of the set of 2169 

protein clusters present in at least one wheat pathogen but absent from the avirulent SN79 strain 

(Figure 4).  
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Table 5: New hits to PHIbase. 187 proteins had blast hits to PHIbase in the corrected set, but not in the 

original set. Of these new PHIbase targets, 26 were at new loci and 161 were from genes previously demoted 

or gene whose correction had revealed the blast hit. 

PHIbase Class New 

proteins 

Modified proteins 

Mutants are lethal 2 3 

Mutants have reduced virulence 20 120 

Mutants show mixed results 1 17 

Effector (plant avirulence determinant) 0 2 

Mutants have lost pathogencity 3 11 

Mutants have increased virulence 0 4 

Chemistry target (unknown phenotype) 0 4 

 

All but one of the polyketide synthase (PKS) genes have had their gene structure modified (Table 

6, Appendix A5-6). The modified protein models were used by Chooi, Muria-Gonzalez et al. (2014) 

to identify 24 PKS genes with 1 type III PKS, 1 hybrid non-ribosomal peptide synthetase/PKS, 1 

partially reducing PKS, 7 non-reducing PKSs, and 14 highly reducing PKSs. Two extra proteins 

with putative pathogenicity domains HCE2 and Ricin-type beta-trefoil lectin are uncovered in the 

new protein set (Table 8, Appendix A5-7). Pfam domains with an increased representation in the 

new protein set include DNA-binding domains (117), transcription factors (51) and chitin-binding 

sequence (21) (Table 8). 
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Table 6: The known PKS complement of P. nodorum. Only one PKS gene (SNOG_06676) annotation 

remained unmodified after assembly and annotation correction. 

Gene name PKS Type Annotation modifications made 

SNOG_09622 Type III PKS Two intron/exon boundaries shifted 

SNOG_00308 Hybrid nonribosomal 

peptide synthetase/PKS 

One intron removed 

SNOG_00477 Partially reducing PKS Exon extended at 5' end by 195 bp 

SNOG_02561 Highly reducing PKS Two exons added at 5' end, original intron 

removed 

SNOG_04868 Highly reducing PKS 2 SNP changes and a 1 bp insertion removed. 

Insertion removal caused frameshift and false 

intron removed 

SNOG_05791 Highly reducing PKS Six exons added at 5' end, two other exons 

extended 

SNOG_06676 Highly reducing PKS No changes made 

SNOG_07866 Highly reducing PKS One exon extended, one intron removed 

SNOG_09623 Highly reducing PKS One exon reduced, one exon extended 

SNOG_11066 Highly reducing PKS One extended, three new exons introduced, 

exons 6, 7 and 8 joined (introns removed) 

SNOG_11076 Highly reducing PKS Nine 1 bp insertions removed, Nine 

intron/exon boundaries shifted 

SNOG_11272 Highly reducing PKS Two 1 bp insertions removed, one intron 

removed, three intron/exon boundaries 

shifted 

SNOG_12897 Highly reducing PKS Two introns removed, two exons added at 5' 

end 

SNOG_13032 Highly reducing PKS Four insertion events corrected, two introns 

removed, one exon added at 5' end 

SNOG_14927 Highly reducing PKS One exon added, three intron/exon 

boundaries shifted 

SNOG_15965 Highly reducing PKS One exon added, three intron/exon 

boundaries shifted 
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SNOG_09490 Highly reducing PKS 5 insertions and 6 SNPs corrected, two 

introns removed, two exons added 5 

intron/exon boundaries shifted 

SNOG_06682 Non-reducing PKS Two 1 bp insertions corrected, two introns 

removed, four intron/exon boundaries shifted 

SNOG_07020 Non-reducing PKS Two introns removed, one intron/exon 

boundary shifted 

SNOG_11981 Non-reducing PKS Two insertions removed, two introns 

removed, one intron added, and two 

intron/exon boundaries shifted 

SNOG_15829 Non-reducing PKS One insertion removed, two exons added at 5' 

end, two introns removed, three intron/exon 

boundaries shifted 

SNOG_08274 Non-reducing PKS Two exons added at 5' end, four intron/exon 

boundaries shifted 

SNOG_08614 Non-reducing PKS One intron removed, two exons added at 5' 

end, three intron/exon boundaries shifted 

SNOG_09932 Non-reducing PKS Two exons added, three exons removed, and 

four intron/exon boundaries shifted 
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Table 7: Changes in the number of annotations with conserved protein domains. 

Domain ID Domain name Original 

Protein Count 

Corrected 

Protein Count 

Putative pathogenicity-related domains 

PF14856 HCE2 - Pathogen effector; putative 

necrosis-inducing factor 

1 2 

PF00652 Ricin-type beta-trefoil lectin 0   1 

Top 5 domains with increased hits 

IPR001138 Zn(2)-C6 fungal-type DNA-binding 

domain 

89 206 

IPR007219 Transcription factor domain 91 142 

IPR000719 Protein kinase domain 120 157 

IPR001810 F-box domain 49 77 

IPR001002 Chitin-binding 14 35 

Discussion  

The completeness and accuracy of an organism’s reference genome sequence and its gene 

annotations directly influence the validity of computational and reverse genetics-based 

downstream functional studies.  This is especially relevant in plant pathology, for which 

considerable research efforts are invested into predicting and functionally characterising putative 

effector genes from genomic datasets. Identification of effectors and subsequent effector-assisted 

breeding programs have been an important contribution to crop protection against pathogens 

(Vleeshouwers and Oliver 2014). Screening of potential lines with a purified effector negates or 

diminishes the need for more costly and time-consuming infection assays and field trials. Analysis 

based on protein sequence such as effector prediction or functional annotation rely on accurate 

gene models, and by extension, assembly sequence. 

For example, insertion and deletion errors in the underlying assembly sequence can force 

automated gene calling software to introduce erroneous intron features in order to extend an open-

reading frame.  This can lead to an inflated exon count (Table 3) and interrupt blast and/or protein 

domain matches, which can impair assignment of biologically relevant functional terms to genes. 

The insertion of an intronic endonuclease into a gene can cause nested open reading frames, which 

will not be correctly annotated by current automated gene calling software. The inserted open 
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reading frame and can lead to the confusion of gene function annotation by the introduction of 

conserved domains that do not relate to the function of the host gene. 

A number of corrections have been made to the P. nodorum SN15 genome assembly, reducing the 

number of nuclear scaffolds from 107 to 91. SNP and indel removal facilitated by the addition of 

the Illumina data allowed a re-evaluation of the long-range paired end Sanger read data which, in 

turn, permitted the confident joining of 8 pairs of scaffolds. Eight scaffolds were joined that 

exhibited mesosyntenic relationships (Table 8). Scaffolds 8 and 26, for example both show 

mesosyntenic similarity to scaffold 4 on P. tritici-repentis (Figure 12). Joining scaffolds adds to our 

knowledge the genomic context of particular regions of the genome, including the transfercon 

harbouring the necrotrophic effector ToxA. Confirmation of the scaffold 55/51 join predicted by 

mesosyntenic pairings and by homology to the ToxA region in P. tritici-repentis (Syme, Hane et al. 

2013) lends support to the theory of an expanded 72kb transfercon and subsequent repeat invasion 

in P. nodorum. Pulsed field gel electrophoresis has been previously used to resolve between 14 and 

19 chromosomes from different P. nodorum isolates (Cooley and Caten 1991). Hence, a substantial 

number of gaps still remained unresolved in the current assembly. 

Table 8: Scaffold joins predicted by mesosyntenic relations and validated by long insert Sanger reads. The 

indicated orientation is relative to the original assembly scaffolds. 

Left scaffold Right scaffold Orientation 

scaffold_8 scaffold_26 → →  

scaffold_29 scaffold_48 ← ← 

scaffold_37 scaffold_48 → → 

scaffold_51 scaffold_55 ← ← 
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Figure 7: (A) Dotplot of promer matches between the original, unjoined P. nodorum scaffolds with L. 

maculans and P. tritici-repentis. P. nodorum scaffolds 8 and 26 are highlighted in grey. 

Scaffolds/chromosomes are highlighted in the alternate strains where they have mesosyntenic matches to 

P. nodorum scaffolds 8 and 26. In both P. tritici-repentis and L. maculans, scaffolds 8 and 26 have 

mesosyntenic matches to only one scaffold in the alternate strain which supports the join event. (B) 

Nucmer matches between the new P. nodorum scaffold 8 composed by joining the original scaffolds 8 and 

26. 

In addition to improvements in existing genes, manual annotation has also uncovered genes at 

new loci. Many of these new genes are small and cysteine-rich (Figure 4) with few blast hits to nr 

- characteristics of proteins involved in pathogenicity (Syme, Hane et al. 2013) and are effector 

candidates. Further evidence that these are relevant effectors could be obtained by determining 

whether they are expressed in planta.  

The errors in the P. nodorum assembly sequence and its genome annotations are not unusual for a 

genome project of its age, assembly strategy and sequencing history. Similar fungal genome 

projects lacking ‘multi-omics’-based evidence may therefore harbour undiscovered annotation and 
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sequencing errors, adversely affecting the accuracy of its genome analysis and the accuracy of 

comparative genomics studies in which they have been used. 

We present an integrated analysis of multiple genomic, transcriptomic and proteomic datasets and 

their application to the improvement of the genome assembly and gene annotations of the fungal 

pathogen P. nodorum SN15.  Experimental approaches undertook in this study can readily be 

applied to other biological systems to refine gene models and assist in the assembly of uncompleted 

genomes.  We anticipate that others establishing fungal genome projects would similarly benefit 

from the techniques described in this study. 
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Abstract 

Important questions about fungal pathogenicity and genome evolution are answerable by 

comparative genomics within and between species. Here we expand the genomic catalogue of 

Parastagonospora nodorum by the sequencing and assembly of 22 strains and P. avenae with 12 strains. 

Genomic comparisons within and between the two species reveal accessory elements under strong 

positive selection in P. nodorum. The Phaeosphaeria pan-genome is found to include an expansion in 

paralogs of the necrotrophic effector SnTox3, including in P. avenae group Pat5 but not in other P. 

avenae groups. Regions with an elevated density of genes under positive selection were observed in 

P. nodorum adjacent to repetitive sequences. Finally, presence/absence variation across all strains 

were combined with measures of positive selection to update the list of putative P. nodorum 

effectors.  

Introduction 

The Parastagonospora pathosystems 

Parastagonospora (teleomorph: Phaeosphaeria) nodorum (Berk.) is an economically important 

necrotrophic fungal pathogen that causes septoria nodorum blotch (SNB) in wheat (Triticum 

aestivum) (Solomon, Lowe et al. 2006) and also a model organism for the fungal order Pleosporales 

and for necrotrophic phytopathogenicity (Oliver and Solomon 2010, Tan, Oliver et al. 2010, Oliver, 

Friesen et al. 2012). Significant experimental resources are available for P. nodorum, including a 

high-quality genome assembly of the reference strain SN15 (Hane, Lowe et al. 2007, Syme, Tan et 

al. 2016), microarray analyses of gene expression (Ipcho, Hane et al. 2012), proteomics and 

proteogenomics, metabolomic profiling, and genome resequencing of two contrasting P. nodorum 

strains: Sn4 and Sn79-1087 (Syme, Hane et al. 2013). SN15 and Sn4 are highly aggressive isolates 

on wheat whereas Sn79-1087, hereafter referred to as Sn79, was isolated from Agropyron, is unable 

to establish SNB on wheat, and has served as a useful negative control for comparative genomics 

in a disease context (Friesen, Stukenbrock et al. 2006). Here we extend these resources to include 

several additional isolates of P. nodorum as well as closely species within the Parastagonospora genus. 

Parastagonospora avenae (teleomorph: Phaeosphaeria avenaria) is a species associated with SNB-like 

symptoms in various Poaceae (Quaedvlieg, Verkley et al. 2013). P. avenae was further divided into 

two formae speciales; P. avenaria f. sp. avenaria (Paa) infects oats (Avena spp.) and P. avenaria f. sp. triticea 

(Pat) infects wheat and some other grasses (Cunfer 2000, Ueng, Dai et al. 2003, Malkus, Reszka et 

al. 2005). Restriction fragment length polymorphism patterns were used to further differentiate 

Pat strains into distinct subgroups named Pat1-Pat6 (Ueng and Chen 1994, Ueng, Cunfer et al. 

1995, Ueng, Subramaniam et al. 1998). 
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Many of the recent studies of Parastagonospora spp. are oriented around an elusive class of genes 

that encode effector molecules that interact with the host to determine the outcome of specific 

host-pathogen interactions (Vleeshouwers and Oliver 2014).  A class of effectors called 

necrotrophic effectors (NEs) interacts with proteins encoded by dominant host susceptibility 

genes to form an inverse gene-for-gene interaction (Oliver and Solomon 2010, Tan, Oliver et al. 

2010) in which the presence of both partners leads to a compatible interaction characterized by 

plant cell necrosis. Parastagonospora spp. were already shown to produce several necrotrophic 

effectors (Friesen, Meinhardt et al. 2007) that are thought to maximise the likelihood of interacting 

with a corresponding susceptibility protein in the host. So far, three well characterised NEs have 

been identified in P. nodorum: SnToxA (Friesen, Stukenbrock et al. 2006), SnTox1 (Liu, Faris et al. 

2004, Liu, Zhang et al. 2012), and SnTox3 (Friesen, Zhang et al. 2008, Liu, Faris et al. 2009). These 

three effectors are already used in breeding programs to accelerate development of disease-

resistant cereal cultivars (Vleeshouwers and Oliver 2014), but several NEs have not yet been 

identified to the gene level, including SnTox2 (Friesen, Meinhardt et al. 2007), SnTox4 (Abeysekara, 

Friesen et al. 2009), SnTox5 (Chu, Xu et al. 2012), SnTox6 (Gao, Faris et al. 2015), and SnTox7 (Shi, 

Friesen et al. 2015).  While continued laboratory testing may yield new effectors, continual 

advances in genome sequencing technologies and bioinformatics methods may also improve 

effector discovery. This study provides enhancements to the P. nodorum SN15 reference strain 

assembly and its gene annotations, but also explores features of the Parastagonospora fungal genomes 

that are relevant for effector discovery, including repeat-induced point mutation (RIP), 

mesosynteny, presence-absence variation, and diversifying selection. 

Repeat-induced point mutation (RIP) is a fungal-specific form of mutation that targets repetitive 

sequences and introduces cytosine to thymine (C→T) transitions, or the reverse complement 

G→A. In the filamentous Ascomycota (syn. Pezizomycotina) where RIP is observed, there is a 

strong bias for mutations at cytosine bases adjacent to adenine (CpA → TpA). It was suggested 

that RIP provides a mechanism of genome defence against transposon invasion, by disabling 

transposable elements (TEs) through introduction of premature stop codons into their open 

reading frames and/or through silencing of the RIP-mutated sequence through further DNA 

methylation (Galagan and Selker 2004, Hane and Oliver 2008, Clutterbuck 2011, Hane 2015, Hane, 

Williams et al. 2015). 

RIP is common in many Pezizomycotina species (Testa 2016), and has been linked to effector 

mutation in Leptosphaeria maculans (Fudal, Ross et al. 2009, Van De Wouw and Howlett 2011). 

Although RIP primarily targets repetitive DNA, RIP mutations may also encroach into non-
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repetitive flanking regions (Fudal, Ross et al. 2009, Van de Wouw, Cozijnsen et al. 2010).  Genes 

that are proximal to repeats may become extensively mutated during successive rounds of RIP, 

generating variants encoding products that are no longer recognised by host-defences.  

Pathosystems in which host-recognition of a pathogen is controlled by an avirulence (AVR) gene 

in the pathogen and corresponding resistance (R) gene in the plant are said to conform to the 

gene-for-gene model of host-pathogen interaction (Flor 1971). In gene-for-gene systems, 

alteration, inactivation or loss of an AVR gene can benefit the pathogen by allowing it to escape 

avirulence-mediated host recognition. For example, the avirulence genes AvrLm1, AvrLm6, and 

AvrLm4-7 in the Leptosphaeria maculans genome are located in close proximity to highly repetitive 

regions. RIP-like polymorphisms have been observed in these loci for many isolates (van de Wouw 

et al., 2010) and a gradient of RIP-like mutations was observed to be inversely correlated with 

distance from the repetitive sequences. The fungal genes most likely to be affected by RIP leakage 

can be identified by annotation of AT-rich regions with the OcculterCut tool (Testa, 2016). 

In early chromosomal mapping studies, the term synteny was defined to describe two loci known 

to exist on the same chromosome but not yet demonstrated to be genetically linked by 

recombination frequency (Renwick, 1971). This semantic distinction was necessary because of the 

technical difficulty of establishing linkage, particularly for larger plant chromosomes (Novitski and 

Blixt, 1978). As genome sequencing became commonplace and the genetic maps of individual 

chromosomes became more densely populated, the term synteny came to describe stretches of 

collinear loci where gene order and orientation is preserved. In a panmictic population prior to a 

speciation event, any given chromosome will likely share gene order and orientation, preserving 

both synteny and co-linearity. After speciation, sister species undergoing independent evolutionary 

processes can diverge, with gene gain/loss/duplication or chromosomal rearrangements slowly 

degrading the degree of synteny and co-linearity among the sister species unless selection favors 

retention of synteny. 

A number of different classes of synteny have been proposed. Co-linearity of thousands of genes, 

observable at the whole-chromosomal scale is often described as macrosynteny. Comparisons of 

chromosomes between related plant and animal species typically detect a macrosyntenic 

relationship over comparatively large evolutionary distance. The genomes of cereal, legume or 

vertebrate species often display conserved macrosynteny (Pennacchio 2003, Cannon, Sterck et al. 

2006). Even in the absence of macrosynteny, the linear arrangement of small groups of genes (as 

few as 2-5, called microsynteny) can be preserved across large phylogenetic distances (Chen, 

SanMiguel et al. 1997). The evolutionary pressure to preserve the order of these loci can be 
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attributed, in at least some cases, to blocks of coregulated genes, such as those involved in 

production of secondary metabolites (Engström, Sui et al. 2007, McGary, Slot et al. 2013). 

The first fungal species to be sequenced displayed no macrosynteny and remarkably little 

microsynteny among species in different families and in some cases even at the genus level 

(Goffeau, Barrell et al. 1996, Galagan, Henn et al. 2005). It was only after a significant number of 

Pezizomycotina species were sequenced that a syntenic pattern emerged. Comparisons of four 

species within the Dothideomycetes using a dot-plot approach identified a novel form of synteny 

that Hane et al (2011) termed mesosynteny. The pattern is characterised by frequent shuffling of 

gene content within a given chromosome, but infrequent translocations among chromosomes. 

Observations of mesosynteny have been confined mainly to the Pezizomycotina (Ohm, Feau et al. 

2012), though it appears that similar structural rearrangements may occur in the Agaricomycetes 

(Hane, Rouxel et al. 2011, Hane, Anderson et al. 2014). The mechanisms underlying mesosynteny 

remain unknown, but simulations of repeated rounds of intra-chromosomal inversions produce a 

recognisably mesosyntenic pattern (Ohm, Feau et al. 2012). Two genome features were proposed 

to be associated with mesosyntenic breakpoints: simple sequence repeats (SSRs) (Ohm, Feau et al. 

2012) and transposable elements (Grandaubert, Schoch et al. 2013). Observations of mesosyntenic 

patterns are limited to the filamentous Ascomycetes, and most prominent in the Pezizomycotina, 

Dothideomycetes, and possibly Agaricomycetes - taxon that include many important plant 

pathogens. Despite contributing to the plasticity of fungal genomes, the effect of mesosynteny on 

plant pathogenicity is still unknown. 

Recent resequencing studies have repeatedly shown that variation in gene content, or 

presence/absence variation (PAV) genotypes are more common in fungi than was previously 

thought (McDonald, Oliver et al. 2013, Gao, Faris et al. 2015, Golicz, Martinez et al. 2015). PAV 

have been observed at two distinct scales: at the gene cluster level (Plissonneau, Stürchler et al. 

2016) and at whole (or partial) chromosome level (Ma, Van Der Does et al. 2010, Goodwin, 

M'Barek et al. 2011).  These PAV patterns are particularly relevant in the context of plant 

pathogenicity because they may highlight variable effector loci when applied across multiple 

isolates of a single species with a range of virulence phenotypes. Sectional absences of small groups 

of genes were previously observed in comparisons between the reference strain SN15 and alternate 

strains of P. nodorum (Syme, Hane et al. 2013). The effectors SnTox1 and SnTox3 are notably absent 

from the wheat-avirulent strain SN79 in small 2 kb and 4 kb stretches respectively, whereas 

SnToxA is part of a much larger 72 kb absence in Sn79 (Syme, Hane et al. 2013). There is not a 

consistent pattern to the size of pathogenicity-related PAV. For each known effector, the pattern 

of PAV genotypes in field populations of P. nodorum and P. avenaria varies, which may indicate 
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multiple, independent horizontal gene transfer (HGT) events (McDonald, Oliver et al. 2013). 

Notably, there does not appear to be a significant fitness penalty incurred by the pathogen 

harbouring an effector when growing on a host that lacks the corresponding sensitivity gene 

(McDonald, Oliver et al. 2013). It is also possible that genes residing in genomic regions rich in 

repetitive DNA may be more prone to loss due to a higher frequency of mesosyntenic 

recombination and subsequent increased likelihood of imperfect matching between homologous 

regions of sister chromatids. 

The genomes of some pathogenic species are compartmentalised into regions with “two speeds” 

of evolution: “core” gene content - which tends to be under purifying selection pressures and well-

conserved - and variable gene content. For some species, such as L. maculans, these variable regions 

are interspersed throughout the genome. In others, variable and core gene contents are divided 

among separate chromosomes. Fungal accessory (syn. supernumerary, dispensable) chromosomes 

have been observed to be gene sparse (Grandaubert, Bhattacharyya et al. 2015) and exhibit higher 

rates of mutation, transposable elements (Coleman, Rounsley et al. 2009), positive selection and 

pathogenicity-associated loci relative to ‘core’ chromosomes (Miao, Covert et al. 1991, Coleman, 

Rounsley et al. 2009, Balesdent, Fudal et al. 2013). For example, the accessory chromosomes of 

Nectria haematococca (Coleman, Rounsley et al. 2009) encode genes responsible for antibiotic 

resistance (Miao, Covert et al. 1991) and pathogenicity (VanEtten, Straney et al. 2001). Genes on 

accessory chromosomes in Zymoseptoria tritici have a much higher rate of non-synonymous 

substitution and lower rates of synonymous substitution, indicating that their loci are under 

positive selection (Stukenbrock, Jørgensen et al. 2010, Croll, Lendenmann et al. 2015). Accessory 

chromosomes in Fusarium spp. are also rich in transposable elements and pathogenicity genes. The 

transfer of two whole accessory chromosomes of F. oxysporum was demonstrated to be sufficient 

to convert a non-pathogenic strain into a pathogen (Ma, Van Der Does et al. 2010). P. nodorum 

scaffold 46 was previously predicted to be dispensable on the grounds that it shares characteristics 

with Z. tritici accessory chromosomes, including a low GC content, high repeat content, low gene 

density and a low percentage of predicted genes with conserved functional domains (Ohm, Feau 

et al. 2012). 

Recent advances across various aspects of fungal genome evolution and effector gene prediction 

provide new opportunities to study the intra-species diversity of fungal genomes in the context of 

pathogenicity. Previous studies of mesosynteny focused on inter-species comparisons with no 

analysis of genomic structural variation within species. Similarly, previous studies of RIP were 

restricted to repetitive sequences in a single genome or inter-species comparisons (Clutterbuck 

2011, Hane, Anderson et al. 2014). Here we investigate RIP, mesosynteny, and presence-absence 
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variation across several isolates of P. nodorum and the closely related species P. avenaria. The high 

resolution data generated by deep re-sequencing highlights idiosyncrasies of each of these variable 

features in model Pleosporales pathogens and provides novel insights that can be translated to the 

study of related fungal pathogen species. 

Methods 

Strain Sampling, DNA extraction and Sequencing 

Illumina paired-end libraries were constructed for each strain. P. nodorum WAC8410 was sequenced 

from a TruSeq 500 bp library on an Illumina 2000 to produce 150 bp paired-end reads. All other 

strains were sequenced from 300 bp NexteraXT libraries on an Illumina 2500 multiplexed over 

two lanes.  

Reference-alignment and de novo assembly of alternate strain sequences 

Raw Illumina reads were trimmed using cutadapt v1.7.1 (Martin 2011), removing adapter sequence 

‘CTGTCTCTTATACACATCTCCGAGCCCACGAGAC’, removing bases with quality score 

less than 25, and removing any reads shorter than 50 bp after trimming. PCR duplicate reads were 

identified using Picard tools (Simakov, Marletaz et al. 2013)(Simakov, Marletaz et al. 

2013)(Simakov, Marletaz et al. 2013)(Simakov, Marletaz et al. 2013)(Simakov, Marletaz et al. 

2013)(Simakov, Marletaz et al. 2013). 

The reference genome used for alignments and other comparative analysis in this study was derived 

from P. nodorum strain SN15 (Hane, Lowe et al. 2007).  The latest SN15 genome assembly and 

gene annotations, which have been curated to a high standard, were sourced from 

https://github.com/robsyme/Parastagonospora_nodorum_SN15.  To further inform the 

genomic context of variation observed across alternate isolates relative to SN15, repetitive and 

low-complexity DNA regions were also re-predicted for the updated SN15 assembly de novo as 

per Hane (Hane, Lowe et al. 2007, Hane and Oliver 2008, Bringans, Hane et al. 2009). 

Trimmed reads were aligned to the reference genome using bowtie2 (Langmead and Salzberg 2012) 

using the “very-sensitive” flag and retaining unaligned reads for later use. Read alignments were 

sorted and compressed using samtools (Li, Handsaker et al. 2009). Coverage statistics used to 

inform variant calling parameters were calculated using Picard Tools v1.128 CollectWgsMetrics 

module (Simakov, Marletaz et al. 2013)(Simakov, Marletaz et al. 2013)(Simakov, Marletaz et al. 

2013)(Simakov, Marletaz et al. 2013)(Simakov, Marletaz et al. 2013)(Simakov, Marletaz et al. 2013). 
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Trimmed reads were assembled de novo with the SPAdes assembler v.3.5.0 (Bankevich, Nurk et al. 

2012) at kmer lengths 21, 33, 55, and 77 using mismatch and short indel correction via BWA 

mapping (Bringans, Hane et al. 2009). 

Assembly quality was assessed against the reference genome and annotations using QUAST v2.3 

(Gurevich, Saveliev et al. 2013). Heavily fragmented genomes with fewer than 8000 reference genes 

present were flagged for exclusion from annotation-based measures of variation due to the 

likelihood of annotation truncation.  

Analysis of sequence variation 

Sequence polymorphism across alternate P. nodorum and P. avenaria strains relative to the SN15 

reference genome, were predicted using bowtie2 alignments with the GATK v3.3-0 

HaplotypeCaller (DePristo, Banks et al. 2011) using the best practices recommendations (Auwera, 

Carneiro et al. 2013). For strains with a mean coverage below 5x, the minReadsPerAlignmentStar 

cut-off was reduced to 3 from the default of 5. Variants identified in each strain were pooled and 

genotyped using GATK GenotypeGVCF (DePristo, Banks et al. 2011). However, genome 

assemblies of the alternate strains were also aligned to the reference genome using nucmer (Kurtz, 

Phillippy et al. 2004) with default parameters and filtered using delta-filter parameters –r and –q 

to exclude alignments to and of repetitive sequences. Subsequently, SNP and indel variants from 

the genome alignments were extracted using custom scripts 

(https://github.com/robsyme/bioruby-mummer) to capture additional variation in regions where 

the alternate strain and reference are too dissimilar to reliably map short reads, preventing GATK 

variant calling. 

Fungi of the Pezizomycotina sub-phylum taxon, to which Parastagonospora belongs, typically exhibit 

a repeat-targeted mutation mechanism with a bias towards CpA dinucleotides that is known as 

repeat-induced point mutation or RIP.  All SNPs generated from the variant calling methods above 

were classified by RIP class. Sites with C → T SNPs were identified and classified according to the 

adjacent nucleotide (CpA, CpC, CpG, or CpT). Sites were also classified by mutation direction 

where refC → altT suggests the alternate strain is RIP-mutated and refT → altC suggests the 

reference is RIP-mutated. The same procedure was applied to SNPs on the reverse strand at G → 

A SNPs. CpA → TpA and GpT → ApT SNPs were annotated as ‘RIP-like’. To determine the 

extent of RIP across the P. nodorum genome, the SN15 reference genome sequence was divided 

into windows of 5 kbp.  Within these windows, we calculated the number of RIP-like altCpA → 

refTpA SNPs as a fraction of the number of all SNPs in the window. 

https://github.com/robsyme/bioruby-mummer
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Genome Annotation 

Manually-curated annotations from the reference genome SN15 were used to train CodingQuarry 

(Testa, Hane et al. 2015) and these parameters applied to each of the alternate strains. A database 

of repeats was generated using RepeatModeler v1.0.8 (Smit and Hubley 2010) augmented with full 

copies of known P. nodorum repeats Molly (AJ488502.1), Pixie (AJ488503.1), and Elsa (AJ277966.1). 

The RepeatModeler repeats were combined with known “DeRIPped” (predicted pre-RIP 

consensus) (Hane and Oliver 2010) and repbase (Jurka, Kapitonov et al. 2005) repeats using 

RepeatMasker v4.0.5 (Smit, Hubley et al. 1996-2004). A final set of annotations for each alternate 

strain was generated using Maker v2.31.8 (Cantarel, Korf et al. 2008) which was provided the 

reference proteome for tblastn hits, the de-novo repeat database (Hane and Oliver 2010) and 

CodingQuarry (Testa, Hane et al. 2015) predictions. Secretion signals were detected using SignalP 

v4.1 (Bendtsen, Nielsen et al. 2004) and trans-membrane domains by TMHMM v2.0 (Krogh, 

Larsson et al. 2001). Secondary metabolite clusters were predicted in non-reference strains by 

antismash 2.1.1 (Medema, Blin et al. 2011). 

Clusters of putatively homologous proteins were identified using ProteinOrtho v5.11 (Lechner, 

Findeiß et al. 2011) using the synteny flag and a blastp e-value of 1 × 10-5. Protein cluster 

membership for SnToxA, SnTox1 and SnTox3 were checked by using each protein sequence to 

query each of the alternate strain de-novo assemblies using tblastn (e-value cut-off 1×10-5). 

Scaffold and Gene Presence/Absence  

Assemblies from each alternate strain were compared to the reference assembly with nucmer using 

the default parameters. The coverage of each of the reference scaffolds by nucmer matches to the 

was calculated using the genomecov function of BEDtools (Quinlan and Hall 2010). Homologs of 

known effectors were extracted from orthologous clusters calculated earlier. Each effector absence 

was manually confirmed by blasting the reference effector against the alternate strain’s genome 

assembly. A tree of nucleotide matches to SnTox3 was constructed using MrBayes using the 

default parameters.  

Phylogeny 

SNP and indel variants identified from alternate strains were applied to 35 reference loci where 

the locus was present in all strains. Each cluster of loci was aligned using ClustalW v2.1 (Larkin, 

Blackshields et al. 2007) and clusters were concatenated to create a 30,992 bp alignment with 

19,501 (62.9%) identical sites and 93.1% pairwise identity. A phylogenetic tree was calculated using 

MrBayes (Ronquist and Huelsenbeck 2003) with the JC69 substitution model, popinv rate 

variation, chain length 200,000, subsampling frequency 200, heated chains 4, burn-in length 10,000, 
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and heated chain temp 0.2. SnTox3 paralogs were detected by searching for the SN15 

SNOG_08981 protein sequence in all the available genomes using tblastn. Only hits with e-value 

less than 1×10-10 were retained. 

Identification of Positive Selection 

The ratio of non-synonymous substitutions to synonymous substitutions (ω) can indicate the 

presence of diversifying/positive or purifying/negative selection. Coding sequence for each 

orthologous cluster containing a protein from the reference strain were extracted, translated and 

aligned using ClustalW (Larkin, Blackshields et al. 2007). Protein truncations due to incorrect 

annotation in the alternate strains limit detection of positive selection as only codons present in all 

strains can be considered. Short proteins with lengths more than 1 standard deviation from the 

mean were excluded from the alignments. 

Codon alignments of the nucleotide sequence were generated with the pal2nal v14 (Suyama, 

Torrents et al. 2006). The M1a and M2a site models were applied to each orthologous cluster to 

generate a maximum likelihood (ML) estimation of ω. The H0 model (PAML model M1a) confines 

codon membership to one of two classes where ω < 1 (purifying selection) or ω = 1 (neutral/drift). 

The H1 model (PAML model M2a) extends H0 to allow codons membership to a third possible 

class where ω > 1 (positive selection). Loci with sites under positive selection were identified where 

the χ²-distributed likelihood ratio of the two models exceeded the 1% significance level (2 degrees 

of freedom). 

Regional patterns of selection pressure were identified by stepping a 100 kbp window over the 

reference assembly in 1 kbp increments, counting the number of transcripts under positive 

selection as a percentage of the total number of transcripts in each window. 

Effector Candidate Criteria 

For each reference transcript sequence, a number of tests were applied and a score assigned to 

transcripts that passed. Proteins were scored that had a molecular mass less than 30 kDa, had Cys 

greater than 4%, were less than 5 kb from repetitive sequences longer than 200 bp, did not have 

tblastn hits to the SN79 genome assembly (e-value less than 1×10-30), were in regions of low density 

(at most 1 other gene in the 2 kb up and downstream of the transcript), were predicted to be 

secreted by SignalP v4.1 (Bendtsen, Nielsen et al. 2004), were predicted to be under diversifying 

selection pressure as described above, were not part of the core proteome, or were not predicted 

to encode a trans-membrane domain by TMHMM (Krogh, Larsson et al. 2001). 
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Structural Variation 

The locations of repetitive sequences calculated earlier were divided into simple repeats and 

transposable elements (TEs), sub-divided into class I retroelements and class II DNA transposons. 

TE classes were further sub-classified for selected notable repeat families. Bowtie2 mapping of 

alternate strains’ reads to the reference genome were used as input to detect structural variation 

using Delly v0.6.1 (Rausch, Zichner et al. 2012) with default parameters. Sites of translocation and 

inversion events were extracted and the relative distance form each breakpoint to the nearest 

repetitive sequences were calculated using the reldist function in BEDtools v2.22.1 (Quinlan and 

Hall 2010, Favorov, Mularoni et al. 2012). The relative distance function is a measure of spatial 

correlation between two sets of intervals, where an association between the sets A and B would 

present as a high proportion of B sites at low relative distance to their nearest A site and a low 

proportion of B sites equidistant from A sites (a relative distance of 0.5). Breakpoint sites were 

clustered and counted together for the tally when breakpoints from two or more alternate strains 

were predicted within 1 kb. 

Results 

Sequencing and Assembly 

The estimated genome coverage for each strain, relative to the SN15 reference assembly, ranged 

between 5x and 64x for strains sequenced using the NexteraXT libraries and 81x for the WAC8410 

isolate sequenced using a TruSeq library (Table 1). Strains TN5-1, SC3-1, SnSA95.103 and NOR-

4 produced fragmented assemblies, with fewer than 10,000 SN15 reference genes present in the 

assembly as determined by QUAST analysis (Gurevich, Saveliev et al. 2013) (Appendix A6-1). 
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Table 1: Sequencing and isolate summary. Isolate IDs are identifiers used in the laboratories in which the 

strains were first isolated. Some collection dates are not available, shown as ‘-‘. 

Isolate ID Isolate Source Collection 

Year  

Sum length 

of post-QC 

reads (Mb) 

Estimated 

Coverage 

Species and forma 

specialis 

P. nodorum strains 
B2.1b Iran 2005 686.1 9.2 P. nodorum 
C1.2a Iran 2005 886.1 11.9 P. nodorum 
IR10_9.1a Iran 2010 528.4 7.1 P. nodorum 
IR10_2.1a Iran 2010 665.9 8.9 P. nodorum 
Sn Cp2052 Denmark - 1,031.9 13.9 P. nodorum 
FIN-2 Finland - 1,998.7 26.9 P. nodorum 
NOR-4 Norway - 871.7 11.7 P. nodorum 
SWE-3 Sweden - 1,517.8 20.4 P. nodorum 
BRSn9870 Brazil - 3,316.9 44.6 P. nodorum 
Sn99CH 1A7a Switzerland - 3,888.2 52.3 P. nodorum 
SnChi01 40a China - 2,796.4 37.6 P. nodorum 
SnSA95.103 South Africa - 1,019.0 13.7 P. nodorum 
SnOre11-1 Oregon, USA - 4,763.4 64.1 P. nodorum 
OH03 Sn-1501 Ohio, USA - 2,229.8 30.0 P. nodorum 
SNOV92X D1.3 Texas, USA - 2,524.6 34.0 P. nodorum 
AR1-1 Arkansas, USA - 1,986.2 26.7 P. nodorum 
TN 5-1 Tennessee, USA - 987.4 13.3 P. nodorum 
VA 5-2 Virginia, USA - 2,288.3 30.8 P. nodorum 
GA9-1 Georgia, USA - 4,296.5 57.8 P. nodorum 
MD4-1 Maryland, USA - 4,325.8 58.2 P. nodorum 
SC 3-1  South Carolina, USA - 374.4 5.0 P. nodorum 
WAC8410 Australia 2010 6,032.4 81.2 P. nodorum 

P. avenaria strains 
IR10_5.2b Iran 2010 

850.5 

11.4 P. avenaria f. sp. tritici 1 

SN11IR_2_1.1 Iran 2010 1,415.3 19.0 P. avenaria f. sp. tritici 4 
82-4841 North Dakota, USA 1982 1,207.7 16.2 P. avenaria f. sp. tritici 5 
83-6011-2 North Dakota, USA 1983 1,136.3 15.3 P. avenaria f. sp. tritici 5 
SN11IR_6_1.1 Iran 2010 2,150.2 28.9 P. avenaria f. sp. tritici 6 
SN11IR_7_2.3 Iran 2010 1,039.4 14.0 P. avenaria f. sp. tritici 6 
Mt. Baker Washington, USA 2009 585.8 7.9 P.   avenaria 
s258 Netherlands 2005 1,163.2 15.6 P.   avenaria 
H6.2b Iran 2005 3,030.0 40.8 P. avenaria f. sp. tritici 2 
A1 3.1a Iran 2005 1,813.1 24.4 P. avenaria f. sp. tritici 2 
Hartney99 Canada 2005 1,132.5 15.2 P. avenaria f. sp. tritici 1 
Jansen #4_55 Canada 2005 480.1 6.5 P. avenaria f. sp. tritici 1 
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Table 2: De-novo assembly summary statistics of newly sequenced strains. N50 is the smallest number of 

scaffolds that make up half of the total assembly length. QUAST gene presence counts indicate the number 

of reference (strain SN15) genes that are covered by nucmer matches. The QUAST gene counts are divided 

into genes covered completely and genes only partially covered. High sequence variation between SN15 and 

P. avenaria frustrated the nucmer matching, resulting in very low gene counts in those strains. Some 

genomes such as NOR-4 and SC3-1 and SnSA95.103 have more fragmented genomes and as such were 

excluded from some downstream analyses. 

Isolate ID № 

Scaffolds 

Largest 

scaffold (kb) 

Total length 

(Mb) 

N50 (kb) Whole SN15 gene 

count by QUAST 

Partial SN15 gene 

count by QUAST 

P. nodorum strains   

B2.1b 2906 386.4 37.38 60.3 12628 784 
C1.2a 1557 325.3 37.43 80.4 12751 649 

IR10_9.1a 3673 140.6 37.28 20.7 11442 1920 
IR10_2.1a 2131 229.7 37.50 44.8 12412 997 

Sn Cp2052 3026 190.2 37.32 38.2 12310 1148 
FIN-2 1381 451.6 38.41 117.9 12952 479 

NOR-4 17618 34.2 28.72 1.8 2631 9512 
SWE-3 1714 335.5 37.85 58.8 12734 727 

BRSn9870 4911 309.9 41.23 52.4 12342 1148 
Sn99CH 1A7a 853 521.0 37.90 180.7 13062 361 

SnChi01 40a 779 1,268.1 37.88 206.3 13118 332 
SnSA95.103 11772 48.0 49.94 6.5 9545 3882 
SnOre11-1 748 875.4 37.42 249.6 13103 352 
OH03 Sn-

1501 

1281 349.9 37.10 85.0 12844 577 
SNOV92X 

D1.3 

785 524.1 36.66 145.6 13009 442 
AR1-1 882 748.5 36.61 135.6 12999 412 

TN 5-1 15004 22.0 37.55 3.6 7030 6323 
VA 5-2 1115 485.6 36.48 89.1 12787 606 
GA9-1 664 938.6 36.53 215.3 13074 356 
MD4-1 701 599.9 36.53 191.0 13045 384 
SC 3-1 16752 44.2 28.05 2.0 3143 9256 

WAC8410 384 1,060.5 40.27 316.8 13223 277 
P. avenaria strains 

IR10_5.2b 1681 267.0 35.51 57.3 18 14 
SN11IR_2_1.1 5762 168.2 41.54 38.6 12 15 

82-4841 2444 218.3 38.53 50.5 21 13 
83-6011-2 2367 193.8 37.52 43.9 21 13 

SN11IR_6_1.1 1174 737.1 33.51 102.8 3 7 
SN11IR_7_2.3 2215 244.5 33.60 44.8 6 12 

Mt. Baker 8309 38.5 34.14 6.2 15 81 
s258 4090 183.1 39.49 32.8 16 21 

H6.2b 1613 411.9 38.68 74.6 2 6 
A1 3.1a 1764 419.9 39.05 68.3 3 6 

Hartney99 3381 124.3 36.58 27.6 47 20 
Jansen 4_55 10109 83.1 32.06 4.3 20 166 

 

Phylogeny and Distribution of Known Effectors 

Strains were sampled from broad geographic collections with a focus on the Fertile Crescent and 

the United States (Table 1, Figure 1) and included three previously sequenced P. nodorum strains, 

22 newly sequenced P. nodorum strains and 12 newly sequenced P. avenaria strains. The P. nodorum 

clade is distinct from the P. avenaria species and each Pat group clusters together in the phylogenetic 
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tree (Figure 1). The Pat2 group composed of Iranian isolates H6.2b and A1 3.1a are very similar 

to each other, but show very high levels of sequence variation relative to the other P. avenaria strains 

(Figure 1).  

The SnToxA effector was detected in 12/25 P. nodorum strains and was absent from all P. avenaria 

strains. SnTox1 was detected in 18/25 P. nodorum strains and 2/12 P. avenaria strains in Pat1 and 

Pat5. SnTox3 was detected in 16/25 P. nodorum strains and 2/12 P. avenaria strains (17%), both in 

Pat5 strains (Figure 1, Figure 2). The pattern of effector presence/absence is not concordant with 

phylogeny, which is a common for effector alleles (McDonald, Oliver et al. 2013). 

  



 
PhD Thesis: Robert Andrew Syme | SCHOOL OF SCIENCE 102 

 

Figure 1: Phylogeny of the P. nodorum and P. avenaria strains used in this study constructed using 

MrBayes from 35 loci present in all strains. Branch probabilities are 100% unless indicated 

otherwise. Green boxes represent presence of an effector in that strain.  
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Unlike SnToxA and SnTox1, SnTox3-like loci are found in multiple copies in SN15 and other 

Phaeosphaeria strains.  The pan-Phaeosphaeria SnTox3-like paralogs cluster into five groups (Figure 2). 

Included in the paralogs are 26 pseudogenes with open reading frames interrupted by premature 

stop codons and 74 loci that have coding sequences uninterrupted by nonsense mutations. All of 

the complete genes have secretion signals as predicted by SignalP and all the cysteine residues are 

conserved. The two Pat5 isolates 82-4841 and 83-6011-2 contain at least three SnTox3-like loci 

each, but are the only P. avenaria isolates to do so. The Pat5 strains each encode a SnTox3-like gene 

that clusters with the genuine SN15 SnTox3 gene SNOG_08981 (Figure 2). The coding sequence 

of the Pat5 genes are similar to SnTox3 (Figure 3), but the genomic context of these Pat5 loci is 

distinct from the P. nodorum strains. The genes surrounding SnTox3 on SN15 scaffold 14 are absent 

in the P. avenaria assemblies, including the Pat5 isolates. The region surrounding the Pat5 Tox3-

like gene is syntenic to a region in SN15 on a different scaffold to SnTox3. The Tox3-like loci in 

Pat5 strains have replaced the putative NADPH:quinone reductase gene SNOG_09936 on 

scaffold 16 (Figure 4). 
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Figure 2: Maximum likelihood phylogenetic tree of Tox3-like paralogs in the pan-Phaeosphaeria genome. 

The two Pat5 strains (highlighted in red) are the only P. avenaria isolates with Tox3-like loci, including loci 

that cluster with the genuine SnTox3 gene (SNOG_08981). 
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Figure 3: Nucleotide alignment of the loci clustered most closely with SN15 SnTox3 SNOG_08981. 

Variations to the SN15 sequence are highlighted in colour according to the SNP. 

 

 

 

Figure 4: ClustalW alignment of the genomic context of the Tox3-like genes in Pat5 strains with homologous 

regions in Pat4 and P. nodorum. The SnTox3 region on SN15 scaffold 14 is absent from all P. avenaria 

assemblies. A region of P. nodorum SN15 scaffold 16 shown here, is syntenic with P. avenaria with the 

exception that a Tox3 homolog replaces SNOG_09936 in Pat5 strains.  
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Calculations of Presence/Absence by Read Mapping Overestimate Sectional 

Absence 

Two pipelines were used to call variants between the reference and each alternate strain. For P. 

nodorum strains, the mapping/GATK method was able to genotype 90.3% of the genome and the 

nucmer method was able to find variants over 93.5% of the genome. In P. avenaria strains, the 

mapping/GATK method was able to genotype only 16.2% of the genome and the nucmer method 

was able to find variants over 61.9% of the genome. 

Putative Accessory Chromosome Specific to Virulent Strains 

The coverage by nucmer matches of the large SN15 scaffolds by scaffolds from each of the 

alternate strains is consistent (Figure 5). Scaffold 5 shows a slight decrease in coverage due to the 

large tandem array of rDNA repeats (Hane and Oliver 2008). The average coverage of the 

reference scaffolds by the alternate P. nodorum strains is 61.8% (Figure 2). Scaffold 44 has 75 genes 

and 1.9% repetitive sequence. It has 6.7% coverage by SN79, and a mean coverage of 5.7% by the 

P. avenaria strains. Scaffold 45 has 61 genes and 2.4% repetitive sequence. It has 5.0% coverage by 

SN79 and a mean coverage of 7.7 by the P. avenaria strains. Scaffold 46 was predicted to be 

dispensable by Ohm, Feau et al. (2012). It encodes no genes, has 12.4% repetitive sequence, 25.9% 

coverage by SN79, and a mean coverage by P. avenaria strains of 9.6%. Scaffold 51, which contains 

SnToxA (Chapter 5) is also absent from the P. avenaria strains. P. avenaria strains H6.2b and A1 3.1a 

are the most dissimilar to SN15 (Figure 1). The dissimilarity of the reference to these isolates has 

resulted in fewer nucmer matches and lower scaffold coverage. Fragmented and incomplete 

assemblies from strains SC3-1, SnSA95.103 and NOR-4 (Table 2) were excluded in this analysis.  
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Figure 5: Coverage of reference P. nodorum genic scaffolds > 100 kbp by nucmer matches from the alternate strains. Each column corresponds to a reference scaffold 

(ordered by size), and each row corresponds to one of the alternate strains.   
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Figure 6: The percentage of genes under positive selection in 100 kbp sliding windows across the P. nodorum reference scaffolds. Outliers greater than Q3 + 1.5 x the 

interquartile range (IQR) or less than Q1 - 1.5 × IQR are plotted as filled circles.  
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Figure 6 shows the number of genes under a sliding 100 kb window that are under positive 

selection. A sliding window analysis was chosen rather than taking the average over whole 

chromosomes so as to avoid introducing bias for small scaffolds. This also allows us to detect 

regions where a higher than expected proportion of genes are under positive selection. The average 

percentage of genes under positive selection in genic scaffolds other than 44 and 45 is 6.6% (Figure 

6). Scaffolds 44 and 45 are enriched for genes under positive selection for across their length 

(Figure 6, Figure 10), with 22 (29%) and 14 (23%) genes that show evidence of positive selection 

respectively. 

Islands of positive selection were defined as consecutive windows where at least 20% of the genes 

in the window were under positive selection. Such islands were detected in scaffolds 7, 15, 20, 44, 

and 45 (Figures 7-10). The island of positive selection in scaffold 7 (551 kb – 613 kb) is adjacent 

to a large intergenic gap populated with repeats. The level of RIP-like mutations in SN15 is elevated 

in the repetitive region, particular when compared to P. nodorum strain Sn99CH 1A7a, but the 

elevated levels of RIP are confined to repetitive regions. The adjacent repetitive region is absent 

or highly mutated in all P. avenaria strains. Scaffold 15 has one region enriched for genes under 

positive selection at the start of the scaffold (29 kb – 130 kb). The region is also absent from or 

highly mutated in all P. avenaria strains. Scaffold 20 has one region enriched for genes under 

positive selection (622 kb - 723 kb). The region is adjacent to a repetitive region which has an 

elevated level of RIP mutations in the reference. The repetitive region is also highly mutated or 

absent from all P. avenaria strains.  
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Figure 7: Distribution of loci under positive selection and RIP SNP frequency on scaffold_007. An island of 

positive selection between positions 551 kb and 613 kb.  
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Figure 8: Distribution of loci under positive selection and RIP SNP frequency on scaffold_15. An island of 

positive selection between positions 29 kb and 130 kb. 
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Figure 9: Distribution of loci under positive selection and RIP SNP frequency on scaffold_020. An island 

of positive selection between positions 622 kb and 723 kb. 
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Figure 10: Distribution of loci under positive selection and RIP SNP frequency on scaffolds 44 and 45. 

Variable Patterns of Gene Conservation Observed Across Strains 

The conservation of genes between strains and species was studied.  From the ProteinOrtho 

orthologue cluster analysis, 4451 protein clusters that were observed in all strains. There are 8128 

protein clusters containing members in only one species including 198 proteins observed only in 
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SN15. The set of ‘dispensable’ proteins is defined here as proteins that are not species-specific 

(observed in fewer than 4 isolates) and not well conserved (missing in fewer than 3 isolates). This 

‘dispensable’ set of 6480 proteins contains 4014 SN15 proteins, including all of the known 

effectors (Table 3, Figure 11). Figure 11 shows the distribution of ProteinOrtho protein clusters 

by strain and species specificity. The P. avenaria are more phylogenetically diverse than the P. 

nodorum clade (Figure 1). This diversity of P. avenaria is reflected in the low number (2) of proteins 

conserved between all P. avenaria strains, but absent from P. nodorum (Table 3). The unequal 

diversity between the two species also explains the differing rates of changing density moving away 

from the well conserved genes at the top-right of Figure 11. There are many more genes conserved 

in all P. nodorum strains and variably absent in P. avenaria than there are genes conserved in all P. 

avenaria strains and variably absent in P. nodorum (Figure 11). 
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Table 3: Summary of protein sequence conservation across the P. nodorum and P. avenaria strains calculated 

from ProteinOrtho orthologous protein clusters.  

Reference protein set 13,563 proteins 

Core Phaeosphaeria protein set  

 Missing from 0 strains 4451 clusters 

 Missing from at most 1 strain 7100 clusters 

 Missing from at most 2 strains 8700 clusters 

Core P. nodorum protein set 
 

 Missing from 0 strains 9488 clusters (9595 SN15 proteins) 

 Missing in fewer than 2 P. nodorum strains 12049 clusters (12032 SN15 proteins) 

 Missing in fewer than 3 P. nodorum strains  12688 clusters (12573 SN15 proteins) 

Strain-specific protein set  

 Observed in only 1 strain 8128 clusters (198 SN15 proteins) 

 Observed in at most 2 strains 12951 clusters (306 SN15 proteins) 

 Observed in at most 3 strains 14674 clusters (356 SN15 proteins) 

Dispensable protein set (effector-containing set) 
 

 Observed in between 4 and 30 strains (inclusive) 6480 clusters (4014 SN15 proteins) 

P. nodorum-specific proteins  

 Present in all P. nodorum strains, absent from all P. avenaria 277 

P. avenaria-specific proteins  

 Present in all avenaria, absent from all P. nodorum 2 
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Figure 11: Distribution of protein cluster membership between the two species. Each point represents a group of one or more orthologous proteins. The number of P. 

nodorum strains that have contributed a protein to the cluster determines the x-axis location and the number of P. avenaria strains that have contributed a protein to 

the cluster determines the y-axis location. Core conserved genes with members from all strains are at the top-right and strain-specific genes are at the bottom-left. 

Known effectors and secondary metabolite synthesis proteins are highlighted. 
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Mesosyntenic Breakpoints Are Associated with Long Repeats 

There were 2169 sites of inversion or translocation identified by comparing the reference assembly 

to the alternate P. nodorum strains. Furthermore, 822 breakpoint sites were predicted by comparison 

to the P. avenaria strains. Combining all predicted breakpoints from all strains resulted in a non-

redundant set of 2230 sites. Breakpoint locations for all strains are included in Supplementary data. 

Mesosyntenic patterns are formed by frequent intra-chromosomal inversions, but the mechanism 

giving rise to this pattern is unknown. Both Ohm, Feau et al. (2012) and Grandaubert (2013) have 

looked for features associated with breakpoints in attempts to better understand the phenomenon. 

The relative distance metric (Favorov, Mularoni et al. 2012) shows the association between the 

position of instances of each repeat class and the positions of inversion and translocation. A flat 

relative distance profile, indicates the repeat class is equally likely to be observed far from 

breakpoints as they are to be found close to breakpoints. Simple repeats, particularly GC-rich SSRs 

show flat relative distance profiles. Long repeats such as DNA transposons and LTR 

retrotransposons show a higher frequency of instances at low relative distance to structural 

rearrangement breakpoints (Figure 12).  
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Figure 12: Frequency of relative distance between mesosyntenic breakpoints and repetitive sequence. 

Relative distance of a repeat instance to the set of breakpoints is the distance between the repeat and the 

nearest breakpoint divided by the distance between the breakpoints flanking the repeat instance. A repeat 

equidistant from two breakpoints would have a relative distance of 0.5, and a repeat that overlapped a repeat 

would have a relative distance of 0. The y-axis is consistent in all plots. 
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Effector Prediction 

Each SN15 reference protein was assessed against a series of criteria defined by the expected or 

normative characteristics of necrotrophic effectors (Table 5). A positive score was added to 4362 

small proteins, 616 cysteine-rich proteins, 3417 proteins encoded by transcripts near repeats, 308 

proteins absent from SN79, 2414 proteins encoded in regions with low gene density, 1475 proteins 

predicted to be secreted and 945 proteins encoded by transcripts predicted to be under positive 

selection. The known P. nodorum effectors have been shown to exhibit scattered 

presence/absence frequency across populations, with no effector maintained across all strains and 

no effector found in only one strain (McDonald, Oliver et al. 2013). Negative scores were assigned 

to 12032 core proteins (missing from at most one P. nodorum strain), and 198 strain-specific 

proteins only found in SN15.  Negative scores were also assigned to 2381 proteins predicted to be 

membrane-bound. Known effectors SnToxA, SnTox1 and SnTox3 all score highly using this 

system, and nine new loci from the updated manual annotation are among the top candidates 

(Table 5). 
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Table 4: Counts of the numbers of SN15 reference proteins that match each effector prediction criteria. Each 

predicted protein is assessed against each of these criteria and assigned a total score calculated as the sum 

of the criteria scores as described in methods section. 

Criteria № Proteins 

Positive Scores 

Small – less than 30 kDa 4362 

Cysteine-rich – encodes an amino acid with > 4% cysteine residues 616 

Near repeats – less than 5 kb from repetitive sequences 3417 

Absent from SN79 – no blast hits to the avirulent strain 308 

Low gene density – encoded in a region with large intergenic space 2414 

Secreted – includes a signal peptide 1475 

Diversifying selection – includes codons predicted to be subject to positive selection 945 

Negative Scores 

Core Set– Missing in at most one strain  12032 

Strain  specific – only found in SN15 198 

Membrane bound – not predicted to encode a transmembrane domain 2381 
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Table 5: Top effector candidates with scores greater than 4. Known effectors SnTox1, SnTox3 and SnToxA 

score highly under the current ranking system. There are 30 effector candidate that score as high as or higher 

than these three known effectors. 

Transcript 

ID 

Score Effector 

Name 

SNOR_20078 7 SnTox1 

SNOR_01124 6  

SNOR_12811 6  

SNOR_30828 6  

SNOR_30343 5  

SNOR_00234 5  

SNOR_01601 5  

SNOR_03715 5  

SNOR_05030 5  

SNOR_05051 5  

SNOR_06079 5  

SNOR_08206 5  

SNOR_08981 5 SnTox3 

SNOR_09446 5  

SNOR_09738 5  

SNOR_11828 5  

SNOR_14914 5  

SNOR_16166 5  

SNOR_16243 5  

SNOR_16270 5  

SNOR_16520 5  

SNOR_16571 5 SnToxA 

SNOR_20154 5  

SNOR_30026 5  

SNOR_30077 5  

SNOR_30334 5  

SNOR_30466 5  

SNOR_30697 5  

SNOR_30802 5  
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SNOR_30973 5  

 

Discussion 

Comparative genomics of fungal genomes within a species allows us to add a new dimension to a 

reference assembly and allow new questions to be asked of the data. Positive selection is only 

detectable by observation of a population of isolates, and can be used to uncover pathogenicity 

genes involved in an evolutionary arms race with the host. Stukenbrock, Bataillon et al. (2011) 

showed positive selection of SSPs by comparison of 12 Z. tritici genomes. Likewise, accessory 

chromosomes are difficult to predict from a single reference isolate, but are revealed by 

presence/absence differences between strains. Similarly, intra-specific comparison of eight 

Colletotrichum graminicola genomes showed evidence of positive selection at pathogenicity-

related sequences including putative effector proteins and secondary metabolite biosynthetic 

enzymes (Rech, Sanz-Martín et al. 2014). 

This study highlights various aspects of genomic variation between multiple isolates of P. nodorum 

and the related P. avenaria, from globally diverse source locations. P. nodorum and P. avenaria have 

common hosts and share many genes, but the two species are very different in their effector 

repertoire (Figure 1). Important exceptions are the Tox3-like loci identified on P. avenaria Pat5 

isolates 82-4841 and 83-6011-2. In these strains, multiple Tox3-like loci are present, mirroring the 

paralogs found in P. nodorum strains. The Tox3-like paralog most similar to SN15 SnTox3 (Figure 

2 and Figure 3) in Pat5 genomes are located in a region not homologous to the Tox3 region in P. 

nodorum strains (Figure 4).The Tox3-like genes in Pat5 has clearly replaced another gene in a region 

devoid of repetitive elements (Figure 4). The mechanism for a single-gene swap as seen here is 

unclear at this time, but it stands in stark contrast to the horizontal gene transfer of multi-kilobase 

SnToxA region between P. nodorum and P. tritici-repentis (Friesen, Stukenbrock et al. 2006, Syme, Hane 

et al. 2013). 

Notably, patterns of presence-absence variation are highly prominent between isolates (Figure 5). 

Scaffolds 44 and 45 are distinct from other scaffolds in their gene density, the number of genes 

under positive selection, and their pattern of scaffold-level presence/absence among isolates. 

Reminiscent of the ‘two-speed’ genome observed in other fungal pathogens (Croll and McDonald 

2012), it is likely that these scaffolds constitute part of one or more accessory chromosomes. Their 

absence from SN79 demonstrates that the genes are not strictly required by the fungus, but their 

retention in all other wheat-infecting strains and elevated rates of positive selection suggest that 

they confer some significant advantage. Strong positive selection observed in SN15 scaffolds 44 
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and 45 suggests that in P. nodorum as in other fungal phytopathogens, accessory chromosomes may 

be used as a ‘workshop’ for novel genetic material. Scaffold 46 shows similar patterns of 

presence/absence between strains, but have no annotated genes on which positive selection might 

act. 

Surveying the overall mutation rate across isolates, we observed an oversight in short-read 

sequencing approaches of the past. Previous genome comparisons between P. nodorum species used 

the depth of reads mapped to the reference genome to infer gene absence in the alternate strain 

(Syme, Hane et al. 2013). Regions of heavy mutation can prevent reads from mapping to the 

reference, inflating the count of genes absent in the alternate strain. One solution is to compare 

the alternate strain’s de novo assemblies to the reference. Figure 13 shows an illustrative example of 

a region in the reference genome where reads from P. nodorum IR10_2.1a fail to map. The region 

without mapped reads covers 20 kb and eight reference genes. A protocol that calculates the gene 

absence from mapping data alone would describe this as an 8 locus sectional absence. However, 

using nucmer to align de novo assembled sequences of this strain to the reference reveals that the 

absence is only 8 kb long and that only two genes are truly absent from the alternate strain. The 

surrounding regions are heavily mutated, but are still present. 
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Figure 13: (A) Mapped read depth of a region on scaffold_004 in the SN15 reference assembly shows a 

putative sectional absence of seven genes. (B) Dotplot of the alternate strain’s (P. nodorum  IR10_2.1a) de-

novo assembly at the region (marked red in A) shows that only two of the reference genes (marked in pink) 

are absent in the alternate strain. Highly variable regions around sectional absences can frustrate mapping 

algorithms leading to an inflated estimation of absent genes. 
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Whole-genome resequencing and assembly provides the opportunity to calculate powerful codon-

based tests of positive selection at almost every locus. Frequency of positive selection allows us to 

divide the genome into three classes. More than 96% of the 100 kb windows surveyed had fewer 

than 20% of the genes in that window under positive selection. In a second class, there are small 

islands of consecutive windows with at least 20% of the genes in the windows under positive 

selection. Scaffolds 7, 15, and 20 include one ‘positive selection island’ each (Figure 7, 
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Figure 7 Figure 8, and Figure 9). Lastly, scaffolds 44 and 45 elevated levels of positive selection 

over their length. Islands of positive selection appear adjacent to repetitive religions or repetitive 
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scaffold ends (Figure 10). RIP is known to ‘leak’ from repetitive regions into single-copy genes 

with the effect of disabling AVR genes (Fudal, Ross et al. 2009, Rouxel, Grandaubert et al. 2011). 

In the case of AVR, a tolerable level of indiscriminate mutation is beneficial to the pathogen. Any 

mutation that provides diversity or deletion at the AVR locus would allow the pathogen to grow 

unhindered on a host with the corresponding resistance gene. However, the potential for RIP to 

drive positive selection at a non-AVR locus may be less likely, as there would be fewer possible 

mutations that could confer a fitness advantage. Nevertheless, islands of positive selection adjacent 

to repetitive regions may suggest some association between RIP and diversity at non-AVR loci in 

P. nodorum.  

Syntenic variability was also examined with a focus on the extent and nature of mesosyntenic 

genome rearrangements. Mesosyntenic conservation of chromosomal content may provide an 

explanation for the stability of accessory chromosomes, as the low frequency of inter-

chromosomal translocations would ensure that the core genome would be unlikely to leak into the 

accessory chromosome and vice-versa. In P. nodorum and P. avenaria, long DNA transposons and 

LTR transposons are frequently found at small relative distance to mesosyntenic breakpoints, and 

simple repeats are no more likely to be found at low relative distance than high relative distance. 

These findings support the mechanism suggested by Grandaubert (2013) of mesosyntenic 

inversions aided by TEs and not SSR (Ohm, Feau et al. 2012). Both this study and Grandaubert’s 

were observing mesosynteny between closely related species, whereas Ohm’s comparisons were 

made across much larger evolutionary distances. As species drift apart, the effects of RIP and 

normal background mutation may work to obfuscate the association between TEs and 

mesosyntenic breakpoints.   

The addition of new genome assemblies also allows for an expanded set of test criteria for selection 

of effector candidates. Presence/absence allele frequency in the P. nodorum population differs for 

each effector, and is likely driven by the prevalence of each effector’s susceptibility gene in the 

host where the isolate was sampled (McDonald, Oliver et al. 2013). The common characteristic 

shared by SnToxA, SnTox1 and SnTox3 is that no effector is present in all populations and no 

effector is rare (Figure 1). A more accurate set of core and strain-specific proteins (Figure 11, Table 

3) allow us to target genes that are neither perfectly conserved nor infrequently occurring. Assessed 

by the new criteria, SnTox1 is the top-ranked protein, SnTox3 and SnToxA are equal-fifth (Table 

6, Appendix A6-4). There are 30 genes that rank as well or better than the known effectors. These 

top-scoring candidates will be prioritised for purification in a heterologous expression system and 

screened against wheat lines to test for the effector’s ability to produce disease symptoms. Once 
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validated, effector molecules can be applied as tools to accelerate disease resistance breeding 

programs (Vleeshouwers and Oliver 2014). 

Investigations of the P. nodorum and P. avenaria genomes have allowed us to observe variation at a 

variety of scales. Large scale variation of genomic and chromosomal structure has demonstrated 

the association of long repeats with mesosyntenic recombination, and of regions of non-core 

accessory elements. De novo assembly comparison has highlighted the large number of strain-

specific loci and extent of presence/absence variation within the two species. At the smallest 

resolution, the genomic comparisons resolve at fine detail such as the detection of positive 

selection at individual codons and RIP-like SNPs. Each of these observations contributes to an 

understanding of the genomic history of these two species and to the prediction of potential 

effector sequences in P. nodorum. 
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Chapter 7 | Conclusion 

Model organism platforms  

An important by-product of the analysis conducted in this thesis is the generation of omics 

resources that are used to inform experimental design for other researchers working with these 

pathogens. The P. teres f. teres genome sequence was the first short-read assembly of an ascomycete 

genome, and showed that short-read assemblies provided valuable insight into fungal genomes. 

The genome has provided a very effective platform for the design of markers (Chapter 3) and 

comparative genomics.  

The correction of more than 1,000 deletions, 12,000 SNPs and 16,000 small insertions in the P. 

nodorum reference genome SN15 (Chapter 5) improves the accuracy for all subsequent comparative 

analyses, including those in this thesis. Many important methods rely on the accuracy of assembly 

sequence and genome annotations. Methods of gene prediction are particularly sensitive to 

insertion or deletion errors in the underlying genome sequence. Effector prediction is an important 

example of a method sensitive to annotation accuracy. Previously truncated annotations had 

prevented the detection of 447 instances of genes encoding signal peptides (Chapter 5). All 

methods of effector prediction also rely on the gene being annotated. Integration of RNA-seq, 

proteogenomic and microarray data informed the annotation of 866 new genes. Many of the new 

genes are small secreted proteins and nine of the top thirty effector candidates are genes are new 

loci (Chapter 6). The SN15 effector candidate list was an important component in the discovery 

of Tox1, and we expect that improvements to the method will uncover further necrotrophic 

effectors. 

Inter-species and intra-species comparisons 

Comparison of known effector loci in alternate P. nodorum strains showed that regions flanking the 

Tox1 and Tox3 loci in the reference strain are present when the effector is absent. This establishes 

that these particular effectors are unlikely to be moved together with large number of supporting 

loci. Sequence similarity of the ToxA region in P. tritici-repentis and scaffolds in P. nodorum SN15 

provided support for the hypothesis that ToxA was transferred from P. nodorum to P. tritici-repentis 

as part of a much larger transfercon than originally expected. This hypothesis also suggests order 

and orientation information for the putatively homologous SN15 scaffolds. The predicted joining 

of scaffolds 51 and 55 was validated by the process of SN15 assembly correction (Chapter 5). 
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A putative accessory chromosome has been uncovered in scaffolds 44 and 45. They exhibit a much 

higher frequency of genes under positive selection, and a unique pattern of presence/absence 

between the P. nodorum and P. avenaria strains. The scaffolds are well conserved in all P. nodorum 

isolates that are able to infect wheat, but are absent from the oat pathogen P. avenaria and the P. 

nodorum strain isolated from wild grasses and avirulent on wheat (Chapter 6). Other islands of 

positive selection were observed outside of these putative accessory elements. Scaffolds 7, 15 and 

20 all have regions with a greater density of genes under positive selection (Chapter 6). In each 

case, the island of positive selection is adjacent to repetitive sequence or a scaffold end. This 

suggests that repetitive sequence is being used to drive positive selection at some loci. RIP is known 

to leak out of the target repetitive sequence and affect nearby single-copy sequence. Mutations as 

a result of RIP leakage have been observed in avirulence genes where disruptive mutations allow 

the pathogen to avoid host detection by the corresponding R gene. It has not yet been shown that 

RIP leakage could drive mutations in genes without the loss of their function, but inspection of 

these regions may demonstrate this. 

Positive selection and patterns of presence/absence genotypes across the P. nodorum strains were 

used to augment criteria used for effector detection in the reference strain SN15. The availability 

of dozens of alleles for each locus provided the sample sizes sufficient large for stronger tests of 

positive selection, the results of which are fed into the effector prediction pipeline (Chapter 6). 

Known effectors show an unusual distribution of presence/absence alleles. The vast majority of 

P. nodorum and P. avenaria proteins are either strain-specific or well conserved. In contrast, the 

known effectors are all present in the middle-ground between strain-specificity and core proteome. 

Each of observations of intra and inter-specific variation were incorporated into the SN15 effector 

prediction pipeline. 

The analysis of the Pyrenophora and Parastagonospora genomes presented here improve our 

understanding of the structural genome dynamics of the organisms (Chapter 6), their inter-species 

evolutionary history (Chapter 4), the characterisation of the pan and core genome (Chapters 3 and 

5) by intra-specific comparison and the identification of effector candidates (Chapters 2 and 6). 

The effector candidate lists presented here have already contributed to the discovery of the P. 

nodorum effector Tox1, and it is expected that others effectors will be uncovered as candidates 

presented in Chapter 6 are expressed and purified. The research has also significantly expanded 

the resources available to others working on these pathosystems. 

 

 



Appendices 
Chapter 5 Appendices 

A5-1 | Cutadapt Parameters 
Cutadapt was run trimming at quality cutoff 25, using known Illumina adapters and discarding 

trimmed reads where the final length was less than 50: 

set -o errexit 

set -o nounset 

set -o xtrace 

set -o pipefail 

 

read1_base=`basename ${1}` 

read2_base=`basename ${2}` 

prefix=`printf "%s\n%s\n" "$read1_base" "${read2_base}" | sed -e 

'N;s/^\(.*\).*\n\1.*$/\1/'` 

strainID=${prefix::-1} 

 

echo "Running cutadapt (first pass) - $strainID" 

cutadapt \ 

    --quality-cutoff=25 \ 

    --adapter=CTGTCTCTTATACACATCTCCGAGCCCACGAGAC \ 

    --minimum-length 50 \ 

    -o tmp.${strainID}.1.fastq \ 

    -p tmp.${strainID}.2.fastq \ 

    $1 \ 

    $2 \ 

    > ${strainID}.report_1.txt 

 

echo "Running cutadapt (second pass) - $strainID" 

cutadapt \ 

--quality-cutoff=25 \ 

--adapter=CTGTCTCTTATACACATCTGACGCTGCCGACGA \ 

    --minimum-length 50 \ 

    -o ${strainID}.2.trimmed.fastq \ 

    -p ${strainID}.1.trimmed.fastq \ 

    tmp.${strainID}.2.fastq tmp.${strainID}.1.fastq \ 

    > ${strainID}.report_2.txt 

 

rm tmp.${strainID}.1.fastq tmp.${strainID}.2.fastq 

gzip ${strainID}*.trimmed.fastq 

tar -czvf ${strainID}.cutadapt.reports.tgz ${strainID}.report*.txt 

rm ${strainID}.report*.txt 

  



A5-2 | Repeat Content 
The repeat content did not substantially differ between genome assemblies 

Repeat class Old count New count Delta Delta% 

Subtelomeric         

R22 12252 12645 393 3.20764 

X15 87189 87249 60 0.068816 

X26 76622 77179 557 0.726945 

X35 14136 14135 -1 -0.00707414 

X48 5377 5593 216 4.01711 

Ribosomal         

Y1 400707 400875 168 0.0419259 

Other         

ELSA 34285 34319 34 0.0991687 

MOLLY 49213 49296 83 0.168655 

PIXIE 38612 38635 23 0.059567 

R10 43944 43835 -109 -0.248043 

R25 43858 44107 249 0.567741 

R31 39053 39429 376 0.962794 

R37 106258 106392 134 0.126108 

R38 8760 8827 67 0.76484 

R39 36613 36778 165 0.45066 

R51 25640 25863 223 0.869735 

R8 277650 277645 -5 -0.00180083 

R9 163980 162676 -1304 -0.795219 

X0 149537 147850 -1687 -1.12815 

X11 126539 126536 -3 -0.00237081 

X12 24813 24909 96 0.386894 

X23 12354 12348 -6 -0.0485673 

X28 28414 28248 -166 -0.584219 

X3 464053 463844 -209 -0.045038 

X36 5067 5107 40 0.789422 

X46 1315 1315 0 0 

X96 4320 4311 -9 -0.208333 

Sum 2280561 2279946 -615 10.239207 

 

  



A5-3 | List of genes that are a product of merging to genes 
SNOG_30955 SNOG_30946 SNOG_30935 SNOG_30934 
SNOG_30930 SNOG_30889 SNOG_30841 SNOG_30798 
SNOG_30795 SNOG_30785 SNOG_30783 SNOG_30773 
SNOG_30761 SNOG_30760 SNOG_30747 SNOG_30727 
SNOG_30715 SNOG_30704 SNOG_30693 SNOG_30688 
SNOG_30682 SNOG_30649 SNOG_30643 SNOG_30629 
SNOG_30627 SNOG_30611 SNOG_30605 SNOG_30602 
SNOG_30583 SNOG_30581 SNOG_30578 SNOG_30574 
SNOG_30573 SNOG_30568 SNOG_30557 SNOG_30556 
SNOG_30549 SNOG_30546 SNOG_30537 SNOG_30536 
SNOG_30534 SNOG_30488 SNOG_30483 SNOG_30473 
SNOG_30472 SNOG_30449 SNOG_30372 SNOG_30366 
SNOG_30357 SNOG_30342 SNOG_30324 SNOG_30271 
SNOG_30247 SNOG_30094 SNOG_30040 

 

  



A5-4 | List of genes that are a product of splitting one annotation into two 
SNOG_30991 SNOG_30987 SNOG_30986 SNOG_30984 
SNOG_30983 SNOG_30982 SNOG_30981 SNOG_30980 
SNOG_30979 SNOG_30978 SNOG_30977 SNOG_30975 
SNOG_30965 SNOG_30963 SNOG_30961 SNOG_30954 
SNOG_30953 SNOG_30951 SNOG_30950 SNOG_30949 
SNOG_30947 SNOG_30942 SNOG_30938 SNOG_30933 
SNOG_30931 SNOG_30929 SNOG_30928 SNOG_30927 
SNOG_30926 SNOG_30924 SNOG_30922 SNOG_30918 
SNOG_30917 SNOG_30916 SNOG_30915 SNOG_30914 
SNOG_30913 SNOG_30912 SNOG_30911 SNOG_30910 
SNOG_30909 SNOG_30904 SNOG_30898 SNOG_30897 
SNOG_30896 SNOG_30895 SNOG_30894 SNOG_30892 
SNOG_30891 SNOG_30890 SNOG_30886 SNOG_30883 
SNOG_30882 SNOG_30879 SNOG_30877 SNOG_30876 
SNOG_30875 SNOG_30874 SNOG_30873 SNOG_30872 
SNOG_30871 SNOG_30870 SNOG_30868 SNOG_30867 
SNOG_30866 SNOG_30865 SNOG_30860 SNOG_30859 
SNOG_30857 SNOG_30856 SNOG_30855 SNOG_30853 
SNOG_30847 SNOG_30844 SNOG_30843 SNOG_30840 
SNOG_30832 SNOG_30830 SNOG_30829 SNOG_30827 
SNOG_30826 SNOG_30811 SNOG_30809 SNOG_30808 
SNOG_30805 SNOG_30804 SNOG_30800 SNOG_30799 
SNOG_30797 SNOG_30796 SNOG_30792 SNOG_30787 
SNOG_30786 SNOG_30782 SNOG_30776 SNOG_30770 
SNOG_30774 SNOG_30771 SNOG_30768 SNOG_30767 
SNOG_30757 SNOG_30756 SNOG_30755 SNOG_30754 
SNOG_30753 SNOG_30752 SNOG_30750 SNOG_30749 
SNOG_30746 SNOG_30745 SNOG_30744 SNOG_30743 
SNOG_30742 SNOG_30740 SNOG_30738 SNOG_30736 
SNOG_30735 SNOG_30733 SNOG_30732 SNOG_30730 
SNOG_30729 SNOG_30724 SNOG_30720 SNOG_30718 
SNOG_30714 SNOG_30713 SNOG_30712 SNOG_30711 
SNOG_30709 SNOG_30700 SNOG_30694 SNOG_30690 
SNOG_30689 SNOG_30687 SNOG_30681 SNOG_30676 
SNOG_30665 SNOG_30663 SNOG_30656 SNOG_30653 
SNOG_30652 SNOG_30650 SNOG_30642 SNOG_30640 
SNOG_30636 SNOG_30634 SNOG_30626 SNOG_30624 
SNOG_30623 SNOG_30622 SNOG_30620 SNOG_30618 
SNOG_30617 SNOG_30616 SNOG_30613 SNOG_30606 
SNOG_30604 SNOG_30600 SNOG_30593 SNOG_30591 
SNOG_30590 SNOG_30587 SNOG_30579 SNOG_30576 
SNOG_30575 SNOG_30572 SNOG_30567 SNOG_30562 
SNOG_30555 SNOG_30554 SNOG_30552 SNOG_30548 
SNOG_30547 SNOG_30541 SNOG_30540 SNOG_30539 
SNOG_30527 SNOG_30520 SNOG_30519 SNOG_30514 
SNOG_30513 SNOG_30512 SNOG_30511 SNOG_30505 
SNOG_30500 SNOG_30496 SNOG_30495 SNOG_30492 
SNOG_30491 SNOG_30475 SNOG_30471 SNOG_30469 
SNOG_30462 SNOG_30460 SNOG_30457 SNOG_30456 
SNOG_30455 SNOG_30454 SNOG_30448 SNOG_30447 
SNOG_30446 SNOG_30441 SNOG_30438 SNOG_30431 
SNOG_30430 SNOG_30428 SNOG_30426 SNOG_30425 
SNOG_30422 SNOG_30421 SNOG_30417 SNOG_30416 



SNOG_30412 SNOG_30409 SNOG_30402 SNOG_30401 
SNOG_30400 SNOG_30394 SNOG_30393 SNOG_30392 
SNOG_30391 SNOG_30389 SNOG_30387 SNOG_30377 
SNOG_30376 SNOG_30373 SNOG_30370 SNOG_30368 
SNOG_30356 SNOG_30353 SNOG_30351 SNOG_30336 
SNOG_30333 SNOG_30330 SNOG_30319 SNOG_30315 
SNOG_30313 SNOG_30312 SNOG_30302 SNOG_30299 
SNOG_30295 SNOG_30292 SNOG_30291 SNOG_30290 
SNOG_30286 SNOG_30282 SNOG_30280 SNOG_30279 
SNOG_30277 SNOG_30276 SNOG_30275 SNOG_30274 
SNOG_30272 SNOG_30267 SNOG_30263 SNOG_30261 
SNOG_30260 SNOG_30257 SNOG_30256 SNOG_30252 
SNOG_30246 SNOG_30245 SNOG_30242 SNOG_30241 
SNOG_30240 SNOG_30239 SNOG_30238 SNOG_30237 
SNOG_30236 SNOG_30231 SNOG_30230 SNOG_30223 
SNOG_30218 SNOG_30217 SNOG_30213 SNOG_30212 
SNOG_30211 SNOG_30206 SNOG_30202 SNOG_30192 
SNOG_30188 SNOG_30185 SNOG_30179 SNOG_30175 
SNOG_30992 SNOG_30171 SNOG_30170 SNOG_30169 
SNOG_30167 SNOG_30164 SNOG_30158 SNOG_30155 
SNOG_30154 SNOG_30153 SNOG_30152 SNOG_30151 
SNOG_30149 SNOG_30147 SNOG_30143 SNOG_30139 
SNOG_30138 SNOG_30131 SNOG_30130 SNOG_30129 
SNOG_30126 SNOG_30125 SNOG_30122 SNOG_30118 
SNOG_30116 SNOG_30113 SNOG_30110 SNOG_30109 
SNOG_30108 SNOG_30107 SNOG_30106 SNOG_30105 
SNOG_30103 SNOG_30097 SNOG_30091 SNOG_30090 
SNOG_30089 SNOG_30087 SNOG_30086 SNOG_30084 
SNOG_30082 SNOG_30081 SNOG_30080 SNOG_30075 
SNOG_30071 SNOG_30069 SNOG_30068 SNOG_30066 
SNOG_30062 SNOG_30061 SNOG_30060 SNOG_30059 
SNOG_30058 SNOG_30057 SNOG_30056 SNOG_30053 
SNOG_30052 SNOG_30050 SNOG_30049 SNOG_30047 
SNOG_30045 SNOG_30043 SNOG_30042 SNOG_30041 
SNOG_30032 SNOG_30028 SNOG_30027 SNOG_30020 
SNOG_30017 SNOG_30016 SNOG_30012 SNOG_30011 

 

  



A5-5 | Genes at new loci 
SNOG_30993 SNOG_30990 SNOG_30989 SNOG_30988 
SNOG_30976 SNOG_30974 SNOG_30973 SNOG_30972 
SNOG_30971 SNOG_30968 SNOG_30967 SNOG_30966 
SNOG_30964 SNOG_30962 SNOG_30960 SNOG_30959 
SNOG_30957 SNOG_30956 SNOG_30952 SNOG_30948 
SNOG_30945 SNOG_30944 SNOG_30941 SNOG_30940 
SNOG_30937 SNOG_30936 SNOG_30932 SNOG_30923 
SNOG_30921 SNOG_30920 SNOG_30919 SNOG_30908 
SNOG_30907 SNOG_30906 SNOG_30905 SNOG_30903 
SNOG_30902 SNOG_30901 SNOG_30900 SNOG_30899 
SNOG_30994 SNOG_30893 SNOG_30888 SNOG_30887 
SNOG_30884 SNOG_30880 SNOG_30878 SNOG_30869 
SNOG_30864 SNOG_30863 SNOG_30862 SNOG_30861 
SNOG_30858 SNOG_30854 SNOG_30852 SNOG_30851 
SNOG_30850 SNOG_30848 SNOG_30846 SNOG_30845 
SNOG_30842 SNOG_30838 SNOG_30837 SNOG_30836 
SNOG_30835 SNOG_30834 SNOG_30833 SNOG_30831 
SNOG_30828 SNOG_30825 SNOG_30824 SNOG_30822 
SNOG_30821 SNOG_30819 SNOG_30818 SNOG_30810 
SNOG_30807 SNOG_30806 SNOG_30803 SNOG_30802 
SNOG_30801 SNOG_30794 SNOG_30793 SNOG_30791 
SNOG_30790 SNOG_30788 SNOG_30784 SNOG_30781 
SNOG_30780 SNOG_30779 SNOG_30778 SNOG_30777 
SNOG_30772 SNOG_30769 SNOG_30766 SNOG_30765 
SNOG_30764 SNOG_30763 SNOG_30762 SNOG_30759 
SNOG_30758 SNOG_30751 SNOG_30748 SNOG_30741 
SNOG_30739 SNOG_30731 SNOG_30728 SNOG_30725 
SNOG_30723 SNOG_30722 SNOG_30721 SNOG_30719 
SNOG_30717 SNOG_30716 SNOG_30710 SNOG_30708 
SNOG_30707 SNOG_30706 SNOG_30705 SNOG_30703 
SNOG_30701 SNOG_30699 SNOG_30698 SNOG_30697 
SNOG_30696 SNOG_30695 SNOG_30692 SNOG_30691 
SNOG_30686 SNOG_30684 SNOG_30679 SNOG_30678 
SNOG_30677 SNOG_30675 SNOG_30674 SNOG_30673 
SNOG_30672 SNOG_30671 SNOG_30670 SNOG_30669 
SNOG_30668 SNOG_30667 SNOG_30666 SNOG_30664 
SNOG_30662 SNOG_30661 SNOG_30659 SNOG_30658 
SNOG_30657 SNOG_30654 SNOG_30648 SNOG_30647 
SNOG_30646 SNOG_30645 SNOG_30637 SNOG_30633 
SNOG_30632 SNOG_30631 SNOG_30630 SNOG_30625 
SNOG_30621 SNOG_30619 SNOG_30615 SNOG_30614 
SNOG_30612 SNOG_30610 SNOG_30609 SNOG_30608 
SNOG_30607 SNOG_30603 SNOG_30601 SNOG_30599 
SNOG_30597 SNOG_30596 SNOG_30595 SNOG_30594 
SNOG_30592 SNOG_30589 SNOG_30588 SNOG_30585 
SNOG_30584 SNOG_30582 SNOG_30577 SNOG_30571 
SNOG_30569 SNOG_30564 SNOG_30563 SNOG_30560 
SNOG_30559 SNOG_30558 SNOG_30553 SNOG_30550 
SNOG_30545 SNOG_30544 SNOG_30543 SNOG_30542 
SNOG_30532 SNOG_30530 SNOG_30529 SNOG_30528 
SNOG_30526 SNOG_30525 SNOG_30524 SNOG_30523 
SNOG_30522 SNOG_30518 SNOG_30516 SNOG_30515 
SNOG_30510 SNOG_30509 SNOG_30508 SNOG_30507 



SNOG_30504 SNOG_30503 SNOG_30502 SNOG_30501 
SNOG_30499 SNOG_30498 SNOG_30497 SNOG_30494 
SNOG_30493 SNOG_30490 SNOG_30489 SNOG_30487 
SNOG_30486 SNOG_30485 SNOG_30484 SNOG_30482 
SNOG_30481 SNOG_30480 SNOG_30479 SNOG_30478 
SNOG_30477 SNOG_30476 SNOG_30474 SNOG_30468 
SNOG_30467 SNOG_30466 SNOG_30465 SNOG_30464 
SNOG_30463 SNOG_30461 SNOG_30459 SNOG_30453 
SNOG_30452 SNOG_30451 SNOG_30450 SNOG_30445 
SNOG_30442 SNOG_30440 SNOG_30439 SNOG_30436 
SNOG_30434 SNOG_30433 SNOG_30432 SNOG_30429 
SNOG_30424 SNOG_30423 SNOG_30420 SNOG_30419 
SNOG_30418 SNOG_30415 SNOG_30413 SNOG_30410 
SNOG_30407 SNOG_30406 SNOG_30405 SNOG_30403 
SNOG_30399 SNOG_30398 SNOG_30396 SNOG_30395 
SNOG_30390 SNOG_30388 SNOG_30386 SNOG_30385 
SNOG_30384 SNOG_30383 SNOG_30382 SNOG_30380 
SNOG_30379 SNOG_30378 SNOG_30374 SNOG_30369 
SNOG_30367 SNOG_30365 SNOG_30364 SNOG_30363 
SNOG_30362 SNOG_30361 SNOG_30360 SNOG_30359 
SNOG_30358 SNOG_30355 SNOG_30354 SNOG_30352 
SNOG_30350 SNOG_30349 SNOG_30348 SNOG_30347 
SNOG_30346 SNOG_30344 SNOG_30343 SNOG_30341 
SNOG_30340 SNOG_30339 SNOG_30337 SNOG_30335 
SNOG_30334 SNOG_30332 SNOG_30331 SNOG_30329 
SNOG_30328 SNOG_30327 SNOG_30326 SNOG_30325 
SNOG_30323 SNOG_30322 SNOG_30321 SNOG_30320 
SNOG_30318 SNOG_30317 SNOG_30316 SNOG_30314 
SNOG_30311 SNOG_30310 SNOG_30309 SNOG_30308 
SNOG_30307 SNOG_30306 SNOG_30305 SNOG_30304 
SNOG_30303 SNOG_30300 SNOG_30297 SNOG_30294 
SNOG_30289 SNOG_30288 SNOG_30287 SNOG_30285 
SNOG_30284 SNOG_30283 SNOG_30281 SNOG_30278 
SNOG_30273 SNOG_30270 SNOG_30269 SNOG_30268 
SNOG_30266 SNOG_30265 SNOG_30264 SNOG_30258 
SNOG_30255 SNOG_30253 SNOG_30250 SNOG_30249 
SNOG_30248 SNOG_30244 SNOG_30235 SNOG_30234 
SNOG_30233 SNOG_30232 SNOG_30229 SNOG_30228 
SNOG_30227 SNOG_30225 SNOG_30224 SNOG_30221 
SNOG_30220 SNOG_30219 SNOG_30216 SNOG_30215 
SNOG_30214 SNOG_30210 SNOG_30209 SNOG_30208 
SNOG_30207 SNOG_30205 SNOG_30204 SNOG_30203 
SNOG_30201 SNOG_30200 SNOG_30199 SNOG_30198 
SNOG_30197 SNOG_30196 SNOG_30195 SNOG_30194 
SNOG_30193 SNOG_30190 SNOG_30186 SNOG_30182 
SNOG_30180 SNOG_30178 SNOG_30177 SNOG_30176 
SNOG_30174 SNOG_30157 SNOG_30148 SNOG_30145 
SNOG_30137 SNOG_30134 SNOG_30132 SNOG_30128 
SNOG_30124 SNOG_30123 SNOG_30121 SNOG_30120 
SNOG_30119 SNOG_30115 SNOG_30114 SNOG_30112 
SNOG_30111 SNOG_30104 SNOG_30102 SNOG_30101 
SNOG_30100 SNOG_30099 SNOG_30098 SNOG_30096 
SNOG_30095 SNOG_30093 SNOG_30092 SNOG_30085 
SNOG_30079 SNOG_30078 SNOG_30077 SNOG_30074 



SNOG_30073 SNOG_30072 SNOG_30070 SNOG_30067 
SNOG_30065 SNOG_30064 SNOG_30063 SNOG_30054 
SNOG_30048 SNOG_30046 SNOG_30044 SNOG_30039 
SNOG_30036 SNOG_30035 SNOG_30034 SNOG_30033 
SNOG_30031 SNOG_30030 SNOG_30029 SNOG_30026 
SNOG_30025 SNOG_30024 SNOG_30022 SNOG_30019 
SNOG_30014 SNOG_30013 SNOG_30008  

 



A5-6 | PKS gene models before and after correction 
PKS gene models before and after correction. Coding sequence is shown in yellow. Disagreements between the underlying nucleotide sequences are shown 

as black regions in the grey bars. Indel errors in the underlying sequence force the gene prediction algorithms to introduce false introns. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

  



A5-7 | Changes to the annotation of SNOG_11237 
Changes to the annotation of SNOG_11237. Coding sequence (CDS) is shown in yellow. Extension of the 5' end of the first exon reveals a signal peptide, and 

adjustment of the intron boundary causes a frameshift for the second exon revealing the HCE2 domain. 

 

 

 

A5-8 | Putative Tox1 pseudogene 
Alignment of the Tox1 gene with the potential paralog SNOG_30466 shows 52.8% pairwise identity. They share the first intron structure, which is confirmed 

by RNA-seq. SNOG_30466 also has a second intron downstream of the coding region but it is not in the same position as the second (not shown). The gene 

is likely to be a pseudogenic paralog of the functional copy of Tox1. 

 

 



Chapter 6 Appendices 

A6-1 | QUAST genome reference gene coverage plot 
Three of the lowest coverage strains contain fewer than 8000 of the SN15 reference genes. For the 

purposes of calculating pan and core genomes, these stains were excluded from the analyses as they 

would likely contribute too many false negatives. 

 

 

 



A6-2 | Coverage of all SN15 genic scaffolds by all altenate strains 
The coverage of all genic scaffolds by nucmer matches from all alternate strains. Many of the smaller scaffolds have a high percentage of repeat and very 

low gene count. 

 

 



A6-3 | Strain-specific protein counts 
Strain name Number of strain-specific proteins 

B2.1b 76 

C1.2a 59 

IR10_9.1a 153 

IR10_2.1a 62 

IR10_5.2b 210 

SN11IR_2_1.1 432 

82-4841 256 

83-6011-2 246 

SN11IR_6_1.1 222 

SN11IR_7_2.3 253 

Mt. Baker 1043 

s258 413 

H6.2b 333 

A1 3.1a 439 

Hartney99 369 

Jansen 4_55 1037 

Sn Cp2052 79 

FIN-2 49 

NOR-4 1107 

SWE-3 96 

BRSn9870 170 

Sn99CH 1A7a 27 

SnChi01 40a 27 

SnSA95.103 549 

SnOre11-1 29 

OH03 Sn-1501 40 

SNOV92X D1.3 28 

AR1-1 18 

TN 5-1 1097 

VA 5-2 41 

GA9-1 16 

MD4-1 19 

SC 3-1 917 

SN15 127 

SN4 190 

SN79 302 

WAC8410 184 

 

  



A6-4 | Top Effector Candidate Predictions 
Effector candidate predictions with scores equal to or greater than known effectors ToxA, Tox1 and 

Tox3. Known effectors are highlighted in orange. 
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SNOR_20078 (Tox1) 1 1 1 1 1 0 1 1 0 0 7 

SNOR_01124 1 0 1 1 1 0 1 1 0 0 6 

SNOR_12811 1 0 1 1 1 0 1 1 0 0 6 

SNOR_30828 1 1 1 1 1 0 0 1 0 0 6 

SNOR_30343 1 0 1 1 1 0 0 1 0 0 5 

SNOR_00234 0 1 0 1 1 0 1 1 0 0 5 

SNOR_01601 0 1 1 0 1 0 1 1 0 0 5 

SNOR_03715 0 1 1 1 1 0 0 1 0 0 5 

SNOR_05030 1 1 0 1 1 0 0 1 0 0 5 

SNOR_05051 0 1 1 1 1 0 1 0 0 0 5 

SNOR_06079 1 1 1 1 1 0 0 0 0 0 5 

SNOR_08206 1 0 1 1 1 0 0 1 0 0 5 

SNOR_08981 (Tox3) 1 1 1 1 1 0 0 0 0 0 5 

SNOR_09446 0 0 1 1 1 0 1 1 0 0 5 

SNOR_09738 1 1 1 0 1 0 0 1 0 0 5 

SNOR_11828 1 1 1 1 1 0 0 0 0 0 5 

SNOR_14914 0 1 1 1 1 0 0 1 0 0 5 

SNOR_16166 0 1 1 1 1 0 0 1 0 0 5 

SNOR_16243 0 1 1 1 1 0 1 0 0 0 5 

SNOR_16270 0 1 1 1 1 0 1 0 0 0 5 

SNOR_16520 1 1 1 0 1 0 1 0 0 0 5 

SNOR_16571 (ToxA) 1 1 1 1 1 0 0 0 0 0 5 

SNOR_20154 0 1 1 1 1 0 1 0 0 0 5 

SNOR_30026 1 0 1 0 1 0 1 1 0 0 5 

SNOR_30077 1 1 0 1 1 0 0 1 0 0 5 

SNOR_30334 1 0 1 1 1 0 0 1 0 0 5 

SNOR_30466 1 1 1 1 1 0 1 1 -2 0 5 

SNOR_30697 0 1 1 1 1 0 0 1 0 0 5 

SNOR_30802 1 1 1 0 1 0 0 1 0 0 5 

SNOR_30973 0 1 0 1 1 0 1 1 0 0 5 

 


