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Abstract

Strong key stream sequences in cryptographic applications should not only have a high

linear complexity but the linear complexity should also be stable. The concept of linear

complexity and k-error linear complexity have attracted much attention in the cryptogra-

phy research community. There has been some research on the k-error linear complexity

distribution of 2n-periodic binary sequences for k ≤ 3. Several researchers have started to

study CELCS (critical error linear complexity spectrum) for the k-error linear complexity

distribution of 2n-periodic binary sequences. There have been some results about the first

descent point of k-error linear complexity.

The aim of this thesis is to propose several novel approaches, so that we can further

study the k-error linear complexity distribution of 2n-periodic binary sequences for k > 3,

and the second descent point and beyond of k-error linear complexity critical error

points. More importantly, with prescribed linear complexity and k-error linear complexity,

we aim to give an approach to constructing all such 2n-periodic binary sequences. This is

a challenging problem with broad applications.

To further the study of the k-error linear complexity distribution for 2n-periodic binary

sequences, we propose a framework as follows. Let S = {s|L(s) = c}, E = {e|WH(e) ≤
w}, S + E = {s+ e|s ∈ S, e ∈ E}, where s is a sequence with linear complexity c, e is an

error sequence with WH(e) ≤ w. We aim to sieve sequences s+ e with Lk(s+ e) = c from

S+E. By a divide and conquer method of combinatorics, we investigate sequences with

linear complexity 2n, and sequences with linear complexity less than 2n, separately. With

our approach, the issue to study k-error linear complexity distribution for 2n-periodic

binary sequences becomes a combinatorial problem of these subsequences.

With our framework along with the sieve method, for k = 2, 3, 4, the complete counting

functions on the k-error linear complexity of 2n-periodic binary sequences with both linear

complexity 2n and linear complexity less than 2n are characterized. We also obtain some

partial results about the 5-error linear complexity of 2n-periodic binary sequences. On

the other hand, we derive a full representation of the first descent point spectrum for the

k-error linear complexity. We obtain the complete counting functions on the number of

2n-periodic binary sequences with given 2m-error linear complexity and linear complexity

2n − (2i1 + 2i2 + · · ·+ 2im), where 0 ≤ i1 < i2 < · · · < im < n.
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The sequences with only two k-error linear complexity values exactly, namely its k-error

linear complexity is only L(s) or 0, have been studied. Based on this concept, we present

a new tool called the Cube Theory. It is proved that a binary sequence with period

2n can be decomposed into some disjoint cubes. Based on the Games-Chan Algorithm,

we propose a standard cube decomposition for any binary sequence with period 2n.

With such decomposition, we are capable to construct sequences with the maximum stable

k-error linear complexity. It is also proved that the maximum k-error linear complexity is

2n − (2l − 1) over all 2n-periodic binary sequences, where 2l−1 ≤ k < 2l and l < n.

By the cube theory, a new approach to determining the CELCS for the k-error linear

complexity distribution of 2n-periodic binary sequences is developed via the sieve method

and Games-Chan algorithm. The second descent point distribution of the 3-error linear

complexity, the second descent point distribution of the 4-error linear complexity and the

third descent point distribution of the 5-error linear complexity for 2n-periodic binary

sequences are characterized completely.

Based on the Games-Chan algorithm and cube theory, a constructive approach is presented

to construct 2n-periodic sequences with the given k-error linear complexity

profile. Consequently, the complete counting formula of 2n-periodic binary sequences is

derived with the given k-error linear complexity profile having descent points 1, 3, 5 and

7. The k-error linear complexity profile having descent points 2, 4, 6 and 8 is also partially

discussed. The proposed constructive approach can be used to construct 2n-periodic binary

sequences with the given linear complexity and k-error linear complexity.

Most results in this thesis are presented along with examples, which are verified by com-

puter program.
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Chapter 1

Introduction

With the rapid development of Internet and communication, safeguarding communica-

tion and authenticating data have become more and more important, and the need for

cryptology research has become more necessary and urgent. Crypotology includes cryp-

tography and cryptanalysis. The latter mainly deals with the investigation of how to

crack encryption algorithms or their implementations. Cryptography is mainly the study

of methods for securing communications and authenticating data. A stream cipher is one

of the most important symmetric key ciphers where plaintext digits are combined with a

pseudorandom cipher digit stream (keystream). Stream ciphers have historical and prac-

tical importance, and have been well investigated (Menezes et al., 1996; Paar and Pelzl,

2010).

The linear complexity of a sequence s, denoted as L(s), is defined as the length of the

shortest linear feedback shift register (LFSR) that can generate s. As the LFSR that

generates a given sequence s can be determined using the Berlekamp-Massey algorithm

(Massey, 1969) with only the first 2L(s) elements of the sequence, hence for cryptographic

purposes sequences with high linear complexity are highly necessary. The concept of

linear complexity is very useful in the study of stream cipher security for cryptographic

applications and it has attracted much attention in the cryptography research community

(Games and Chan, 1983; Ding et al., 1991; Stamp and Martin, 1993; Salagean, 2005).

But large linear complexity of the sequence (key stream) does not necessarily guarantee

the security of a stream cipher. To make a stream cipher secure, one has to make the

linear complexity of the sequence (key stream) not only large, but also stable. Otherwise,

suppose that the linear complexity of the sequence (key stream) decreased drastically by

only changing a few symbols, an attacker could modify the key stream and try to decrypt

the result using the Berlekamp-Massey algorithm (Massey, 1969). If the resulting sequence

differs from the actual key stream by only a few symbols, the attacker could extract a large

part of the message. This observation gives rise to the stability of linear complexity of

sequences.

As a measure on the linear complexity of sequences, the weight complexity was first

introduced by Ding (1990). A further refined measure, called sphere complexity, was
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defined in the monograph by Ding, Xiao and Shan in (Ding et al., 1991). Stamp and

Martin (1993) introduced the k-error linear complexity, which is in essence the same as

the sphere complexity. Specifically, suppose that s is a sequence with period N . For any

k(0 ≤ k ≤ N), the k-error linear complexity of s, denoted as Lk(s), is defined as the

smallest linear complexity that can be obtained when any k or fewer bits of the sequence

are changed within one period.

One important result, proved by Kurosawa et al. (2000), is that the minimum number k

for which the k-error linear complexity of a 2n-periodic binary sequence s is strictly less

than the linear complexity L(s) of s is determined by kmin = 2WH(2n−L(s)), where WH(a)

denotes the Hamming weight of the binary representation of an integer a. According to

Meidl (2004), for the period length pn, where p is an odd prime and 2 is a primitive root

modulo p2, a relationship is established between the linear complexity and the minimum

value k for which the k-error linear complexity is strictly less than the linear complexity.

For generalization of these results by Zhou (2011), for sequences over GF (q) with period

2pn, where p and q are odd primes, and q is a primitive root modulo p2, the minimum

value k is presented for which the k-error linear complexity is strictly less than the linear

complexity.

Rueppel (2012) derived the number of 2n-periodic binary sequences with given linear com-

plexity L, 0 ≤ L ≤ 2n. For k = 1, 2, Meidl (2005) characterized the complete counting

functions on the k-error linear complexity of 2n-periodic binary sequences with linear com-

plexity 2n. For k = 2, 3, Zhu and Qi (2007) further gave the complete counting functions

on the k-error linear complexity of 2n-periodic binary sequences with linear complexity

2n − 1. By using algebraic and combinatorial methods, Fu et al. (2006) characterized the

2n-periodic binary sequences with the 1-error linear complexity and derived the counting

function completely for the 1-error linear complexity of 2n-periodic binary sequences.

By investigating sequences with linear complexity 2n and linear complexity less than 2n

together, Kavuluru (2008, 2009) characterized 2n-periodic binary sequences with the 2-

error and 3-error linear complexity, and obtained the counting functions for the number

of 2n-periodic binary sequences with the k-error linear complexity for k = 2 and 3. By

Zhou (2012), it is proved with one counterexample that the counting functions by Kavu-

luru (2008, 2009) for the number of 2n-periodic binary sequences with the 3-error linear

complexity are incorrect in some cases.

As the LFSR that generates a given sequence s can be determined using the Berlekamp-

Massey algorithm (Massey, 1969) with only the first 2L(s) elements of the sequence,

hence a cryptographically strong sequence must have both larger linear complexity and
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k-error linear complexity. Due to the importance of linear complexity and k-error linear

complexity in the study of stream cipher security for cryptographaic applications, many

researchers have studied the CELCS (critical error linear complexity spectrum) for the

k-error linear complexity distribution of 2n-periodic binary sequences (Kurosawa et al.,

2000; Lauder and Paterson, 2003; Salagean, 2005; Etzion et al., 2009; Pi and Qi, 2011).

Recently, by using short sequences to construct longer sequences in a manner similar to

the reversed process of the Games-Chan algorithm (Games and Chan, 1983), Pan et al.

(2016) investigated the distribution of linear complexity and k-error linear complexity of

2n-periodic binary sequences with fixed Hamming weight.

1.1 Aims and Research Goals

After some investigations, we discovered some research gaps and directions that we want

to address:

1. The concept of linear complexity and k-error linear complexity have attracted much

attention in the cryptography research community. There has been some research on

the k-error linear complexity distribution of 2n-periodic binary sequences for k ≤ 3.

Algebra (Meidl, 2004, 2005; Fu et al., 2006; Zhu and Qi, 2007) and discrete Fourier

transform (Meidl and Niederreiter, 2002; Hu and Feng, 2005) are two important

tools to study the k-error linear complexity for periodic sequences. To further the

study of the k-error linear complexity distribution for 2n-periodic binary sequences,

we need some novel approaches.

2. Several researchers have studied the CELCS (critical error linear complexity spec-

trum) for the k-error linear complexity distribution of 2n-periodic binary sequences

(Lauder and Paterson, 2003; Etzion et al., 2009). There have been only some results

about the first descent point of k-error linear complexity (Kurosawa et al., 2000;

Lauder and Paterson, 2003; Etzion et al., 2009). With the current techniques, it is

extremely difficult to study the second descent point and beyond of k-error lin-

ear complexity critical error points. We should cope with a sequence from different

perspectives and need some new techniques.

3. The motivation of studying the stability of linear complexity is that changing a small

number of elements in a sequence may lead to a sharp decline of its linear complexity

(Ding, 1990; Ding et al., 1991; Niu et al., 2013, 2014). Therefore we really need to

study such stable sequences in which even a small number of changes do not reduce
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their linear complexity. We should study how to construct sequences with stable

k-error linear complexity. It is also important to construct periodic sequences with

prescribed linear complexity and k-error linear complexity. This is a challenging

problem with broad applications.

1.2 Preliminaries for Linear Complexity

In this section we give some preliminary results which will be used in the sequel.

We consider sequences over GF (q), which is the finite field of order q. If there exists a

positive integer N such that si = si + N for i = 0, 1, 2, · · · , then s is called a periodic

sequence, and N is called the period of s.

Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be vectors over GF (q). Define x + y =

(x1 + y1, x2 + y2, · · · , xn + yn), which is called as the superposition of x and y.

When n = 2m, we define Left(x) = (x1, x2, · · · , xm) andRight(x) = (xm+1, xm+2, · · · , x2m).

The Hamming weight of an N -periodic sequence s is defined as the number of nonzero

elements in each period of s, denoted by W (s). Let sN be one period of s. If N = 2n,

sN is also denoted as s(n). Obviously, W (s(n)) = W (sN ) = W (s). supp(s) is defined as

the set of the positions with nonzero elements in each period of s. The distance of two

elements is defined as the difference of their indexes. For instance, the distance of x1, x3

in x = (x1, x2, x3, · · · , xn) is 3-1=2.

Let s = {s0, s1, s2, s3, · · · , } be a sequence over GF (q). The sequence s is called an K-

order linear recursive sequence if there exists a positive number K and c1, c2, · · · , cK in

GF (q) such that sj + c1sj−1 + · · · + cKsj−K = 0 for any j ≥ K. The minimal order is

called the linear complexity of s, which is denoted by L(s).

The generating function of a sequence s = {s0, s1, s2, s3, · · · , } is defined by

s(x) = s0 + s1x+ s2x
2 + s3x

3 + · · · =
∞∑
i=0

six
i

The generating function of a finite sequence sN = {s0, s1, s2, · · · , sN−1} is defined by

sN (x) = s0 + s1x+ s2x
2 + · · ·+ sN−1x

N−1. If s is a periodic sequence with the first period
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sN , then,

s(x) = sN (x)(1 + xN + x2N + · · · ) =
sN (x)

1− xN

=
sN (x)/ gcd(sN (x), 1− xN )

(1− xN )/ gcd(sN (x), 1− xN )
=

g(x)

fs(x)

Obviously, gcd(g(x), fs(x)) = 1, deg(g(x)) < deg(fs(x)). fs(x) is called the minimal

polynomial of s, and the degree of fs(x) is called the linear complexity of s, that is

deg(fs(x)) = L(s) (Ding et al., 1991).

Suppose that N = 2n and GF (q) = GF (2). Then 1−xN = 1−x2n = (1−x)2
n

= (1−x)N .

If s is a binary sequence with period 2n, its linear complexity is N minus the degree of

factor (1−x) in sN (x). This is the foundation of the Games-Chan algorithm (Games and

Chan, 1983) for the linear complexity of a 2n-periodic binary sequence.

1.3 Thesis Structure and Contributions

The list below briefly describes the content of each chapter in this thesis along with its

contributions.

• Chapter 2: We propose a structural approach for determining the k-error linear

complexity distribution for 2n-periodic binary sequences (Zhou and Liu, 2014). We

mainly use the sieve approach and the Games-Chan algorithm (Games and Chan,

1983). Furthermore, by a divide and conquer method of combinatorics, we in-

vestigate sequences with linear complexity 2n, and sequences with linear complexity

less than 2n, separately. In this way, the issue to study k-error linear complexity

distribution for 2n-periodic binary sequences becomes a combinatorial problem of

these subsequences. With our structural approach along with the sieve method,

for k = 2, 3, 4, the complete counting functions on the k-error linear complexity of

2n-periodic binary sequences with both linear complexity 2n and linear complexity

less than 2n are characterized. We also obtain some partial results about the 5-

error linear complexity of 2n-periodic binary sequences. Additionally, to verify the

theorem in Chapter 2, for n = 5, the numbers of 2n-periodic binary sequences with

linear complexity less than 2n and the 4-error linear complexity c, 0 ≤ c < 2n, are

presented, and these results are also checked by a computer program.

Finally, the first descent point (critical point) distribution of the k-error linear
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complexity for 2n-periodic binary sequences was characterized completely. We ob-

tained the complete counting functions on the 2m-error linear complexity of 2n-

periodic binary sequences with linear complexity 2n − (2i1 + 2i2 + · · ·+ 2im), where

0 ≤ i1 < i2 < · · · < im < n.

• Chapter 3: We begin by presenting a new concept of stable k-error linear com-

plexity(Zhou et al., 2013). The sequences with only two k-error linear complexity

values exactly, namely its k-error linear complexity is only L(s) or 0, have been stud-

ied by Etzion et al. (2009). Based on this concept, we present a new tool called the

Cube Theory(Zhou et al., 2013, 2015b). First, it is proved that a binary sequence

with period 2n can be decomposed into some disjoint cubes. Second, based on the

Games-Chan Algorithm, we propose a standard cube decomposition for any

binary sequence with period 2n. The main approaches of Chapter 4 and Chapter 5

are based on the cube decomposition theory. Finally, it is proved that the maximum

k-error linear complexity is 2n− (2l−1) over all 2n-periodic binary sequences, where

2l−1 ≤ k < 2l and l < n. As a consequence of these results, some results by Niu et al.

(2013, 2014) are proved to be incorrect. With such decomposition, some approaches

are also presented to construct sequences with the maximum stable k-error linear

complexity.

• Chapter 4: By the cube theory, a new structural approach to determining the CELCS

for the k-error linear complexity distribution of 2n-periodic binary sequences is de-

veloped (Zhou et al., 2015a). Similar to Chapter 2, we also use the sieve approach

and the Games-Chan algorithm (Games and Chan, 1983). The structural approach

is also based on the proposed framework in Chapter 2. First, we present the second

descent point distribution of the 3-error linear complexity. Further, we investigate

the second descent point distribution of the 4-error linear complexity. Furthermore,

the third descent point distribution of the 5-error linear complexity for 2n-periodic

binary sequences are characterized completely.

Finally, the k-error cube decomposition of 2n-periodic binary sequences is developed

based on the Cube Theory of Chapter 3. As an extension of the work by Kurosawa

et al. (2000), we investigate the formulas to determine the second descent points and

third descent points for the k-error linear complexity, respectively. Most results

in Chapter 4 are presented along with examples, which are verified by computer

program.

• Chapter 5: Based on the Games-Chan algorithm (Games and Chan, 1983) and

the cube theory, a constructive approach is presented to construct 2n-periodic

6



sequences with the given k-error linear complexity profile (Zhou et al.,

2016). Consequently, the complete counting formula of 2n-periodic binary sequences

is derived with the given k-error linear complexity profile having descent points 1,

3, 5 and 7. The k-error linear complexity profile having descent points 2, 4, 6 and

8 is also partially discussed. The proposed constructive approach can be used to

construct 2n-periodic binary sequences with the given linear complexity and k-error

linear complexity. Lastly, to verify the results in Chapter 5, we give the complete

2n-periodic binary sequence distribution with the given k-error linear complexity

profile of 0 = L7(s
(n)) < L5(s

(n)) < L3(s
(n)) < L1(s

(n)) < L(s(n)) = 2n for n = 5,

which is checked by a computer program.

• Chapter 6: The conclusion of the whole thesis and some potential future direc-

tions are addressed.
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Chapter 2

A Unified Approach for the k-error

Linear Complexity Distribution of

2n-periodic Binary Sequences

By investigating sequences with linear complexity 2n and linear complexity less than 2n

together, Kavuluru (2008, 2009) obtained the counting functions for the number of 2n-

periodic binary sequences with k-error linear complexity for k = 2 and 3. By Zhou (2012),

it is proved with one counterexample that the counting functions by Kavuluru (2008,

2009) for the number of 2n-periodic binary sequences with the 3-error linear complexity

are incorrect in some cases.

In this thesis, we propose a structural approach for determining the k-error linear com-

plexity distribution for 2n-periodic binary sequences (Zhou and Liu, 2014). We mainly

use the sieve approach and the Games-Chan algorithm (Games and Chan, 1983). The

proposed approach is different from those by Meidl (2005); Fu et al. (2006) and Zhu and

Qi (2007), and it is based on the following framework.

Let S = {s|L(s) = c}, E = {e|WH(e) = k}, S + E = {s + e|s ∈ S, e ∈ E}, where s and e

are two sequences. We aim to sieve sequences s+e with Lk(s+e) = c from S+E. For this

purpose, we need to investigate two cases. One is to exclude all sequences s+ u ∈ S +E,

with Lk(s+ u) < c. Based on Lemma 2.1.2 in Section 2.1, this is equivalent to checking if

there exists a sequence v such that L(u+ v) = c. The other case is to check the repetition

of some sequences in S+E satisfying that s+u, t+v ∈ S+E and Lk(s+u) = Lk(t+v) = c

with s 6= t, u 6= v, but s + u = t + v. Similarly, this is equivalent to checking if there

exists a sequence v such that L(u+ v) = L(s+ t) < c and if so, check the number of such

sequences. With the sieve method of combinatorics, we attempt to sieve sequences s + e

with Lk(s+ e) = c in S + E. This is the first contribution of our Unified Approach.

The second contribution of our Unified Approach can be summarized as follows. First

we investigate sequences with linear complexity 2n, and sequences with linear complexity

8



less than 2n, separately. It is observed that for sequences with linear complexity 2n,

the k-error linear complexity is equal to the (k + 1)-error linear complexity, when k is

odd. For sequences with linear complexity less than 2n, the k-error linear complexity is

equal to (k + 1)-error linear complexity, when k is even. Based on these observations we

investigate the k-error linear complexity in two cases and this would reduce the complexity

of this problem. Finally, by combining the results of two cases, we obtain the complete

counting functions for the number of 2n-periodic binary sequences with the k-error linear

complexity.

With our Unified Approach, the issue to study k-error linear complexity distribution

for 2n-periodic binary sequences becomes a combinatorial problem of these subsequences.

With developed counting techniques, 3-error and 4-error linear complexity distribution for

2n-periodic binary sequences is solved completely and other cases are investigated briefly

for partial solutions. In this process, the most difficult part for the problem of the k-

error linear complexity distribution is to calculate all the possible combinations of these

subsequences, which becomes extremely complicated for large k.

Generally, the complete counting functions for the number of 2n-periodic binary sequences

with the k-error linear complexity for k > 2 could be possibly solved using our Unified

Approach. However, the decomposition of the sequences is much more complex for

larger k. For 3-error linear complexity being equal to 2n−1 − 2n−m, there are only 4

cases in the sieving process. In contrast, for 4-error linear complexity being equal to

2n−1 − (2n−m + 2n−j), there are more than 10 cases in the sieving process. It remains for

us to solve two difficult issues here. One is that the number of possible cases, which is

related to j −m, is not a constant. The other is that we have to calculate the number

of elements with more than 2 overlapped cases by using the inclusion-exclusion principle

(Dohmen, 1999) in combinatorics.

The rest of this chapter is organized as follows. In Section 2.1, we first give an outline

about our main approach for determining the k-error linear complexity distribution for 2n-

periodic binary sequences for k = 2, 3, 4, 5, 6 and 7. In Section 2.2, for k = 2, the counting

functions on the k-error linear complexity of 2n-periodic binary sequences with linear

complexity less than 2n are characterized. In Section 2.3, for k = 3, the counting functions

on the k-error linear complexity of 2n-periodic binary sequences with linear complexity 2n

are characterized. In Section 2.4, for k = 2, 3, the complete counting functions on the

k-error linear complexity of 2n-periodic binary sequences with both linear complexity 2n

and linear complexity less than 2n are characterized. In Section 2.5, for k = 4, the

counting functions on the k-error linear complexity of 2n-periodic binary sequences with

linear complexity less than 2n are characterized. Finally in Section 2.6, for k = 5, the
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counting functions on the k-error linear complexity of 2n-periodic binary sequences with

linear complexity 2n are partially characterized.

2.1 Preliminaries

In this section we give some preliminary results which will be used in the sequel.

The linear complexity of a 2n-periodic binary sequence s can be recursively computed by

the Games-Chan algorithm (Games and Chan, 1983) as follows.

Algorithm 2.1.1

Input: A 2n-periodic binary sequence s = [Left(s), Right(s)], c = 0.

Output: L(s) = c.

Step 1. If Left(s) = Right(s), then deal with Left(s) recursively. Namely, L(s) =

L(Left(s)).

Step 2. If Left(s) 6= Right(s), then c = c + 2n−1 and deal with Left(s)
⊕
Right(s)

recursively. Namely, L(s) = 2n−1 + L(Left(s)
⊕
Right(s)).

Step 3. If s = (a), then if a = 1 then c = c+ 1.

Remark 2.1.1 Based on this algorithm, one can see that the linear complexity of a

sequence s is in the following form

L(s) = 2n−1 + 2n−2 + · · ·+ 2 + 1 + 1− (2i1 + 2i2 + · · ·+ 2im) = 2n− (2i1 + 2i2 + · · ·+ 2im),

where ik represents the case that Left(s) = Right(s) in the loop n − ik with 0 ≤ i1 <

i2 < · · · < im < n. Conversely, with a given linear complexity value in above form, one

can construct a sequence s such that its linear complexity equals to this value.

The following three lemmas are well known results on 2n-periodic binary sequences. Please
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refer to Meidl (2005); Zhu and Qi (2007) for details.

Lemma 2.1.1 Suppose that s is a binary sequence with period N = 2n. Then L(s) = N

if and only if the Hamming weight of a period of the sequence is odd.

If an element 1 is changed to element 0 in each period of a sequence with odd Hamming

weight, the Hamming weight of the sequence will be changed to even, so the main concern

hereinafter is about sequences with even Hamming weight.

Lemma 2.1.2 Let s1 and s2 be two binary sequences with period N = 2n. If L(s1) 6=
L(s2), then L(s1 +s2) = max{L(s1), L(s2)}; otherwise if L(s1) = L(s2), then L(s1 +s2) <

L(s1).

Suppose that the linear complexity of s can decrease when at least k elements of s are

changed. We construct a binary sequence e, in which only elements at exactly those k

changed positions are nonzeros. By Lemma 2.1.2, the linear complexity of the binary

sequence e must be L(s). Therefore, for computation of the k-error linear complexity, we

need to first find the binary sequence with the minimal Hamming weight and its linear

complexity is L(s).

Lemma 2.1.3 Let Ei be a 2n-periodic sequence with one nonzero element at position i and

0 elsewhere in each period, 0 ≤ i < 2n. If j − i = 2r(1 + 2a), a ≥ 0, 0 ≤ i < j < 2n, r ≥ 0,

then L(Ei + Ej) = 2n − 2r.

We have the following result on the linear complexity of sequences with Hamming weight

less than 8.

Lemma 2.1.4 Suppose that s is a binary sequence with period 2n and the Hamming

weight is w < 8. Then the linear complexity of s is L(s) = 2n − 2n−m, 1 < m ≤ n or

2n − (2n−m + 2n−j), 1 ≤ m < j ≤ n.

Proof. Suppose that s is a 2n-periodic binary sequence with WH(s) = w < 8. If the linear

complexity of s is neither 2n−2n−m nor 2n− (2n−m+ 2n−j), then the minimum number k

for which the k-error linear complexity of s is strictly less than the linear complexity L(s),

can be given by kmin = 2WH(2n−L(s)) ≥ 8, where WH(b) denotes the Hamming weight of

the binary representation of an integer b. This contradicts the fact that the w-error linear

complexity of the binary sequence s is 0 (Lw(s) = 0). So the linear complexity of s must

be 2n − 2n−m, 1 < m ≤ n or 2n − (2n−m + 2n−j), 1 ≤ m < j ≤ n.
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Based on the Games-Chan algorithm, the following lemma is given by Meidl (2005).

Lemma 2.1.5 Suppose that s is a binary sequence with one period s(n) = {s0, s1, s2, · · · , s2n−1},
a mapping ϕn from F 2n

2 to F 2n−1

2 is defined as

ϕn(s(n)) = ϕn((s0, s1, s2, · · · , s2n−1))

= (s0 + s2n−1 , s1 + s2n−1+1, · · · , s2n−1−1 + s2n−1).

Let WH(υ) denote the Hamming weight of a vector υ. Then the mapping ϕn has the

following properties.

1) WH(ϕn(s(n))) ≤WH(s(n));

2) If n ≥ 2, then WH(ϕn(s(n))) and WH(s(n)) are either both odd or both even;

3) The set

ϕ−1n+1(s
(n)) = {v ∈ F 2n+1

2 |ϕn+1(v) = s(n)}

of the preimage of s(n) has cardinality 22
n
.

Rueppel (2012) presented the following result on the number of sequences with a given

linear complexity.

Lemma 2.1.6 The number N(L) of 2n-periodic binary sequences with linear complexity

L, 0 ≤ L ≤ 2n, is given by N(L) =

{
1, L = 0

2L−1, 1 ≤ L ≤ 2n

In this thesis, we will investigate sequences with linear complexity 2n, and sequences with

linear complexity less than 2n, separately. It is observed that for sequences with linear

complexity 2n, the k-error linear complexity is equal to (k + 1)-error linear complexity,

when k is odd. For sequences with linear complexity less than 2n, the k-error linear

complexity is equal to (k+ 1)-error linear complexity, when k is even. Therefore, in order

to characterize 2n-periodic binary sequences with the 3-error linear complexity, we need

first to consider the 2n-periodic binary sequences with linear complexity less than 2n and

the 2-error linear complexity, and we will also fully characterize the 2n-periodic binary

sequences with linear complexity 2n and the 3-error linear complexity.

Similarly, in order to characterize 2n-periodic binary sequences with the 4-error linear

complexity, we need first to consider the 2n-periodic binary sequences with linear com-

plexity 2n and the 3-error linear complexity, and then characterize the 2n-periodic binary
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sequences with linear complexity less than 2n and the 4-error linear complexity.

Further, in order to characterize 2n-periodic binary sequences with the prescribed 5-error

linear complexity, we can first consider 2n-periodic binary sequences with linear complexity

less than 2n and the prescribed 4-error linear complexity, and then we need consider 2n-

periodic binary sequences with linear complexity 2n and the prescribed 5-error linear

complexity. In this thesis, only partial results are given here based on the proposed

framework.

Of course, one can extend this idea to characterize 2n-periodic binary sequences with the

k-error linear complexity for k = 6, 7.

The proposed structural approach is based on the following framework. Let S = {s|L(s) =

c}, E = {e|WH(e) ≤ w}, S + E = {s + e|s ∈ S, e ∈ E}, where s is a sequence with linear

complexity c, w < 8 and e is an error sequence (Kaida et al., 1999) with WH(e) ≤ w. Note

that the number of 2n-periodic binary sequences in E is 1 + 2n +

(
2n

2

)
+ · · ·+

(
2n

w

)
.

By Lemma 2.1.6, the number of 2n-periodic binary sequences s + e ∈ S + E is at most

(1 + 2n +

(
2n

2

)
+ · · ·+

(
2n

w

)
)2c−1. With the sieve method, we aim to sieve sequences

s+ e with Lw(s+ e) = c from S + E.

Intuitively, we aim to characterize the 2n-periodic binary sequences with linear complexity

less than 2n and the 4-error linear complexity. If WH(e) = 1 or 3, then WH(s+ e) is odd,

thus L(s+ e) = 2n. As we only consider the binary sequences with linear complexity less

than 2n, so we can only consider the error sequences with WH(e) = 0 or 2 or 4. In the

same way, when we characterize the 2n-periodic binary sequences with linear complexity

2n and the 5-error linear complexity. If WH(e) = 0, 2 or 4, then WH(s + e) is odd, thus

L(s+ e) = 2n. As we only consider binary sequences with linear complexity 2n, so we can

only consider the error sequences with WH(e) = 1 or 3 or 5.

Given a 2n-periodic binary sequence s(n), based on the Games-Chan algorithm (Games

and Chan, 1983), its linear complexity is either 0 or L(r, c) = 2n−1 + 2n−2 + · · ·+ 2r + c =

2n − 2r + c, 2 ≤ r ≤ n, 1 ≤ c < 2r−1. With the following result, we only need to consider

2r-periodic binary sequences s(r) with linear complexity c.

Lemma 2.1.7 Suppose that s(n) is a binary sequence with period 2n and its linear com-

plexity is either 0 or L(r, c) = 2n−1 + 2n−2 + · · · + 2r + c = 2n − 2r + c, 2 ≤ r ≤ n, 1 ≤
c ≤ 2r−1 − 1. Let u(r) be a binary sequence with period 2r and WH(u(r)) = k, and u(n)
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be a binary sequence with period 2n constructed by adding zero elements to u(r). Then

Lk(s
(r) + u(r)) = c⇔ Lk(s

(n) + u(n)) = L(r, c), where s(r) = ϕr+1 · · ·ϕn(s(n)).

Proof. Let v(r) be a binary sequence with period 2r and WH(v(r)) ≤ k, such that L(u(r) +

v(r)) = c. Let v(n) be a binary sequence with period 2n constructed by adding zero

elements to v(r). Then L(u(n) + v(n)) = 2n−1 + 2n−2 + · · ·+ 2r + c = 2n − 2r + c = L(r, c).

On the contrary, let v(n) be a binary sequence with period 2n and WH(v(n)) ≤ k, such that

L(u(n)+v(n)) = L(r, c). Based on the Games-Chan algorithm, u(r)+v(r) = ϕr+1 · · ·ϕn(u(n)+

v(n)) and L(u(r) + v(r)) = c, where v(r) = ϕr+1 · · ·ϕn(v(n)).

By Lemma 2.1.2, we have proved that Lk(s
(r) + u(r)) < c⇔ Lk(s

(n) + u(n)) < L(r, c).

This completes the proof.

By Lemma 2.1.7, in order to characterize 2n-periodic binary sequences with the k-error

linear complexity, we just need to consider the k-error linear complexity for 0 ≤ c < 2n−1.

For such purpose, we first consider a simple case.

Lemma 2.1.8 Suppose that s(n) and t(n) are two different binary sequences with linear

complexity c, 1 ≤ c ≤ 2n−3, and u(n) and v(n) are two different binary sequences with

WH(u(n)) < 8, WH(v(n)) < 8. Then s(n) + u(n) 6= t(n) + v(n).

Proof. First we observe the following fact

s(n) + u(n) 6= t(n) + v(n) ⇔ s(n) + u(n) + v(n) 6= t(n) ⇔ u(n) + v(n) 6= s(n) + t(n)

Note that s(n) and t(n) are two different binary sequences with linear complexity c, 1 ≤
c ≤ 2n−3, so the linear complexity of s(n) + t(n) is less than 2n−3, hence one period of

s(n) + t(n) can be divided into 8 equal parts.

Suppose that u(n) + v(n) = s(n) + t(n). Then one period of u(n) + v(n) can be divided into

8 equal parts. As WH(u(n)) < 8, WH(v(n)) < 8, thus u(n) + v(n) has 8 nonzero elements.

It follows that the linear complexity of u(n) + v(n) is 2n−3, which contradicts the fact that

the linear complexity of s(n) + t(n) is less than 2n−3.

Now we need to consider more complicated cases with linear complexity 2n−3 < c < 2n−1.

14



First we have the following result.

Lemma 2.1.9 1). Suppose that s(n) is a binary sequence with linear complexity c, 1 ≤ c ≤
2n−1−3, c 6= 2n−1−2n−m, 1 < m < n−1 and c 6= 2n−1−(2n−m+2n−j), 1 < m < j ≤ n; u(n)

is a binary sequence with WH(u(n)) ≤ k, 4 ≤ k < 8. Then the k-error linear complexity of

s(n) + u(n) is still c.

2). If s(n) is a binary sequence with linear complexity c = 2n−1 − 2n−m, 1 < m ≤ n or

c = 2n−1 − (2n−m + 2n−j), 1 < m < j ≤ n. Then there exists a binary sequence u(n) with

WH(u(n)) ≤ k, 4 ≤ k < 8, such that the k-error linear complexity of s(n) +u(n) is less than

c.

Proof. Suppose that v(n) 6= u(n), and WH(v(n)) ≤ k.

1). As 1 ≤ c ≤ 2n−1 − 3, we only need to consider the case L(u(n) + v(n)) < 2n−1.

In this case, LH(u(n) + v(n)) = RH(u(n) + v(n)) and WH(LH(u(n) + v(n))) < 8. By

Lemma 2.1.3 and Lemma 2.1.4, one can obtain that L(u(n) + v(n)) = 2n−1 − 2n−m, or

2n−1 − (2n−m + 2n−j).

Thus L(s(n) + u(n) + v(n)) ≥ L(s(n)), so the k-error linear complexity of s(n) + u(n) is still

c.

2). Note that s(n) is a binary sequence with linear complexity c = 2n−1−2n−m, 1 < m ≤ n
or c = 2n−1 − (2n−m + 2n−j), 1 < m < j ≤ n. As seen from part 1), there exist u(n) and

v(n) such that L(u(n) + v(n)) = c. So the k-error linear complexity of s(n) + u(n) must be

less than c

Now by Lemma 2.1.9, we need only to consider the following three cases.

i) c = 2n−1 − 2d1 − 2d2 , 0 ≤ d2 < d1 ≤ n− 2.

ii) c = 2n−1 − 2d1 − 2d2 + x, 0 ≤ d2 < d1 ≤ n− 2, 0 < x < 2d2−1.

iii ) c = 2n−1 − 2d1 , 0 ≤ d1 ≤ n− 2.

For a given linear complexity c, it remains for us to investigate two cases. One is that
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s+u ∈ S+E, but Lw(s+u) < c. This is equivalent to checking if there exists a sequence

v such that L(u + v) = c. We define LESS = {u|u ∈ E, v ∈ E,L(u + v) = c}. In this

case, we first characterize the set LESS, then exclude such elements s + e from the set

S+E. The other is the case that s+u, t+ v ∈ S+E and Lw(s+u) = Lw(s+ v) = c with

s 6= t, u 6= v, but s + u = t + v. It is equivalent to checking if there exists a sequence v

such that L(u+ v) = L(s+ t) < c and if so, check the number of such sequences v, where

WH(u) ≤ w,WH(v) ≤ w. We define EQUAL = {u|u ∈ E, v ∈ E,L(u + v) < c}. In this

case, we first characterize the set EQUAL, then take out these repetitions from the set

S + E. This technique will be used in different places throughout this thesis.

In the next section, we will first fully characterize the 2-error linear complexity distribution

of 2n-periodic binary sequences with linear complexity less than 2n.

2.2 Counting Functions with the 2-error Linear Complexity

For a 2n-periodic binary sequence with linear complexity less than 2n, the change of one bit

in each period results in a sequence with odd number of nonzero bits in each period, which

has linear complexity 2n. In this section, we thus focus on the 2-error linear complexity.

Furthermore, the change of 1 bit or 3 bits in each period results in a sequence with

odd number of nonzero bits in each period, which has linear complexity 2n. In order

to derive the counting functions of the 3-error linear complexity for 2n-periodic binary

sequences with linear complexity less than 2n, we only need to investigate the 2-error

linear complexity of 2n-periodic binary sequences with linear complexity less than 2n.

The main result of this section is the following theorem.

Theorem 2.2.1 Let L(r, c) = 2n − 2r + c, 2 ≤ r ≤ n, 1 ≤ c ≤ 2r−1 − 1, and N2(L) be

the number of 2n-periodic binary sequences with linear complexity less than 2n and the

2-error linear complexity L. Then
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N2(L) =



(
2n

2

)
+ 1, L = 0

2L−1(

(
2r

2

)
+ 1), L = L(r, c), 1 ≤ c ≤ 2r−2 − 1, r > 2

2L−1(

(
2r

2

)
+ 1− 3× 2r+m−3),

L = L(r, c), c = 2r−1 − 2r−m, 1 < m ≤ r, r ≥ 2

2L−1(

(
2r

2

)
+ 1 + 2r−m − 2r+m−2),

L = L(r, c), c = 2r−1 − 2r−m + x, 1 < m < r − 1, 0 < x < 2r−m−1, r > 3

0, otherwise

In order to prove Theorem 2.2.1, we first prove the following lemmas.

Lemma 2.2.1 1). If s(n) is a binary sequence with linear complexity c, 1 ≤ c ≤ 2n−1 − 3,

c 6= 2n−1 − 2m, 2 ≤ m < n− 1, u(n) is a binary sequence with W (u(n)) = 0 or 2. Then the

2-error linear complexity of s(n) + u(n) is c.

2). If s(n) is a binary sequence with linear complexity c = 2n−1 − 2m, 0 ≤ m < n − 1.

Then there exists a binary sequence u(n) with W (u(n)) = 2, such that the 2-error linear

complexity of s(n) + u(n) is less than c.

Proof. Let v(n) be a binary sequence with v(n) 6= u(n), and W (v(n)) = 0 or 2.

1). As c ≤ 2n−1 − 3, we only need to consider the case L(u(n) + v(n)) < 2n−1. Thus

Left(u(n) + v(n)) = Right(u(n) + v(n)) and W (Left(u(n) + v(n))) = 2.

By Lemma 2.1.3 in Section 2.1, L(u(n) + v(n)) = 2n−1 − 2m, 0 ≤ m < n− 1.

Thus L(s(n) + u(n) + v(n)) ≥ L(s(n)), so the 2-error linear complexity of s(n) + u(n) is still

c.

2). As s(n) is a binary sequence with linear complexity c = 2n−1 − 2m, 0 ≤ m < n− 1, so

the 2-error linear complexity of s(n)+u(n) must be less than c when L(u(n)+v(n)) = c.

Lemma 2.2.2 Suppose that s(n) 6= t(n) are two binary sequences with the same linear

complexity c, 1 ≤ c ≤ 2n−2, u(n) 6= v(n) are two binary sequences with W (u(n)) = 0 or 2,

17



and W (v(n)) = 0 or 2. Then s(n) + u(n) 6= t(n) + v(n).

Proof. First the following is true.

s(n) + u(n) 6= t(n) + v(n) ⇔ s(n) + u(n) + v(n) 6= t(n) ⇔ u(n) + v(n) 6= s(n) + t(n).

Note that s(n) and t(n) are two different binary sequences with the same linear complexity

c, 1 ≤ c ≤ 2n−2, from Lemma 2.1.2 the linear complexity of s(n) + t(n) is less than 2n−2.

By the Games-Chan algorithm (Games and Chan, 1983), one period of s(n) + t(n) can be

divided into 4 equal parts.

Suppose that u(n) + v(n) = s(n) + t(n). Then one period of u(n) + v(n) can be divided into 4

equal parts. It follows that the linear complexity of u(n) + v(n) is 2n−2, which contradicts

the fact that the linear complexity of s(n) + t(n) is less than 2n−2.

Next we divide the 2-error linear complexity into three categories and deal with them by

Lemma 2.2.3, Lemma 2.2.4 and Lemma 2.2.5, respectively. First we consider the category

of 2n−1 − 2n−m.

Lemma 2.2.3 Let N2(2
n−1 − 2n−m) be the number of 2n-periodic binary sequences with

linear complexity less than 2n and the 2-error linear complexity 2n−1 − 2n−m, n ≥ 2, 1 <

m ≤ n. Then

N2(2
n−1 − 2n−m) = (1 +

(
2n

2

)
− 3× 2n+m−3)22

n−1−2n−m−1.

Proof. We first sketch the proof. Let S = {s|L(s) = 2n−1 − 2n−m}, E = {e|W (e) =

0 or 2}, S + E = {s + e|s ∈ S, e ∈ E}, where s is a sequence with linear complexity

2n−1 − 2n−m, and e is an error sequence with W (e) = 0 or 2. With the sieve method in

combinatorics, we attempt to sieve all the sequences s+ e with L2(s+ e) = 2n−1 − 2n−m

in S + E.

By Lemma 2.1.6 in Section 2.1, the number of 2n-periodic binary sequences with linear

complexity 2n−1 − 2n−m is 22
n−1−2n−m−1. As the number of 2n-periodic binary sequences

in E is 1 +

(
2n

2

)
, the number of 2n-periodic binary sequences s+ e ∈ S +E is at most

(1 +

(
2n

2

)
)22

n−1−2n−m−1.
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It remains to characterize two cases. One is that s+e ∈ S+E, but L2(s+e) < 2n−1−2n−m.

The other is the case that s(n) + u(n), t(n) + v(n) ∈ S +E with s(n) 6= t(n), u(n) 6= v(n), but

s(n) + u(n) = t(n) + v(n).

The following is the detailed proof.

To deal with the s(n) + u(n) with W (u(n)) = 2, we need to give the following two facts.

Fact 1. Suppose that

u(n) + v(n) = {· · · , 0,
2n−1︷ ︸︸ ︷

1, 0, · · · , 0, 1︸ ︷︷ ︸
2n−m(2k+1)

, 0, · · · , 0, 1, 0, · · · , 0, 1, 0, · · · }

where Left(u(n)+v(n)) = Right(u(n)+v(n)) in each period, and the distance of first two 1s

is 2n−m(2k+1) with k being an integer. Here the distance of two elements is defined as the

difference of their indexes. By Lemma 2.1.3 in Section 2.1, L(u(n) + v(n)) = 2n−1 − 2n−m.

Fact 2. Suppose that u(n) is a binary sequence with W (u(n)) = 2, and there exist two

nonzero elements whose distance is 2n−m(2k + 1) or 2n−1, with k being an integer. Then

it is easy to find a binary sequence v(n) with W (v(n)) = 2, such that L(u(n) + v(n)) =

2n−1 − 2n−m.

In the case that the distance of two nonzero elements is 2n−m(2k + 1), Left(v(n)) =

Right(u(n)), Right(v(n)) = Left(u(n)). Thus there exists exactly one binary sequence

v(n).

Without loss of generality, one can assume the case that the distance of two nonzero

elements is 2n−m(2k + 1) and

u(n) = {· · · , 0,
2n−1︷ ︸︸ ︷

1, 0, · · · , 0, 1︸ ︷︷ ︸
2n−m(2k+1)

, 0, · · · , 0, 0, 0, · · · , 0, 0, 0, · · · }

Then v(n) can be constructed as the following.

v(n) = {· · · , 0, 0, 0, · · · , 0,
2n−1︷ ︸︸ ︷

0, 0, · · · , 0, 1, 0, · · · , 0, 1︸ ︷︷ ︸
2n−m(2k+1)

, 0, · · · }

19



If one assumes the case that the distance of two nonzero elements is 2n−1 and

u(n) = {· · · , 0,
2n−1︷ ︸︸ ︷

1, 0, · · · , 0, 0︸ ︷︷ ︸
2n−m(2k+1)

, 0, · · · , 0, 1, 0, · · · , 0, 0, 0, · · · }

Then v(n) can be constructed as the following.

v(n) = {· · · , 0, 0, 0, · · · , 0,
2n−1︷ ︸︸ ︷

1, 0, · · · , 0, 0, 0, · · · , 0, 1︸ ︷︷ ︸
2n−m(2k+1)

, 0, · · · }

Suppose that s(n) is a binary sequence with linear complexity 2n−1 − 2n−m. By Lemma

2.2.1, there exists a binary sequence u(n) with W (u(n)) = 2, such that the 2-error linear

complexity of u(n) + s(n) is less than 2n−1 − 2n−m.

Now let us divide one period of u(n) into 2n−m subsequences in the following form,

{ua, ua+2n−m , ua+2n−m+1 , · · · , ua+(2m−1)×2n−m}, 0 ≤ a < 2n−m.

If two nonzero elements of u(n) are in the same subsequence, then the number of these

u(n) can be given by

C1 = 2n−m ×

(
2m

2

)
.

Here 2n−m represents the number of selections when one selects 1 subsequence, and(
2m

2

)
represents the number of selections without consideration of the order when

one selects two elements in one subsequence.

Suppose that two nonzero elements of u(n) are in the same subsequence, and the distance

of the two nonzero elements is 2n−m(2k + 1) or 2n−1, with k being an integer. From Fact

2, the 2-error linear complexity of u(n) + s(n) will be less than 2n−1 − 2n−m.

Suppose that two nonzero elements of u(n) are in the same subsequence, and the distance

of the two nonzero elements is not 2n−m(2k + 1) with k being an integer. Then the

distance of the two nonzero elements must be 2n−m+x(2k + 1) with k being an integer

and x being an positive integer. This is equivalent to the fact that one period of u(n)

is divided into 2n−m+1 subsequences and two nonzero elements of u(n) are in the same

subsequence. Therefore, the number of these u(n) can be given by 2n−m+1 ×

(
2m−1

2

)
.
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Of these u(n), there are 2n−m+1 × 2m−2 = 2n−1 sequences, in each sequence the distance

of the two nonzero elements is 2n−1.

So, if two nonzero elements of u(n) are in the same subsequence, and the distance of the

two nonzero elements is neither 2n−m(2k+ 1) nor 2n−1, then the number of these u(n) can

be given by

C2 = 2n−m+1 ×

(
2m−1

2

)
− 2n−1.

Suppose that two nonzero elements of u(n) are in the same subsequence, and the distance

of the two nonzero elements is neither 2n−m(2k+1) nor 2n−1. Then the distance of the two

nonzero elements must be 2n−m+x(2k+1) with k being an integer and x being an positive

integer. From Fact 2, there exists exactly one binary sequence v(n) with W (v(n)) = 2, such

that L(u(n) + v(n)) = 2n−1− 2n−r, 1 < r = m− x < m. Let t(n) = s(n) + u(n) + v(n). Then

L(t(n)) = L(s(n)) = 2n−1 − 2n−m and s(n) + u(n) = t(n) + v(n).

Suppose that two nonzero elements of u(n) are not in the same subsequence. Then the

distance of the two nonzero elements must be 2n−(m+x)(2k + 1) with k being an integer

and x being an positive integer. From Fact 1, there does not exist a binary sequence v(n)

with W (v(n)) = 2, such that L(u(n) + v(n)) = 2n−1 − 2n−m. This leads to the following,

N2(2
n−1 − 2n−m)

= [1 +

(
2n

2

)
− (C1− C2)− C2/2]22

n−1−2n−m−1

= [1 +

(
2n

2

)
− 2n−m

(
2m

2

)
+ 2n−m

(
2m−1

2

)
− 2n−2]× 22

n−1−2n−m−1

= (1 +

(
2n

2

)
− 3× 2n+m−3)22

n−1−2n−m−1.

Next we consider the category of 2n−1 − 2n−m + x.

Lemma 2.2.4 Let N2(2
n−1 − 2n−m + x) be the number of 2n-periodic binary sequences

with linear complexity less than 2n and the 2-error linear complexity 2n−1−2n−m+x, n >
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3, 1 < m < n− 1, 0 < x < 2n−m−1. Then

N2(2n−1 − 2n−m + x)

= [1 +

(
2n

2

)
+ 2n−m − 2n+m−2]22

n−1−2n−m+x−1

Proof. Let S = {s|L(s) = 2n−1 − 2n−m + x}, E = {e|W (e) = 0 or 2}, S + E = {s+ e|s ∈
S, e ∈ E}. By Lemma 2.1.6 in Section 2.1, the number of 2n-periodic binary sequences with

linear complexity 2n−1−2n−m+x is 22
n−1−2n−m+x−1. As the number of 2n-periodic binary

sequences in E is 1 +

(
2n

2

)
, the number of 2n-periodic binary sequences s+ e ∈ S +E

is at most (1 +

(
2n

2

)
)22

n−1−2n−m+x−1.

Suppose that s(n) is a binary sequence with linear complexity 2n−1−2n−m+x, and u(n) is a

binary sequence with W (u(n)) = 0 or 2. By Lemma 2.2.1, the 2-error linear complexity of

u(n)+s(n) is 2n−1−2n−m+x. It remains to prove the case of s(n)+u(n), t(n)+v(n) ∈ S+E

with s(n) 6= t(n), u(n) 6= v(n), but s(n) + u(n) = t(n) + v(n).

Suppose that u(n) is a binary sequence with W (u(n)) = 2, and there exist two nonzero

elements whose distance is 2n−r(1 + 2a), 1 < r ≤ m, a ≥ 0. Then there exists one binary

sequence v(n) with W (v(n)) = 2, such that L(u(n) + v(n)) = 2n−1 − 2n−r. Here the

construction of v(n) is similar to that of Lemma 2.2.3. Let t(n) = s(n) + u(n) + v(n). Then

L(t(n)) = L(s(n)) = 2n−1 − 2n−m + x and s(n) + u(n) = t(n) + v(n).

Now let us divide one period of u(n) into 2n−m subsequences in the following form,

{ua, ua+2n−m , ua+2n−m+1 , · · · , ua+(2m−1)×2n−m}, 0 ≤ a < 2n−m.

If two nonzero elements of u(n) are in the same subsequence, and their distance is 2n−1,

then there exist 2m−1−1 binary sequences v(n) with W (v(n)) = 2, such that L(u(n)+v(n)) =

2n−1 − 2n−r, 1 < r ≤ m. Let t(n) = s(n) + u(n) + v(n). Then s(n) + u(n) = t(n) + v(n). The

number of these u(n) can be given by D1 = 2n−m × 2m−1 = 2n−1.

Suppose that two nonzero elements of u(n) are in the same subsequence, and their distance

is 2n−r(1 + 2a), 1 < r ≤ m, a ≥ 0. Here 2n−r(1 + 2a) < 2n−1. Then there exists one binary

sequence v(n), with W (v(n)) = 2, such that L(u(n) + v(n)) = 2n−1 − 2n−r. The number of
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these u(n) can be given by

D2 = 2n−m[

(
2m

2

)
− 2m−1].

This will lead to the following,

N2(2
n−1 − 2n−m + x)

= [1 +

(
2n

2

)
− 2m−1 − 1

2m−1
×D1− 1

2
×D2]22

n−1−2n−m+x−1

= {1 +

(
2n

2

)
− 2m−1 − 1

2m−1
× 2n−1 − 2n−m−1[

(
2m

2

)
− 2m−1]}22n−1−2n−m+x−1

= {1 +

(
2n

2

)
− (2m−1 − 1)× 2n−m − 2n−m−1[

(
2m

2

)
− 2m−1]}22n−1−2n−m+x−1

= [1 +

(
2n

2

)
+ 2n−m − 2n+m−2]22

n−1−2n−m+x−1

Finally we would consider the category for 1 ≤ c ≤ 2r−2 − 1.

Lemma 2.2.5 Let L(r, c) = 2n − 2r + c, 3 ≤ r ≤ n, 1 ≤ c ≤ 2r−2 − 1, and N2(L(r, c)) be

the number of 2n-periodic binary sequences with linear complexity less than 2n and the

2-error linear complexity L(r, c). Then

N2(L) =


1 +

(
2n

2

)
, L = 0

2L−1(1 +

(
2r

2

)
), L = L(r, c)

Proof. Suppose that s is a binary sequence with first period s(n) = {s0, s1, s2, · · · , s2n−1},
and L(s) = L(r, c) = 2n − 2r + c, 3 ≤ r ≤ n, 1 ≤ c ≤ 2r−2 − 1. By the Games-Chan

algorithm (Games and Chan, 1983), Left(s(t)) 6= Right(s(t)), r + 1 ≤ t ≤ n, where s(t) =

ϕt+1 · · ·ϕn(s(n)).

First we consider the case of W (s(n)) = 0. There is only one binary sequence of this kind.

Let us consider the case of W (s(n)) = 2. There are two nonzero bits in {s0, s1, · · · , s2n−1},

thus there are

(
2n

2

)
binary sequences of this kind.
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So N2(0) = 1 +

(
2n

2

)
.

It is our turn to consider the case of L(r, c) = 2n − 2r + c, 3 ≤ r ≤ n, 1 ≤ c ≤ 2r−2 − 1.

Suppose that s(n) is a binary sequence with L(s(n)) = L(r, c). Note that L(r, c) = 2n −
2r + c = 2n−1 + · · ·+ 2r + c. By the Games-Chan algorithm, Left(s(r)) = Right(s(r)), and

L(s(r)) = c.

It is known that the number of binary sequences t(r) with W (t(r)) = 0 or 2 is 1 +

(
2r

2

)
.

By Lemma 2.2.1, the 2-error linear complexity of s(r) + t(r) is c.

By Lemma 2.1.6 in Section 2.1 and Lemma 2.2.2, the number of binary sequences s(r)+t(r)

is 2c−1 × (1 +

(
2r

2

)
)

By Lemma 2.1.5 in Section 2.1, ϕ−1t+1(s
(t)) = {v ∈ F 2t+1

2 |ϕt+1(v) = s(t)}, which is the

preimage of s(t) with cardinality 22
t
, where r ≤ t < n. Thus there are 22

n−1+···+2r =

22
n−2r binary sequences s(n) + t(n), such that s(r) + t(r) = ϕr+1 · · ·ϕn(s(n) + t(n)), t(r) =

ϕr+1 · · ·ϕn(t(n)) and W (t(n)) = W (t(r)).

Thus the 2-error linear complexity of s(n) + t(n) is

2n−1 + · · ·+ 2r + L2(s
(r) + t(r)) = 2n − 2r + c = L(r, c).

Therefore, N2(L(r, c)) = 22
n−2r × 2c−1 × (1 +

(
2r

2

)
) = 2L(r,c)−1(1 +

(
2r

2

)
)

Based on the results above, we can have the proof of Theorem 2.2.1 now.

Proof. By Lemma 2.2.5, we now only need to consider the case of 3 ≤ r ≤ n, 2r−2 ≤ c ≤
2r−1 − 1.

By Lemma 2.1.6 in Section 2.1 and Lemma 2.2.3,

N2(L(r, c)) = 2L(r,c)−1(

(
2r

2

)
+ 1− 3× 2r+m−3)

for 3 ≤ r ≤ n, c = 2r−1 − 2r−m, 1 < m ≤ r.
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By Lemma 2.1.6 in Section 2.1 and Lemma 2.2.4,

N2(L(r, c)) = 2L(r,c)−1(

(
2r

2

)
+ 1 + 2r−m − 2r+m−2)

for 4 ≤ r ≤ n, c = 2r−1 − 2r−m + x, 1 < m < r − 1, 0 < x < 2r−m−1.

This completes the proof.

Notice that for a 2n-periodic binary sequence with linear complexity less than 2n, the

change of three bits in each period results in a sequence with odd number of nonzero bits

in each period, which will have linear complexity 2n again. So from Theorem 2.2.1, we

have also obtained the counting functions for the 3-error linear complexity for 2n-periodic

binary sequences with linear complexity less than 2n.

2.3 Counting functions for the 3-error linear complexity

For a 2n-periodic binary sequence with linear complexity 2n, the change of two bits in each

period results in a sequence with odd number of nonzero bits in the same period, which

has linear complexity 2n. In this section, we thus focus on the 3-error linear complexity.

The main result of this section is the following theorem.

Theorem 2.3.1 Let L(r, c) = 2n − 2r + c, or 2n − 23 + 1, 4 ≤ r ≤ n, 1 ≤ c ≤ 2r−1 − 1,

and N3(L(r, c)) be the number of 2n-periodic binary sequences with linear complexity 2n
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and the 3-error linear complexity L(r, c). Let

f(n,m)

=

(
2n

3

)
− 2n−m

(
2m

3

)
−

(
2n−m

2

)(
2m

2

)
2m+1

+

(
2n−m

2

)
× 22m(2m−2 − 1) + 2n−m−1 ×

(
2m−1

3

)
−2n−2 × (2m−2 − 1)

g(n,m)

=

(
2n

3

)
− (2m−2 − 1)× 2n+1

−(2m−1 − 1)×

(
2n−m

2

)
× 2m+1

−3× 2n−m−2[

(
2m

3

)
− 4

(
2m−1

2

)
]

−

(
2n−m

2

)
× [

(
2m

2

)
− 2m−1]× 2m

Then

N3(L) =



(
2n

3

)
+ 2n, L = 0

2L(r,c)−1(

(
2r

3

)
+ 2r),

L = L(r, c), 1 ≤ c ≤ 2r−2 − 1, r > 2

2L(r,c)−1f(r,m),

L = L(r, c), c = 2r−1 − 2r−m, 1 < m ≤ r, r > 3

2L(r,c)−1g(r,m),

L = L(r, c), c = 2r−1 − 2r−m + x,

1 < m < r − 1, 0 < x < 2r−m−1, r > 3

0, otherwise

To prove Theorem 2.3.1, we need to give several lemmas.

With the idea similar to that used in previous section, we first investigate the sequence
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s(n) + u(n).

Lemma 2.3.1 1). Suppose s(n) is a binary sequence with linear complexity c, 1 ≤ c ≤
2n−1 − 3, c 6= 2n−1 − 2m, 2 ≤ m < n− 1, u(n) is a binary sequence with linear complexity

2n, and W (u(n)) = 1 or 3. Then the 3-error linear complexity of s(n) + u(n) is also c.

2). If s(n) is a binary sequence with linear complexity c = 2n−1− 2m, 0 ≤ m < n− 1, then

there exists a binary sequence u(n) with linear complexity 2n, such that the 3-error linear

complexity of s(n) + u(n) is less than c.

Proof. Note that the 3-error linear complexity of s(n) is the smallest linear complexity

that can be obtained when any u(n) with W (u(n)) = 1 or 3 is added to s(n).

Suppose that v(n) is a binary sequence, v(n) 6= u(n), and W (v(n)) = 1 or 3.

1). As c ≤ 2n−1 − 3, we only need to consider the case of L(u(n) + v(n)) < 2n−1. In this

case, Left(u(n) + v(n)) = Right(u(n) + v(n)) and W (Left(u(n) + v(n))) = 2.

By Lemma 2.1.3, L(u(n) + v(n)) = 2n−1 − 2m, 0 ≤ m < n− 1.

Thus L(s(n) + u(n) + v(n)) ≥ L(s(n)), so the 3-error linear complexity of s(n) + u(n) is c.

2). As s(n) is a binary sequence with linear complexity c = 2n−1 − 2m, 0 ≤ m < n− 1. So

the 3-error linear complexity of s(n)+u(n) must be less than c when L(u(n)+v(n)) = c.

Lemma 2.3.2 Suppose that s(n) 6= t(n) are two binary sequences with the same linear

complexity c, 1 ≤ c ≤ 2n−2, u(n) 6= v(n) are two binary sequences with linear complexity

2n as well as W (u(n)) = 1 or 3, W (v(n)) = 1 or 3. Then s(n) + u(n) 6= t(n) + v(n).

Proof. First the following is true.

s(n) + u(n) 6= t(n) + v(n) ⇔ s(n) + u(n) + v(n) 6= t(n) ⇔ u(n) + v(n) 6= s(n) + t(n)

Note that s(n) and t(n) are two different binary sequences with linear complexity c, 1 ≤ c ≤
2n−2, so the linear complexity of s(n) + t(n) is less than 2n−2, and one period of s(n) + t(n)

can be divided into 4 equal parts.
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Suppose that u(n) + v(n) = s(n) + t(n). Then one period of u(n) + v(n) can be divided into

4 equal parts, thus W (u(n) + v(n)) = 4. It follows that the linear complexity of u(n) + v(n)

is 2n−2, which contradicts the fact that the linear complexity of s(n) + t(n) is less than

2n−2.

Next, we divide the 3-error linear complexity into three categories and deal with them by

Lemma 2.3.3, Lemma 2.3.4 and Lemma 2.3.5, respectively. First consider the category of

2n−1 − 2n−m.

Lemma 2.3.3 Let N3(2
n−1 − 2n−m) be the number of 2n-periodic binary sequences with

linear complexity 2n and the 3-error linear complexity 2n−1 − 2n−m, n > 3, 1 < m ≤ n.

Then

N3(2
n−1 − 2n−m)

= [

(
2n

3

)
− 2n−m

(
2m

2

)
−

(
2n−m

2

)(
2m

2

)
2m+1

+

(
2n−m

2

)
× 22m(2m−2 − 1) + 2n−m−1 ×

(
2m−1

3

)
−2n−2 × (2m−2 − 1)]22

n−1−2n−m−1

Proof. Let S = {s|L(s) = 2n−1 − 2n−m}, E = {e|W (e) = 1 or 3}, S + E = {s + e|s ∈
S, e ∈ E}. By Lemma 2.1.6 in Section 2.1, the number of 2n-periodic binary sequences

with linear complexity 2n−1−2n−m is 22
n−1−2n−m−1. As the number of 2n-periodic binary

sequences in E is 2n +

(
2n

3

)
, the number of 2n-periodic binary sequences s+ e ∈ S+E

is at most (2n +

(
2n

3

)
)22

n−1−2n−m−1.

It remains to prove the following two cases. One is that s + e ∈ S + E, but L3(s + e) <

2n−1 − 2n−m. The other is the case that s(n) + u(n), t(n) + v(n) ∈ S + E with s(n) 6= t(n),

u(n) 6= v(n), but s(n) + u(n) = t(n) + v(n).

Suppose that s(n) is a binary sequence with linear complexity 2n−1 − 2n−m, and u(n) is

a binary sequence with W (u(n)) = 1. One can construct a binary sequence v(n) with

W (v(n)) = 3, such that L(u(n) + v(n)) = 2n−1 − 2n−m. So the 3-error linear complexity of

u(n) + s(n) is less than 2n−1 − 2n−m.
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To deal with the s(n) + u(n) with W (u(n)) = 3, the following fact is used.

Suppose that u(n) is a binary sequence with W (u(n)) = 3, and there exist two nonzero

elements whose distance is 2n−r(1 + 2a), 1 < r ≤ m, a ≥ 0 or 2n−1. Then one can find

1 binary sequence v(n) with W (v(n)) = 3, such that L(u(n) + v(n)) = 2n−1 − 2n−r with

W (u(n) + v(n)) = 4. If r = m, then L(u(n) + v(n)) = 2n−1 − 2n−m, hence the 3-error linear

complexity of u(n) + s(n) is less than 2n−1 − 2n−m.

Without loss of generality, assume that supp(u(n)) = {y1, y2, y3}, and the distance of y1

and y2 is 2n−r(1 + 2a), 1 < r ≤ m, a ≥ 0. Then the construction of v(n) with supp(v(n)) =

{z1, z2, y3} is similar to that of Lemma 2.2.3. Here u(n) and v(n) have exactly one common

nonzero element, so that W (u(n) + v(n)) = 4.

Let us divide one period of u(n) into 2n−m subsequences with the following form

{ua, ua+2n−m , ua+2n−m+1 , · · · , ua+(2m−1)×2n−m}, 0 ≤ a < 2n−m.

If only two nonzero elements of u(n) are in the same subsequence, then the number of these

u(n) can be given by E1 = 2

(
2n−m

2

)
×

(
2m

2

)
× 2m. Here 2

(
2n−m

2

)
represents

the number of permutations when one selects 2 subsequences,

(
2m

2

)
represents the

number of selections without consideration of the order when one selects 2 elements in

one subsequence and 2m represents the number of selections when one selects 1 element

in another subsequence.

Suppose that only two nonzero elements of u(n) are in the same subsequence, and the

distance of the two nonzero elements is not 2n−m(2k+ 1). Then the number of these u(n)

can be given by 2

(
2n−m

2

)
×2×

(
2m−1

2

)
×2m. Of these u(n), there are 2

(
2n−m

2

)
×

2m−1 × 2m sequences, in which the distance of the two nonzero elements is 2n−1.

So, if only two nonzero elements of u(n) are in the same subsequence, and the distance of

the two nonzero elements is neither 2n−m(2k+ 1) nor 2n−1, then the number of these u(n)

can be given by
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E2 = 2

(
2n−m

2

)
× 2×

(
2m−1

2

)
× 2m − 2

(
2n−m

2

)
× 2m−1 × 2m

=

(
2n−m

2

)
× 22m × (2m−1 − 2).

Suppose that u(n) is a binary sequence with W (u(n)) = 3, and there exist two nonzero

elements whose distance is a multiple of 2n−m+1, but is not 2n−1. Thus we can assume the

distance of two nonzero elements is 2n−r(1 + 2a), 1 < r < m, a ≥ 0, hence there exists one

binary sequence v(n) with W (v(n)) = 3, such that L(u(n) +v(n)) = 2n−1−2n−r, 1 < r < m.

Let t(n) = s(n) + u(n) + v(n). Then L(t(n)) = L(s(n)) = 2n−1 − 2n−m and s(n) + u(n) =

t(n) + v(n), where there exist exactly two nonzero elements in v(n) whose distance is a

multiple of 2n−m+1.

If all 3 nonzero elements of u(n) are in the same subsequence, then the number of these

u(n) can be given by E3 = 2n−m ×

(
2m

3

)
.

Suppose that all 3 nonzero elements of u(n) are in the same subsequence, and there do not

exist two nonzero elements whose distance is 2n−m(2k+1). Then the number of these u(n)

can be given by 2n−m+1×

(
2m−1

3

)
. Of these u(n), there are 2n−m+1×2m−2×(2m−1−2) =

2n × (2m−2 − 1) sequences, in which there exist two nonzero elements with distance 2n−1.

So, if all 3 nonzero elements of u(n) are in the same subsequence, and there do not exist

two nonzero elements whose distance is 2n−m(2k + 1) or 2n−1, then the number of these

u(n) can be given by

E4 = 2n−m+1 ×

(
2m−1

3

)
− 2n × (2m−2 − 1)

Suppose that u(n) is a binary sequence with linear complexity 2n and all 3 nonzero elements

of u(n) are in the same subsequence, and there do not exist two nonzero elements whose

distance is 2n−m(2k+ 1) or 2n−1. Thus we can assume that supp(u(n)) = {y1, y2, y3}, and

the distance of y1 and y2 is 2n−r1(1 + 2a1), 1 < r1 < m, a1 ≥ 0, the distance of y1 and y3

is 2n−r2(1 + 2a2), 1 < r2 < m, a2 ≥ 0, the distance of y2 and y3 is 2n−r3(1 + 2a3), 1 < r3 <

m, a3 ≥ 0. Similar to that of Lemma 2.2.3, one can construct 3 distinct binary sequences

v
(n)
i , 1 ≤ i ≤ 3, with linear complexity 2n and W (v

(n)
i ) = 3, such that L(u(n) + v

(n)
i ) =
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2n−1−2n−ri , 1 < ri < m. Let t
(n)
i = s(n)+u(n)+v

(n)
i . Then L(t

(n)
i ) = L(s(n)) = 2n−1−2n−m

and s(n) + u(n) = t
(n)
i + v

(n)
i .

Here u(n) and v
(n)
i have exactly one common nonzero element, so that W (u(n) + v

(n)
i ) = 4.

Specifically, y3 ∈ supp(v(n)1 ), y2 ∈ supp(v(n)2 ) and y1 ∈ supp(v(n)3 ). It follows that,

N3(2
n−1 − 2n−m)

= [

(
2n

3

)
− (E1− E2)− E2/2− (E3− E4)− 3

4
E4]22

n−1−2n−m−1

= [

(
2n

3

)
− E3− E1 + E2/2 + E4/4]22

n−1−2n−m−1

= [

(
2n

3

)
− 2n−m

(
2m

3

)
−

(
2n−m

2

)(
2m

2

)
2m+1

+

(
2n−m

2

)
× 22m(2m−2 − 1) + 2n−m−1 ×

(
2m−1

3

)
−2n−2 × (2m−2 − 1)]22

n−1−2n−m−1.

Next we consider the category of 2n−1 − 2n−m + x.

Lemma 2.3.4 Let N3(2
n−1 − 2n−m + x) be the number of 2n-periodic binary sequences

with linear complexity 2n and the 3-error linear complexity of 2n−1 − 2n−m + x, where

n > 3, 1 < m < n− 1, 0 < x < 2n−m−1. Then

N3(2
n−1 − 2n−m + x)

= {

(
2n

3

)
− (2m−2 − 1)× 2n+1 − (2m−1 − 1)×

(
2n−m

2

)
× 2m+1

−3× 2n−m−2[

(
2m

3

)
− 4

(
2m−1

2

)
]

−

(
2n−m

2

)
× [

(
2m

2

)
− 2m−1]× 2m}22n−1−2n−m+x−1

Proof. Let S = {s|L(s) = 2n−1 − 2n−m + x}, E = {e|W (e) = 1 or 3}, S + E = {s+ e|s ∈
S, e ∈ E}. By Lemma 2.1.6 in Section 2.1, the number of 2n-periodic binary sequences with
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linear complexity 2n−1−2n−m+x is 22
n−1−2n−m+x−1. As the number of 2n-periodic binary

sequences in E is 2n +

(
2n

3

)
, the number of 2n-periodic binary sequences s+ e ∈ S+E

is at most (2n +

(
2n

3

)
)22

n−1−2n−m+x−1.

Suppose that s(n) is a binary sequence with linear complexity 2n−1−2n−m+x, and u(n) is a

binary sequence with W (u(n)) = 1 or 3. By Lemma 2.3.1, the 3-error linear complexity of

u(n)+s(n) is 2n−1−2n−m+x. It remains to prove the case of s(n)+u(n), t(n)+v(n) ∈ S+E

with s(n) 6= t(n), u(n) 6= v(n), but s(n) + u(n) = t(n) + v(n).

Suppose that u(n) is a binary sequence with W (u(n)) = 1. One can show the following

facts.

There is 1 binary sequence v(n) with W (v(n)) = 3, such that L(u(n) + v(n)) = 2n−1 − 2n−2

and there exist two nonzero elements in v(n) whose distance is 2n−2;

There are 2 binary sequences v(n) with W (v(n)) = 3, such that L(u(n)+v(n)) = 2n−1−2n−3

and there exist two nonzero elements in v(n) whose distance is 2n−3 or 3× 2n−3;

· · · · · ·

There are 2m−2 binary sequences v(n) with W (v(n)) = 3, such that L(u(n) + v(n)) =

2n−1 − 2n−m and there exist two nonzero elements in v(n) whose distance is 2n−m or

3× 2n−m or · · · or ( 2n−1

2n−m − 1)× 2n−m;

Let t(n) = s(n) + u(n) + v(n). Then L(t(n)) = L(s(n)) = 2n−1 − 2n−m + x and s(n) + u(n) =

t(n) + v(n). Note that there are total 1 + 2 + · · ·+ 2m−2 = 2m−1− 1 such t(n) and v(n) with

W (v(n)) = 3. Thus it is unnecessary to consider the case of s(n) + u(n) with W (u(n)) = 1.

To deal with the s(n) + u(n) with W (u(n)) = 3, the following fact is used.

Suppose that u(n) is a binary sequence with W (u(n)) = 3, and there exist two nonzero

elements whose distance is 2n−r(1 + 2a), 1 < r ≤ m, a ≥ 0. Then there exists one binary

sequence v(n) with W (v(n)) = 3, such that L(u(n) + v(n)) = 2n−1 − 2n−r with W (u(n) +

v(n)) = 4. Let t(n) = s(n) + u(n) + v(n). Then L(t(n)) = L(s(n)) = 2n−1 − 2n−m + x and

s(n) + u(n) = t(n) + v(n).

Without loss of generality, assume that supp(u(n)) = {y1, y2, y3}, and the distance of y1
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and y2 is 2n−r(1 + 2a), 1 < r ≤ m, a ≥ 0. Then the construction of v(n) with supp(v(n)) =

{z1, z2, y3} is similar to that of Lemma 2.2.3. Here u(n) and v(n) have one common nonzero

element, so that W (u(n) + v(n)) = 4.

Let us divide one period of u(n) into 2n−m subsequences with the following form

{ua, ua+2n−m , ua+2n−m+1 , · · · , ua+(2m−1)×2n−m}, 0 ≤ a < 2n−m.

We divide the s(n) + u(n) with W (u(n)) = 3 into 4 cases.

Case 1. If all 3 nonzero elements of u(n) are in the same subsequence, and there exist two

nonzero elements with distance 2n−1, then there exist 2m−1−2 binary sequences v(n) with

W (v(n)) = 3, such that L(u(n)+v(n)) = 2n−1−2n−r, 1 < r ≤ m. Let t(n) = s(n)+u(n)+v(n).

Then s(n) + u(n) = t(n) + v(n). The number of these u(n) can be given by

F1 = 2n−m × 2×

(
2m−1

2

)
× 2.

Case 2. Suppose that u(n) is a binary sequence with linear complexity 2n and all 3 nonzero

elements of u(n) are in the same subsequence, and there do not exist two nonzero elements

whose distance is 2n−1. Then there exist 3 distinct binary sequences v
(n)
i , 1 ≤ i ≤ 3, with

W (v
(n)
i ) = 3, such that L(u(n)+v

(n)
i ) = 2n−1−2n−r, 1 < r ≤ m. Let t

(n)
i = s(n)+u(n)+v

(n)
i .

Then s(n) + u(n) = t
(n)
i + v

(n)
i . The number of these u(n) can be given by

F2 = 2n−m[

(
2m

3

)
− 2×

(
2m−1

2

)
× 2].

Case 3. If only two nonzero elements of u(n) are in the same subsequence, and the distance

of the two nonzero elements is 2n−1, then there exist 2m−1 − 1 binary sequences v(n) with

W (v(n)) = 3, such that L(u(n)+v(n)) = 2n−1−2n−r, 1 < r ≤ m. Let t(n) = s(n)+u(n)+v(n).

Then s(n) + u(n) = t(n) + v(n). The number of these u(n) can be given by

F3 = 2

(
2n−m

2

)
× 2m−1 × 2m =

(
2n−m

2

)
× 22m.

Case 4. If only two nonzero elements of u(n) are in the same subsequence, and the distance

of the two nonzero elements is not 2n−1, then there exists one binary sequence v(n) with

W (v(n)) = 3, such that L(u(n)+v(n)) = 2n−1−2n−r, 1 < r ≤ m. Let t(n) = s(n)+u(n)+v(n).
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Then s(n) + u(n) = t(n) + v(n). The number of these u(n) can be given by

F4 = 2

(
2n−m

2

)
× [

(
2m

2

)
− 2m−1]× 2m.

The above calculations will lead to the following,

N3(2
n−1 − 2n−m + x)

= [

(
2n

3

)
− 2m−1 − 2

2m−1 − 1
× F1− 2m−1 − 1

2m−1
× F3− 3

4
× F2− 1

2
× F4]22

n−1−2n−m+x−1

= {

(
2n

3

)
− 2m−1 − 2

2m−1 − 1
× 2n−m+2

(
2m−1

2

)

−2m−1 − 1

2m−1
×

(
2n−m

2

)
× 22m − 3

4
× 2n−m[

(
2m

3

)
− 4

(
2m−1

2

)
]

−1

2
× 2

(
2n−m

2

)
× [

(
2m

2

)
− 2m−1]× 2m}22n−1−2n−m+x−1

= {

(
2n

3

)
− (2m−2 − 1)× 2n+1 − (2m−1 − 1)×

(
2n−m

2

)
× 2m+1

−3× 2n−m−2[

(
2m

3

)
− 4

(
2m−1

2

)
]

−

(
2n−m

2

)
× [

(
2m

2

)
− 2m−1]× 2m}22n−1−2n−m+x−1

Finally we consider the category for 1 ≤ c ≤ 2r−2 − 1.

Lemma 2.3.5 Let L(r, c) = 2n − 2r + c, 3 ≤ r ≤ n, 1 ≤ c ≤ 2r−2 − 1, and N3(L(r, c))

be the number of 2n-periodic binary sequences with linear complexity 2n and the 3-error

linear complexity L(r, c). Then

N3(L) =



(
2n

3

)
+ 2n, L = 0

2L−1(

(
2r

3

)
+ 2r), L = L(r, c)

Proof. Suppose that s is a binary sequence with first period s(n) = {s0, s1, s2, · · · , s2n−1},
and L(s) = 2n. By the Games-Chan algorithm, Left(s(t)) 6= Right(s(t)), 1 ≤ t ≤
n,L(s(0)) = 1, where s(t) = ϕt+1 · · ·ϕn(s(n)).
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Thus s(0) = {1}, and s0 + s1 + · · ·+ s2t−1 = 1, 1 ≤ t ≤ n

First we consider the case ofW (s(n)) = 1. There is only one nonzero bit in {s0, s1, · · · , s2n−1},
thus there are 2n binary sequences of this kind.

Next, we consider the case of W (s(n)) = 3. There are 3 nonzero bits in {s0, s1, · · · , s2n−1},

thus there are

(
2n

3

)
binary sequences of this kind. So N3(0) =

(
2n

3

)
+ 2n.

Finally, we consider the case of L(r, c) = 2n − 2r + c, 3 ≤ r ≤ n, 1 ≤ c ≤ 2r−2 − 1.

Suppose that s(n) is a binary sequence with L(s(n)) = L(r, c). Note that L(r, c) = 2n −
2r + c = 2n−1 + · · · + 2r + c. By the Games-Chan algorithm (Games and Chan, 1983),

Left(s(r)) = Right(s(r)), and L(s(r)) = c.

It is known that the number of binary sequences t(r) with W (t(r)) = 1 or 3 and L(t(r)) = 2r

is

(
2r

3

)
+ 2r.

By Lemma 2.3.1, the 3-error linear complexity of s(r) + t(r) is c.

By Lemma 2.1.6 in Section 2.1 and Lemma 2.3.2, the number of binary sequences s(r)+t(r)

is 2c−1 × (

(
2r

3

)
+ 2r)

By Lemma 2.1.5 in Section 2.1, there are 22
n−1+···+2r = 22

n−2r binary sequences s(n)+t(n),

such that s(r) + t(r) = ϕr+1 · · ·ϕn(s(n) + t(n)), t(r) = ϕr+1 · · ·ϕn(t(n)) and W (t(n)) =

W (t(r)).

Thus the 3-error linear complexity of s(n) + t(n) is

2n−1 + · · ·+ 2r + L3(s
(r) + t(r)) = 2n − 2r + c = L(r, c).

Therefore, N3(L(r, c)) = 22
n−2r × 2c−1 × (

(
2r

3

)
+ 2r) = 2L(r,c)−1(

(
2r

3

)
+ 2r)

Based on the results above, we can have the proof of Theorem 2.3.1.
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Proof. By Lemma 2.3.5, we now only need to consider the case of 4 ≤ r ≤ n, 2r−2 ≤ c ≤
2r−1 − 1.

By Lemma 2.1.5 in Section 2.1 and Lemma 2.3.3, N3(L(r, c)) = 2L(r,c)−1f(r,m) for 4 ≤
r ≤ n, c = 2r−1 − 2r−m, 1 < m ≤ r

By Lemma 2.1.5 in Section 2.1 and Lemma 2.3.4, N3(L(r, c)) = 2L(r,c)−1g(r,m) for 4 ≤
r ≤ n, c = 2r−1 − 2r−m + x, 1 < m < r − 1, 0 < x < 2r−m−1

2.4 Complete counting functions for the 2-error or 3-error

linear complexity

Based on previous investigations, we will give the complete counting functions for 2n-period

sequences with the 2-error or 3-error linear complexity. For completeness of presentation,

the following theorem on the 1-error linear complexity from Meidl (2005) is given first.

Theorem 2.4.1 Let L(r, c) = 2n − 2r + c, 2 ≤ r ≤ n, 1 ≤ c ≤ 2r−1 − 1, and N1(L(r, c))

be the number of 2n-periodic binary sequences with linear complexity 2n and the 1-error

linear complexity L(r, c). Then

N1(L) =


2n, L = 0

2L+r−1, L = L(r, c)

0, otherwise

From Theorem 2.4.1, we can have counting functions for the 2-error linear complexity of

2n-periodic binary sequences with linear complexity 2n. From Theorem 2.2.1, we have

counting functions for the 2-error linear complexity of 2n-periodic binary sequences with

linear complexity less than 2n. By combining these results of the two cases, it is easy

to derive the complete counting functions for the number of 2n-periodic binary sequences

with the 2-error linear complexity.

36



Theorem 2.4.2 Let L(r, c) = 2n − 2r + c, 2 ≤ r ≤ n, 1 ≤ c ≤ 2r−1 − 1, and N2(L(r, c))

be the number of 2n-periodic binary sequences with the 2-error linear complexity L(r, c).

Then

N2(L) =



(
2n

2

)
+ 2n + 1, L = 0

2L−1(

(
2r

2

)
+ 2r + 1),

L = L(r, c), 1 ≤ c ≤ 2r−2 − 1, r > 2

2L−1(

(
2r

2

)
+ 2r + 1− 3× 2r+m−3),

L = L(r, c), c = 2r−1 − 2r−m, 1 < m ≤ r, r ≥ 2

2L−1(

(
2r

2

)
+ 2r + 1 + 2r−m − 2r+m−2),

L = L(r, c), c = 2r−1 − 2r−m + x, 1 < m < r − 1, 0 < x < 2r−m−1, r > 3

0, otherwise

One can show that Theorem 2.4.2 is equivalent to the results in Table 1 and Table 2 by

Kavuluru (2009).

Similarly, based on Theorem 2.2.1 and Theorem 2.3.1, the counting functions for the

number of 2n-periodic binary sequences with the 3-error linear complexity can be derived

as follows.

Theorem 2.4.3 Let L(r, c) = 2n − 2r + c, 4 ≤ r ≤ n, 1 ≤ c ≤ 2r−1 − 1, and N3(L(r, c))

be the number of 2n-periodic binary sequences with the 3-error linear complexity L(r, c).

Then
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N3(L) =



(
2n

3

)
+

(
2n

2

)
+ 2n + 1, L = 0

2L−1(

(
2r

3

)
+

(
2r

2

)
+ 2r + 1),

L = L(r, c), 1 ≤ c ≤ 2r−2 − 1, r > 3

2L−1(

(
2r

2

)
+ 1− 3× 2r+m−3 + f(r,m)),

L = L(r, c), c = 2r−1 − 2r−m, 1 < m ≤ r, r > 3

2L−1(

(
2r

2

)
+ 1 + 2r−m − 2r+m−2 + g(r,m)),

L = L(r, c), c = 2r−1 − 2r−m + x, 1 < m < r − 1, 0 < x < 2r−m−1, r > 3

0, otherwise

where f(r,m) and g(r,m) are defined in Theorem 2.3.1.

According to Table 1 and Table 2 by Kavuluru (2009), the numbers of 2n-periodic binary

sequences with the 3-error linear complexity for n = 4 are shown in the second column of

Table 2.1.

Table 2.1: N3(L(r, c)) by Kavuluru and Theorem 2.4.3.

L(r, c) by Kavuluru by Theorem 2.4.3

0 697 697

1 697 697

2 1394 1394

3 2788 2788

4 5128 2824

5 10704 8400

6 18720 4384

7 30272 2624

8 0 0

9 23808 23808

10 22016 8704

11 37888 5120

12 0 0

13 4096 4096

14 0 0

15 0 0

It is well known that the number of all 2n-periodic binary sequences for n = 4 is 216 =

65536. However, the summation of numbers of the second column is much bigger than

65536. So the counting functions for the number of 2n-periodic binary sequences with the

3-error linear complexity by Kavuluru (2009) are not fully correct.
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Specifically, it is easy to check by computer that all underline numbers in Table 2.1 are

incorrect.

In the case of L = L(r, c), c = 2r−1 − 2r−m, 1 < m ≤ r, r ≥ 2, which corresponds to the

case of 2n−(2n−r1 +2n−r2) by Kavuluru (2009), the counting function by Kavuluru (2009)

is wrong.

L = 4, 6, 7, 10 or 11 in Table 2.1 belong to this case.

In the case of L = L(r, c), c = 2r−1 − 2r−m + x, 1 < m < r − 1, 0 < x < 2r−m−1, r > 3,

which corresponds to the case of 2n − (2n−r1 + 2n−r2) < L < 2n − (2n−r1 + 2n−r2−1) by

Kavuluru (2009), the counting function by Kavuluru (2009) is wrong.

L = 5 in Table 2.1 is this case.

For n = 4, L = 5, we know that r1 = 1, r2 = 2, and

2n − (2n−r1 + 2n−r2) < L < 2n − (2n−r1 + 2n−r2−1)

From Theorem 7 by Kavuluru (2008), we have N3(L) = 10704, which is incorrect by

computer check.

From Theorem 2.4.3, the numbers of 2n-periodic binary sequences with the 3-error linear

complexity for n = 4 are shown in the third column of Table 2.1. These results have been

checked by computer.

The summation of numbers of the third column is 216 = 65536.

2.5 Counting functions for the 4-error linear complexity

By Theorem 2.3.1 in Section 2.3, the 3-error linear complexity of 2n-periodic binary se-

quences with linear complexity 2n has been investigated. For 2n-periodic binary sequences

with linear complexity 2n, the change of 4 bits per period will result in a sequence with an

odd number of nonzero bits per period, hence still with linear complexity 2n. Therefore,

the 4-error linear complexity is the same as the 3-error linear complexity for 2n-periodic

binary sequences in the case of linear complexity 2n. In order to derive the counting

functions for the 4-error linear complexity of 2n-periodic binary sequences in general, we
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only need to obtain the counting functions for the 4-error linear complexity of 2n-periodic

binary sequences with linear complexity less than 2n. To this end, we divide the 4-error

linear complexity into six non trivial categories and deal with them respectively.

First we consider the category of sequences with 4-error linear complexity 2n−2 − 2n−m.

Lemma 2.5.1 Let N4(2
n−2 − 2n−m) be the number of 2n-periodic binary sequences with

linear complexity less than 2n and the 4-error linear complexity 2n−2 − 2n−m, n > 2, 2 <

m ≤ n. Then

N4(2
n−2 − 2n−m) =

 1 +

(
2n

2

)
+

(
2n

4

)
− C1− C2/2

× 22
n−2−2n−m−1

where C1, C2 are defined in the following proof.

Proof. By Lemma 2.1.6 in Section 2.1, the number of 2n-periodic binary sequences with

linear complexity 2n−2 − 2n−m is 22
n−2−2n−m−1. As the number of 2n-periodic binary

sequences in E is 1 +

(
2n

2

)
+

(
2n

4

)
, the number of 2n-periodic binary sequences

s+ e ∈ S + E is at most (1 +

(
2n

2

)
+

(
2n

4

)
)22

n−2−2n−m−1.

We first characterize the set LESS. Assume that u(n) and v(n) are two distinct binary

sequences with WH(u(n)) = WH(v(n)) = 4, and L(u(n) + v(n)) = 2n−2 − 2n−m. Then the

4-error linear complexity of u(n) + s(n) must be less than 2n−2 − 2n−m, where L(s(n)) =

2n−2 − 2n−m.

Suppose that w(n) is a binary sequence with linear complexity 2n−2−2n−m andWH(w(n)) =

8. Then w(n) can be divided into 4 equal parts and the number of such sequences is given

by

(2n−2 − 2n−m) + (2n−2 − 2n−m × 3) + · · ·+ [2n−2 − 2n−m × (
2n−2

2n−m
− 1)] = 2n+m−6.

Each w(n) has the intersection of 4 nonzero elements with 2( 2n−2

2×2n−m − 1) = 2(2m−3 − 1)

other different w(n). All these 4-nonzero-elements constitute the set

A1 = {(ai, ai+2n−2 , ai+2n−1 , ai+2n−1+2n−2)| 0 ≤ i < 2n−2}

If the 4 nonzero elements of u(n) are part of 8 nonzero elements in one w(n), where
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WH(w(n)) = 8, then the number of these u(n) is given by

C1 = 2n+m−6

(
8

4

)
− 2n−2(2m−3 − 1).

Note that the second item in C1 implies that the 4 nonzero elements of u(n) can be in A1.

Second, we characterize the set EQUAL. Suppose that L4(s
(n) +u(n)) = L4(t

(n) +v(n)) =

2n−2−2n−m with s(n) 6= t(n), u(n) 6= v(n), but s(n)+u(n) = t(n)+v(n). Then L(u(n)+v(n)) =

L(s(n) + t(n)) < 2n−2 − 2n−m, where L(s(n)) = L(t(n)) = 2n−2 − 2n−m.

Suppose that w(n) is a binary sequence with linear complexity 2n−2 − 2n−k, 2 < k < m,

and WH(w(n)) = 8. We define A2 as the set of these sequences. So the number of these

sequences is given by |A2| = 2n+k−6.

If the 4 nonzero bits of u(n) are part of w(n) ∈ A2, but does not belong to A1, then the

number of these u(n) can be given by 2n+k−6[

(
8

4

)
− 2].

In summary, for 2 < k < m, the total number of u(n) is given by

C2 =

m−1∑
k=3

2n+k−6(

(
8

4

)
− 2) = (2n+m−6 − 2n−3)(

(
8

4

)
− 2).

For each of these u(n), there exists exactly one binary sequence v(n) with WH(v(n)) = 4,

such that L(u(n) + v(n)) = 2n−2 − 2n−k, 2 < k < m. Let t(n) = s(n) + u(n) + v(n). Then

L(t(n)) = L(s(n)) = 2n−2 − 2n−m and t(n) + v(n) = s(n) + u(n).

As the number of sequences in LESS is C1 and the number of sequences in EQUAL is

C2, thus

N4(2
n−2 − 2n−m) = [1 +

(
2n

2

)
+

(
2n

4

)
− C1− C2/2]× 22

n−2−2n−m−1

Now we define N4(2
n−2 − 2n−m) = f(n,m) × 22

n−2−2n−m−1 with notation f(n,m). Next

we consider the category of sequences with 4-error linear complexity 2n−2 − 2n−m + x.
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Lemma 2.5.2 Let N4(2
n−2 − 2n−m + x) be the number of 2n-periodic binary sequences

with linear complexity less than 2n and the 4-error linear complexity 2n−2−2n−m+x, n >

4, 2 < m < n− 1, 0 < x < 2n−m−1. Then

N4(2n−2 − 2n−m + x) = [1 +

(
2n

2

)
+

(
2n

4

)
− 2n−3 + 2n−m

−1

2
(C1 + C2)]× 22

n−2−2n−m+x−1

where C1, C2 are defined in Lemma 2.5.1.

Proof. Suppose that s(n) is a binary sequence with linear complexity

2n−2 − 2n−m + x = 2n−1 − (2n−2 + 2n−m) + x,

and u(n) is a binary sequence with WH(u(n)) = 0, 2 or 4. By Lemma 2.9, the 4-error linear

complexity of s(n) + u(n) is still 2n−2− 2n−m + x. So, we only need to characterize the set

EQUAL.

Based on the proof of Lemma 3.1, there are C1 distinct binary sequences u(n) with

WH(u(n)) = 4, such that L(u(n) + v(n)) = 2n−2 − 2n−m < 2n−2 − 2n−m + x, where v(n) is

a binary sequence with WH(v(n)) = 4.

Among C1 binary sequences u(n) in set LESS, there are 2n−2 binary sequences with

4 nonzero elements in A1. For each of these sequences u(n), there exist
m∑
k=3

2n−2

2n−k+1 =

m∑
k=3

2k−3 = 2m−2− 1 distinct binary sequences v(n) with WH(v(n)) = 4, such that L(u(n) +

v(n)) = 2n−2−2n−k, 2 < k ≤ m. For each of other sequences u(n) in set LESS, there exists

only one binary sequence v(n) with WH(v(n)) = 4, such that L(u(n) +v(n)) = 2n−2−2n−m.

For each of these C2 binary sequences u(n), there exists exactly one binary sequence v(n)

with WH(v(n)) = 4, such that L(u(n) + v(n)) = 2n−2 − 2n−k, 2 < k < m.

Therefore, the number of sequences in EQUAL is 2n−2 + (C1− 2n−2) + C2, thus

N4(2
n−2 − 2n−m + x) = [1 +

(
2n

2

)
+

(
2n

4

)
− 2m−2 − 1

2m−2
2n−2

−1

2
(C1 + C2− 2n−2)]× 22

n−2−2n−m+x−1
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Similarly we can define N4(2
n−2 − 2n−m + x) = g(n,m) × 22

n−2−2n−m+x−1 with notation

g(n,m). Now we consider the category of sequences with 4-error linear complexity 2n−1−
2n−m.

Lemma 2.5.3 Let N4(2
n−1 − 2n−m) be the number of 2n-periodic binary sequences with

linear complexity less than 2n and the 4-error linear complexity 2n−1 − 2n−m, 2 ≤ m ≤ n.

Then

N4(2
n−1−2n−m) = [

(
2n

4

)
−E1+E2/4−E3+E4/2−E5+E6/4−E7+E8/8]×22

n−1−2n−m−1

where E1, E2, · · · , E8 are defined in the following proof.

Proof. Suppose that s(n) = 2n−1−2n−m, and u(n) is a binary sequence with WH(u(n)) = 0

or 2. One can verify that there exists a binary sequence v(n) with WH(v(n)) = 4, such

that L(u(n) + v(n)) = 2n−1−2n−m. Then the 4-error linear complexity of u(n) + s(n) is less

than 2n−1 − 2n−m.

Suppose that u(n) is a binary sequence with WH(u(n)) = 4. Let us divide one period of

u(n) into 2n−m subsequences with the following form

{ua, ua+2n−m , ua+2n−m+1 , · · · , ua+(2m−1)×2n−m}

where 0 ≤ a < 2n−m. Next we consider four cases depending on the nonzero element

distribution in the subsequences of u(n).

Case 1): If only two nonzero elements of u(n) are in one subsequence and the other two

nonzero elements are in another one, then the number of these u(n) is given by

E1 =

(
2n−m

2

)
×

(
2m

2

)
×

(
2m

2

)
.

Among these u(n), if the distance of two nonzero bits in each subsequence is not 2n−m(1 +

2a), a ≥ 0, in other words, the two nonzero bits in each subsequence are both at odd

locations or even locations, then the number of these u(n) is given by(
2n−m

2

)
×

(
2

1

)
×

(
2m−1

2

)
×

(
2

1

)
×

(
2m−1

2

)
.

Also the number of sequences with exactly two nonzero elements and their distance equal

to 2n−1, is given by(
2n−m

2

)
×

(
2

1

)
× 2m−1 ×

(
2

1

)
(

(
2m−1

2

)
− 2m−2).
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and the number of sequences with at least two nonzero elements and their distance equal

to 2n−1, is given by(
2n−m

2

)
× [2m−1 × 2m−1 + 2m+1(

(
2m−1

2

)
− 2m−2)]

So, if only two nonzero elements are in each subsequence, and their distance is neither

2n−m(1 + 2a) nor 2n−1, then the number of these u(n) is given by

E2 = 4×

(
2n−m

2

)
×

(
2m−1

2

)
×

(
2m−1

2

)

−

(
2n−m

2

)
× [22m−2 + 2m+1(

(
2m−1

2

)
− 2m−2)].

For each u(n), there exist 3 distinct sequences v
(n)
i , 1 ≤ i ≤ 3, with WH(v

(n)
i ) = 4, such

that L(u(n) + v
(n)
i ) = 2n−1 − 2n−r or 2n−1 − (2n−r + 2n−k), 1 < r < m,m+ 1 ≤ k ≤ n.

Case 2): If only two nonzero elements of u(n) are in one subsequence and the other two

nonzero elements are in other two distinct subsequences, then the number of these u(n) is

given by

E3 =

(
2n−m

3

)
×

(
3

1

)
×

(
2m

2

)
× 2m × 2m.

Among these u(n), the distance of the two nonzero bits which are in one subsequence

is not 2n−m(1 + 2a), then the number of these u(n) is given by

(
2n−m

3

)
×

(
3

1

)
×

(

(
2m−1

2

)
× 2) × 2m × 2m. Further note that the number of sequences, in which the

distance of the two nonzero bits is 2n−1, is given by(
2n−m

3

)
×

(
3

1

)
× 2m−1 × 2m × 2m.

So, if only two nonzero elements are in one subsequence, the other two nonzero elements

are in other two distinct subsequences. The distances of the two nonzero elements in one

subsequence is neither 2n−m(1 + 2a) nor 2n−1, then the number of these u(n) is given by

E4 =

(
2n−m

3

)(
3

1

)(
2m−1

2

)
× 22m+1 −

(
2n−m

3

)(
3

1

)
× 23m−1.
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Also we note that for each u(n) there exists one unique sequence v(n), with WH(v(n)) = 4,

such that L(u(n) + v(n)) = 2n−1 − 2n−r, 1 < r < m.

Case 3): If there are only 3 nonzero elements in one subsequence, then the number of

these u(n) is given by

E5 =

(
2n−m

2

)(
2

1

)(
2m

3

)
× 2m.

Suppose that there are only three nonzero elements of u(n) in one subsequence, and there

are no two nonzero bits with distance equal to 2n−m(1 + 2a). Then the number of these

u(n) is given by (
2n−m

2

)(
2

1

)
[

(
2m−1

3

)
× 2]× 2m

Among these u(n), there are(
2n−m

2

)(
2

1

)
[2m−1 × (2m−1 − 2)]× 2m

sequences, in which there exist two nonzero elements with distance 2n−1. So, if there are

only 3 nonzero elements of u(n) in one subsequence, and there are no two nonzero elements

with distance 2n−m(1 + 2a) or 2n−1, then the number of these u(n) can be given by

E6 = 2m+2 ×

(
2n−m

2

)
×

(
2m−1

3

)
−

(
2n−m

2

)
× (2m−1 − 2)× 22m.

Similarly for each u(n), there exist 3 distinct binary sequences v
(n)
i , 1 ≤ i ≤ 3, with

WH(v
(n)
i ) = 4, such that L(u(n) + v

(n)
i ) = 2n−1 − 2n−r , 1 < r < m.

Case 4): If all 4 nonzero elements of u(n) are in one subsequence, then the number of these

u(n) is given by

E7 = 2n−m ×

(
2m

4

)
.

Suppose that all 4 nonzero elements of u(n) are in one subsequence, and there are no two

nonzero elements with distance 2n−m(1 + 2a). Then the number of these u(n) is given by

2n−m × 2×

(
2m−1

4

)
.
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Among these u(n), there are

2n−m × 2× 2m−2[

(
2m−1 − 2

2

)
− 2m−2 + 1]

sequences, in which there exist exactly two nonzero elements with distance 2n−1. Note

that there are 2n−m+1 ×

(
2m−2

2

)
sequences, in which there exist exactly 2 pairs of

elements with distance 2n−1. So we can obtain that there are

2n−1

(
2m−1 − 2

2

)
− 2n−m+1 ×

(
2m−2

2

)
sequences, in which there exist at least two nonzero elements with distance 2n−1.

So, if all four nonzero elements of u(n) are in one subsequence, and there are no two nonzero

elements with distance 2n−m(1 + 2a) or 2n−1, then the number of these u(n) is given by

E8 = 2n−m+1 ×

(
2m−1

4

)
− [2n−1 ×

(
2m−1 − 2

2

)
− 2n−m+1 ×

(
2m−2

2

)
].

Further, one can show that there exist

(
4

2

)
+ 1 = 7 distinct binary sequences v

(n)
i , 1 ≤

i ≤ 7, with WH(v
(n)
i ) = 4, such that L(u(n) + v

(n)
i ) = 2n−1 − 2n−r, 1 < r < m or

2n−1 − (2n−r + 2n−k), 1 < r < k < m.

Finally, as the number of sequences in LESS is (E1 − E2) + (E3 − E4) + (E5 − E6) +

(E7− E8) and the number of sequences in EQUAL is E2 + E4 + E6 + E8, thus

N4(2n−1 − 2n−m)

= [

(
2n

4

)
− (E1− E2)− 3

4
E2− (E3− E4)− 1

2
E4− (E5− E6)

−3

4
E6− (E7− E8)− 7

8
E8]× 22

n−1−2n−m−1

= [

(
2n

4

)
− E1 + E2/4− E3 + E4/2− E5 + E6/4− E7 + E8/8]× 22

n−1−2n−m−1.

Now we rewrite N4(2
n−1 − 2n−m) = h(n,m)× 22

n−1−2n−m−1 with notation h(n,m). Next

we present an important lemma, which will be used in proving our main result.

Lemma 2.5.4 Suppose that s(n) is a 2n-periodic binary sequence with linear complexity

2n−1 − (2n−m + 2n−j), n > 3, 2 < m < j ≤ n, and WH(s(n)) = 8. Then the number of

these s(n) is 2n+2m+j−10.
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Proof. Suppose that s(n−j) is a 2n−j-periodic binary sequence with linear complexity 2n−j

and WH(s(n−j)) = 1, then the number of these s(n−j) is 2n−j .

So the number of 2n−j+1-periodic binary sequences s(n−j+1) with linear complexity 2n−j+1−
2n−j = 2n−j and WH(s(n−j+1)) = 2 is also 2n−j .

For n −m > n − j, if 2n−m-periodic binary sequences s(n−m) are with linear complexity

2n−m − 2n−j and WH(s(n−m)) = 2, then 2n−m − 2n−j − (2n−j+1 − 2n−j) = 2n−m−1 +

2n−m−2 + · · ·+ 2n−j+1.

Based on the Games-Chan algorithm (Games and Chan, 1983), the number of these s(n−m)

is given by (22)n−m−(n−j)−1 × 2n−j = 22(n−m)−(n−j)−2.

So the number of 2n−m+1-periodic binary sequences s(n−m+1) with linear complexity

2n−m+1 − (2n−m + 2n−j) = 2n−m − 2n−j and WH(s(n−m+1)) = 4 is also 22(n−m)−(n−j)−2.

For n−1 > n−m, based on the Games-Chan algorithm, if 2n−1-periodic binary sequences

s(n−1) are with linear complexity 2n−1 − (2n−m + 2n−j) and WH(s(n−1)) = 4, then the

number of these s(n−1) is given by

(24)n−1−(n−m)−1 × 22(n−m)−(n−j)−2 = 24(n−1)−2(n−m)−(n−j)−2−4 = 2n+2m+j−10.

This completes the proof.

Now it is time to investigate the category of sequences with 4-error linear complexity

2n−1 − (2n−m + 2n−j). In order to simplify the complexity of the following proof for

Lemma 2.5.5, we first analyze the possible decompositions and then give an outline for its

proof as below.

It remains for us to investigate two cases. Case A is to exclude all sequences s + u

satisfying s + u ∈ S + E, but L4(s + u) < 2n−1 − (2n−m + 2n−j). Based on Lemma

2.1.2 in Section 2.1, this is equivalent to checking if there exists a sequence v such that

L(u+ v) = 2n−1 − (2n−m + 2n−j), where WH(v) = 4. Case B is to check the repetition of

some sequences in S +E satisfying that s+ u, t+ v ∈ S +E and L4(s+ u) = L4(t+ v) =

2n−1 − (2n−m + 2n−j) with s 6= t, u 6= v, but s+ u = t+ v. Similarly, this is equivalent to

checking if there exists a sequence v such that L(u+v) = L(s+ t) < 2n−1− (2n−m+ 2n−j)

and if so, check the number of such sequences. This is the first layer decomposition in

Figure 2.1.
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Figure 2.1: The decomposition of sequences with L4(s+ u) = 2n−1 − (2n−m + 2n−j)

In Case A, we need to investigate the number of sequences w(n) satisfying w(n) = u(n)+v(n)

with L(w(n)) = 2n−1 − (2n−m + 2n−j) and WH(w(n)) = 8,WH(u(n)) = 4. Once we obtain

the number of w(n), we need to derive the number of u(n). In order to exclude possible

repetitions of u(n) with different w(N), we have two subcases to consider. Case A.1:

LH(u(n)) = RH(u(n)). Case A.2: There are only two nonzero elements with distance

2n−1 among 4 nonzero elements of u(n). This is the decomposition under node A in Figure

2.1.

In Case B, there are also two subcases. Case B.1: we need to first find the number of

sequences w(n) satisfying w(n) = u(n) + v(n) with L(w(n)) = 2n−1 − (2n−m + 2n−k) <

2n−1 − (2n−m + 2n−j),m < k < j and WH(w(n)) = 8,WH(u(n)) = 4. Case B.2: Consider

sequence u(n) for which there is no binary sequence v(n), such that L(u(n) + v(n)) =

2n−1 − (2n−m + 2n−k),m < k < j. This is the decomposition under node B in Figure 2.1.

Similarly, we can decompose the Case B.1 into three subcases. Case B.1.1: LH(u(n)) =

RH(u(n)). Case B.1.2: There are only 2 nonzero elements with distance 2n−1 among 4

nonzero elements of u(n). Case B.1.3: There are no two nonzero elements with distance

2n−1 among 4 nonzero elements of u(n).

In Case B.2, there are five subcases: Case B.2.1, Case B.2.2, Case B.2.3, Case B.2.4 and

Case B.2.5.

The next step is to find all the number of sequences u(n) in all the nodes and there are

total 10 leaves (cases). These cases are investigated one by one in Lemma 2.5.5.
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Remark: In comparison with Lemma 2.3.3 in Section 2.3, for the 3-error linear complexity

being equal to 2n−1 − 2n−m, there are only 4 leaves (cases) in the decomposition. The

counting technique based on sieving is much more complicated in this section.

Next we will deal with all the cases in Figure 2.1 in Lemma 2.5.5.

Lemma 2.5.5 LetN4(2
n−1−(2n−m+2n−j)) be the number of 2n-periodic binary sequences

with linear complexity less than 2n and the 4-error linear complexity 2n−1 − (2n−m +

2n−j), n > 3, 2 < m < j ≤ n. Then

N4(2
n−1 − (2n−m + 2n−j))

= [1 +

(
2n

2

)
+

(
2n

4

)
− F4−

j−1∑
k=m+1

(
22m−3 − 1

22m−3
F6 +

2m−1 − 1

2m−1
F7 + F8/2)

−2m−2 − 1

2m−2
F10− F11/2− F13− 3

4
F14− 2m−1 − 1

2m−1
F17− 3

4
F18− 22m−4 − 1

22m−4
F19

−F22/2− 2m−2 − 1

2m−2
F23− F25− F26− 7

8
F27]× 22

n−1−(2n−m+2n−j)−1

where F1, F2, · · · , F27 are defined in the following proof.

Proof. Suppose that L(s(n)) = 2n−1 − (2n−m + 2n−j), u(n) is a binary sequence with

WH(u(n)) = 0, 2 or 4. Then the number of these u(n) is given by 1 +

(
2n

2

)
+

(
2n

4

)
.

Next we will investigate the u(n) by Case A) and Case B) separately.

Case A): Suppose that w(n) is a binary sequence with linear complexity 2n−1 − (2n−m +

2n−j), and WH(w(n)) = 8. By Lemma 2.5.4, the number of these w(n) can be given by

2n+2m+j−10. Further by Lemma 2.1.9 in Section 2.1, there exist sequences u(n) and v(n)

with WH(u(n)) = WH(v(n)) = 4, such that L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−j), thus

the 4-error linear complexity of u(n) + s(n) is less than 2n−1 − (2n−m + 2n−j).

Now suppose that u(n) is a binary sequence with WH(u(n)) = 4, and its 4 nonzero bits

are part of the 8 nonzero elements in each w(n). There are totally 2n+2m+j−10 ×

(
8

4

)
such sequences u(n), but some of which may be counted repeatedly. So we need to exclude

these repetitions as discussed below.

Case A.1): LH(u(n)) = RH(u(n)). Among these u(n), if there exist two nonzero elements
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in LH(u(n)) with distance 2n−j(1 + 2a), then the number of these u(n) is given by

F1 = 2n−j ×

(
2j−1

2

)
− 2n−j+1 ×

(
2j−2

2

)
= 2n+j−4.

One can observe that each of these u(n) is counted 2n−1

2n−m+1 × 2n−1

2n−m+1 = 22(m−2) times

repeatedly in 2n+2m+j−10×

(
8

4

)
. This repetition is due to different choice of w(n) which

can produce the same u(n).

Similarly, if the distance of two nonzero elements in LH(u(n)) is 2n−m(1+2a), then each of

these u(n) is counted 22(m−2)× 2n−m

2n−j+1 = 2m+j−5 times repeatedly in 2n+2m+j−10×

(
8

4

)
,

and the number of these u(n) is given by

F2 = 2n−m

(
2m−1

2

)
− 2n−m+1

(
2m−2

2

)
= 2n+m−4.

Case A.2): There are only two nonzero elements with distance 2n−1 among four nonzero

elements of u(n). First we select three nonzero elements among four nonzero elements of

LH(w(n)), second, one selects two nonzero elements among these three nonzero elements

and each of these two nonzero elements can be put in LH(u(n)) or RH(u(n)). So the

number of these u(n) is given by

2n+2m+j−10

(
4

3

)(
3

2

)
× 22 = 3× 2n+2m+j−6.

Similar to the first case, it is easy to verify that each of these u(n) is counted 2n−1

2n−m+1 = 2m−2

times repeatedly. Suppose that u(n) is a binary sequence with WH(u(n)) = 4, and there

are only two nonzero elements with distance 2n−1 among four nonzero elements of u(n).

Then the number of these u(n) without repetition is given by

F3 = 3× 2n+2m+j−6/2m−2 = 3× 2n+m+j−4.

So, if the 4 nonzero elements of u(n) are part of the 8 nonzero elements in w(n), then

there exists one unique binary sequence v(n) with WH(v(n)) = 4, such that L(u(n) +

v(n)) = 2n−1 − (2n−m + 2n−j). So the 4-error linear complexity of u(n) + s(n) is less than
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2n−1 − (2n−m + 2n−j), and the number of these u(n) can be given by

F4 = 2n+2m+j−10

(
8

4

)
− (22(m−2) − 1)F1− (2m+j−5 − 1)F2− (2m−2 − 1)F3

= 2n+2m+j−6 + 2n+m−4 + 2n+j−4 + 3× 2n+m+j−4.

Next we consider the case of w(n) with linear complexity less than 2n−1 − (2n−m + 2n−j).

Case B): Consider u(n) for which there is no v
(n)
1 , such that L(u(n)+v

(n)
1 ) = 2n−1−(2n−m+

2n−j), but there exists v(n), such that L(u(n) + v(n)) < 2n−1− (2n−m + 2n−j). In this case,

let t(n) = s(n)+u(n)+v(n), then L(t(n)) = 2n−1−(2n−m+2n−j), and t(n)+v(n) = s(n)+u(n).

Next we investigate two different cases based on the property of u(n).

Case B.1): We first investigate the case of a sequence w(n) = u(n) + v(n) with L(w(n)) =

2n−1− (2n−m + 2n−k),m < k < j and WH(w(n)) = 8. By Lemma 3.4, the number of these

w(n) is given by 2n+2m+k−10.

Suppose that u(n) is a binary sequence with WH(u(n)) = 4, and the 4 nonzero elements

are part of the 8 nonzero elements of w(n). Then there are totally 2n+2m+k−10

(
8

4

)
such

sequences u(n), some of which may be counted repeatedly. In order to exclude repetitions,

we will investigate these u(n) by 3 subcases.

Case B.1.1): LH(u(n)) = RH(u(n)).

By Case A.1, if there exist two nonzero elements with distance 2n−m(1 + 2a), then the

number of these u(n) is given by

F5 = 2n+m−4.

In this case, there exists a v(n), such that L(u(n) + v(n)) = 2n−1− (2n−m + 2n−j). So there

is no need to consider these u(n).

By Case A.1, if there exist two nonzero elements with distance 2n−k(1 + 2a), then the

number of these u(n) is given by

F6 = 2n+k−4.

To be specific, there exist 22(m−2) distinct binary sequences v(n), such that L(u(n)+v(n)) =

2n−1 − (2n−m + 2n−k); there exist (2m−2 − 1)2 distinct binary sequences v(n), such that
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L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−k) or 2n−1 − 2n−i, 2 ≤ i < m; there exist 2(2m−2 − 1)

distinct binary sequences v(n), such that WH(u(n) + v(n)) = 4. So the number of distinct

binary sequences v
(n)
i , 1 ≤ i ≤ 22m−3 − 1, with WH(v

(n)
i ) = 4, and L(u(n) + v

(n)
i ) ≤

2n−1 − (2n−m + 2n−k), is given by

22(m−2) + (2m−2 − 1)2 + 2(2m−2 − 1) = 22m−3 − 1.

Case B.1.2): There are only two nonzero elements with distance 2n−1. By Case A.2), the

number of these u(n) is given by

F7 = 3× 2n+m+k−4.

To be specific, there exist 2m−2 distinct binary sequences v(n), such that L(u(n) + v(n)) =

2n−1 − (2n−m + 2n−k); there exist 2m−2 − 1 distinct binary sequences v(n), such that

WH(u(n) + v(n)) = 4. So the number of distinct binary sequences v
(n)
i , 1 ≤ i ≤ 2m−1 − 1,

with WH(v
(n)
i ) = 4, and L(u(n) + v

(n)
i ) ≤ 2n−1 − (2n−m + 2n−k), is given by

2m−2 + 2m−2 − 1 = 2m−1 − 1.

Case B.1.3): If there are no two nonzero elements with distance 2n−1, then the number of

these u(n) is given by

F8 = 2n+2m+k−10 × 24 = 2n+2m+k−6.

For each u(n), there exists one unique binary sequence v(n), with WH(v(n)) = 4, such that

L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−k) < 2n−1 − (2n−m + 2n−j),m < k < j.

Case B.2): Consider the sequence u(n) for which there is no binary sequence v(n), such

that L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−k),m < k < j.

Let us divide one period of such u(n) into 2n−m+1 subsequences with the following form

{ua, ua+2n−m+1 , ua+2n−m+2 , · · · , ua+(2m−1−1)×2n−m+1}

where 0 ≤ a < 2n−m+1.
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Case B.2.1): Suppose that u(n) is a 2n-periodic binary sequence with WH(u(n)) = 2, and

all two nonzero elements are in one subsequence. Then the number of these u(n) is given

by

F9 = 2n−m+1

(
2m−1

2

)
.

Among these u(n), there are F10 = 2n−1 sequences, in which the distance of the 2 nonzero

elements is 2n−1. Also for each of these u(n), there exist

2n−1

2× 2n−2
+

2n−1

2× 2n−3
+ · · ·+ 2n−1

2× 2n−m+1
= 2m−2 − 1

distinct binary sequences v
(n)
i , 1 ≤ i ≤ 2m−2 − 1, with WH(v

(n)
i ) = 2, such that L(u(n) +

v
(n)
i ) = 2n−1 − 2n−r, 1 < r < m.

So, if the two nonzero elements of u(n) are in one subsequence, and the distance of the 2

nonzero elements is not 2n−1, then the number of these u(n) is given by F11 = F9−F10.

For each of these u(n), there exists one unique binary sequence v(n) with WH(v(n)) = 2,

such that L(u(n) + v(n)) = 2n−1 − 2n−r, 1 < r < m.

Case B.2.2): Suppose that u(n) is a 2n-periodic binary sequence with WH(u(n)) = 4, and

only three nonzero elements are in one subsequence. Then there exist at least one pair of

nonzero elements with distance 2n−i(1 + 2a), 1 < i < m, a ≥ 0. Thus u(n) is not in Case

B.1). So the number of these u(n) is given by

F12 =

(
2n−m+1

2

)
×

(
2

1

)
×

(
2m−1

3

)
× 2m−1.

Among these u(n), there are

F13 =

(
2n−m+1

2

)
×

(
2

1

)
× 2m−2 × (2m−1 − 2)× 2m−1

sequences, in which the distance of the two nonzero elements is 2n−1. It is easy to verify

that there exists a binary sequence v(n) with WH(v(n)) = 2, such that L(u(n) + v(n)) =

2n−1 − 2n−r, 1 < r < m.

Let t(n) = s(n)+u(n)+v(n), then L(t(n)) = 2n−1−(2n−m+2n−j), and t(n)+v(n) = s(n)+u(n),

thus we only need to count t(n) + v(n) with WH(v(n)) = 2.

So, if only three nonzero elements of u(n) are in one subsequence, and there are no two

nonzero elements with distance 2n−1, then the number of these u(n) can be given by F14 =
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F12−F13. Among these u(n), there exist 3 distinct binary sequences v
(n)
i , 1 ≤ i ≤ 3, with

WH(v
(n)
i ) = 4, such that WH(u(n) + v

(n)
i ) = 4 and L(u(n) + v

(n)
i ) < 2n−1 − (2n−m + 2n−j).

Case B.2.3): Suppose that u(n) is a 2n-periodic binary sequence with WH(u(n)) = 4, and

2 nonzero elements are in one subsequence, and the other two nonzero elements are in a

different one. Then the number of these u(n) can be given by

F15 =

(
2n−m+1

2

)
×

(
2m−1

2

)2

.

Among these u(n), if there exist 2 pairs of nonzero elements with distance 2n−1, then the

distance of 2 nonzero elements from different subsequences is 2n−i(1 + 2a),m ≤ i ≤ n, a ≥
0. If the 4 nonzero elements are in w(n), and L(w(n)) = 2n−1− (2n−m + 2n−k),m < k ≤ j,

then the number of those u(n) is F2 +
j∑

k=m+1

2n+k−4 as discussed in Case A.1) and Case

B.1.1). So the number of the remaining sequences u(n) can be given by

F16 = F15− F2−
j∑

k=m+1

2n+k−4.

Among these u(n), if there exist only 2 nonzero elements with distance 2n−1, then the

distance of other 2 nonzero elements is 2n−i(1 + 2a), 1 < i < m, a ≥ 0. Thus u(n) is not in

Case B.1). So the number of these u(n) is given by

F17 =

(
2n−m+1

2

)
×

(
2

1

)
× 2m−2 × [

(
2m−1

2

)
− 2m−2].

For each u(n), there exist ( 2n−1

2m+1 − 1)× 2 + 1 = 2m−1− 1 distinct binary sequences v
(n)
i , 1 ≤

i ≤ 2m−1 − 1, with WH(v
(n)
i ) = 4, such that L(u(n) + v

(n)
i ) < 2n−1 − (2n−m + 2n−j).

If the distance of 2 nonzero elements in each subsequence is not 2n−1, then the number of

these u(n) is given by

F18 =

(
2n−m+1

2

)
× [

(
2m−1

2

)
− 2m−2]2.

There exist 3 distinct binary sequences v
(n)
i , 1 ≤ i ≤ 3, with WH(v

(n)
i ) = 4, such that

L(u(n) + v
(n)
i ) < 2n−1 − (2n−m + 2n−j).
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So, there are F19 = F16 − F17 − F18 sequences, in which the distance of 2 nonzero

elements in each subsequence is 2n−1, and the distance of 2 nonzero elements from different

subsequences is 2n−k(1 + 2a), j < k ≤ n. There exist ( 2n−1

2n−m+1 − 1)2 + ( 2n−1

2n−m+1 − 1)× 2 =

22m−4− 1 distinct binary sequences v
(n)
i , 1 ≤ i ≤ 22m−4− 1, with WH(v

(n)
i ) = 4, such that

L(u(n) + v
(n)
i ) < 2n−1 − (2n−m + 2n−j).

Case B.2.4): Suppose that u(n) is a binary sequence with WH(u(n)) = 4 and 2 nonzero

elements of u(n) are in one subsequence and the other 2 nonzero elements are in the other

2 distinct subsequences. Then the number of these u(n) can be given by

F20 =

(
2n−m+1

3

)
×

(
3

1

)
×

(
2m−1

2

)
× (2m−1)2.

If the distance of 2 nonzero elements of the same subsequence is 2n−1, then we need to

remove some sequences u(n) already discussed in Case A.2) and Case B.1.2). The number

of those u(n) is 3× 2n+m+k−4, and there exists a binary sequence v(n) with WH(v(n)) = 4,

such that L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−k),m < k ≤ j. So the number of the

remaining sequences u(n) is given by

F21 = F20− 3

j∑
k=m+1

2n+m+k−4.

Among these u(n), if there are no 2 nonzero elements with distance 2n−1, then the number

of these u(n) is given by

F22 =

(
2n−m+1

3

)(
3

1

)
× [

(
2m−1

2

)
− 2m−2]× (2m−1)2.

For each of these u(n), there exists one binary sequence v(n), with WH(v(n)) = 4, such that

L(u(n) + v(n)) = 2n−1 − 2n−r, 1 < r < m.

So, if there exist 2 nonzero elements of u(n) with distance 2n−1, and there is no binary

sequence v(n) with WH(v(n)) = 4, such that L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−k),m <

k ≤ j, then the number of these u(n) is given by

F23 = F21− F22.

For each of these u(n), there exist 2n−1

2n−m+1 −1 = 2m−2−1 distinct binary sequences v
(n)
i , 1 ≤

i ≤ 2m−2 − 1, with WH(v
(n)
i ) = 4, such that L(u(n) + v

(n)
i ) = 2n−1 − 2n−r, 1 < r < m.

55



Case B.2.5): Suppose that u(n) is a binary sequence with WH(u(n)) = 4 and all 4 nonzero

elements of u(n) are in one subsequence. Then the number of these u(n) is given by

F24 = 2n−m+1 ×

(
2m−1

4

)
.

Among these u(n), there are

F25 = 2n−m+1 ×

(
2m−2

2

)
sequences, in which there exist nonzero elements z1,z2, z3 and z4, such that the distance

of z1 and z2, and the distance of z3 and z4 are all 2n−1.

For each of these u(n), there exists a binary sequence v(n) with WH(v(n)) = 0, such that

L(u(n) + v(n)) = 2n−1 − 2n−r, 1 < r < m. Let t(n) = s(n) + u(n) + v(n) = s(n) + u(n), thus

we only need to count t(n) + v(n) with WH(v(n)) = 0.

If there are only 2 nonzero elements with distance 2n−1, then the number of these u(n) is

given by

F26 = 2n−m+1 × 2m−2 × [

(
2m−1 − 2

2

)
− (2m−2 − 1)].

For each of these u(n), there exist 2 binary sequences v(n) with WH(v(n)) = 2, such

that L(u(n) + v(n)) = 2n−1 − 2n−r, 1 < r < m. Let t(n) = s(n) + u(n) + v(n), then

L(t(n)) = 2n−1 − (2n−m + 2n−j), and t(n) + v(n) = s(n) + u(n), thus we only need to count

t(n) + v(n) with WH(v(n)) = 2.

So, if there are no 2 nonzero elements with distance 2n−1, then the number of these u(n)

can be given by

F27 = F24− F25− F26.

For each of these u(n), there exist

(
4

2

)
+ 1 = 7 distinct binary sequences v

(n)
i , 1 ≤ i ≤ 7,

with WH(v
(n)
i ) = 4, such that L(u(n) + v

(n)
i ) < 2n−1 − (2n−m + 2n−j).

Finally, we have that the number of sequences in LESS is F4 and the number of sequences

in EQUAL is given by

F10+F11+F13+F14+F17+F18+F19+F22+F23+F25+F26+F27+

j−1∑
k=m+1

(F6+F7+F8).
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Notice that in the cases including F13, F25, F26, we only need to count t(n) + v(n) with

WH(v(n)) 6= WH(u(n)), which leads to the following

N4(2
n−1 − (2n−m + 2n−j))

= [1 +

(
2n

2

)
+

(
2n

4

)
− F4−

j−1∑
k=m+1

(
22m−3 − 1

22m−3
F6 +

2m−1 − 1

2m−1
F7 + F8/2)

−2m−2 − 1

2m−2
F10− F11/2− F13− 3

4
F14− 2m−1 − 1

2m−1
F17− 3

4
F18− 22m−4 − 1

22m−4
F19

−F22/2− 2m−2 − 1

2m−2
F23− F25− F26− 7

8
F27]× 22

n−1−(2n−m+2n−j)−1

Let us denote N4(2
n−1− (2n−m + 2n−j)) = p(n,m, j)× 22

n−1−(2n−m+2n−j)−1 with notation

p(n,m, j). Now we investigate the category of sequences with the 4-error linear complexity

2n−1 − (2n−m + 2n−j) + x.

Lemma 2.5.6 Let N4(2
n−1 − (2n−m + 2n−j) + x) be the number of 2n-periodic binary

sequences with linear complexity less than 2n and the 4-error linear complexity 2n−1 −
(2n−m + 2n−j) + x, n > 5, 2 < m < j < n− 1, 1 ≤ x < 2n−j−1. Then

N4(2
n−1 − (2n−m + 2n−j) + x)

= [1 +

(
2n

2

)
+

(
2n

4

)
− 2n−j(2m+j−4 − 1)

−
j∑

k=m+1

(
22m−3 − 1

22m−3
F6 +

2m−1 − 1

2m−1
F7 + F8/2)

−2m−2 − 1

2m−2
F10− F11/2− F13− 3

4
F14− 2m−1 − 1

2m−1
F17− 3

4
F18− 22m−4 − 1

22m−4
F19

−F22/2− 2m−2 − 1

2m−2
F23− F25− F26− 7

8
F27]× 22

n−1−(2n−m+2n−j)+x−1

where F6, F7, · · · , F27 are defined in the proof of Lemma 2.5.5.

Proof. Suppose that s(n) is a binary sequence with linear complexity 2n−1 − (2n−m +

2n−j)+x, u(n) is a binary sequence with WH(u(n)) = 0, 2 or 4. By Lemma 2.1.9 in Section

2.1, the 4-error linear complexity of s(n) + u(n) is still 2n−1 − (2n−m + 2n−j) + x. So, we

only need to characterize the set EQUAL.

Based on the proof of Lemma 2.5.5, we only need to characterize these F4 binary se-

quences u(n) in set LESS. Suppose that w(n) is a 2n-periodic sequence with linear com-

plexity 2n−1 − (2n−m + 2n−j) and WH(w(n)) = 8. Then LESS = {u(n)|WH(u(n)) =

4 and the 4 nonzero elements are part of the 8 nonzero elements of w(n)}
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We will investigate these binary sequences u(n) by the following three cases.

Case 1): LH(u(n)) = RH(u(n)). Based on the proof of Lemma 3.5, the number of these

u(n) can be given by 2n+m−4 + 2n+j−4.

Case 1.1): Among these u(n), if there exist 2 nonzero elements in LH(u(n)) whose distance

is 2n−m(1 + 2a), a ≥ 0, and the number of these u(n) can be given by

G1 = 2n+m−4

Suppose that WH(v(n)) = 4 and L(u(n) + v(n)) < 2n−1 − (2n−m + 2n−j) + x. We will

investigate the number of these v(n) by the following 2 cases.

Case 1.1.1): L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−k), m < k ≤ j. By Case A.1) of Lemma

3.5, the number of these v(n) is 2m+k−5.

Case 1.1.2): Let us divide LH(u(n)) into 2n−m subsequences. From the subsequence which

contains the 2 nonzero elements of LH(u(n)), we first select one location as one nonzero

element of LH(v(n)). The number of locations of another nonzero element in LH(v(n)) is
2n−1

2n−m+1 , such that the distance of 2 nonzero elements of LH(v(n)) is 2n−m(1 + 2a), a ≥ 0.

As we select every v(n) twice and one v(n) is the same as u(n), thus the number of these v(n)

is 1
2( 2n−1

2n−m × 2n−1

2n−m+1 )− 1 = 22(m−2) − 1, such that L(u(n) + v(n)) < 2n−1 − (2n−m + 2n−j).

Therefore, there exist

j∑
k=m+1

2m+k−5 + 22(m−2) − 1 = 2m+j−4 − 1

distinct binary sequences v
(n)
i , 1 ≤ i ≤ 2m+j−4− 1, with WH(v

(n)
i ) = 4, such that L(u(n) +

v
(n)
i ) < 2n−1 − (2n−m + 2n−j) + x.

Case 1.2): Based on the proof of Lemma 2.5.5, if there exist 2 nonzero elements in LH(u(n))

with distance 2n−j(1 + 2a), then the number of these u(n) can be given by

G2 = 2n+j−4

Suppose that WH(v(n)) = 4 and L(u(n) + v(n)) < 2n−1 − (2n−m + 2n−j) + x. We will

investigate the number of these v(n) by the following 2 cases.

Case 1.2.1): L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−j). By Case A.1) of Lemma 2.5.5, the

the number of these v(n) is 22(m−2).
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Case 1.2.2): From the locations which have distance 2n−m(2a), a ≥ 0 with the first nonzero

element of LH(u(n)), we first select one location as one nonzero element of LH(v(n)). Then

from the locations which have distance 2n−m(2b), b ≥ 0 with the second nonzero element

of LH(u(n)), we select one location as another nonzero element of LH(v(n)). As one v(n)

is the same as u(n), thus the number of these v(n) is

(
2n−1

2n−m+1
)2 − 1 = 22(m−2) − 1,

such that L(u(n) + v(n)) < 2n−1 − (2n−m + 2n−j).

Therefore, there exist 22(m−2)+22(m−2)−1 = 22m−3−1 distinct binary sequences v
(n)
i , 1 ≤

i ≤ 22m−3 − 1, with WH(v
(n)
i ) = 4, such that L(u(n) + v

(n)
i ) < 2n−1 − (2n−m + 2n−j) + x.

Case 2): There are only 2 nonzero elements with distance 2n−1. By the proof of Lemma

2.5.5, the number of these u(n) can be given by

G3 = 3× 2n+m+j−4

For each u(n), there exist

2n−1

2n−m+1
+ (

2n−1

2n−m+1
− 1) = 2m−1 − 1

distinct binary sequences v
(n)
i , 1 ≤ i ≤ 2m−1 − 1, with WH(v

(n)
i ) = 4, such that L(u(n) +

v
(n)
i ) < 2n−1 − (2n−m + 2n−j) + x. There are 2n−1

2n−m+1 − 1 distinct binary sequences v(n),

such that WH(u(n) + v(n)) = 4.

Case 3): If there are no 2 nonzero elements with distance 2n−1, then the number of these

u(n) can be given by

G4 = 2n+2m+j−10 × 24 = 2n+2m+j−6

For each u(n), there exists one unique binary sequence v(n), with WH(v(n)) = 4, such that

L(u(n) + v(n)) = 2n−1 − (2n−m + 2n−j).
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Based on Case B) in the proof of Lemma 3.5, it is easy to have the following

N4(2
n−1 − (2n−m + 2n−j) + x)

= [1 +

(
2n

2

)
+

(
2n

4

)
− 2m+j−4 − 1

2m+j−4 G1− 22m−3 − 1

22m−3
G2− 2m−1 − 1

2m−1
G3−G4/2

−
j−1∑

k=m+1

(
22m−3 − 1

22m−3
F6 +

2m−1 − 1

2m−1
F7 + F8/2)

−2m−2 − 1

2m−2
F10− F11/2− F13− 3

4
F14− 2m−1 − 1

2m−1
F17− 3

4
F18− 22m−4 − 1

22m−4
F19

−F22/2− 2m−2 − 1

2m−2
F23− F25− F26− 7

8
F27]× 22

n−1−(2n−m+2n−j)+x−1

Finally, letN4(2
n−1−(2n−m+2n−j)+x) = q(n,m, j)×22

n−1−(2n−m+2n−j)+x−1 with notation

q(n,m, j) and we have the following result.

Lemma 2.5.7 Let L(r, c) = 2n − 2r + c, 4 ≤ r ≤ n, 1 ≤ c ≤ 2r−3 − 1, and N4(L) be

the number of 2n-periodic binary sequences with linear complexity less than 2n and the

4-error linear complexity L. Then

N4(L) =


1 +

(
2n

2

)
+

(
2n

4

)
, L = 0

2L−1(1 +

(
2r

2

)
+

(
2r

4

)
), L = L(r, c)

Proof. Suppose that s is a binary sequence with first period s(n) = {s0, s1, s2, · · · , s2n−1},
and L(s(n)) = 2n − 2r + c. By the Games-Chan algorithm (Games and Chan, 1983),

LH(s(t)) 6= RH(s(t)), r + 1 ≤ t ≤ n, where s(t) = ϕt+1 · · ·ϕn(s(n)).

First we consider the case of WH(s(n)) = 0. There is only one such binary sequence.

For the case of WH(s(n)) = 2. There are 2 nonzero bits in {s0, s1, · · · , s2n−1}, thus

there are

(
2n

2

)
binary sequences. Similarly for the case of WH(s(n)) = 4. There

are 4 nonzero bits in {s0, s1, · · · , s2n−1}, thus there are

(
2n

4

)
binary sequences. So

N4(0) = 1 +

(
2n

2

)
+

(
2n

4

)
.
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Consider the case of L(r, c) = 2n−2r+c, 4 ≤ r ≤ n, 1 ≤ c ≤ 2r−3−1. Suppose that s(n) is a

binary sequence with L(s(n)) = L(r, c). Note that L(r, c) = 2n−2r+c = 2n−1+ · · ·+2r+c.

By the Games-Chan algorithm, LH(s(r)) = RH(s(r)), and L(s(r)) = c.

It is known that the number of binary sequences t(r) with WH(t(r)) = 0, 2 or 4 is

1 +

(
2r

2

)
+

(
2r

4

)
.

By Lemma 2.1.9 in Section 2.1, the 4-error linear complexity of s(r) + t(r) is c.

By Lemma 2.1.6 and Lemma 2.1.8 in Section 2.1, the number of binary sequences s(r)+t(r)

is

2c−1 × (1 +

(
2r

2

)
+

(
2r

4

)
)

By Lemma 2.1.5 in Section 2.1, there are 22
n−1+···+2r = 22

n−2r binary sequences s(n)+t(n),

such that s(r) + t(r) = ϕr+1 · · ·ϕn(s(n) + t(n)), t(r) = ϕr+1 · · ·ϕn(t(n)) and WH(t(n)) =

WH(t(r)). Thus the 4-error linear complexity of s(n) + t(n) is 2n−1 + · · ·+ 2r + L4(s
(r) +

t(r)) = 2n − 2r + c = L(r, c). Therefore,

N4(L(r, c)) = 22
n−2r × 2c−1 × (1 +

(
2r

2

)
+

(
2r

4

)
) = 2L(r,c)−1(1 +

(
2r

2

)
+

(
2r

4

)
)

Now by summarizing all the results above and using the technique of extending the period

from 2r to 2n used in Lemma 2.5.7, we can have the main result of this chapter in the

following theorem.

Theorem 2.5.1 Let L(r, c) = 2n − 2r + c, 2 ≤ r ≤ n, 1 ≤ c ≤ 2r−1 − 1, and N4(L) be

the number of 2n-periodic binary sequences with the linear complexity less than 2n and

4-error linear complexity L. Then
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N4(L) =



1 +

(
2n

2

)
+

(
2n

4

)
,

L = 0

2L(r,c)−1(1 +

(
2r

2

)
+

(
2r

4

)
),

L = L(r, c), 1 ≤ c ≤ 2r−3 − 1, r > 3

2L(r,c)−1f(r,m),

L = L(r, c), c = 2r−2 − 2r−m, 2 < m ≤ r, r > 2

2L(r,c)−1g(r,m),

L = L(r, c), c = 2r−2 − 2r−m + x, 2 < m < r − 1, 0 < x < 2r−m−1, r > 4

2L(r,c)−1h(r,m),

L = L(r, c), c = 2r−1 − 2r−m, 2 ≤ m ≤ r, r ≥ 2

2L(r,c)−1p(r,m, j),

L = L(r, c), c = 2r−1 − (2r−m + 2r−j), 2 < m < j ≤ r, r > 3

2L(r,c)−1q(r,m, j),

L = L(r, c), c = 2r−1 − (2r−m + 2r−j) + x,

2 < m < j < r − 1, 0 < x < 2r−j−1, r > 5

0, otherwise

where f(r,m), g(r,m), h(r,m), p(r,m, j), q(r,m, j) are defined in Lemma 2.5.1, 2.5.2,

2.5.3, 2.5.5 and 2.5.6 respectively.

From Theorem 2.5.1, for n = 5, the numbers of 2n-periodic binary sequences with linear

complexity less than 2n and the 4-error linear complexity c, 0 ≤ c < 2n, are shown in

Table 2.2, and these results are also checked by a computer program.
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Table 2.2: N4(L(r, c)) by Theorem 2.5.1.

L(r, c) N4(L(r, c)) L(r, c) N4(L(r, c))

0 36457 16 0

1 36457 17 127205376

2 72914 18 236060672

3 145828 19 418643968

4 289416 20 134217728

5 581072 21 567279616

6 1144608 22 33554432

7 2236992 23 16777216

8 2293760 24 0

9 6837504 25 486539264

10 13210112 26 0

11 25031680 27 0

12 14876672 28 0

13 46845952 29 0

14 8978432 30 0

15 4587520 31 0

The summation of numbers in both the second and fourth column of Table 2.2 is 231.
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2.6 Counting functions for the 5-error linear complexity

For a 2n-periodic binary sequence with linear complexity 2n, the change of 2 or 4 bits in

each period results in a sequence with odd number of nonzero bits in the same period,

which still has linear complexity 2n. In this section, we thus focus on the number of

sequences with the linear complexity 2n and 5-error linear complexity taking different

values.

By using the approach of Lemma 2.5.7, we can have the following result on the distribution

of the sequences with the linear complexity of 2n and 5-error linear complexity in some

range. First we have the following result.

Lemma 2.6.1 Let L(r, c) = 2n − 2r + c, 4 ≤ r ≤ n, 1 ≤ c ≤ 2r−3 − 1, and N5(L) be the

number of 2n-periodic binary sequences with the linear complexity 2n and 5-error linear

complexity L. Then

N5(L) =



(
2n

5

)
+

(
2n

3

)
+ 2n, L = 0

2L−1(

(
2r

5

)
+

(
2r

3

)
+ 2r), L = L(r, c)

In order to tackle this problem thoroughly, we only need to consider for the cases with

linear complexity L(r, c) = 2n − 2r + c, 4 ≤ r ≤ n, 2r−3 ≤ c < 2r−1. Now by Lemma 2.1.9

in Section 2.1, we only need to consider the following three cases.

i) c = 2n−1 − 2d1 − 2d2 , 0 ≤ d2 < d1 ≤ n− 2.

ii) c = 2n−1 − 2d1 − 2d2 + x, 0 ≤ d2 < d1 ≤ n− 2, 0 < x < 2d2−1.

iii ) c = 2n−1 − 2d1 , 0 ≤ d1 ≤ n− 2.

Among all these three cases, the most complicated one is c = 2n−1 − 2d1 − 2d2 , 0 ≤ d2 <

d1 ≤ n − 2. We need to characterize the case that w(n) = u(n) + v(n), with W (u(n)) = 3

or 5, W (v(n)) = 3 or 5, L(w(n)) = 2n−1 − 2d1 − 2d2 and W (w(n)) = 8. Nevertheless,

we have characterized the case that w(n) = u(n) + v(n), with W (u(n)) = 4, W (v(n)) = 4,

L(w(n)) = 2n−1−2d1−2d2 and W (w(n)) = 8 in the previous section. Next in Lemma 2.6.3

we will present a special case with d1 = n− 2 in i). Also, 2n−1 − 2n−3 in Lemma 2.6.4 is

a special case of iii). We expect the techniques used in these proofs will be useful to solve
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this problem completely in future.

First we consider the category of sequences with the 5-error linear complexity 2n−3 + x =

2n−1 − 2n−2 − 2n−3 + x, which is a special case of ii).

Lemma 2.6.2 Let N5(2
n−3+x) be the number of 2n-periodic binary sequences with linear

complexity 2n and 5-error linear complexity 2n−3 + x, n ≥ 5, 1 ≤ x < 2n−4. Then

N5(2
n−3 + x)

= [2n +

(
2n

3

)
+

(
2n

5

)
− 2n−3

(
8

3

)
− 2n−4

(
8

4

)
(2n − 8)]× 22

n−3+x−1

Proof. Let S = {s|L(s) = 2n−3 + x}, E = {e|W (e) = 1, 3 or 5}, S + E = {s+ e|s ∈ S, e ∈
E}. By Lemma 2.1.6 in Section 2.1, the number of 2n-periodic binary sequences with

linear complexity 2n−3 +x is 22
n−3+x−1. As the number of 2n-periodic binary sequences in

E is 2n +

(
2n

3

)
+

(
2n

5

)
, so the number of 2n-periodic binary sequences s+ e ∈ S+E

is at most (2n +

(
2n

3

)
+

(
2n

5

)
)22

n−3+x−1.

We first characterize the set LESS. Suppose that w(n) = u(n) + v(n), with W (u(n)) = 1, 3

or 5, W (v(n)) = 1, 3 or 5, and L(w(n)) ≤ 2n−3 + x. As 1 ≤ x < 2n−4, thus L(w(n)) ≤
2n−3 + x < 2n−2. Therefore, w(n) can be divided into 4 equal parts with W (w(n)) = 8.

So, L(w(n)) = 2n−2 − 2n−m, 3 ≤ m ≤ n.

If m = 3, then L(w(n)) = 2n−3. The number of these w(n) is 2n−3.

If m > 3, then L(w(n)) = 2n−2 − 2n−m ≥ 2n−2 − 2n−4 = 2n−3 + 2n−4 > 2n−3 + x. This

contradicts the condition that L(w(n)) ≤ 2n−3 + x. Thus m can only be 3.

As L(u(n)+v(n)) can only be 2n−3, thus the case that s+e ∈ S+E but L5(s+e) < 2n−3+x

does not exist. Namely, LESS is empty.

Second we characterize the set EQUAL by dividing the u(n) + v(n) with L(u(n) + v(n)) =

2n−3 into 3 cases.

Case 1): W (u(n)) = 3, there exists exactly one v(n) with W (v(n)) = 5, such that L(u(n) +
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v(n)) = 2n−3. In this case, the number of these u(n) can be given by

A1 = 2n−3

(
8

3

)
.

Case 2): W (u(n)) = 5 and all 5 nonzero elements of u(n) are in w(n), there exists exactly

one v(n) with W (v(n)) = 3, such that L(u(n) + v(n)) = 2n−3. In this case, the number of

these u(n) can be given by

A2 = 2n−3

(
8

5

)
.

Case 3): W (u(n)) = 5 and only 4 nonzero elements of u(n) are in w(n), there exists exactly

one v(n) with W (v(n)) = 5, such that L(u(n) + v(n)) = 2n−3. The number of these u(n) can

be given by

A3 = 2n−3

(
8

4

)
(2n − 8).

We have that the number of sequences in EQUAL is A1 + A2 + A3, which leads to the

following

N5(2
n−3 + x)

= [2n +

(
2n

3

)
+

(
2n

5

)
− 1

2
A1− 1

2
A2− 1

2
A3]22

n−3+x−1

= [2n +

(
2n

3

)
+

(
2n

5

)
− 2n−3

(
8

3

)
− 2n−4

(
8

4

)
(2n − 8)]22

n−3+x−1

This completes the proof.

As a simple illustrative example, let n = 5, x = 1. Then 2n−3 + x = 5, N5(2
n−3 + x) =

3244544, which can be easily verified by a computer program.

Next we consider the category of sequences with the 5-error linear complexity 2n−2−2n−m,

which is a special case of i).

Lemma 2.6.3 Let N5(2
n−2 − 2n−m) be the number of 2n-periodic binary sequences with
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linear complexity 2n and 5-error linear complexity 2n−2 − 2n−m, n ≥ 4, 4 ≤ m ≤ n. Then

N5(2
n−2 − 2n−m)

= [2n +

(
2n

3

)
+

(
2n

5

)
−B1−B2−B3

−1

2
B4− 1

2
B5− 1

2
B6− 2

3
B7]× 22

n−2−2n−m−1

where B1, B2, B3, B4, B5, B6, B7 are defined in the following proof.

Proof. Let

S = {s|L(s) = 2n−2 − 2n−m}, E = {e|W (e) = 1, 3 or 5}

S + E = {s+ e|s ∈ S, e ∈ E}

.

As the number of 2n-periodic binary sequences in E is 2n+

(
2n

3

)
+

(
2n

5

)
, the number

of 2n-periodic binary sequences s+ e ∈ S + E is at most

(2n +

(
2n

3

)
+

(
2n

5

)
)22

n−2−2n−m−1

.

We first characterize the set LESS.

Case 1): Suppose that w(n) = u(n) + v(n) with W (u(n)) = 1, 3 or 5, W (v(n)) = 1, 3 or

5. By Lemma 2.1.9 in Section 2.1, there exists w(n) such that L(w(n)) = 2n−2 − 2n−m.

So L5(s + u(n)) < 2n−2 − 2n−m. Then one can show that W (w(n)) = 8, and w(n) can

be divided into 4 equal parts. Each part has exactly 2 nonzero elements with a distance

2n−m(2i+ 1). The number of these w(n) is

(2n−2 − 2n−m) + (2n−2 − 2n−m × 3) + · · ·+ [2n−2 − 2n−m × (
2n−2

2n−m
− 1)] = 2n+m−6.

Each of these w(n) and other 2( 2n−2

2×2n−m−1) = 2(2m−3−1) distinct w(n) have the intersection

of 4 nonzero elements, which constitute the set P = {ai, ai+2n−2 , ai+2n−1 , ai+3×2n−2 |0 ≤
i < 2n−2}. Thus the size of set P is 2n−2. Now we only need to consider the following

three cases.

Case 1.1): Suppose that w(n) = u(n) + v(n), where L(w(n)) = 2n−2 − 2n−m, W (w(n)) = 8,

W (u(n)) = 3, W (v(n)) = 5.
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If 3 nonzero elements of u(n) are contained in {ai, ai+2n−2 , ai+2n−1 , ai+3×2n−2}, 0 ≤ i <

2n−2}, then the number of these u(n) is 2n−2

(
4

3

)
. Thus the number of other u(n) is

2n+m−6[

(
8

3

)
− 2

(
4

3

)
].

In this case, the total number of u(n) is B1 = 2n+m−6[

(
8

3

)
− 2

(
4

3

)
] + 2n−2

(
4

3

)

Case 1.2): Suppose that w(n) = u(n) + v(n), where L(w(n)) = 2n−2 − 2n−m, W (w(n)) = 8,

W (u(n)) = 5, W (v(n)) = 3. In this case, the total number of u(n) is B2 = 2n+m−6

(
8

5

)

Case 1.3): Suppose that w(n) = u(n) + v(n), where L(w(n)) = 2n−2 − 2n−m, W (w(n)) = 8,

W (u(n)) = 5, W (v(n)) = 5.

Case 1.3.1): If 4 nonzero elements of u(n) are {ai, ai+2n−2 , ai+2n−1 , ai+3×2n−2}, 0 ≤ i <

2n−2, then the distance of the fifth nonzero element of u(n) and ai can not be 2n−m(2j +

1), j ≥ 0. Otherwise, u(n) is in the case of (1.2).

Suppose that the distance of the fifth nonzero element of u(n) and ai is not 2n−m(2j +

1), j ≥ 0, then the number of possible location of the fifth nonzero element of u(n) is

2n − 2n−2

2n−m×2 × 4 − 4 = 2n − 2m−1 − 4. Thus the total number of u(n) in this case is

2n−2(2n − 2m−1 − 4).

Case 1.3.2): If there are no 4 nonzero elements in u(n), which are {ai, ai+2n−2 , ai+2n−1 ,

ai+3×2n−2}, 0 ≤ i < 2n−2, then the number of u(n) in this case is 2n+m−6[

(
8

4

)
−2](2n−8).

The following case must be noted. Suppose that 5 nonzero elements of u(n) are b1, b2, b3, b4,

b5, and b1, b2, b3 ⊂ {ai, ai+2n−2 , ai+2n−1 , ai+3×2n−2}, 0 ≤ i < 2n−2,

d(b4, ai) = 2n−m(2j1 + 1), j1 ≥ 0, d(b5, ai) = 2n−m(2j2 + 1), j2 ≥ 0, but d(b4, b5) is not the

multiple of 2n−2. In this case, we can obtain two different w(n) with the same u(n). The

number of u(n) in this case is

2n−2

(
4

3

)(
2m−3

2

)(
4

1

)(
4

1

)
= 2n+4

(
2m−3

2

)
.
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Therefore, in the case of W (u(n)) = 5 and W (v(n)) = 5, the total number of u(n) is

B3 = 2n−2(2n − 2m−1 − 4) + 2n+m−6[

(
8

4

)
− 2](2n − 8)− 2n+4

(
2m−3

2

)
.

Second we characterize the set EQUAL.

Case 2): Let w(n) = u(n) + v(n) with L(u(n) + v(n)) = 2n−2 − 2n−k, 3 ≤ k < m.

Let Pk = {w(n)|L(w(n)) = 2n−2 − 2n−k, 3 ≤ k < m}. Then the size of set Pk is 2n+k−6.

Case 2.1): Suppose that w(n) = u(n) + v(n), where L(w(n)) = 2n−2 − 2n−k, W (w(n)) = 8,

W (u(n)) = 3, W (v(n)) = 5, and the 3 nonzero elements of u(n) are not contained in an

element of set P . In this case, the total number of such u(n) is

B4 =

m−1∑
k=3

2n+k−6[

(
8

3

)
− 2

(
4

3

)
] = 48(2n+m−7 − 2n−3).

Case 2.2.1): Suppose that w(n) = u(n) + v(n), where L(w(n)) = 2n−2− 2n−k, W (w(n)) = 8,

W (u(n)) = 5, W (v(n)) = 3, and the 4 nonzero elements of u(n) are b1, b2, b3, b4, which are

contained in one element of set P . The distance of the fifth element of u(n) and b1 is

2n−k(2j + 1), which is an even multiple of 2n−m. In this case, u(n) is in fact in the case of

(1.3.1).

Case 2.2.2): Suppose that w(n) = u(n) + v(n), where L(w(n)) = 2n−2− 2n−k, W (w(n)) = 8,

W (u(n)) = 5, W (v(n)) = 3, and there are no 4 nonzero elements of u(n) contained in one

element of set P . Thus u(n) is equivalent to the v(n) in the case of (2.1). In this case, the

total number of u(n) is B5 = B4.

Case 2.3): Suppose that w(n) = u(n) + v(n), where L(w(n)) = 2n−2 − 2n−k, W (w(n)) = 8,

W (u(n)) = 5, W (v(n)) = 5. Let b1, b2, b3, b4 be the 4 nonzero elements of u(n) contained in

w(n). If b1, b2, b3, b4 are contained in one element of set P , then u(n) is in the case of (1.2)

or (1.3.1). Thus the number of remaining u(n) is 2n+k−6[

(
8

4

)
− 2](2n − 8).

We have to further consider the following special cases.

Case 2.3.1.1): Suppose that b1, b2, b3 are contained in one element of set P , d(b1, b4) is an

odd multiple of 2n−k and d(b1, b5) is an odd multiple of 2n−m. Then u(n) is in the case of
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(1.3.2). In this case, the total number of u(n) is

2n−2

(
4

3

)(
2k−1

1

)(
2m−1

1

)
= 2n

(
2k−1

1

)(
2m−1

1

)
.

Case 2.3.1.2): Suppose that b1, b2, b3 are contained in one element of set P , d(b1, b4) is an

odd multiple of 2n−k and d(b1, b5) is an odd multiple of 2n−j , k < j < m. Then there exist

2 distinct v(n) with W (v(n)) = 5, such that L(u(n) + v(n)) < 2n−2 − 2n−m. In this case,

the total number of u(n) is 2n

(
2k−1

1

)(
2j−1

1

)
.

Similarly, if d(b1, b4) is an odd multiple of 2n−k and d(b1, b5) is also an odd multiple of

2n−k, 4 ≤ k < m, and d(b4, b5) is not a multiple of 2n−2, then there exist 2 distinct v(n)

with W (v(n)) = 5, such that L(u(n) + v(n)) < 2n−2− 2n−m. In this case, the total number

of u(n) is 2n+4

(
2k−3

2

)
.

We will consider these two cases in case 2.3.2) again later. In these two cases, we can

obtain two different w(n) with the same u(n).

Therefore, the total number of u(n) here is

B6 =
m−1∑
k=3

{2n+k−6[

(
8

4

)
− 2](2n − 8)− 2n

(
2k−1

1

)(
2m−1

1

)

−
m−1∑
j=k+1

2× 2n

(
2k−1

1

)(
2j−1

1

)
} −

m−1∑
k=4

2× 2n+4

(
2k−3

2

)

For each u(n) here, there exists exactly one v(n) withW (v(n)) = 5, such that L(u(n)+v(n)) <

2n−2 − 2n−m. So u(n) is in EQUAL.

Case 2.3.2): Now we consider the two cases for case 2.3.1).

Suppose that b1, b2, b3 are contained in one element of set P , d(b1, b4) is an odd multiple of

2n−k and d(b1, b5) is an odd multiple of 2n−j , k < j < m. Then there exist v
(n)
1 , v

(n)
2 with

v
(n)
1 6= v

(n)
2 , W (v

(n)
1 ) = W (v

(n)
2 ) = 5, such that L(u(n)+v

(n)
1 ) = 2n−2−2n−k < 2n−2−2n−m,

L(u(n) + v
(n)
2 ) = 2n−2 − 2n−j < 2n−2 − 2n−m.

Similarly, if d(b1, b4) is an odd multiple of 2n−k and d(b1, b5) is also an odd multiple

of 2n−k, 4 ≤ k < m, and d(b4, b5) is not a multiple of 2n−2, then there exist v
(n)
1 , v

(n)
2
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with v
(n)
1 6= v

(n)
2 , W (v

(n)
1 ) = W (v

(n)
2 ) = 5, such that L(u(n) + v

(n)
1 ) = L(u(n) + v

(n)
2 ) =

2n−2 − 2n−k < 2n−2 − 2n−m.So u(n) is in EQUAL. Suppose that all u(n) here form a set

U . Then the size of U is

B7 =

m−2∑
k=3

m−1∑
j=k+1

2n

(
2k−1

1

)(
2j−1

1

)
+

m−1∑
k=4

2n+4

(
2k−3

2

)

(For easy understanding, the following special case with n = m = 6 is given to illustrate

the construction of v(n). For n = m = 6, k could be 3, 4, 5. Let b1, b2, b3, b4, b5 be the 5

nonzero elements of u(n), and b1, b2, b3 are contained in one element of set P . Let

Q2,2 = {u(n)|d(b1, b4) is an odd multiple of 2 = 2n−5,

d(b1, b5) is an odd multiple of 2 = 2n−5,

d(b4, b5) is not a multiple of 2n−2}

Q2,8 = {u(n)|d(b1, b4) is an odd multiple of 2 = 2n−5,

d(b1, b5) is an odd multiple of 23 = 2n−3}

Q2,4 = {u(n)|d(b1, b4) is an odd multiple of 2 = 2n−5,

d(b1, b5) is an odd multiple of 22 = 2n−4}

(i). For u(n) ∈ Q2,2, there exist v
(n)
1 , v

(n)
2 with v

(n)
1 6= v

(n)
2 , W (v

(n)
1 ) = W (v

(n)
2 ) = 5, such

that L(u(n) + v
(n)
1 ) = L(u(n) + v

(n)
2 ) = 2n−2 − 2 < 2n−2 − 2n−m. d(b4, b5) could be 4 or 8.

If d(b4, b5) = 4, then both v
(n)
1 , v

(n)
2 are in Q2,4. If d(b4, b5) = 8, then both v

(n)
1 , v

(n)
2 are

in Q2,8.

(ii). For u(n) ∈ Q2,8, there exist v
′(n)
1 , v

′(n)
2 with v

′(n)
1 6= v

′(n)
2 , W (v

′(n)
1 ) = W (v

′(n)
2 ) = 5,

such that L(u(n)+v
′(n)
1 ) = 2n−2−2 < 2n−2−2n−m, L(u(n)+v

′(n)
2 ) = 2n−2−8 < 2n−2−2n−m.

So v
′(n)
1 ∈ Q2,2, v

′(n)
2 ∈ Q2,8.

(iii). For u(n) ∈ Q2,4, there exist v
′′(n)
1 , v

′′(n)
2 with v

′′(n)
1 6= v

′′(n)
2 , W (v

′′(n)
1 ) = W (v

′′(n)
2 ) = 5,

such that L(u(n) + v
′′(n)
1 ) = 2n−2 − 2 < 2n−2 − 2n−m, L(u(n) + v

′′(n)
2 ) = 2n−2 − 4 <

2n−2 − 2n−m. So v
′′(n)
1 ∈ Q2,2, v

′′(n)
2 ∈ Q2,4.

In summary, all v
(n)
1 , v

(n)
2 , v

′(n)
1 , v

′(n)
2 , v

′′(n)
1 , v

′′(n)
2 are in Q2,2, Q2,4, Q2,8, respectively.)
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It follows that

N5(2
n−2 − 2n−m)

= [2n +

(
2n

3

)
+

(
2n

5

)
−B1−B2−B3− 1

2
B4

−1

2
B5− 1

2
B6− 2

3
B7]× 22

n−2−2n−m−1

As an illustrative example, let n = m = 5. Then 2n−2 − 2n−m = 7, N5(2
n−2 − 2n−m) =

11184128, which is verified by simulation.

Finally we consider the category of sequences with the 5-error linear complexity 2n−1 −
2n−3, which is a special case of iii).

Lemma 2.6.4 Let N5(2
n−1 − 2n−3) be the number of 2n-periodic binary sequences with

the linear complexity 2n and 5-error linear complexity 2n−1 − 2n−3, n ≥ 5. Then

N5(2
n−1 − 2n−3) = [

(
2n

5

)
− C1− C2 +

1

4
C3− C4 +

1

2
C5]× 22

n−1−2n−3−1

where C1, C2, C3, C4, C5 are defined in the following proof.

Proof. As the number of 2n-periodic binary sequences in E is 2n+

(
2n

3

)
+

(
2n

5

)
, the

number of 2n-periodic binary sequences s+ e ∈ S + E is at most

(2n +

(
2n

3

)
+

(
2n

5

)
)22

n−1−2n−3−1.

First we consider the case that W (u(n)) = 1 or 3. There exists a v(n) with W (v(n)) = 3 or

5, such that L(u(n) + v(n)) = 2n−1 − 2n−3. So u(n) is in LESS.

Second we consider the case of W (u(n)) = 5. Let us divide one period of u(n) into 2n−3

subsequences with the following form

{(ua, ua+2n−3 , ua+2n−3+1 , · · · , ua+7×2n−3)|0 ≤ a < 2n−3}

Case 1): Suppose that there are at least 3 nonzero elements of u(n) contained in one

subsequence. Then there exists a v(n) with W (v(n)) = 1, 3 or 5, such that L(u(n) +v(n)) =

2n−1 − 2n−3. So u(n) is in LESS.
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Assume that there are 5 nonzero element of u(n) contained in one subsequence. Then the

number of these u(n) is 2n−3

(
8

5

)
.

Suppose that there are 4 nonzero element of u(n) contained in one subsequence. Then the

number of these u(n) is 6

(
2n−3

2

)(
8

4

)
.

Assume that there are 3 nonzero element of u(n) contained in one subsequence and the

other 2 nonzero elements of u(n) contained in another subsequence. Then the number of

these u(n) is

2

(
2n−3

2

)(
8

3

)(
8

2

)

Suppose that there are 3 nonzero elements of u(n) contained in one subsequence and the

other 2 nonzero elements of u(n) contained in two subsequences respectively. Then the

number of these u(n) is 192

(
2n−3

3

)(
8

3

)
.

The total number of these u(n) is

C1 = 2n−3

(
8

5

)
+16

(
2n−3

2

)(
8

4

)
+2

(
2n−3

2

)(
8

3

)(
8

2

)
+192

(
2n−3

3

)(
8

3

)

For each of these u(n), there exists a v(n) with W (v(n)) = 5, such that L(u(n) + v(n)) =

2n−1 − 2n−3.

Case 2): Suppose that there are 2 nonzero elements b1, b2 of u(n) contained in one subse-

quence and the other 2 nonzero elements b3, b4 of u(n) contained in another subsequence,

and the final nonzero element of u(n) contained in the third subsequence. Then the number

of these u(n) is

C2 = 24

(
2n−3

3

)(
8

2

)2

We now consider u(n) with d(b1, b2) is an even multiple of 2n−3 and d(b3, b4) is an even

multiple of 2n−3, but neither d(b1, b2) nor d(b3, b4) is 2n−1. The number of these u(n) is

C3 = 3× 29

(
2n−3

3

)
.
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For each u(n) of this kind, there exist v
(n)
1 , v

(n)
2 and v

(n)
3 with W (v

(n)
1 ) = W (v

(n)
2 ) =

W (v
(n)
3 ) = 5, such that L(u(n) + v

(n)
1 ) = L(u(n) + v

(n)
2 ) = 2n−2, L(u(n) + v

(n)
3 ) < 2n−2. So

u(n) is in EQUAL. For each u(n) of other kinds, there exists a v(n) with W (v(n)) = 5,

such that L(u(n) + v(n)) = 2n−1 − 2n−3.

Case 3): Suppose that there are 2 nonzero elements b1, b2 of u(n) contained in one sub-

sequence and the other 3 nonzero elements of u(n) contained in 3 distinct subsequences.

Then the number of these u(n) is

C4 = 211

(
2n−3

4

)(
8

2

)
.

We now consider u(n) with d(b1, b2) = 2n−2. The number of these u(n) is C5 = 214

(
2n−3

4

)
.

For each u(n) of this kind, one can construct exactly one v(n) with W (v(n)) = 5, such that

L(u(n) + v(n)) = 2n−2. So u(n) is in EQUAL. For each u(n) of other kinds, there exists a

v(n) with W (v(n)) = 5, such that L(u(n) + v(n)) = 2n−1 − 2n−3.

It follows that,

N5(2
n−1 − 2n−3)

= [

(
2n

5

)
− C1− (C2− C3)− 3

4
C3− (C4− C5)− 1

2
C5]22

n−1−2n−3−1

= [

(
2n

5

)
− C1− C2 +

1

4
C3− C4 +

1

2
C5]22

n−1−2n−3−1

As a simple example, let n = 5. Then 2n−1 − 2n−3 = 12, N5(2
n−1 − 2n−3) = 19922944,

which can be verified by a computer program.
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2.7 Complete Characterization of the First Descent Point

Distribution for k-error Linear Complexity

In this section, we first derive the counting formula of binary sequences with the same

linear complexity and minimum Hamming weight. This result is first obtained in Zhou

et al. (2013).

Theorem 2.7.1 The number of binary sequences s with period 2n, WH(s) = 2m, and

L(s) = 2n − (2i1 + 2i2 + · · ·+ 2im), where 0 ≤ i1 < i2 < · · · < im < n, is

22
mn−(2m−1im+···+2i2+i1)−2m+1+2.

Proof. The approach to constructing a 2n-periodic binary sequence s(n) is based on the

reverse process of Games-Chan algorithm (Games and Chan, 1983). First we construct

sequences with a small period and count the number of these sequences. Second double

the period recursively and get the desired sequences, and count the number of all these

sequences.

The number of 2i1-periodic binary sequences s(i1) with linear complexity 2i1 andWH(s(i1)) =

1 is 2i1 .

So the number of 2i1+1-periodic binary sequences s(i1+1) with linear complexity 2i1+1 −
2i1 = 2i1 and WH(s(i1+1)) = 2 is also 2i1 , where Left(s(i1+1)) = Right(s(i1+1)).

For i2 > i1, we aim to obtain 2i2-periodic binary sequences si2 with linear complexity

2i2 − 2i1 and WH(s(i2)) = 2 from above 2i1+1-periodic binary sequences s(i1+1). In this

case, when the sequence period changes from 2i1+1 to 2i2 , the increase of linear complexity

is 2i2 − 2i1 − (2i1+1 − 2i1) = 2i2−1 + 2i2−2 + · · ·+ 2i1+1.

Based on Step 2 in Algorithm 2.1.1 in Section 2.1, the number of these s(i2) can be given by

(22)i2−i1−1×2i1 = 22i2−i1−2. The formula can be easily verified for i2 = i1 + 1, i2 = i1 + 2,

i2 = i1 + 3, · · · , respectively.

Next based on Step 1 of Algorithm 2.1.1 in Section 2.1, the number of 2i2+1-periodic binary

sequences s(i2+1) with linear complexity 2i2+1− (2i2 +2i1) = 2i2−2i1 and WH(s(i2+1)) = 4

is also 22i2−i1−2.

Similarly for i3 > i2, the number of 2i3-periodic binary sequences si3 with linear complexity
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2i3−(2i2 +2i1) and WH(s(i3)) = 4 can be given by (24)i3−i2−1×22i2−i1−2 = 24i3−2i2−i1−2−4.

· · · · · ·

Consequently, the number of 2im+1-periodic binary sequences s(im+1) with linear complex-

ity 2im+1 − (2i1 + 2i2 + · · ·+ 2im) = 2im − (2i1 + 2i2 + · · ·+ 2im−1) and WH(s(im+1)) = 2m

is also 22
m−1im−···−2i2−i1−2−4−···−2m−1

.

Finally, for n > im, the number of 2n-periodic binary sequences s(n) with linear complexity

2n − (2i1 + 2i2 + · · ·+ 2im) and WH(s(n)) = 2m can be given by

(22
m

)n−im−1 × 22
m−1im−···−2i2−i1−2−4−···−2m−1

= 22
mn−2m−1im−···−2i2−i1−2−4−···−2m−1−2m

= 22
mn−2m−1im−···−2i2−i1−2m+1+2.

This completes the proof.

In fact, Etzion et al. (2009) proved Theorem 3 in their paper, which is equivalent to

Theorem 2.7.1, with a much different approach.

In Theorem 2.7.1, we give the number of sequences with given linear complexity and

Hamming weight. Next we will investigate the linear complexity for the sum of two

sequences and this will pave the way for our main results in Theorems 2.7.3 and 2.7.4.

Theorem 2.7.2 Suppose that u(n), v(n) are distinct 2n-periodic binary sequences with the

same linear complexity 2n− (2i1 + 2i2 + · · ·+ 2im) and WH(u(n)) = WH(v(n)) = 2m, where

0 ≤ i1 < i2 < · · · < im < n. Then L(u(n)+v(n)) = 2n−(εm2im+εm−12
im−1+· · ·+ε12i1+2r),

where r ∈ {n− 1, n− 2, · · · · · · , 1, 0} \ {i1, i2, · · · , im} and ε1, ε2, · · · , εm ∈ {0, 1}.

Proof. First we note that two 2n-periodic binary sequences with the same linear complexity

must have the same linear complexity representation 2n − (2i1 + 2i2 + · · ·+ 2im).

From the proof of Theorem 2.7.1, one can see that u(n) is constructed from u(i1), u(i2), · · · ,
u(im) · · · , and v(n) is constructed from v(i1), v(i2), · · · , v(im), · · · .

Suppose we use the reverse process of Algorithm 2.1.1 in Section 2.1 to construct a se-

quence. If the previous period is in {i1, i2, · · · , im}, one doubles the period of a sequence

using Step 1 of Algorithm 2.1.1. In this case, we copy the previous sequence to the right
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half of the new sequence, so that the right half is the same as the left half of the new

sequence. The number of nonzero elements is doubled.

If the previous period is not in {i1, i2, · · · , im}, then we can use the Step 2 of Algorithm

2.1.1 to double the sequence. In this case, every nonzero element of the previous sequence

may not move, or move a distance of the previous period. The number of nonzero elements

is unchanged.

(For example, suppose that i1 = 1, i2 = 3, then we have (22)i2−i1−1 = 4 sequences

{1010 0000}, {1000 0010}, {0010 1000}, {0000 1010}

of s(i2) correspond to a sequence {1010} of s(i1+1). )

The above approach to constructing a 2n-periodic binary sequence s(n) is based on the

reverse process of Games-Chan algorithm ( see Algorithm 2.1.1 in Section 2.1). The above

relation is denoted as u(n) = GC−1(u(ij)), 1 ≤ j ≤ m, where GC represents the Games-

Chan algorithm.

Now we consider the sum of two sequences u(n) and v(n). As both of them are constructed

from u(i) and v(i) respectively, we now consider the sum of u(i) and v(i).

In the case of u(i1) 6= v(i1), as both of them have only one nonzero element, so L(u(i1) +

v(i1)) = 2i1−2r, where r < i1. For example, in the case of Left(u(i1)+v(i1)) = Right(u(i1)+

v(i1)), it is easy to see that r = i1 − 1.

Next from the reverse process of Algorithm 2.1.1 in Section 2.1, we have u(n) + v(n) =

GC−1(u(i1) + v(i1)), thus L(u(n) + v(n)) = 2n − (2im + 2im−1 + · · ·+ 2i1 + 2r).

Now suppose that u(i1) = v(i1), u(i2) = v(i2), · · · , u(ij−1) = v(ij−1), but u(r+1) 6= v(r+1) for

ij−1 < r < ij . In this case, we have

L(u(r+1) + v(r+1)) = 2r+1 − (2r + εj−12
ij−1 + · · ·+ ε12

i1),

where ij−1 < r < ij . In consideration of the reverse process in Algorithm 2.1.1, we have

u(n) + v(n) = GC−1(u(r+1) + v(r+1)) + s(n),

where

L(s(n)) ≤ 2n − (2im + 2im−1 + · · ·+ 2ij + 2r+1) < L(GC−1(u(r+1) + v(r+1)))
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= 2n − (2im + 2im−1 + · · ·+ 2ij + 2r + εj−12
ij−1 + · · ·+ ε12

i1).

In this case, the linear complexity of u(n) + v(n) will not be affected by s(n). Therefore,

L(u(n) + v(n)) = 2n − (2im + 2im−1 + · · ·+ 2ij + 2r + εj−12
ij−1 + · · ·+ ε12

i1),

where ε1, ε2, · · · , εj−1 ∈ {0, 1}.

Recursively, suppose that u(i1) = v(i1), u(i2) = v(i2), · · · , u(im) = v(im), but u(r+1) 6= v(r+1).

In this case, we have

L(u(r+1) + v(r+1)) = 2r+1 − (2r + εm2im + εm−12
im−1 + · · ·+ ε12

i1),

where im < r < n. Then from the reverse process of Algorithm 2.1.1, we have

u(n) + v(n) = GC−1(u(r+1) + v(r+1)) + s(n),

where

L(s(n)) ≤ 2n−2r+1 < L(GC−1(u(r+1)+v(r+1))) = 2n−(2r+εm2im+εm−12
im−1+· · ·+ε12i1).

Similarly we have,

L(u(n) + v(n)) = 2n − (2r + εm2im + εm−12
im−1 + · · ·+ ε12

i1),

where ε1, ε2, · · · , εm ∈ {0, 1}. This completes the proof.

The following examples are given to illustrate the above formula.

Suppose that n = 4, i2 = 2, i1 = 1, u(n) = {1010 1010 0000 0000}, v(n) = {0000 0000 1010 1010}.
Then u(n) + v(n) = {1010 1010 1010 1010}. Thus L(u(n) + v(n)) = 24 − (23 + 22 + 21) = 2,

where r = 3.

Let u(n) = {1010 1010 0000 0000}, v(n) = {0101 0101 0000 0000}. Then u(n) + v(n) =

{1111 1111 0000 0000}. Thus L(u(n) + v(n)) = 24 − (22 + 21 + 20) = 9, where r = 0.

Let u(n) = {1010 0000 0000 1010}, v(n) = {0000 0000 1010 1010}. Then u(n) + v(n) =

{1010 0000 1010 0000}. Thus L(u(n) + v(n)) = 24 − (23 + 21) = 6, where r = 3, ε2 = 0.

Let u(n) = {1000 1000 0010 0010}, v(n) = {0000 0000 1010 1010}. Then u(n) + v(n) =

{1000 1000 1000 1000}. Thus L(u(n) + v(n)) = 24 − (23 + 22) = 4, where r = 3, ε1 = 0.

Here L(u(n)) = L(v(n)) = 24 − (22 + 21),WH(u(n)) = WH(v(n)) = 22.
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Suppose that n = 4, i2 = 1, i1 = 0, r = 2, u(n) = {1111 0000 0000 0000}, v(n) =

{0110 1000 0001 0000}. Then u(r+1) + v(r+1) = {1000 1000}, GC−1(u(r+1) + v(r+1)) =

{1000 10000000 0000},

s(n) = {0001 0000 0001 0000}, u(n) + v(n) = {1001 1000 0001 0000} = GC−1(u(r+1) +

v(r+1)) + s(n).

As L(s(n)) = 24−23 < L(GC−1(u(r+1)+v(r+1))) = 24−22, thus L(u(n) +v(n)) = 24−22 =

12, where ε2 = 0, ε1 = 0.

Before we turn to the main problem, we briefly discuss representation of the minimum

Hamming weight for a sequence. Suppose that s(n) is a 2n-periodic binary sequence

with linear complexity 2n − (2i1 + 2i2 + · · · + 2im) and the minimum Hamming weight.

From Theorem 2.7.1, WH(s(n)) ≤ 2m. Next, it is impossible that WH(s(n)) < 2m. If

WH(s(n)) < 2m, then the minimum number k for which the k-error linear complexity of

s(n) is strictly less than the linear complexity of s(n) is WH(s(n)). This contradicts the

result by Kurosawa et al. (2000) that the minimum number k for which the k-error linear

complexity of 2n-periodic binary sequence s(n) is strictly less than the linear complexity

of s(n) is 2m. Thus the Hamming weight of s(n) must be 2m.

Let s(n) be a 2n-periodic binary sequence with linear complexity 2n−(2i1 +2i2 + · · ·+2im).

To consider L2m(s(n)), we just need to compute L(s(n) + u(n)), where u(n) is a 2n-periodic

binary sequence with linear complexity 2n − (2i1 + 2i2 + · · ·+ 2im) and WH(u(n)) = 2m.

Now we investigate the first descent point (critical point) distribution of the k-error linear

complexity, namely, the possible values of the 2m-error linear complexity. By Kurosawa

et al. (2000), we know that the first descent point of the k-error linear complexity is

k = 2m, where 0 ≤ m ≤ n. So our concern turns to the distribution of 2m-error linear

complexity, which is given in the following theorem.

Theorem 2.7.3 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n −
(2i1 + 2i2 + · · ·+ 2im), where 0 ≤ i1 < i2 < · · · < im < n. Then
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L2m(s(n)) =



2n − (2im + 2im−1 + · · ·+ 2i1)− 2r+1 + c,

1 ≤ r ≤ i1 − 1, 1 ≤ c ≤ 2r − 1

2n − (2im + 2im−1 + · · ·+ 2i2)− 2r+1 + c,

i1 + 1 ≤ r ≤ i2 − 1, 1 ≤ c ≤ 2r − 1, c 6= 2r − 2i1

2n − (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c,

i2 + 1 ≤ r ≤ i3 − 1, 1 ≤ c ≤ 2r − 1, c 6= 2r − ε12i1 − ε22i2

· · · · · ·
2n − 2r+1 + c,

im + 1 ≤ r ≤ n− 1, 1 ≤ c ≤ 2r − 1, c 6= 2r − ε12i1 − ε22i2 − · · · − εm2im

,

where ε1, ε2, · · · , εm ∈ {0, 1}.

Proof. The following proof is based on the property for the sum of two sequences in the

framework: S + E = {t + e|t ∈ S, e ∈ E}, where t is a sequence with linear complexity c

and e is sequence with WH(e) = 2m and linear complexity L(e) = 2n−(2i1 +2i2 +· · ·+2im),

0 ≤ i1 < i2 < · · · < im < n, and L(t+ e) = L(e). With the sieve method, we aim to sieve

sequences t+ e with L2m(t+ e) = c from S + E.

For a given linear complexity c, it remains to investigate the case that t+ u ∈ S +E, but

L2m(t + u) < c. As observed from the following proof that this is equivalent to checking

if there exists a sequence v such that L(u + v) = c. We try to exclude this case in the

sieving process.

As s(n) is a 2n-periodic binary sequence with linear complexity 2n− (2i1 + 2i2 + · · ·+ 2im),

by Kurosawa et al. (2000), L2m(s(n)) < 2n − (2i1 + 2i2 + · · ·+ 2im).

First we prove that L2m(s(n)) 6= 2n − (εm2im + εm−12
im−1 + · · · + ε12

i1 + 2r), where

r ∈ {n− 1, n− 2, · · · · · · , 1, 0} \ {i1, i2, · · · , im} and ε1, ε2, · · · , εm ∈ {0, 1}.

We prove it by a contradiction checking. Suppose that L2m(s(n)) = 2n − (εm2im +

εm−12
im−1+· · ·+ε12i1+2r) < 2n−(2i1+2i2+· · ·+2im). Then s(n) = t(n)+u(n), where t(n) is

a 2n-periodic binary sequence with linear complexity 2n−(εm2im +εm−12
im−1 +· · ·+ε12i1 +

2r), and u(n) is a 2n-periodic binary sequence with linear complexity 2n− (2i1 + 2i2 + · · ·+
2im) and WH(u(n)) = 2m. From Remark 2.1.1 in Section 2.1 and Theorem 2.7.2, there ex-

ists a 2n-periodic binary sequence v(n) with linear complexity 2n−(2i1 +2i2 +· · ·+2im) and

WH(v(n)) = 2m, such that L(u(n)+v(n)) = 2n−(εm2im +εm−12
im−1 +· · ·+ε12i1 +2r). From

Lemma 2.1.2 in Section 2.1, L(t(n)+u(n)+v(n)) < 2n−(εm2im+εm−12
im−1+· · ·+ε12i1+2r),
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thus L2m(t(n) +u(n)) < 2n− (εm2im +εm−12
im−1 + · · ·+ε12

i1 +2r). This is a contradiction,

which completes the proof of this assertion.

Next consider the case that L2m(s(n)) = 2n − (2im + 2im−1 + · · · + 2i1) − 2r+1 + c, where

1 ≤ c ≤ 2r−1. In this case, let t(n) be a 2n-periodic binary sequence with linear complexity

2n−(2im+2im−1+· · ·+2i1)−2r+1+c, 1 ≤ r ≤ i1−1, 1 ≤ c ≤ 2r−1. Let u(n) be a 2n-periodic

binary sequence with linear complexity 2n − (2i1 + 2i2 + · · · + 2im) and WH(u(n)) = 2m.

Then from Lemma 2.1.2 in Section 2.1, L(t(n) +u(n)) = 2n− (2im +2im−1 + · · ·+2i1). Now

it remains to prove that L2m(t(n) + u(n)) = 2n − (2im + 2im−1 + · · ·+ 2i1)− 2r+1 + c.

Suppose that v(n) is a 2n-periodic binary sequence with linear complexity 2n− (2i1 + 2i2 +

· · · + 2im) and WH(v(n)) = 2m, u(n) 6= v(n). One can derive from Theorem 2.7.2 that,

L(u(n) + v(n)) = 2n − (εm2im + εm−12
im−1 + · · ·+ ε12

i1 + 2r) 6= 2n − (2im + 2im−1 + · · ·+
2i1 + 2r+1) + c.

If L(u(n) + v(n)) < 2n − (2im + 2im−1 + · · · + 2i1 + 2r+1) + c, then from Lemma 2.1.2

L(t(n) + u(n) + v(n)) = 2n − (2im + 2im−1 + · · ·+ 2i1)− 2r+1 + c.

If L(u(n) + v(n)) > 2n − (2im + 2im−1 + · · · + 2i1 + 2r+1) + c, similarly we have L(t(n) +

u(n) + v(n)) > 2n − (2im + 2im−1 + · · ·+ 2i1)− 2r+1 + c.

Note that L(t(n) + u(n) + u(n)) = L(t(n)) = 2n − (2im + 2im−1 + · · · + 2i1) − 2r+1 + c. In

summary of these three situations, we can conclude that L2m(t(n) + u(n)) = 2n − (2im +

2im−1 + · · ·+ 2i1)− 2r+1 + c.

Similarly, theorem can be proved to be true on other cases for parameters r and c.

Secondly, based on the first descent point distribution, we can derive the complete count-

ing functions on the number of 2n-periodic binary sequences with given 2m-error linear

complexity corresponding to different cases in Theorem 2.7.3.

Theorem 2.7.4 Let N2m(L) be the number of 2n-periodic binary sequences s(n) with

linear complexity 2n − (2i1 + 2i2 + · · ·+ 2im) and the 2m-error linear complexity L taking

different values, for any fixed 0 ≤ i1 < i2 < · · · < im < n. Then
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N2m(L) =



22
mn−2m−1im−···−2i2−i1−2m+1+2, L = 0

2L+r, L = 2n − (2im + 2im−1 + · · ·+ 2i1)− 2r+1 + c,

1 ≤ r ≤ i1 − 1, 1 ≤ c < 2r

2L+2r−i1−1, L = 2n − (2im + 2im−1 + · · ·+ 2i2)− 2r+1 + c,

i1 + 1 ≤ r ≤ i2 − 1, 1 ≤ c < 2r − 2i1

2L+2r−i1−2, L = 2n − (2im + 2im−1 + · · ·+ 2i2)− 2r+1 + c,

i1 + 1 ≤ r ≤ i2 − 1, 2r − 2i1 < c < 2r

2L+4r−2i2−i1−3, L = 2n − (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c,

i2 + 1 ≤ r ≤ i3 − 1, 1 ≤ c < 2r − 2i1 − 2i2

2L+4r−2i2−i1−4, L = 2n − (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c,

i2 + 1 ≤ r ≤ i3 − 1, 2r − 2i1 − 2i2 < c < 2r − 2i2

2L+4r−2i2−i1−5, L = 2n − (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c,

i2 + 1 ≤ r ≤ i3 − 1, 2r − 2i2 < c < 2r − 2i1

2L+4r−2i2−i1−6, L = 2n − (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c,

i2 + 1 ≤ r ≤ i3 − 1, 2r − 2i1 < c < 2r

· · · · · ·
2L+2mr−2m−1im−···−2i2−i1−2m+1+1, L = 2n − 2r+1 + c,

im + 1 ≤ r ≤ n− 1, 2r − 2i2 < c < 2r − 2i1

2L+2mr−2m−1im−···−2i2−i1−2m+1+2, L = 2n − 2r+1 + c,

im + 1 ≤ r ≤ n− 1, 2r − 2i1 < c < 2r

0, otherwise

Proof. By Theorem 2.7.1, we know that N2m(0) = 22
mn−2m−1im−···−2i2−i1−2m+1+2.

Similar to the proof of Theorem 2.7.3, the following proof is based on the property on

the sum of two sequences in the framework: S + E = {t + e|t ∈ S, e ∈ E}, where t

is a sequence with linear complexity c and e is sequence with WH(e) = 2m and linear

complexity L(e) = 2n − (2i1 + 2i2 + · · · + 2im), 0 ≤ i1 < i2 < · · · < im < n, and

L(t+e) = L(e). With the sieve method, we aim to sieve sequences t+e with L2m(t+e) = c

from S + E.

For a given linear complexity c, it remains to investigate the case that s+u, t+ v ∈ S+E

and L2m(s+u) = L2m(t+v) = c with s 6= t, u 6= v, but s+u = t+v. This is equivalent to

checking if there exists a sequence v such that L(u+v) = L(s+t) < c and if so, calculating

the number of such sequences v, where WH(u) = WH(v) = 2m.

Based on Algorithm 2.1.1, in the kth step, 1 ≤ k ≤ n, if and only if one period of the
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sequence can not be divided into two equal parts, then the linear complexity should be

increased by half period. In the kth step, the linear complexity can be increased by

maximum 2n−k.

1) Now we consider the case L = 2n−(2im +2im−1 + · · ·+2i1)−2r+1+c, 1 ≤ r ≤ i1−1, 1 ≤
c ≤ 2r − 1. Let s(n) be a 2n-periodic binary sequence with linear complexity L. Based on

Algorithm 2.1.1, after the n − (r + 1)th step, the period of the sequence s(r+1) becomes

2r+1, the linear complexity of the sequence s(r+1) is c. By Lemma 2.1.6 in Section 2.1, the

number of binary sequences with linear complexity c is 2c−1.

By changing any one element, a given sequence s(r+1) can be changed to a sequence t(r+1)

with linear complexity 2r+1. Thus the number of such new binary sequences t(r+1) with

linear complexity 2r+1 is 2r+1 × 2c−1.

For a given sequence t(r+1) with linear complexity 2r+1, restore the sequence t(n) with

linear complexity 2n − (2im + 2im−1 + · · · + 2i1) from t(r+1) by the reverse process of

Algorithm 2.1.1. By Lemma 2.1.5 in Section 2.1, 22
n−(2im+2im−1+···+2i1 )−2r+1

sequences

t(n) will be obtained.

Specifically, when we restore the sequence t(n) with linear complexity 2n from t(r+1) by the

reverse process of Algorithm 2.1.1, by Lemma 2.1.5 in Section 2.1, the number of sequences

t(n) will be 22
r+1+2r+2+···+2n−1

= 22
n−2r+1

. For the sequence t(n) with linear complexity

2n − (2im + 2im−1 + · · ·+ 2i1), from Algorithm 2.1.1, there are m steps that one period of

the sequence can be divided into two equal parts, thus the number of sequences t(n) will

be 22
n−2r+1−(2im+2im−1+···+2i1 ).

The total number of such sequence t(n) is

22
n−(2im+2im−1+···+2i1 )−2r+1 × 2r+1 × 2c−1 = 22

n−(2im+2im−1+···+2i1 )−2r+1+c+r.

Note that by changing any one element, a given sequence s(r+1) with the linear complexity

c can be changed to a sequence t(r+1) with linear complexity 2r+1. Thus new sequence

t(n) = u(n) + s(n), where s(n) is a 2n-periodic binary sequence with linear complexity

2n − (2im + 2im−1 + · · ·+ 2i1)− 2r+1 + c, u(n) is a 2n-periodic binary sequence with linear

complexity 2n − (2im + 2im−1 + · · · + 2i1) and WH(u(n)) = 2m. From Theorem 2.7.3,

L2m(t(n)) = 2n − (2im + 2im−1 + · · ·+ 2i1)− 2r+1 + c.

2) Consider the case L = 2n − (2im + 2im−1 + · · ·+ 2i2)− 2r+1 + c, i1 + 1 ≤ r ≤ i2 − 1, 1 ≤
c < 2r − 2i1 . Let t(n) be a 2n-periodic binary sequence with linear complexity L. Based
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on Algorithm 2.1.1, after the n− (r+ 1)th step, the period of the sequence t(r+1) becomes

2r+1, the linear complexity of the sequence t(r+1) is c. By Lemma 2.1.6 in Section 2.1, the

number of binary sequences with linear complexity c is 2c−1.

Let u(r+1) be a 2r+1-periodic sequence with linear complexity 2r+1−2i1 and WH(u(r+1)) =

2. By Theorem 2.7.1, the number of sequences u(r+1) with linear complexity 2r+1 − 2i1 is

22(r+1)−i1−2 = 22r−i1 . Thus the number of sequences t(r+1)+u(r+1) with linear complexity

2r+1 − 2i1 is 22r−i1 × 2c−1.

For a given sequence t(r+1) + u(r+1) with linear complexity 2r+1 − 2i1 , we restore the se-

quence t(r+1)+u(r+1) to t(n)+u(n) with linear complexity 2n−(2im +2im−1 +· · ·+2i1) by the

reverse process of Algorithm 2.1.1. By Lemma 2.1.5 in Section 2.1, 22
n−(2im+2im−1+···+2i2 )−2r+1

sequences t(n) + u(n) will be obtained. The number of such sequences t(n) + u(n) is

22
n−(2im+2im−1+···+2i2 )−2r+1 × 22r−i1 × 2c−1 = 22

n−(2im+2im−1+···+2i2 )−2r+1+c−1+2r−i1 ,

where u(n) is a 2n-periodic binary sequence with linear complexity 2n − (2im + 2im−1 +

· · · + 2i1) and WH(u(n)) = 2m. Also from Theorem 2.7.3, L2m(t(n) + u(n)) = 2n − (2im +

2im−1 + · · ·+ 2i2)− 2r+1 + c.

3) Consider the case of L = 2n−(2im+2im−1+· · ·+2i2)−2r+1+c, i1+1 ≤ r ≤ i2−1, 2r−2i1 <

c < 2r − 1. Let t(n) be a 2n-periodic binary sequence with linear complexity L. Based on

Algorithm 2.1.1, after the n − (r + 1)th step, the period of the sequence t(r+1) becomes

2r+1, the linear complexity of the sequence t(r+1) is c. By Lemma 2.1.6 in Section 2.1, the

number of binary sequences with linear complexity c is 2c−1.

Let u(r+1) be a 2r+1-periodic sequence with linear complexity 2r+1−2i1 and WH(u(r+1)) =

2. By Theorem 2.7.1, the number of sequences t(r+1) + u(r+1) with linear complexity

2r+1 − 2i1 is 22r−i1 × 2c−1.

Let S = {s|L(s) = c}, E = {e|WH(e) = 2}, S + E = {s + e|s ∈ S, e ∈ E}, where s is a

sequence with linear complexity c and e is sequence with WH(e) = 2 and linear complexity

L(e) = 2r+1−2i1 . With the sieve method, we aim to sieve sequences s+e with L2(s+e) = c

from S + E.

It remains to investigate the case that s, t ∈ S, u, v ∈ E and L2(s + u) = L2(t + v) = c

with s 6= t, u 6= v, but s+ u = t+ v. It is equivalent to checking if there exists a sequence

v such that L(u+ v) = L(s+ t) < c and if so, check the number of such sequence v, where

WH(u) = WH(v) = 2.

84



For any sequence u(r+1), by Theorem 2.7.2, there exists exactly one sequence v(r+1) with

linear complexity 2r+1−2i1 andWH(u(r+1)) = 2, such that L(u(r+1)+v(r+1)) = 2r−2i1 < c.

(The following example is given to illustrate the above case. Suppose that r = 3, i1 =

1, u(4) = {1010 0000 0000 0000}, v(4) = {0000 0000 1010 0000}. Then u(4) + v(4) =

{1010 0000 1010 0000}. Thus L(u(4) + v(4)) = 24 − (23 + 21) = 23 − 21. )

Let x(r+1) = t(r+1) +u(r+1) + v(r+1). Then L(x(r+1)) = c, t(r+1) +u(r+1) = x(r+1) + v(r+1).

Therefore, the number of distinct sequences t(r+1)+u(r+1) with linear complexity 2r+1−2i1

is 22r−i1−1 × 2c−1.

For a given sequence t(r+1) +u(r+1) with linear complexity 2r+1− 2i1 , we restore sequence

t(r+1)+u(r+1) to t(n)+u(n) with linear complexity 2n−(2im+2im−1+· · ·+2i1) by the reverse

process of Algorithm 2.1.1. By Lemma 2.1.5 in Section 2.1, 22
n−(2im+2im−1+···+2i2 )−2r+1

sequences t(n) + u(n) will be obtained. The number of such sequences t(n) + u(n) is

22
n−(2im+2im−1+···+2i2 )−2r+1 × 22r−i1−1 × 2c−1 = 22

n−(2im+2im−1+···+2i2 )−2r+1+c−2+2r−i1 ,

where u(n) is a 2n-periodic binary sequence with linear complexity 2n − (2im + 2im−1 +

· · · + 2i1) and WH(u(n)) = 2m. Also from Theorem 2.7.3, L2m(t(n) + u(n)) = 2n − (2im +

2im−1 + · · ·+ 2i2)− 2r+1 + c.

4) When L = 2n−(2im+2im−1+· · ·+2i3)−2r+1+c, i2+1 ≤ r ≤ i3−1, 1 ≤ c < 2r−(2i2+2i1),

let t(n) be a 2n-periodic binary sequence with linear complexity L. Based on Algorithm

2.1.1, after the n − (r + 1)th step, the period of the sequence t(r+1) becomes 2r+1, the

linear complexity of the sequence t(r+1) is c.

Let u(r+1) be a 2r+1-periodic sequence with linear complexity 2r+1 − (2i2 + 2i1) and

WH(u(r+1)) = 22. By Theorem 2.7.1, the number of sequences t(r+1) + u(r+1) with linear

complexity 2r+1 − (2i2 + 2i1) is 24r−2i2−i1−2 × 2c−1.

For a given sequence t(r+1)+u(r+1) with linear complexity 2r+1−(2i2+2i1), restore sequence

t(r+1)+u(r+1) to t(n)+u(n) with linear complexity 2n−(2im+2im−1+· · ·+2i1) by the reverse

process of Algorithm 2.1.1. By Lemma 2.1.5 in Section 2.1, 22
n−(2im+2im−1+···+2i3 )−2r+1

sequence t(n) + u(n) will be obtained. The number of such sequences t(n) + u(n) is

22
n−(2im+2im−1+···+2i2 )−2r+1×24r−2i2−i1−2×2c−1 = 22

n−(2im+2im−1+···+2i2 )−2r+1+c+4r−2i2−i1−3,

where u(n) is a 2n-periodic binary sequence with linear complexity 2n−(2im +2im−1 + · · ·+
2i1) and WH(u(n)) = 2m. Also L2m(t(n) + u(n)) = 2n− (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c.
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5) If L = 2n − (2im + 2im−1 + · · · + 2i3) − 2r+1 + c, i2 + 1 ≤ r ≤ i3 − 1, 2r − (2i2 + 2i1) <

c < 2r − 2i2 , let t(n) be a 2n-periodic binary sequence with linear complexity L. Based on

Algorithm 2.1.1, after the n − (r + 1)th step, the period of the sequence t(r+1) becomes

2r+1, the linear complexity of the sequence t(r+1) is c.

Let u(r+1) be a 2r+1-periodic sequence with linear complexity 2r+1 − (2i2 + 2i1) and

WH(u(r+1)) = 22. By Theorem 2.7.1, the number of sequences t(r+1) + u(r+1) with linear

complexity 2r+1 − (2i2 + 2i1) is 24r−2i2−i1−2 × 2c−1.

For any sequence u(r+1), by Theorem 2.7.2, there exists exactly one sequence v(r+1) with

linear complexity 2r+1 − (2i2 + 2i1) and WH(u(r+1)) = 22, such that L(u(r+1) + v(r+1)) =

2r − (2i2 + 2i1) < c. Let x(r+1) = t(r+1) + u(r+1) + v(r+1). Then L(x(r+1)) = c, t(r+1) +

u(r+1) = x(r+1) + v(r+1). Therefore, the number of distinct sequences t(r+1) + u(r+1) with

linear complexity 2r+1 − (2i2 + 2i1) is 24r−2i2−i1−3 × 2c−1.

For a given sequence t(r+1) + u(r+1) with linear complexity 2r+1 − (2i2 + 2i1), restore

the sequence t(r+1) + u(r+1) to t(n) + u(n) with linear complexity 2n − (2im + 2im−1 +

· · · + 2i1) by the reverse process of Algorithm 2.1.1. By Lemma 2.1.5 in Section 2.1,

22
n−(2im+2im−1+···+2i3 )−2r+1

sequences t(n) + u(n) will be obtained. The number of such

sequences t(n) + u(n) is

22
n−(2im+2im−1+···+2i3 )−2r+1×24r−2i2−i1−3×2c−1 = 22

n−(2im+2im−1+···+2i3 )−2r+1+c+4r−2i2−i1−4,

where u(n) is a 2n-periodic binary sequence with linear complexity 2n − (2im + 2im−1 +

· · · + 2i1) and WH(u(n)) = 2m. Also from Theorem 2.7.3, L2m(t(n) + u(n)) = 2n − (2im +

2im−1 + · · ·+ 2i3)− 2r+1 + c.

6) If L = 2n− (2im +2im−1 + · · ·+2i3)−2r+1 + c, i2 +1 ≤ r ≤ i3−1, 2r−2i2 < c < 2r−2i1 ,

let t(n) be a 2n-periodic binary sequence with linear complexity L. Based on Algorithm

2.1.1, after the n − (r + 1)th step, the period of the sequence t(r+1) becomes 2r+1, the

linear complexity of the sequence t(r+1) is c.

Let u(r+1) be a 2r+1-periodic sequence with linear complexity 2r+1 − (2i2 + 2i1) and

WH(u(r+1)) = 22. By Theorem 2.7.1, the number of sequences t(r+1) + u(r+1) with linear

complexity 2r+1 − (2i2 + 2i1) is 24r−2i2−i1−2 × 2c−1.

For any sequence u(r+1), by Theorem 2.7.2, there exists exactly one sequence v(r+1) with

linear complexity 2r+1 − (2i2 + 2i1) and WH(u(r+1)) = 22, such that L(u(r+1) + v(r+1)) =

2r − (2i2 + 2i1) < c.
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There exist two sequences v(r+1) with linear complexity 2r+1−(2i2+2i1) and WH(u(r+1)) =

22, such that L(u(r+1) + v(r+1)) = 2r − 2i2 < c.

(The following example is given to illustrate the above case. Suppose that r+ 1 = 4, i2 =

2, i1 = 1, u(r+1) = {1010 1010 0000 0000}, v(r+1) = {0000 0000 1010 1010}. Then u(r+1) +

v(r+1) = {1010 1010 1010 1010}. Thus L(u(r+1) + v(r+1)) = 24 − (23 + 22 + 21) = 2.

Let v(r+1) = {0010 0010 1000 1000}. Then u(r+1) +v(r+1) = {1000 1000 1000 1000}. Thus

L(u(r+1) + v(r+1)) = 24 − (23 + 22) = 4.

Let v(r+1) = {1000 1000 0010 0010}. Then u(r+1) +v(r+1) = {0010 0010 0010 0010}. Thus

L(u(r+1) + v(r+1)) = 24 − (23 + 22) = 4.

Here L(u(r+1)) = L(v(r+1)) = 24 − (22 + 21),WH(u(r+1)) = WH(v(r+1)) = 22. )

Let x(r+1) = t(r+1) +u(r+1) + v(r+1). Then L(x(r+1)) = c, t(r+1) +u(r+1) = x(r+1) + v(r+1).

Therefore, the number of distinct sequences t(r+1) + u(r+1) with linear complexity 2r+1 −
(2i2 + 2i1) is

24r−2i2−i1−2 × 1

22
× 2c−1.

For a given sequence t(r+1) + u(r+1) with linear complexity 2r+1 − (2i2 + 2i1), restore

the sequence t(r+1) + u(r+1) to t(n) + u(n) with linear complexity 2n − (2im + 2im−1 +

· · · + 2i1) by the reverse process of Algorithm 2.1.1. By Lemma 2.1.5 in Section 2.1,

22
n−(2im+2im−1+···+2i3 )−2r+1

sequences t(n) + u(n) will be obtained. The number of such

sequences t(n) + u(n) is

22
n−(2im+2im−1+···+2i3 )−2r+1×24r−2i2−i1−4×2c−1 = 22

n−(2im+2im−1+···+2i3 )−2r+1+c+4r−2i2−i1−5,

where u(n) is a 2n-periodic binary sequence with linear complexity 2n−(2im +2im−1 + · · ·+
2i1) and WH(u(n)) = 2m. Also L2m(t(n) + u(n)) = 2n− (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c.

7) If L = 2n − (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c, i2 + 1 ≤ r ≤ i3 − 1, 2r − 2i1 < c < 2r,

let t(n) be a 2n-periodic binary sequence with linear complexity L. Based on Algorithm

2.1.1, after the n − (r + 1)th step, the period of the sequence t(r+1) becomes 2r+1, the

linear complexity of the sequence t(r+1) is c.

Let u(r+1) be a 2r+1-periodic sequence with linear complexity 2r+1 − (2i2 + 2i1) and

WH(u(r+1)) = 22. By Theorem 2.7.1, the number of sequences t(r+1) + u(r+1) with linear

complexity 2r+1 − (2i2 + 2i1) is 24r−2i2−i1−2 × 2c−1.
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For any sequence u(r+1), by Theorem 2.7.2, there exists exactly one sequence v(r+1) with

linear complexity 2r+1 − (2i2 + 2i1) and WH(u(r+1)) = 22, such that L(u(r+1) + v(r+1)) =

2r − (2i2 + 2i1) < c.

There exist two sequences v(r+1) with linear complexity 2r+1−(2i2+2i1) and WH(u(r+1)) =

22, such that L(u(r+1) + v(r+1)) = 2r − 2i2 < c.

There exist four sequences v(r+1) with linear complexity 2r+1−(2i2+2i1) and WH(u(r+1)) =

22, such that L(u(r+1) + v(r+1)) = 2r − 2i1 < c.

(The following example is given to illustrate the above case. Suppose that r+ 1 = 4, i2 =

2, i1 = 1, u(r+1) = {1010 1010 0000 0000}.

Let v(r+1) = {0000 1010 1010 0000}. Then u(r+1) +v(r+1) = {1010 0000 1010 0000}. Thus

L(u(r+1) + v(r+1)) = 24 − (23 + 21) = 6.

Let v(r+1) = {1010 0000 0000 1010}. Then u(r+1) + v(r+1) = {0000 1010 0000 1010 }.
Thus L(u(r+1) + v(r+1)) = 24 − (23 + 21) = 6.

Let v(r+1) = {0010 1000 1000 0010}. Then u(r+1) + v(r+1) = {1000 0010 1000 0010 }.
Thus L(u(r+1) + v(r+1)) = 24 − (23 + 21) = 6.

Let v(r+1) = {1000 0010 0010 1000}. Then u(r+1) + v(r+1) = {0010 1000 0010 1000 }.
Thus L(u(r+1) + v(r+1)) = 24 − (23 + 21) = 6. )

Let x(r+1) = t(r+1) +u(r+1) + v(r+1). Then L(x(r+1)) = c, t(r+1) +u(r+1) = x(r+1) + v(r+1).

Therefore, the number of distinct sequences t(r+1) + u(r+1) with linear complexity 2r+1 −
(2i2 + 2i1) is

24r−2i2−i1−2 × 1

23
× 2c−1.

For a given sequence t(r+1) + u(r+1) with linear complexity 2r+1 − (2i2 + 2i1), we restore

the sequence t(r+1) + u(r+1) to t(n) + u(n) with linear complexity 2n − (2im + 2im−1 +

· · · + 2i1) by the reverse process of Algorithm 2.1.1. By Lemma 2.1.5 in Section 2.1,

22
n−(2im+2im−1+···+2i3 )−2r+1

sequences t(n) + u(n) will be obtained. The number of such

sequences t(n) + u(n) is

22
n−(2im+2im−1+···+2i3 )−2r+1×24r−2i2−i1−5×2c−1 = 22

n−(2im+2im−1+···+2i3 )−2r+1+c+4r−2i2−i1−6,

where u(n) is a 2n-periodic binary sequence with linear complexity 2n−(2im +2im−1 + · · ·+
2i1) and WH(u(n)) = 2m. Also L2m(t(n) + u(n)) = 2n− (2im + 2im−1 + · · ·+ 2i3)− 2r+1 + c.
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· · · · · ·

8) Finally, let t(n) be a 2n-periodic binary sequence with linear complexity L = 2n−2r+1+

c, im + 1 ≤ r < n, 2r − 2i1 < c < 2r. Based on Algorithm 2.1.1, after the n − (r + 1)th

step, the period of the sequence t(r+1) becomes 2r+1, the linear complexity of the sequence

t(r+1) is c.

Let u(r+1) be a 2r+1-periodic sequence with linear complexity 2r+1− (2im + · · ·+ 2i2 + 2i1)

and WH(u(r+1)) = 2m. By Theorem 2.7.1, the number of sequences t(r+1) + u(r+1) with

linear complexity 2r+1− (2im + · · ·+ 2i2 + 2i1) is 22
m(r+1)−2m−1im−···−2i2−i1−2m+1+2× 2c−1.

For any sequence u(r+1), by Theorem 2.7.2, there exist 1 + 2 + · · · + 22
m−2 = 22

m−1 − 1

sequences v(r+1) with linear complexity 2r+1−(2im + · · ·+2i2 +2i1) and WH(u(r+1)) = 2m,

such that L(u(r+1) + v(r+1)) < c.

Let x(r+1) = t(r+1) +u(r+1) + v(r+1). Then L(x(r+1)) = c, t(r+1) +u(r+1) = x(r+1) + v(r+1).

Therefore, the number of distinct sequences t(r+1) + u(r+1) with linear complexity 2r+1 −
(2im + · · ·+ 2i2 + 2i1) is

22
mr−2m−1im−···−2i2−i1−2m+2 × 1

22m−1
× 2c−1.

For a given sequence t(r+1) + u(r+1) with linear complexity 2r+1 − (2im + · · ·+ 2i2 + 2i1),

we restore the sequence t(r+1) + u(r+1) to t(n) + u(n) with linear complexity 2n − (2im +

2im−1 + · · ·+2i1) by the reverse process of Algorithm 2.1.1. By Lemma 2.1.5 in Section 2.1,

22
n−2r+1

sequences t(n) + u(n) will be obtained. The number of such sequences t(n) + u(n)

is

22
n−2r+1×22

mr−2m−1im−···−2i2−i1−2m+1+3×2c−1 = 22
n−2r+1+c+2mr−2m−1im−···−2i2−i1−2m+1+2,

where u(n) is a 2n-periodic binary sequence with linear complexity 2n − (2im + 2im−1 +

· · ·+ 2i1) and WH(u(n)) = 2m. Also L2m(t(n) + u(n)) = 2n − 2r+1 + c.

This completes the proof.

The above result gives a complete characterization on the first descent point distribution

for k-error linear complexity. Several existing results are special cases of Theorem 2.7.4.

For m = 0, from Theorem 2.7.4, we obtain the following conclusion.

Corollary 3.1 Let N1(L) be the number of 2n-periodic binary sequences s(n) with linear

89



complexity 2n and 1-error linear complexity L. Then

N1(L) =


2n, L = 0

2L+r, L = 2n − 2r+1 + c, 1 ≤ r < n, 1 ≤ c < 2r

0, otherwise

Corollary 3.1 was first proved by Meidl (2005). Here we obtain this result with a different

approach.

For m = 1, i1 = 0, from Theorem 2.7.4, it is easy to verify the following conclusion, which

was first proved by Zhu and Qi (2007).

Corollary 3.2 Let N2(L) be the number of 2n-periodic binary sequences s(n) with linear

complexity 2n − 1 and the 2-error linear complexity L. Then

N2(L) =


22n−2, L = 0

2L+2r−1, L = 2n − 2r+1 + c, 2 ≤ r < n, 1 ≤ c < 2r − 1

0, otherwise

For m = 2, the main result by Pi and Qi (2011) is also a special case of Theorem 2.7.4.

2.8 Summary

In this chapter, we proposed a unified framework for the k-error linear complexity dis-

tribution of 2n-periodic binary sequences, and completely solved the problem of 2-error,

3-error and 4-error linear complexity distribution of 2n periodic binary sequences. One

can see that the decomposition in the case of 4-error is much more complicated than that

of 2-error and 3-error. As to the case of the 5-error linear complexity, we only obtained

partial results in this chapter and for complete solution, it remains to study the case that

w(n) = u(n) + v(n), with W (u(n)) = 3 or 5, W (v(n)) = 3 or 5, L(w(n)) = 2n−1 − 2d1 − 2d2

and W (w(n)) = 8. The key issue in the problem is that W (w(n)) is still 8. In this case,

we need to calculate its different possible combinations. However, this is not an easy task

currently. We expect that with the technique of sequence decomposition proposed in this

chapter, one can obtain the complete counting functions for the 5-error linear complexity

distribution. We will continue this work in future due to its importance.

Of course, we can consider the 6-error linear complexity and the 7-error linear complexity

with the proposed approach in this chapter and obtain some partial results similar to the
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case of k = 5. As to the difficulty of this problem in nature, we will do it in future as

we believe the proposed approach can pave a way for their complete solutions. One can

imagine that the decomposition will become more and more complicated when the value

k increases.
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Chapter 3

Cube Theory and Stable k-error

Linear Complexity

The motivation of studying the stability of linear complexity is that changing a small

number of elements in a sequence may lead to a sharp decline of its linear complexity.

Therefore we really need to study such stable sequences in which even a small number

of changes do not reduce their linear complexity. The stable k-error linear complexity is

introduced in this chapter to deal with this problem. Suppose that s is a sequence over

GF (q) with period N . For k(0 ≤ k ≤ N), the k-error linear complexity of s is defined as

stable when any k or fewer of the terms of the sequence are changed within one period,

the linear complexity does not decline.

Algebra (Meidl, 2004, 2005; Fu et al., 2006; Zhu and Qi, 2007) and discrete Fourier trans-

form (Hu and Feng, 2005) are two important tools to study the k-error linear complexity

for periodic sequences. Etzion et al. (2009) studied the sequences with only two k-error

linear complexity values exactly, namely its k-error linear complexity is only L(s) or 0. To

further investigate this concept, we present a new tool called the Cube Theory (Zhou

et al., 2013) to study the stable k-error linear complexity of binary sequences with period

2n. By using the cube theory, we are capable of investigating the k-error linear complex-

ity for periodic sequences from a new perspective. First, one significant benefit is that

one can construct sequences with the maximum stable k-error linear complexity. Some

examples are also given to illustrate the proposed approach. Second, it is proved that a

binary sequence with period 2n can be decomposed into some disjoint cubes. Based on the

Games-Chan Algorithm, we further propose a standard cube decomposition for any

binary sequence with period 2n. The main approaches of Chapter 4 and Chapter 5 are

based on the cube decomposition theory. With such decomposition, it is proved that the

maximum k-error linear complexity is 2n − (2l − 1) over all 2n-periodic binary sequences,

where 2l−1 ≤ k < 2l. As a consequence of these results, some results by Niu et al. (2013,

2014) are proved to be incorrect. Finally, continuing the work of Kurosawa et al. (2000)

with different approaches, a characterization is presented about the minimum number k

for which the second decrease occurs in the k-error linear complexity.
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The rest of this chapter is organized as follows. In Section 3.1, some preliminary results are

presented. In Section 3.2, the definition of cube theory and our main results are presented.

3.1 Preliminaries

The linear complexity of a 2n-periodic binary sequence s can be recursively computed by

the Games-Chan algorithm (Games and Chan, 1983) stated as follows.

Algorithm 3.1.1

Input: A 2n-periodic binary sequence s = [Left(s), Right(s)], c = 0.

Output: L(s) = c.

Step 1. If Left(s) = Right(s), then deal with Left(s) recursively. Namely, L(s) =

L(Left(s)).

Step 2. If Left(s) 6= Right(s), then c = c + 2n−1 and deal with Left(s)
⊕
Right(s)

recursively. Namely, L(s) = 2n−1 + L(Left(s)
⊕
Right(s)).

Step 3. If s = (a), then if a = 1 then c = c+ 1.

From Lemma 2.1.1 in Section 2.1, if a nonzero element is changed to zero in a sequence

whose Hamming weight is odd, the Hamming weight of the sequence will be changed to

even, so the main concern hereinafter is about sequences whose Hamming weights are

even.

Suppose that the linear complexity of s can decrease when at least k elements of s are

changed. By Lemma 2.1.2 in Section 2.1, the linear complexity of the binary sequence, in

which elements at exactly those k positions are all nonzero, must be L(s). Therefore, for

the computation of the k-error linear complexity, we only need to find the binary sequence

whose Hamming weight achieves the minimum and its linear complexity is L(s).

Denote Eij by a binary sequence with period 2n, and it has only 2 nonzero elements in a

period. By Lemma 2.1.3 in Section 2.1, if there are only 2 adjacent positions with nonzero

elements in Eij , then its linear complexity is 2n − 1, namely Eij is a sequence with even

Hamming weight and the largest linear complexity. According to Lemma 2.1.2 in Section
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2.1, if sequence s can be decomposed into the superposition of several Eijs, in which each

has linear complexity 2n − 1, and the number of Eijs is odd, then L(s) = 2n − 1. After a

symbol of s is changed, its Hamming weight will be odd, so its linear complexity will be

2n, namely the 1-error linear complexity of sequence s is 2n − 1.

Proposition 3.1.1 If s is a binary sequence with period 2n, then its maximum 1-error

linear complexity is 2n − 1.

In order to discuss the maximal 2-error linear complexity of a binary sequence with period

2n, we now consider a binary sequence which has only 4 positions with nonzero elements.

Lemma 3.1.1 If s is a 2n-periodic binary sequence and there are only four non-zero

elements, thus s can be decomposed into the superposition of Eij and Ekl, where i <

j, i < k < l. If d, e are the largest integers satisfying i ≡ j( mod 2d), k ≡ l( mod 2e),

and k − i ≡ 1( mod 2) separately, then

L(s) =

{
2n − (1 + 2d), if e = d

2n − 2min(d,e), otherwise

Proof. According to Lemma 2.1.2 in Section 2.1, if d 6= e, then L(s) = 2n − 2min(d,e).

Consider the case of d = e. Denote Ei by a binary sequence with period 2n, and it has

only one nonzero element with index i in a period. We know that s can be decomposed

into the sum of Ei, Ej , Ek and El. The corresponding polynomial of Ei + Ej is given by

xi + xj = xi(1− xj−i) = xi(1− x2d(1+2u))

= xi(1− x2d)(1 + x2
d

+ x2·2
d

+ · · ·+ x2u·2
d
)

where u is a positive integer. The corresponding polynomial of Ek + El is given by

xk + xl = xk(1− xl−k) = xk(1− x2d(1+2v))

= xk(1− x2d)(1 + x2
d

+ x2·2
d

+ · · ·+ x2v·2
d
)

where v is a positive integer. Then Ei +Ej +Ek +El corresponds to a polynomial, which
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is given by

xi + xj + xk + xl

= xi(1− x2d)[(1 + x2
d

+ x2·2
d

+ · · ·+ x2u·2
d
)

+xk−i(1 + x2
d

+ x2·2
d

+ · · ·+ x2v·2
d
)]

= xi(1− x2d)[1 + xk−i + (x2
d

+ x2·2
d

+ · · ·+ x2u·2
d
)

+xk−i(x2
d

+ x2·2
d

+ · · ·+ x2v·2
d
)]

= xi(1− x2d)[1 + x2c+1 + (x2
d

+ x2·2
d

+ · · ·+ x2u·2
d
)

+xk−i(x2
d

+ x2·2
d

+ · · ·+ x2v·2
d
)]

= xi(1− x)2
d+1[(1 + x+ x2 + · · ·+ x2c)

+(x2
d

+ x3·2
d

+ · · ·+ x(2u−1)·2
d
)(1 + x)2

d−1

+xk−i(x2
d

+ x3·2
d

+ · · ·+ x(2v−1)·2
d
)(1 + x)2

d−1]

where c is a positive integer. Since there is no factor (1 + x) in (1 + x + x2 + · · · + x2c),

hence gcd((1− x)2
n
, xi + xj + xk + xl) = (1− x)2

d+1, thus, L(s) = 2n − (2d + 1).

This completes the proof.

More specifically, we have the following result.

Lemma 3.1.2 If s is a binary sequence with period 2n and there are only 4 non-zero

elements, and s can be decomposed into the superposition of Eij and Ekl, in which each

has linear complexity 2n−1, then the linear complexity of s is 2n−(2d+1) or 2n−2d, d > 0.

Proof. Suppose that the non-zero positions of Eij are i and j, whose linear complexity is

2n − 1, j − i = 2a+ 1, and non-zero positions of Ekl are k and l, whose linear complexity

is also 2n − 1, i < k, l − k = 2b+ 1.

Next we will investigate the problem with the following 6 cases:

1) i < k < l < j, and k − i = 2c.

As j − i = 2a+ 1, l − k = 2b+ 1, so

j − l = 2a+ 1− (2b+ 1 + 2c) = 2(a− b− c)

.
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If j− l = 2d + 2u2d, k− i = 2e + 2v2e, without loss of generality, assume d < e, by Lemma

2.1.2 in Section 2.1, L(s) = 2n − 2d, d > 0.

If d = e, by Lemma 3.1.1, since l − i = 2(b+ c) + 1, so L(s) = 2n − (2d + 1).

2) i < k < l < j, and k − i = 2c+ 1.

As j − i = 2a + 1, l − k = 2b + 1, so l − i = 2b + 1 + 2c + 1 = 2(b + c + 1), j − k =

2a+ 1− (2c+ 1) = 2(a− c)

If j− k = 2d + 2u2d, l− i = 2e + 2v2e, without loss of generality, assume d < e, by Lemma

2.1.2 in Section 2.1, L(s) = 2n − 2d, d > 0.

Since k − i = 2c+ 1, by Lemma 3.1.1, if d = e, then L(s) = 2n − (2d + 1).

3) i < k < j < l, and k − i = 2c.

As j−i = 2a+1, l−k = 2b+1,so j−k = 2a+1−2c = 2(a−c)+1, l−j = 2b+1−[2(a−c)+1] =

2(b+ c− a)

If l− j = 2d + 2u2d, k− i = 2e + 2v2e, without loss of generality, assume d < e, by Lemma

2.1.2 in Section 2.1, L(s) = 2n − 2d, d > 0.

Since j − i = 2a+ 1, by Lemma 3.1.1, if d = e, then L(s) = 2n − (2d + 1).

4) i < k < j < l, and k − i = 2c+ 1.

As j−i = 2a+1, l−k = 2b+1,so j−k = 2a+1−(2c+1) = 2(a−c), l−i = 2b+1+2c+1 =

2(b+ c+ 1).

If l− i = 2d + 2u2d, j− k = 2e + 2v2e, without loss of generality, assume d < e, by Lemma

2.1.2 in Section 2.1,L(s) = 2n − 2d,d > 0.

Since k − i = 2c+ 1, by Lemma 3.1.1, if d = e, then L(s) = 2n − (2d + 1).

5) i < j < k < l, and k − i = 2c.

As j − i = 2a + 1, l − k = 2b + 1, so k − j = 2c − (2a + 1) = 2(c − a) − 1, l − j =

2b+ 1 + [2(c− a)− 1] = 2(b+ c− a)
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If l− j = 2d + 2u2d, k− i = 2e + 2v2e, without loss of generality, assume d < e, by Lemma

2.1.2 in Section 2.1, L(s) = 2n − 2d, d > 0.

Note that j − i = 2a+ 1, by Lemma 3.1.1, if d = e, then L(s) = 2n − (2d + 1).

6) i < j < k < l, and k − i = 2c+ 1.

As j−i = 2a+1, l−k = 2b+1, so k−j = 2c+1−(2a+1) = 2(c−a), l−i = 2b+1+2c+1 =

2(b+ c+ 1)

If l− i = 2d + 2u2d, k− j = 2e + 2v2e, without loss of generality, assume d < e, by Lemma

2.1.2 in Section 2.1, L(s) = 2n − 2d, d > 0.

Note that k − i = 2c+ 1, by Lemma 3.1.1, if d = e, then L(s) = 2n − (2d + 1).

Based on the above 6 cases, we conclude that the lemma can be established.

Corollary 3.1.1 Suppose that s is a binary sequence with period 2n and there are only

4 non-zero elements, and s can be decomposed into the superposition of Eij and Ekl. If

non-zero positions of Eij are i and j, j − i is an odd number, and non-zero positions of

Ekl are k and l, l − k is also an odd number, and i < k, k − i = 4c+ 2, |l − j| = 4d+ 2, or

|k − j| = 4c+ 2, |l − i| = 4d+ 2, then the linear complexity of s is 2n − 3.

Proof. According to case 1), 3) and 5) of Lemma 3.1.2, if k − i = 4c+ 2, |l− j| = 4d+ 2,

then |l − j| = 2 + 4d, k − i = 2 + 4c. By Lemma 3.1.1, noting that j − i = 2a + 1, so

L(s) = 2n − (2 + 1).

According to case 2), 4) and 6) of Lemma 3.1.2, if |k− j| = 4c+ 2, |l− i| = 4d+ 2, then it

is easy to know that k − i is odd, thus |k − j| = 2 + 4c, |l − i| = 2 + 4d. By Lemma 3.1.1,

L(s) = 2n − (2 + 1).

Corollary 3.1.2 If s is a binary sequence with period 2n and there are only 4 non-zero

elements, and s can be decomposed into the sum of two Eij , in which each has linear

complexity 2n − 2, then the linear complexity of s is 2n − (2 + 1) or 2n − (2d + 1)2, d > 0

or 2n − 2d, d > 1.

Proof. Suppose that non-zero positions of the first Eij are i and j, j − i = 4a + 2, and
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non-zero positions of the second Eij are k and l, l − k = 4b+ 2, where i < k.

If k − i = 2c+ 1, according to Lemma 3.1.1, then L(s) = 2n − (2 + 1).

If k − i = 2c, the corresponding polynomial of Ei + Ej + Ek + El is given by

xi + xj + xk + xl = xi(1 + xj−i + xk−i + xl−k+k−i)

Therefore, we only need to consider

1 + xj−i + xk−i + xl−k+k−i = 1 + (x2)2a+1 + (x2)c + (x2)2b+1+c = 1 + y2a+1 + yc + y2b+1+c

According to Lemma 3.1.2, L(s) = 2n − (2d + 1)2, d > 0 or 2n − 2d, d > 1.

Now we can obtain the following conclusions according to Lemma 3.1.2 and Corollary

3.1.2.

Proposition 3.1.2 Suppose that s is a binary sequence with period 2n and there are four

non-zero elements, then the necessary and sufficient conditions for the linear complexity

of s being 2n−3 are given by: s can be decomposed into the superposition of Eik and Ejl,

in which each has linear complexity 2n − 2. Further, if the non-zero positions of Eik are i

and k, with k − i = 4c+ 2, and the non-zero positions of the second Ejl are j and l, with

l − j = 4d + 2, where i < j, then j − i = 2a + 1(or |l − k| = 2b + 1 or |l − i| = 2e + 1 or

|k − j| = 2f + 1).

Figure 3.1: A graphic illustration of Proposition 3.1.2

We can also illustrate this with a graph in Figure 3.1. The only 4 non-zero positions of
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sequence s are i, j, k and l. As k − i = 4c + 2, l − j = 4d + 2, and j − i = 2a + 1, so

l− k = l− j + j − i− (k− i) = 4d+ 2 + 2a+ 1− (4c+ 2) is odd. Next we give a result on

the stable sequence.

Proposition 3.1.3 Suppose that s is a binary sequence with period 2n and its Hamming

weight is even, then the maximum stable 2-error linear complexity of s is 2n − 3.

Proof. Assume that L(s) = 2n − 1, then s can be decomposed into the sum of several

Eijs and the number of Eijs with linear complexity 2n − 1 is odd. According to Lemma

2.1.2 in Section 2.1, if an Eij with linear complexity 2n − 1 is removed, then the linear

complexity of s will be less than 2n − 1, namely the 2-error linear complexity of s is less

than 2n − 1.

Assume that L(s) = 2n − 2, then s can be decomposed into the sum of several Eijs and

the number of Eijs with linear complexity 2n − 2 is odd. If an Eij with linear complexity

2n − 2 is removed, then the linear complexity of s will be less than 2n − 2, namely the

2-error linear complexity of s is less than 2n − 2.

Assume that L(s) = 2n − 3, without loss of generality, here we only discuss the case that

s has 4 non-zero elements: ei, ej , ek and el, and L(Ei +Ej +Ek +El) = 2n− 3. If any two

of them are removed, by Proposition 3.1.2, the linear complexity of remaining elements of

the sequence is 2n − 1 or 2n − 2. From Figure 3.1, after ei and el are changed to zero, we

can see that the linear complexity of the sequence composed by ej and ek is 2n − 1.

If the position of one element from ei, ej , ek and el is changed, then there exist two elements,

of which the position difference remains unchanged as odd, thus L(s) ≥ 2n − 3 .

If two nonzero elements are added to the position outside ei, ej , ek and el, namely an Eij

with linear complexity 2n−2d is added to sequence s, according to Lemma 2.1.2 in Section

2.1, the linear complexity will be 2n − 1, 2n − 2 or 2n − 3.

Summarizing all above discussions, the proof is completed.

The following is an example to illustrate Proposition 3.1.3.

The linear complexity of 11110· · · 0 is 2n − 3

The linear complexity of 01010· · · 0 or 10100· · · 0 is 2n − 2
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The linear complexity of 01100· · · 0 or 10010· · · 0 is 2n − 1

If two additional nonzero elements are added to 11110· · · 0, namely an Eij whose linear

complexity is 2n − 2d is added to it, according to Lemma 2.1.2 in Section 2.1, the linear

complexity will become 2n − 1, 2n − 2 or 2n − 3.

For instance, suppose that 1110· · · 010· · · 0 is the addition of 11110· · · 0 and 0001· · · 010· · · 0.

We here only consider the case that the position difference of the last two nonzero ele-

ments is 2c + 1. According to case 5) of Lemma 3.1.2, j − i = 1, l − k = 2c + 1, so

k − j = 1, l − j = 2(c+ 1).

Noticed that k − i = 2, if l − j = 2d(2u + 1), according to Lemma 2.1.2 in Section 2.1,

L(s) = 2n − 2 when d > 1.

If d = 1, since j − i = 1, according to Lemma 3.1.1, L(s) = 2n − 3.

3.2 The Cube Theory and Main Results

Before presenting main results, we first consider a special case.

Lemma 3.2.1 Suppose that s is a binary sequence with period 2n and there are 8 non-

zero elements, thus s can be decomposed into the superposition of Eij , Ekl, Emn and Epq.

Suppose that non-zero positions of Eij are i and j, j − i = 2a+ 1, and non-zero positions

of Ekl are k and l, l− k = 2b+ 1, and k− i = 4c+ 2, l− j = 4d+ 2, and non-zero positions

of Emn are m and n, non-zero positions of Epq are p and q, and m− i = 4 + 8u, n− j =

4 + 8v, p − k = 4 + 8w, q − l = 4 + 8y, where a, b, c, d, u, v, w and y are all non-negative

integers, then the linear complexity of s is 2n − 7.

Proof. According to Corollary 3.1.1, L(Ei + Ej + Ek + El) = 2n − 3.

As m− n = m− i− (n− j)− (j − i), p− q = p− k − (q − l)− (l − k), thus both m− n
and p− q are odd numbers.

As p − m = p − k − (m − i) + (k − i), q − n = q − l − (n − j) + (l − j), thus both

p−m and q − n are multiples of 2, but not multiples of 4. According to Corollary 3.1.1,

L(Em + En + Ep + Eq) = 2n − 3.
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Similar to the proof of Lemma 3.1.1, the corresponding polynomial of Ei +Ek +Em +Ep

is given by

xi + xk + xm + xp

= xi(1− x4)[(1 + x4 + x2·4 + · · ·+ x2u·4)

+xk−i(1 + x4 + x2·4 + · · ·+ x2w·4)]

= xi(1− x4)[1 + xk−i + (x4 + x2·4 + · · ·+ x2u·4)

+xk−i(x4 + x2·4 + · · ·+ x2w·4)]

= xi(1− x4)[1 + x4c+2 + (x4 + x2·4 + · · ·+ x2u·4)

+xk−i(x4 + x2·4 + · · ·+ x2w·4)]

= xi(1− x)6[(1 + x2 + x4 + · · ·+ x4c)

+(x4 + x3·4 + · · ·+ x(2u−1)·4)(1 + x)2

+xk−i(x4 + x3·4 + · · ·+ x(2w−1)·4)(1 + x)2]

The corresponding polynomial of Ej + El + En + Eq is given by

xj + xl + xn + xq

= xj(1− x4)[(1 + x4 + x2·4 + · · ·+ x2v·4)

+xl−j(1 + x4 + x2·4 + · · ·+ x2y·4)]

= xj(1− x)6[(1 + x2 + x4 + · · ·+ x4d)

+(x4 + x3·4 + · · ·+ x(2v−1)·4)(1 + x)2

+xl−j(x4 + x3·4 + · · ·+ x(2y−1)·4)(1 + x)2]
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The corresponding polynomial of Ei + Ej + Ek + El + Em + En + Ep + Eq is given by

xi + xj + xk + xl + xm + xn + xp + xq

= xi(1− x)6{(1 + x2 + x4 + · · ·+ x4c)

+(x4 + x3·4 + · · ·+ x(2u−1)·4)(1 + x)2

+xk−i(x4 + x3·4 + · · ·+ x(2w−1)·4)(1 + x)2

+xj−i[(1 + x2 + x4 + · · ·+ x4d)

+(x4 + x3·4 + · · ·+ x(2v−1)·4)(1 + x)2

+xl−j(x4 + x3·4 + · · ·+ x(2y−1)·4)(1 + x)2]}

= xi(1− x)6{1 + xj−i + (x2 + x4 + · · ·+ x4c)

+(x4 + x3·4 + · · ·+ x(2u−1)·4)(1 + x)2

+xk−i(x4 + x3·4 + · · ·+ x(2w−1)·4)(1 + x)2

+xj−i[(x2 + x4 + · · ·+ x4d)

+(x4 + x3·4 + · · ·+ x(2v−1)·4)(1 + x)2

+xl−j(x4 + x3·4 + · · ·+ x(2y−1)·4)(1 + x)2]}

= xi(1− x)7{1 + x+ x2 + · · ·+ x2a

+x2(1 + x)(1 + x4 + · · ·+ x4(c−1))

+(x4 + x3·4 + · · ·+ x(2u−1)·4)(1 + x)

+xk−i(x4 + x3·4 + · · ·+ x(2w−1)·4)(1 + x)

+xj−i[x2(1 + x)(1 + x4 + · · ·+ x4(d−1))

+(x4 + x3·4 + · · ·+ x(2v−1)·4)(1 + x)

+xl−j(x4 + x3·4 + · · ·+ x(2y−1)·4)(1 + x)]}

The number of items in (1 + x+ x2 + · · ·+ x2a) is odd, thus there is no factor (1 + x) in

(1 + x+ x2 + · · ·+ x2a). Thus we have

gcd((1− x)2
n
, xi + xj + xk + xl + xm + xn + xp + xq) = (1− x)7

It is followed by L(s) = 2n − 7.

For the convenience of presentation, we introduce some definitions.

Definition 3.2.1 Suppose that the difference of positions (or indexes) of two non-zero

elements of sequence s is (2x + 1)2y, both x and y are non-negative integers, then the
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Figure 3.2: A graphic illustration of Lemma 3.2.1

distance between the two elements is defined as 2y.

Definition 3.2.2 Suppose that s is a binary sequence with period 2n, and there are 2m

non-zero elements in s, and 0 ≤ i1 < i2 < · · · < im < n. If m = 1, then there are 2

non-zero elements in s and the distance (based on Definition 3.2.1 above) between the

two elements is 2i1 , so it is called as a 1-cube. If m = 2, then s has 4 non-zero elements

which form a rectangle, the lengths of 4 sides are 2i1 and 2i2 respectively, so it is called

as a 2-cube. In general, s has 2m−1 pairs of non-zero elements, in which there are 2m−1

non-zero elements which form a (m−1)-cube, the other 2m−1 non-zero elements also form

a (m − 1)-cube, and the distance between each pair of elements are all 2im , then the

sequence s is called as an m-cube, and the linear complexity of s is called as the linear

complexity of the cube as well.

Definition 3.2.3 A non-zero element of sequence s is called a vertex. Two vertexes can

form an edge. If the distance between the two elements (vertices) is 2y, then the length

of the edge is defined as 2y.

Now we consider the linear complexity of a cube.

Theorem 3.2.1 Suppose that s is a binary sequence with period 2n, and non-zero elements

of s form a m-cube, if lengths of edges are i1, i2, · · · , im (0 ≤ i1 < i2 < · · · < im < n)
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respectively, then L(s) = 2n − (2i1 + 2i2 + · · ·+ 2im).

Proof. Similar to the proof of Lemma 3.2.1, it is easy to prove Theorem 3.2.1 with

mathematical induction.

Based on the Games-Chan algorithm (Games and Chan, 1983), we give another proof

from different perspective.

In the kth step, 1 ≤ k ≤ n, if and only if one period of the sequence can not be divided

into two equal parts, then the linear complexity should be increased by half period. In

the kth step, the linear complexity can be increased by maximum 2n−k.

Suppose that non-zero elements of sequence s form am-cube, lengths of edges are i1, i2, · · · , im
(0 ≤ i1 < i2 < · · · < im < n) respectively. Then in the (n− im)th step, one period of the

sequence can be divided into two equal parts, then the linear complexity should not be

increased by 2im .

· · · · · ·

In the (n − i2)th step, one period of the sequence can be divided into two equal parts,

then the linear complexity should not be increased by 2i2 .

In the (n − i1)th step, one period of the sequence can be divided into two equal parts,

then the linear complexity should not be increased by 2i1 .

Therefore, L(s) = 1+1+2+22+· · ·+2n−1−(2i1+2i2+· · ·+2im) = 2n−(2i1+2i2+· · ·+2im).

The proof is complete now.

There is a 3-cube in Figure 3.2. L(s) = 2n − (1 + 2 + 4), and lengths of edges are 1, 2 and

4 respectively. Next we give a decomposition result.

Theorem 3.2.2 Suppose that s is a binary sequence with period 2n, and L(s) = 2n −
(2i1 + 2i2 + · · · + 2im), where 0 ≤ i1 < i2 < · · · < im < n, then the sequence s can

be decomposed into several disjoint cubes, and only one cube has the linear complexity

2n − (2i1 + 2i2 + · · · + 2im), other cubes possess distinct linear complexity which are all

less than 2n − (2i1 + 2i2 + · · ·+ 2im). If the sequence s consists of only one cube, then the

Hamming weight of s is 2m.
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Proof. The mathematical induction will be applied to the degree d of sN (x). For d < 3,

by Lemma 2.1.3 in Section 2.1, the theorem is obvious.

We first consider a simple case.

A) Suppose that L(s) = 2n− (2i1 + 2i2 + · · ·+ 2im + 2im+1), and the Hamming weight of s

is the minimum, namely L(s) 6= 2n − (2i1 + 2i2 + · · ·+ 2im + 2im+1) when we remove 2 or

more non-zero elements. Next we prove that s consists of one (m+ 1)-cube exactly. Let

sN (x) = (1− x2i1 )(1− x2i2 ) · · · (1− x2im )(1− x2
im+1

)

[1 + f(x)(1− x)]

Then tN (x) = (1−x2i1 )(1−x2i2 ) · · · (1−x2im )[1 + f(x)(1−x)] corresponds to a sequence

t whose linear complexity is L(t) = 2n− (2i1 + 2i2 + · · ·+ 2im). The degree of tN (x) is less

than the degree of sN (x), so the mathematical induction can be applied.

In the following, we consider two cases. We will prove that the second case is equivalent

to the first case.

1) The Hamming weight of sequence t is 2m. By mathematical induction, t is an m-cube.

Since sN (x) = tN (x)(1 − x2im+1
) = tN (x) + x2

im+1
tN (x), and 0 ≤ i1 < i2 < · · · < im <

im+1 < n, so s is a (m+ 1)-cube and its Hamming weight is 2m+1.

2) The Hamming weight of sequence t is 2m + 2y. By mathematical induction, the se-

quence t can be decomposed into several disjoint cubes, and only one cube has the linear

complexity 2n − (2i1 + 2i2 + · · ·+ 2im). Thus

tN (x) = (1 − x2i1 )(1 − x2i2 ) · · · (1 − x2im )[1 + g(x)(1 − x) + h(x)(1 − x)], and uN (x) =

(1− x2i1 )(1− x2i2 ) · · · (1− x2im )[1 + g(x)(1− x)], corresponds to an m-cube, its non-zero

elements form a set denoted by A.

vN (x) = (1− x2i1 )(1− x2i2 ) · · · (1− x2im )h(x)(1− x) corresponds to several cubes, whose

2y non-zero elements form a set denoted by B.

Assume that b ∈ B, bx2im+1 ∈ A, we swap b and bx2
im+1

, namely let b ∈ A, bx2im+1 ∈ B.

It is easy to show that the linear complexity of the sequence to which uN (x) corresponds

remains unchanged. The new uN (x) is still an m-cube.
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sN (x) = tN (x)(1− x2im+1
) = uN (x) + vN (x)− uN (x)x2

im+1 − vN (x)x2
im+1

, uN (x)x2
im+1

corresponds to 2m non-zero elements which form a set denoted by C. vN (x)x2
im+1

corre-

sponds to 2y non-zero elements which form a set denoted by D.

By definition, set A and set C disjoint, set B and set D disjoint.

Suppose that set A and set D intersects. Thus there exists b ∈ B, such that bx2
im+1 ∈ A,

which contradicts the assumption that b ∈ A, bx2im+1 ∈ B. So set A and set D disjoint.

As set A and set B disjoint, we know that set C and set D disjoint.

We now prove that Set C and B disjoint by contradiction approach.

Suppose that b ∈ B, b = ax2
im+1 ∈ C, a ∈ A, then ax2(2

im+1 ) must be in D, so sequence s

has non-zero elements a and ax2(2
im+1 ). The linear complexity of the sequence with only

non-zero elements a and ax2(2
im+1 ) is

2n − 2 · 2im+1 < 2n − (2i1 + 2i2 + · · ·+ 2im + 2im+1).

Based on Lemma 2.1.2 in Section 2.1, if the two non-zero elements are changed to zero,

the linear complexity of s remains unchanged. This contradicts the assumption that the

Hamming weight is the minimum, so A and C form a (m+ 1)-cube exactly, and its linear

complexity is 2n − (2i1 + 2i2 + · · ·+ 2im + 2im+1).

By the assumption of Case A), s has the minimum Hamming weight, so s consists of a

(m+ 1)-cube exactly.

B) Let sN (x) = uN (x) + vN (x), where the Hamming weight of uN (x) is the minimum,

and

L(u) = 2n − (2i1 + 2i2 + · · ·+ 2im + 2im+1).

From Case A), uN (x) consists of a (m+ 1)-cube exactly.

Let vN (x) = yN (x) + zN (x), where the Hamming weight of yN (x) is minimum, and

L(y) = L(v). By Case A), yN (x) consists of only one cube exactly. By analogy, we can

prove that s consists of several cubes, and only one cube has the linear complexity of

2n − (2i1 + 2i2 + · · · + 2im + 2im+1), other cubes possess distinct linear complexity which

are all less than 2n − (2i1 + 2i2 + · · ·+ 2im + 2im+1).

This completes proof.
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The following examples can help us understand the proof of Theorem 3.2.2.

(1 + x)(1 + x2)[1 + x5(1 + x2)] = 1 + x + x2 + x3 + x5 + x6 + x9 + x10 corresponds to a

sequence in which there are 8 non-zero elements. It consists of two 2-cubes: (1+x)(1+x2)

and (1 + x)(1 + x4)x5.

(1 + x)(1 + x2)[1 + x5(1 + x2)](1 + x4) = 1 + x+ x2 + x3 + x4 + x7 + x13 + x14 corresponds

to a sequence in which there are also 8 non-zero elements, but only one 3-cube. The linear

complexity is 2n − (1 + 2 + 4), and the lengths of edges are 1, 2 and 4 respectively.

Based on Algorithm 3.1.1, we may have a standard cube decomposition for any binary

sequence with period 2n and L(s) < 2n (Zhou et al., 2015b).

Algorithm 3.2.1

Input: s(n) is a binary sequence with period 2n and L(s) < 2n.

Output: A cube decomposition of sequence s(n).

Step 1. Let s(n) = [Left(s(n)), Right(s(n))].

Step 2. If Left(s(n)) = Right(s(n)), then we only consider Left(s(n)).

Step 3. If Left(s(n)) 6= Right(s(n)), then we consider Left(s(n))
⊕
Right(s(n)). In this

case, some nonzero elements of s may be removed.

Step 4. After above operation, we can have one nonzero element. Now by only restoring

the nonzero elements in Right(s(n)) removed in Step 2, one can achieve Left(s(n)) =

Right(s(n)). In this case, we obtain a cube c1 with linear complexity L(s(n)).

Step 5. With s(n)
⊕
c1, run Step 1 to Step 4. We obtain a cube c2 with linear complexity

less than L(s(n)).

Step 6. With these nonzero elements left in s(n), run Step 1 to Step 5 recursively we will

obtain a series of cubes in the descending order of linear complexity.

Obviously, this is a cube decomposition of sequence s(n). We define it as the standard

cube decomposition of sequence s(n). One can observe that cube decomposition of a

sequence may not be unique in general, but the standard cube decomposition of a
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sequence is unique.

Next we use a sequence {1101 1001 1000 0000} to illustrate the decomposition process.

Note that the sequence can be considered as 1 + x+ x3 + x4 + x7 + x8.

As Left 6= Right, then we consider Left
⊕
Right. Then the cube 1 + x8 is removed.

Recursively, as Left 6= Right, then we consider Left
⊕
Right. This time the cube x3 +x7

is removed. Only the cube x+ x4 is left. So the standard cube decomposition of 1 + x+

x3 + x4 + x7 + x8 is {x+ x4, x3 + x7, 1 + x8}.

Suppose that the linear complexity of s can reduce when at least k elements of s are

changed. By Lemma 2.1.2 in Section 2.1, the linear complexity of the binary sequence, in

which elements at exactly those k positions are all nonzero, must be L(s). According to

Theorem 3.2.1 and Theorem 3.2.2, it is easy to achieve the following conclusion.

Corollary 3.2.1 Suppose that s is a binary sequence with period 2n, and L(s) = 2n −
(2i1 + 2i2 + · · · + 2im), where 0 ≤ i1 < i2 < · · · < im < n. If kmin is the minimum, such

that the kmin-error linear complexity is less than L(s), then kmin = 2m.

Corollary 3.2.1 was first proved by Kurosawa et al. (2000), and later it was proved by

Etzion et al. (2009) with a different approach.

Obviously, previous Proposition 3.1.2 and Proposition 3.1.3 are also corollaries of Theorem

3.2.1 and Theorem 3.2.2.

Now we consider a k-cube, if lengths of edges are 1,2,22, · · · , and 2k−1 respectively, and

the linear complexity is 2n−(2k−1). By Theorem 3.2.1 and Theorem 3.2.2, we can obtain

the following results on stability.

Corollary 3.2.2 Suppose that s is a binary sequence with period 2n and its Hamming

weight is even, then the maximum stable 2k−1, · · · , (2k − 2) or (2k − 1)-error linear com-

plexity of s are all 2n − (2k − 1)(k > 0).

The following is an example to illustrate Corollary 3.2.2.

Let s be the binary sequence

2k︷ ︸︸ ︷
11 · · · 11 0 · · · 0. Its period is 2n, and there are only 2k

continuous nonzero elements at the beginning of the sequence. Then it is a k-cube, and
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the 2k−1, · · · , (2k − 2) or (2k − 1)-error linear complexity of s are all 2n − (2k − 1).

After at most e(0 ≤ e ≤ 2k − 1) elements of a period in the above sequence are changed,

the linear complexity of all new sequences are not decreased, so the original sequence

possesses stable e-error linear complexity.

According to Lemma 2.1.2 in Section 2.1, if a sequence whose linear complexity is less

than 2n− (2k − 1) is added to the sequence with linear complexity 2n− (2k − 1), then the

linear complexity of the new sequence is still 2n − (2k − 1), and the 2k−1, · · · , (2k − 2) or

(2k − 1)-error linear complexity of the new sequence are all 2n − (2k − 1).

By combining Corollary 3.2.1 and Corollary 3.2.2, we can achieve the following theorem.

Theorem 3.2.3 For 2l−1 ≤ k < 2l, there exists a 2n-periodic binary sequence s with

stable k-linear complexity 2n − (2l − 1), such that

Lk(s) = max
t
Lk(t)

where t is any 2n-periodic binary sequence.

Niu et al. (2013, 2014) gave the following result.

Conjecture 3.2.1 Let Lm(s) the m-error linear complexity of binary sequence with

period 2n. Then Lm(s) ≤ 2n − 2m+ 1.

Theorem 3.2.3 completely answers Conjecture 3.2.1. If m = 2l−1, then there exists a 2n-

periodic binary sequence s such that Lm(s) = 2n − 2l + 1 = 2n − 2m + 1. Otherwise, if

m = 2l−1 + v, where v > 0, then Lm(s) = 2n − 2l + 1 = 2n − 2m+ 2v + 1 > 2n − 2m+ 1.

In other words, Conjecture 3.2.1 is correct only when m = 2l−1, in other cases it is not

correct.

It is reminded that the CELCS (critical error linear complexity spectrum) is studied by

Lauder and Paterson (2003); Etzion et al. (2009). The CELCS of a sequence s consists

of the ordered set of points (k, Lk(s)) satisfying Lk(s) > Lk′(s), for k′ > k; these are the

points where a decrease occurs in the k-error linear complexity, and thus are called critical

points. An efficient algorithm for computing the CELCS of a sequence is given by Lauder

and Paterson (2003).

Let s be a binary sequence with period 2n and it has only one m-cube. Then s has only

two critical points: (0, l(s)), (2m, 0).
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In the following, we will study binary sequences with several cubes. By Theorem 3.2.2, if

s is a 2n-periodic binary sequence, then it can be decomposed into several disjoint cubes.

The following examples show that the cube decomposition of a sequence is not unique.

For example, 1 + x + x3 + x4 + x7 + x8 can be decomposed into a 1-cube 1 + x, whose

linear complexity is 2n − 1, and a 2-cube x3 + x4 + x7 + x8, whose linear complexity is

2n − (1 + 4).

It can also be decomposed into a 1-cube x3 + x4, whose linear complexity is 2n − 1, a

1-cube x+ x7, whose linear complexity is 2n − 2, and another 1-cube 1 + x8, whose linear

complexity is 2n − 8.

It can also be decomposed into a 1-cube x7 + x8, whose linear complexity is 2n − 1, a

1-cube x+ x3, whose linear complexity is 2n − 2, and another 1-cube 1 + x4, whose linear

complexity is 2n − 4.

It can also be decomposed into a 1-cube 1 + x3, whose linear complexity is 2n − 1, a

1-cube x+ x7, whose linear complexity 2n − 2, and another 1-cube x4 + x8, whose linear

complexity is 2n − 4.

· · · · · ·

In fact, we do not know how many possible ways for such decompositions. However, in

order to achieve the maximal decrease of the linear complexity of the new sequence by

superposing another sequence over the original one, a direct method is, if possible, that

the linear complexity of the first cube is changed to the same as the linear complexity of

the second cube.

As an illustrative example, noting that the linear complexity of x3 +x4 +x7 +x8 is 2n−5,

thus in order to achieve the maximum decrease of linear complexity, we superpose x12+x13

over 1+x+x3+x4+x7+x8, so that the linear complexity of 1+x+x12+x13 is also 2n−5.

As a result, the linear complexity of 1 + x + x3 + x4 + x7 + x8 + x12 + x13 is reduced to

2n− 6, which can be decomposed into a 2-cube x+x3 +x7 +x13, whose linear complexity

is 2n − 6, and another 2-cube 1 + x4 + x8 + x12, whose linear complexity is 2n − 12.

To construct the sequence possessing high stable k-error linear complexity, both the first

cube and the second cube should possess higher linear complexity. Specifically, it is easy

to verify the following.
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Theorem 3.2.4 Suppose that s is a binary sequence with period 2n, the linear complexity

of the largest cube of s is L(s) = 2n−(2i1+2i2+· · ·+2im), where 0 ≤ i1 < i2 < · · · < im < n,

and the linear complexity of the second largest cube of s is 2n − (2j1 + 2j2 + · · · + 2jl),

where 0 ≤ j1 < j2 < · · · < jl < n. If the largest cube of s is unique, then 2m + 2l is the

minimum number k for which the second decrease occurs in the k-error linear complexity

of s. Namely,

L(s) > L2m(s) > L2m+2l(s).

For example, 1+x+x3+x4+x7+x8 has a 1-cube 1+x, whose linear complexity is 2n−1.

It also has 1-cube x3 +x4 and x7 +x8, all with linear complexity 2n−1. So Theorem 3.2.4

can not be applied to this sequence. In fact, L(s) > L2(s) > L4(s) > 0.

3.3 Summary

A small number of element changes may lead to a sharp decline of linear complexity, so

the concept of stable k-error linear complexity has been introduced in this chapter. By

studying the linear complexity of binary sequences with period 2n, especially the linear

complexity may decline when the superposition of two sequences with the same linear

complexity is operated,the cube theory has been proposed to study the k-error linear

complexity. Further, a new approach to constructing the sequence with stable k-error lin-

ear complexity based on the cube theory has been derived. It has been proved that a binary

sequence whose period is 2n can be decomposed into several disjoint cubes. Based on the

Games-Chan algorithm (Games and Chan, 1983) a standard cube decomposition of

sequence s(n) has also been proposed.

In future, by using methods similar to that of the binary sequence, we may study a sequence

with period pn over Fp, where p is a prime number. The polynomial 1− xpn = (1− x)p
n

over Fp. Thus for a sequence with period pn over Fp, its linear complexity is equal to the

degree of factor (1− x) in sN (x).
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Chapter 4

A Structural Approach for

Determining the CELCS of

2n-periodic Binary Sequences

In this chapter, we propose a structural approach to determining the CELCS (critical

error linear complexity spectrum) (Lauder and Paterson, 2003; Etzion et al., 2009) for

the k-error linear complexity distribution of 2n-periodic binary sequences. To explain the

difference of Chapter 2 and this chapter, we give the following example.

Suppose that s(n) is a 2n-periodic binary sequence. Let Nk(L) be the number of 2n-periodic

binary sequences s(n) with linear complexity 2n and the k-error linear complexity L. The

complete counting function N1(L) is obtained by Meidl (2005). The complete counting

function N3(L) is derived in Section 2.4 of Chapter 2. Partial counting function N5(L) is

given in Section 2.6 of Chapter 2.

Let Ni,k(L) be the number of 2n-periodic binary sequences s(n) with linear complexity 2n,

the i-error linear complexity as the last descent point and the k-error linear complexity

being L. Then we can have

N5(L) = N1,5(L) +N3,5(L) +N5,5(L) +
∑

Ni|i>5,5(L)

In this chapter, we mainly focus on Ni,k(L) of 2n-periodic binary sequences s(n) with

linear complexity 2n or linear complexity less than 2n. In contrast, Chapter 2 mainly

focuses on Nk(L) of 2n-periodic binary sequences s(n) with linear complexity 2n or

linear complexity less than 2n.

Another difference is that the proposed structural approach is based on the Cube Theory

of Chapter 3.

Similar to Chapter 2, we will study the k-error linear complexity of 2n-periodic binary

sequences by using the sieve approach and the Games-Chan algorithm (Games and Chan,
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1983). The structural approach is also based on the proposed framework in Chapter 2.

Let S = {s|L(s) = c}, E = {e|WH(e) = k}, S + E = {s + e|s ∈ S, e ∈ E}, where s

is a sequence with linear complexity c and e is a sequence with WH(e) = k. With the

following sieve method, we aim to sieve sequences s+e with Lk(s+e) = c from S+E. For

given linear complexity c, it remains to investigate two cases. One is that s+ u ∈ S + E,

but Lk(s + u) < c. This is equivalent to checking if there exists a sequence v such that

L(u+v) = c. The other is the case that s+u, t+v ∈ S+E and Lk(s+u) = Lk(t+v) = c

with s 6= t, u 6= v, but s+ u = t+ v. It is equivalent to checking if there exists a sequence

v such that L(u+ v) = L(s+ t) < c and if so, check the number of such sequence v, where

WH(u) = WH(v) = k.

Finally in Section 4.4, first the k-error cube decomposition of 2n-periodic binary sequences

is developed based on the Cube Theory of Chapter 3. Based on the proposed k-error

cube decomposition, and the famous inclusion-exclusion principle, we obtain the complete

characterization of the ith descent point (critical point) of the k-error linear complexity

for i = 2, 3, which are the extension of the work by Kurosawa et al. (2000). In fact,

the proposed constructive approach has the potential to be used for constructing 2n-

periodic binary sequences with the given linear complexity and k-error linear complexity

(or CELCS), which is a challenging problem to be deserved for further investigation in

future.

The rest of this chapter is organized as follows. In Section 4.1, we mainly investigate

2n-periodic binary sequences with given first descent point of 1-error linear complexity

and second descent point of 3-error linear complexity. In Section 4.2, we study 2n-periodic

binary sequences with given first descent point of 2-error linear complexity and second

descent point of 4-error linear complexity. In Section 4.3, 2n-periodic binary sequences

with given first descent point of 1-error linear complexity, second descent point of 3-error

linear complexity and third descent point of 5-error linear complexity are discussed. Finally

in Section 4.4, first the k-error cube decomposition of 2n-periodic binary sequences is

developed based on the Cube Theory of Chapter 3. Second we investigate the formulas

to determine the second descent points and third descent points for the k-error linear

complexity, respectively.
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4.1 2n-periodic binary sequences with given 3-error linear

complexity as the second descent point

Suppose that s(n) is a 2n-periodic binary sequence. We first investigate the relationship

between the first descent point of the k-error linear complexity and the second descent

point of the k-error linear complexity. Second, based on the first descent point and the

second descent point, we obtain the complete counting functions of 2n-periodic binary

sequences with given first descent point of 1-error linear complexity and second descent

point of 3-error linear complexity.

Theorem 4.1.1 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n.

Then L3(s
(n)) < L1(s

(n)) if and only if L1(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n.

Proof. ⇒

By result from Kurosawa et al. (2000) we know that the minimum number k for which the

k-error linear complexity of 2n-periodic binary sequence with linear complexity 2n−(2i+2j)

is strictly less than 2n − (2i + 2j) is 22 = 4. Note that from the sequence with linear

complexity L1(s
(n)) to the sequence with linear complexity L3(s

(n)), at most 4 elements

have been changed. Thus, if L3(s
(n)) < L1(s

(n)), then s(n) is obtained by changing one

element of a 2n-periodic binary sequence with linear complexity 2n−(2i+2j). So L1(s
(n)) =

2n − (2i + 2j).

⇐

Suppose that L1(s
(n)) = 2n − (2i + 2j). Similarly by result from Kurosawa et al. (2000)

we know that it is possible to change 3 elements of s(n), so that the new sequence with

linear omplexity less then 2n − (2i + 2j). That is L3(s
(n)) < L1(s

(n)).

Next we investigate the distribution of L3(s
(n)) in the following theorem.

Theorem 4.1.2 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n. If

L1(s
(n)) = 2n−(2i+2j), 0 ≤ i < j < n, then L3(s

(n)) = 2n−(2i1+2i2+· · ·+2im) < 2n−(2i+

2j), where 0 ≤ i1 < i2 < · · · < im < n,m > 2, or L3(s
(n)) = 2n−(2i1 +2i2) < 2n−(2i+2j),

where i1 6= i, j and i2 6= j.
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Proof. The following proof is based on the framework: S + E = {t+ e|t ∈ S, e ∈ E}.

We only give the following example to illustrate the proof.

Let s(4) be a 24-periodic binary sequence with linear complexity 24. If L1(s
(4)) = 24 −

(20 + 2), then L3(s
(4)) 6= 24 − (2 + 23).

We will prove it by contradiction. Suppose that L3(s
(4)) = 24−(2+23). Let S = {t|L(t) =

24 − (2 + 23)}, E = {e|WH(e) = 3}, S + E = {t + e|t ∈ S, e ∈ E}, where t is a sequence

with linear complexity 24 − (2 + 23) and e is a sequence with WH(e) = 3. With the sieve

method, we aim to sieve sequences t+ e with L3(t+ e) = 24 − (2 + 23) from S + E.

We now investigate the case that t + u ∈ S + E, but L3(t + u) < 24 − (2 + 23). This is

equivalent to checking if there exists a sequence v ∈ E such that L(u+ v) = 24− (2 + 23).

For any u ∈ E such that L1(t + u) = 24 − (1 + 2). Such as u = {1110 0000 0000 0000}.
There exists a sequence v ∈ E such that L(u+v) = 24−(2+23). So L3(t+u) < 24−(2+23).

Here v = {0100 0000 1010 0000}.

This completes the proof.

We next derive the counting formula of binary sequences with both the given 1-error linear

complexity and the given 3-error linear complexity.

Theorem 4.1.3 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n.

1) If L1(s
(n)) = 2n− (2i + 2j), 0 ≤ i < j < n, and L3(s

(n)) = 2n− (2i1 + 2i2 + · · ·+ 2im) <

2n − (2i + 2j), where 0 ≤ i1 < i2 < · · · < im < n,m > 2 or L3(s
(n)) = 2n − (2i1 + 2i2) <

2n−(2i+2j), where i1 6= i, j and i2 6= j. Then the number of 2n-periodic binary sequences

s(n) can be given by

23n−j−i−3 × 2L−1/(2ε+j−i0 × 8n−im−1)

where i0 ≤ j is the minimum number for which 2n− (2i0 +2j) < 2n− (2i1 +2i2 + · · ·+2im)

with a default choice i0 = j. Further, if j = im or 2n− (2j + 2im) > L3(s
(n)) then ε = 0, if

j < im and only 2n − (2j + 2im) < L3(s
(n)) then ε = 1, if 2n − (2i + 2im) < L3(s

(n)) then

ε = 2, where im = i2 for L = 2n − (2i1 + 2i2).

2) If L3(s
(n)) = 0, then the number of 2n-periodic binary sequences s(n) can be given by

23n−j−i−3.
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Proof. 1) Let S = {t|L(t) = L}, E = {e|WH(e) = 3}, S +E = {t+ e|t ∈ S, e ∈ E}, where

t is a sequence with linear complexity L = 2n − (2i1 + 2i2 + · · ·+ 2im) and e is a sequence

with WH(e) = 3 and L1(e) = 2n − (2i + 2j). With the sieve method, we aim to sieve

sequences t+ e with L3(t+ e) = L from S + E.

By Lemma 2.1.6 in Section 2.1, we know that the number of 2n-periodic binary sequences

t with L(t) = L is 2L−1. Now we will obtain the number of sequences e with WH(e) = 3

and L1(e) = 2n − (2i + 2j).

Suppose that s(i) is a 2i-periodic binary sequence with linear complexity 2i and WH(s(i)) =

1, then the number of these s(i) is 2i.

So the number of 2i+1-periodic binary sequences s(i+1) with linear complexity 2i+1−2i = 2i

and WH(s(i+1)) = 2 is also 2i.

For j > i, if 2j-periodic binary sequences s(j) with linear complexity 2j−2i and WH(s(j)) =

2, then 2j − 2i − (2i+1 − 2i) = 2j−1 + 2j−2 + · · ·+ 2i+1.

Based on Algorithm 3.1.1 in Section 3.1, the number of these s(j) can be given by

(22)j−i−1 × 2i = 22j−i−2.

For example, suppose that i = 1, j = 3, then there are (22)j−i−1 = 4 sequences of s(j)

correspond to a sequence {1010} of s(i+1), given by

{1010 0000}, {1000 0010}, {0010 1000}, {0000 1010}

So the number of 2j+1-periodic binary sequences s(j+1) with linear complexity 2j+1−(2j+

2i) and WH(s(j+1)) = 4 is also 22j−i−2.

As u ∈ E such that L1(u) = 2n − (2i + 2j). So the number of these u can be given by

22 × (23)n−j−1 × 22j−i−2 = 23n−j−i−3.

We now investigate the case that s+ u, t+ v ∈ S +E and L3(s+ u) = L3(t+ v) = L with

s 6= t, u 6= v, but s + u = t + v. It is equivalent to checking if there exists a sequence v

such that L(u+ v) = L(s+ t) < L and if so, check the number of such sequence v, where

WH(u) = WH(v) = 3. We need to consider the following two cases.

The first case is related to the minimum i0 ≤ j such that 2n− (2i0 + 2j) < L = 2n− (2i1 +
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2i2 + · · ·+ 2im). For any u ∈ E, it is easy to show that there exist 2j−i0 − 1 sequences v,

such that L(u+ v) < L.

(The following example is given to illustrate the above case. Suppose that n = 5, i =

0, j = 4, i0 = 2, i1 = 0, i2 = 1, i3 = 4. So L = 2n − (2i1 + 2i2 + 2i3) = 13.

If u(5) = {1100 0000 0000 0000 1000 0000 0000 0000}. Then

v
(5)
1 = {0100 0000 1000 0000 0000 0000 1000 0000},

v
(5)
2 = {0100 1000 0000 0000 0000 1000 0000 0000},

v
(5)
3 = {0100 0000 0000 1000 0000 0000 0000 1000}.

Thus L(u(5) + v
(5)
1 ) = 25 − (23 + 24), L(u(5) + v

(5)
2 ) = L(u(5) + v

(5)
3 ) = 25 − (22 + 24). )

The second case is related to im < w < n. For im < w < n, there exist 7 × 8w−im−1

sequences v, such that L(u+ v) = 2n− (2i + 2w) < L or L(u+ v) = 2n− (2j + 2w) < L or

L(u+ v) = 2n − 2w < L.

Note that for any sequence v with 3 nonzero elements, if we double the period of sequence

v, then 23 new sequences will be generated. Therefore there exist

7 + 7× 8 + · · ·+ 7× 8n−im−2 = 8n−im−1 − 1

sequences v, such that L(u+ v) < L.

(The following example is given to illustrate the above case. Suppose that n = 5, i =

0, j = 1, i1 = 1, i2 = 2, i3 = 3,

u(5) = {1110 0000 0000 0000 0000 0000 0000 0000}. Then

v
(5)
1 = {0100 0000 0000 0000 1010 0000 0000 0000},

v
(5)
2 = {1000 0000 0000 0000 0110 0000 0000 0000},

v
(5)
3 = {0010 0000 0000 0000 1100 0000 0000 0000},

v
(5)
4 = {0110 0000 0000 0000 1000 0000 0000 0000},
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v
(5)
5 = {1010 0000 0000 0000 0100 0000 0000 0000},

v
(5)
6 = {1100 0000 0000 0000 0010 0000 0000 0000},

v
(5)
7 = {0000 0000 0000 0000 1110 0000 0000 0000}.

Thus L(u(5) + v
(5)
1 ) = 25 − (2 + 24), L(u(5) + v

(5)
2 ) = L(u(5) + v

(5)
3 ) = 25 − (1 + 24),

L(u(5) + v
(5)
4 ) = L(u(5) + v

(5)
5 ) = L(u(5) + v

(5)
6 ) = L(u(5) + v

(5)
7 ) = 25 − 24. )

If j < im and only 2n− (2j + 2im) < L then the number of v will be increased by 8n−im−1.

If 2n − (2i + 2im) < L then the number of v will be increased by 3× 8n−im−1.

It follows that the number of 2n-periodic binary sequences s(n) with L1(s
(n)) = 2n−(2i+2j)

and L3(s
(n)) = L can be given by

23n−j−i−3 × 2L−1/(2ε+j−i0 × 8n−im−1)

where if j = im or 2n − (2j + 2im) > L then ε = 0, if only 2n − (2j + 2im) < L then ε = 1,

if 2n − (2i + 2im) < L then ε = 2.

If j > i0, then 2n − (2i0 + 2j) < 2n − (2i1 + 2i2 + · · ·+ 2im) < 2n − (2i + 2j), so j = im. If

ε > 0, then j < im. Therefore, j − i0 and ε can not be positive at the same time.

We can use almost the same method to deal with the case of L3(s
(n)) = 2n − (2i1 + 2i2)

but without the situation of j = i2.

2) This is an obvious case.

To further illustrate Theorem 4.1.3, we give the following two examples, which are verified

by computer program as well.

Example 4.1.1 Suppose that n = 4, i = 1, j = 3, i0 = 2, i1 = 0, i2 = 1, i3 = 3. Note that

L = 2n − (2i1 + 2i2 + 2i3) = 24 − (1 + 2 + 8) = 5, so 2n − (2i0 + 2j) = 24 − (4 + 8) < L. As

j = i3, so ε = 0. The number of 24-periodic binary sequences s(4) with L1(s
(4)) = 6 and

L3(s
(4)) = 5 can be given by

23×n−3−1−3 × 25−1/(21 × 84−3−1) = 28.

Example 4.1.2 Suppose that n = 4, i = 1, j = 2, i1 = 0, i2 = 3. Note that L = 2n− (2i1 +
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2i2) = 24 − (1 + 8) = 7. As j < i2, 2n − (2j + 2i2) = 4 < L and 2n − (2i + 2i2) = 6 < L, so

ε = 2. The number of 24-periodic binary sequences s(4) with L1(s
(4)) = 10 and L3(s

(4)) = 7

can be given by

23×n−2−1−3 × 27−1/(22 × 84−3−1) = 210.

4.2 2n-periodic binary sequences with the given 4-error lin-

ear complexity as second descent point

Next we derive the counting formula of 2n-periodic binary sequences with both the given

2-error linear complexity as first descent point and the 4-error linear complexity as second

descent point. To this end, we will use the Cube Theory of of Chapter 3.

It is known by result from Kurosawa et al. (2000) that for a 2n-periodic binary sequence

with linear complexity 2n − (2i + 2j), 0 ≤ i < j < n, the 4-error linear complexity is

the first descent point. In contrast, with the cube theory we will characterize 2n-periodic

binary sequences with the 4-error linear complexity as second descent point.

Next we use a sequence 1101 1001 1000 0000 to illustrate the standard cube decomposition

(in Section 3.2) process and its critical points. Note that the sequence can be considered

as 1 + x+ x3 + x4 + x7 + x8.

As Left 6= Right, then we consider Left
⊕
Right. Then the cube 1 + x8 is removed.

Recursively, as Left 6= Right, then we consider Left
⊕
Right. This time the cube x3 +x7

is removed. Only cube x+ x4 is retained. So the standard cube decomposition of 1 + x+

x3 + x4 + x7 + x8 is {x+ x4, x3 + x7, 1 + x8}.

In order to achieve the maximal decrease of the linear complexity of a new sequence

generated by superposing another sequence over the original one, according to Lemma

2.1.2 in Section 2.1, a direct method is, if possible, to use the linear complexity of the first

cube and let it be the same as the linear complexity of the second cube. For the polynomial

1 + x + x3 + x4 + x7 + x8 with the standard decomposition {x + x4, x3 + x7, 1 + x8}, in

order to make the linear complexity of x+ x4 to be the same as x3 + x7, we add x4 + x5

and obtain x+ x5, which has the same linear complexity of x3 + x7. Therefore, we have a

conclusion that the critical points (see definition in section 3.2) of 1+x+x3 +x4 +x7 +x8

are (0, 2n − 1) = (0, 15),(2, 2n − (2 + 4)) = (2, 10),(4, 2n − (8 + 4 + 1)) = (4, 3),(6, 0). Here

(4, 3) corresponds polynomial 1 + x3 + x4 + x7 + x8 + x11 + x12 + x15.
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Theorem 4.2.1 Let s(n) be a 2n-periodic binary sequence with linear complexity less than

2n. Then

i). Suppose that c1 and c2 are in the standard cube decomposition of sequence s(n) and

L(s(n)) = L(c1). If L4(s
(n)) < L2(s

(n)) < L(s(n)), then c1 and c2 are two 1-cubes or c1 is

a 1-cube and c2 is a 2-cube;

ii). L4(s
(n)) < L2(s

(n)) < L(s(n)) if and only if L2(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n,

but L2(s
(n)) 6= 2n − (1 + 2);

iii). If L(s(n)) = 2n − 2i0 , then i0 < i or i < i0 < j, where i and j are defined in ii).

Proof. i). Suppose that s(n) is a 2n-periodic binary sequence with linear complexity

2n− (2i1 + 2i2 + · · ·+ 2im). By Kurosawa et al. (2000) we know that the minimum number

k for which the k-error linear complexity of 2n-periodic binary sequence s(n) is strictly less

than the linear complexity of s(n) is 2m. So the proof is obvious.

ii). Based on i), here we only need to prove that L2(s
(n)) 6= 2n − (1 + 2).

In the case that c1 and c2 are two 1-cubes. As L(s(n)) 6= 2n − (1 + 2), there exist two

nonzero elements with distance d > 2 in c1 and c2. Suppose that L2(s
(n)) = 2n− (2i+ 2j).

Then 2j ≥ d > 2. It follows that L2(s
(n)) 6= 2n − (1 + 2).

In the case that c1 is a 1-cube and c2 is a 2-cube. If L(c2) = 2n−(1+2), then L(c1) = 2n−1

or 2n − 2. There exist two nonzero elements with distance d > 2 in c1 and c2. Suppose

that L2(s
(n)) = 2n − (2i + 2j). Then 2j ≥ d > 2. It follows that L2(s

(n)) 6= 2n − (1 + 2).

iii). Based on i) and ii), it is easy to prove iii).

Next we investigate the distribution of L4(s
(n)).

Theorem 4.2.2 Let s(n) be a 2n-periodic binary sequence with linear complexity L(s(n)) =

2n−2i0 . If L4(s
(n)) < L2(s

(n)) < L(s(n)) and L2(s
(n)) = 2n− (2i+2j), 0 ≤ i < j < n, then

L4(s
(n)) = 2n−(2i1 +2i2 +· · ·+2im) < 2n−(2i+2j), where 0 ≤ i1 < i2 < · · · < im < n,m >

3, or L4(s
(n)) = 2n − (2i1 + 2i2 + 2i3), where {i1, i2, i3} 6= {i, j, i0}, {i1, i2, i3} 6= {0, 1, 2},

or L4(s
(n)) = 2n − (2i1 + 2i2) < 2n − (2i + 2j), where i2 6= j, i1 6= i, j, i0.

Proof. The following proof is based on the framework: S + E = {t+ e|t ∈ S, e ∈ E}.
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In the case that L4(s
(n)) = 2n− (2i1 +2i2 + · · ·+2im) < 2n− (2i+2j), the proof is obvious.

In the case that L4(s
(n)) = 2n − (2i1 + 2i2) < 2n − (2i + 2j). We only give the following

example to illustrate the proof.

Let s(4) be a 24-periodic binary sequence with linear complexity less than 24. If L(s(4)) =

24 − 2 and L2(s
(4)) = 24 − (1 + 22), then L4(s

(4)) 6= 24 − (2 + 22).

Suppose that L4(s
(4)) = 24 − (2 + 22). Let S = {t|L(t) = 24 − (2 + 22)}, E = {e|WH(e) =

4}, S+E = {t+ e|t ∈ S, e ∈ E}, where t is a sequence with linear complexity 24− (2 + 22)

and e is a sequence with WH(e) = 4. With the sieve method, we aim to sieve sequences

t+ e with L4(t+ e) = 24 − (2 + 22) from S + E.

We now investigate the case that s + u ∈ S + E, but L4(t + u) < 24 − (2 + 22). This is

equivalent to checking if there exists a sequence v ∈ E such that L(u+ v) = 24− (2 + 22).

For any u ∈ E such that L2(t + u) = 24 − (1 + 4). Such as u = {1100 0110 0000 0000}.
There exists a sequence v ∈ E such that L(u+v) = 24−(2+22). So L4(t+u) < 24−(2+22).

Here v = {1001 0011 0000 0000} such that L2(t+ v) = 24 − (1 + 4). Therefore i2 6= j.

Let L(t) = 24−(1+23). There exists a sequence v ∈ E such that L(u+v) = 24−(1+23). So

L4(t+u) < 24−(1+23). Here v = {0000 0110 1100 0000} such that L2(t+v) = 24−(1+22).

Therefore i1 6= i.

Let L(t) = 24−(22+23). There exists a sequence v ∈ E such that L(u+v) = 24−(22+23).

So L4(t + u) < 24 − (22 + 23). Here v = {1000 0010 0100 0100} such that L2(t + v) =

24 − (1 + 22). Therefore i1 6= j.

Let L(t) = 24−(2+23). There exists a sequence v ∈ E such that L(u+v) = 24−(2+23). So

L4(t+u) < 24−(2+23). Here v = {0100 0100 1000 0010} such that L2(t+v) = 24−(1+22).

Therefore i1 6= i0.

In the case that L4(s
(n)) = 2n − (2i1 + 2i2 + 2i3). Note that c1 is a 1-cube and c2 is a

2-cube, L(c2) = L2(s
(n)) = 2n − (2i + 2j). We also use the following example to illustrate

the proof.

Suppose that n = 4, i = 0, j = 3, i0 = 2, u(4) = {0100 1000 1100 0000}.

Then there exists v(4) = {1000 0100 0000 1100}, such that L(u(4)+v(4)) = 24−(1+22+23).
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Therefore L4(s
(n)) 6= 2n − (2i1 + 2i2 + 2i3), where {i1, i2, i3} = {i, i0, j}.

Now we consider the case that L4(s
(n)) = 2n−(20+21+22). As L4(s

(n)) < 2n−(2i+2j) <

2n−2i0 , so 2i0 < 2i+2j < 20+21+22. Suppose that L(t) = 2n−(20+21+22). For any u ∈ E
such that L2(t+u) = 2n− (2i+2j). It is easy to prove that L4(t+u) < 2n− (20 +21 +22).

We just use the following example to illustrate the proof.

Suppose that n = 4, i = 0, j = 2, i0 = 1, u(4) = {0110 1100 0000 0000} and t(4) =

{1111 1111 0000 0000}, then t(4) + u(4) = {1001 0011 0000 0000}. So, L4(t
(4) + u(4)) = 0.

If t(4) = {1111 0011 0000 1100}, then L4(t
(4) + u(4)) = 24 − (20 + 23).

This completes the proof.

We next derive the counting formula of binary sequences with both the given 2-error linear

complexity and the given 4-error linear complexity.

Theorem 4.2.3 Let s(n) be a 2n-periodic binary sequence with linear complexity L(s(n)) =

2n − 2i0 .

1) If L4(s
(n)) < L2(s

(n)) < L(s(n)) and L2(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n, and

L4(s
(n)) = 2n−(2i1 +2i2 +· · ·+2im) < 2n−(2i+2j), where 0 ≤ i1 < i2 < · · · < im < n,m >

3 or L4(s
(n)) = 2n− (2i1 + 2i2 + 2i3), where {i1, i2, i3} 6= {i, j, i0}, {i1, i2, i3} 6= {0, 1, 2}, or

L4(s
(n)) = 2n − (2i1 + 2i2) < 2n − (2i + 2j), where i2 6= j, i1 6= i, j, i0. Then the number

of 2n-periodic binary sequences s(n) can be given by

(24n−j−i−4−i0/γ)× 2L−1/(2δ+ε × 16n−im−1)

where if i0 > i then γ = 2 else γ = 1; if 2n − (2i + 2i0 + 2j) > L then δ = 0, if only

2n − (2i + 2i0 + 2j) < L then δ = 1, if 2n − (2i0 + 2j) < L then δ = 2. Further, if j = im

or 2n − (2j + 2im) > L then ε = 0, if j < im and only 2n − (2j + 2im) < L then ε = 1,

if 2n − (2i + 2im) < L and 2n − (2i0 + 2im) > L then ε = 2, if 2n − (2i + 2im) > L and

2n− (2i0 + 2im) < L then ε = 2, if 2n− (2i + 2im) < L and 2n− (2i0 + 2im) < L then ε = 3,

where im = i3 for L = 2n − (2i1 + 2i2 + 2i3) and im = i2 for L = 2n − (2i1 + 2i2).

2) If L4(s
(n)) = 0, then the number of 2n-periodic binary sequences s(n) can be given by

24n−j−i−4−i0/γ, where if i0 > i then γ = 2 else γ = 1.

Proof. 1) Let S = {t|L(t) = L}, E = {e|WH(e) = 4}, S +E = {t+ e|t ∈ S, e ∈ E}, where

t is a sequence with linear complexity L = 2n − (2i1 + 2i2 + · · · + 2im),m > 2 and e is
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sequence with WH(e) = 4 and L2(e) = 2n − (2i + 2j). With the sieve method, we aim to

sieve sequences t+ e with L4(t+ e) = L from S + E.

By Lemma 2.1.6 in Section 2.1, we know that the number of 2n-periodic binary sequences

t with L(t) = L is 2L−1. Now we will compute the number of sequences e with WH(e) = 4

and L2(e) = 2n − (2i + 2j).

Suppose that s(i) is a 2i-periodic binary sequence with linear complexity 2i and WH(s(i)) =

1, then the number of these s(i) is 2i

So the number of 2i+1-periodic binary sequences s(i+1) with linear complexity 2i+1−2i = 2i

and WH(s(i+1)) = 2 is also 2i.

For j > i, if 2j-periodic binary sequences s(j) with linear complexity 2j−2i and WH(s(j)) =

2, then 2j − 2i − (2i+1 − 2i) = 2j−1 + 2j−2 + · · ·+ 2i+1.

Based on Algorithm 3.1.1 in Section 3.1, the number of these s(j) can be given by

(22)j−i−1 × 2i = 22j−i−2.

So the number of 2j+1-periodic binary sequences s(j+1) with linear complexity 2j+1−(2j+

2i) and WH(s(j+1)) = 4 is also 22j−i−2.

As u ∈ E such that L2(u) = 2n − (2i + 2j). So the number of these u can be given by

22 × 2j+1

2i0+1 × γ
× (24)n−j−1 × 22j−i−2 = 24n−j−i−4−i0/γ

where if i0 > i then γ = 2 else γ = 1.

(The following example is given to illustrate the case of i0 > i. Suppose that n = 4, i =

0, j = 3, i0 = 2, u(4) = {0100 0000 1100 1000}.

Then one obtains v
(4)
1 = {1100 0000 1100 0000}, or v

(4)
2 = {0100 1000 0100 1000}, where

L2(v
(4)
1 ) = L2(v

(4)
2 ) = 24 − (1 + 23). )

We now investigate the case that s+ u, t+ v ∈ S +E and L4(s+ u) = L4(t+ v) = L with

s 6= t, u 6= v, but s + u = t + v. It is equivalent to checking if there exists a sequence v

such that L(u+ v) = L(s+ t) < L and if so, check the number of such sequence v, where

WH(u) = WH(v) = 4. We need to consider the following two cases.

The first case is related to i0. For any u ∈ E, there exists one sequence v, such that
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L(u+ v) = 2n− (2i + 2i0 + 2j) < L, and there exist two sequences v, such that L(u+ v) =

2n − (2i0 + 2j) < L.

(The following example is given to illustrate the above case. Suppose that n = 4, i =

1, j = 3, i0 = 2, u(4) = {1000 0010 1010 0000}. Then

v
(4)
1 = {0010 1000 0000 1010},

v
(4)
2 = {0000 1010 0010 1000},

v
(4)
3 = {1010 0000 1000 0010}.

Thus L(u(4) + v
(4)
1 ) = 24− (2 + 22 + 23), L(u(4) + v

(4)
2 ) = L(u(4) + v

(4)
3 ) = 24− (22 + 23). )

The second case is related to im < w < n. For im < w < n, there exist 15 × 16w−im−1

sequences v, such that L(u+ v) = 2n− (2i + 2w) < L or L(u+ v) = 2n− (2j + 2w) < L or

L(u+ v) = 2n − (2i0 + 2w) < L or L(u+ v) = 2n − 2w < L.

Note that for any sequence v with 4 nonzero elements, if we double the period of sequence

v, then 24 new sequences will be generated. Therefore there exist

15 + 15× 16 + · · ·+ 15× 16n−im−2 = 16n−im−1 − 1

sequences v, such that L(u+ v) < L.

(The following example is given to illustrate the above case. Suppose that n = 5, i =

0, j = 2, i0 = 1, i1 = 1, i2 = 2, i3 = 3, w = 4,

u(5) = {1001 1100 0000 0000 0000 0000 0000 0000}. Then

v
(5)
1 = {0001 0100 0000 0000 1000 1000 0000 0000}.

Thus L(u(5) + v
(5)
1 ) = 25 − (22 + 24).

v
(5)
2 = {1000 1000 0000 0000 0001 0100 0000 0000},

v
(5)
3 = {0000 0000 0000 0000 1001 1100 0000 0000}.

Thus L(u(5) + v
(5)
2 ) = L(u(5) + v

(5)
3 ) = 25 − (2 + 24).
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v
(5)
4 = {1001 0000 0000 0000 0000 1100 0000 0000},

v
(5)
5 = {0000 1100 0000 0000 1001 0000 0000 0000},

v
(5)
6 = {0001 1000 0000 0000 1000 0100 0000 0000},

v
(5)
7 = {1000 0100 0000 0000 0001 1000 0000 0000}.

Thus L(u(5) + v
(5)
4 ) = L(u(5) + v

(5)
5 ) = L(u(5) + v

(5)
6 ) = L(u(5) + v

(5)
7 ) = 25 − (1 + 24).

· · · · · ·

v
(5)
15 = {1000 0000 0000 0000 0001 1100 0000 0000}.

Thus L(u(5) + v
(5)
15 ) = 25 − 24. )

On the other hand, if j < im and only 2n − (2j + 2im) < L then the number of v will be

increased by 16n−im−1.

If 2n − (2i + 2im) < L and 2n − (2i0 + 2im) > L then the number of v will be increased by

3× 16n−im−1.

If 2n − (2i + 2im) > L and 2n − (2i0 + 2im) < L then the number of v will be increased by

3× 16n−im−1.

If 2n − (2i + 2im) < L and 2n − (2i0 + 2im) < L then the number of v will be increased by

7× 16n−im−1.

It follows that the number of 2n-periodic binary sequences s(n) with L(s(n)) = 2n − 2i0 ,

L2(s
(n)) = 2n − (2i + 2j) and L4(s

(n)) = L can be given by

(24n−j−i−4−i0/γ)× 2L−1/(2δ × 2ε × 16n−im−1)

where if 2n − (2i + 2i0 + 2j) > L then δ = 0, if only 2n − (2i + 2i0 + 2j) < L then δ = 1, if

2n − (2i0 + 2j) < L then δ = 2; if j = im or 2n − (2j + 2im) > L then ε = 0, if j < im and

only 2n − (2j + 2im) < L then ε = 1, if 2n − (2i + 2im) < L and 2n − (2i0 + 2im) > L then

ε = 2, if 2n − (2i + 2im) > L and 2n − (2i0 + 2im) < L then ε = 2, if 2n − (2i + 2im) < L

and 2n − (2i0 + 2im) < L then ε = 3.

If δ > 0, then 2n− (2i + 2i0 + 2j) < 2n− (2i1 + 2i2 + · · ·+ 2im) < 2n− (2i + 2j), so j = im.
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If ε > 0, then j < im. Therefore, δ and ε can not be positive at the same time.

We can use almost the same method to deal with the case of L4(s
(n)) = 2n − (2i1 + 2i2)

but without the constraint of j = i2.

2) This is an obvious case.

To further illustrate Theorem 4.2.3, we give the following two examples, which are verified

by computer program as well.

Example 4.2.1 Suppose that n = 4, i = 1, j = 3, i0 = 2, i1 = 0, i2 = 1, i3 = 3. Note

that i0 > i, so γ = 2. As L = 2n − (2i1 + 2i2 + 2i3) = 24 − (1 + 2 + 8) = 5, so

2n − (2i + 2i0 + 2j) = 24 − (2 + 4 + 8) < L and 2n − (2i0 + 2j) = 24 − (4 + 8) < L.

Thus δ = 2. As j = i3, so ε = 0. The number of 24-periodic binary sequences s(4) with

L(s(4)) = 12, L2(s
(4)) = 6 and L4(s

(4)) = 5 can be given by

(24×n−3−1−4−2/2)× 25−1/(22 × 164−3−1) = 27.

Example 4.2.2 Suppose that n = 5, i = 2, j = 3, i0 = 1, i1 = 0, i2 = 4. Note that i0 < i, so

γ = 1. As L = 2n−(2i1+2i2) = 25−(1+16) = 15, so 2n−(2i+2i0+2j) = 25−(4+2+8) > L.

Thus δ = 0. As j < i2 and 2n − (2i + 2i2) = 12 < L and 2n − (2i0 + 2i2) = 14 < L so

ε = 3. The number of 25-periodic binary sequences s(5) with L(s(5)) = 30, L2(s
(5)) = 20

and L4(s
(5)) = 15 can be given by

24×n−3−2−4−1 × 215−1/(23 × 165−4−1) = 221.

4.3 2n-periodic binary sequences with the given 5-error lin-

ear complexity as third descent point

Suppose that s(n) is a 2n-periodic binary sequence. We first investigate the relationship

among the first descent point, second descent point and third descent point of the k-error

linear complexity. Second, based on the first descent point, second descent point and third

descent point, we obtain the complete counting functions of 2n-periodic binary sequences

with the given 1-error, 3-error and 5-error linear complexity as the first, second and third

descent points, respectively (Zhou et al., 2015a).
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Theorem 4.3.1 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n.

Then

i). Suppose that c1, c2 and c3 are in the standard cube decomposition of sequence s(n).

L5(s
(n)) < L3(s

(n)) < L1(s
(n)) if and only if c1 is a 0-cube (only one nonzero element), c2

and c3 are two 1-cubes or c1 is a 0-cube and c2 is a 2-cube;

ii). L5(s
(n)) < L3(s

(n)) < L1(s
(n)) if and only if L1(s

(n)) = 2n − (2i + 2j), 0 ≤ i < j < n,

L3(s
(n)) = 2n−(2p+2q), 0 ≤ p < q < n, j < q, p 6= i, j, or L3(s

(n)) = 2n−(2i+2j+2r), 0 ≤
r < n, r 6= i, j.

Proof. Based on the cube theory, sequence s(n) has a standard cube decomposition. As

L(s(n)) = 2n, it is obvious that c1 is a 0-cube.

First, suppose that c2 and c3 are two 1-cubes. Then L1(s
(n)) = 2n − (2i + 2j), where

0 ≤ i < j < n,L(c2) = 2n−2j and L3(s
(n)) = 2n− (2p+2q), where 0 ≤ p < q < n,L(c3) =

2n − 2q or L3(s
(n)) = 2n − (2i + 2j + 2q), where 0 ≤ q < n, q 6= i, j, L(c3) = 2n − 2q. Thus

j < q.

In the case that L3(s
(n)) = 2n− (2p + 2q), we now prove that p 6= i, j. Assume that p = i,

and the distance (based on Definition 3.2.1 in Section 3.2) of nonzero elements p1 and p4

is 2i, where p1 is in c1 (in the case that p1 is in c2, the proof is similar), p4 is in c3. As

the distance of nonzero elements p1 and p2 is also 2i, so the distance of nonzero elements

p2 and p4 is 2i+1, thus L3(s
(n)) = 2n − (2i+1 + 2q) should be true, which contradicts the

fact that L3(s
(n)) = 2n − (2i + 2q).

Assume that p = j, similarly one can prove that L3(s
(n)) = 2n − (2j+1 + 2q), which is not

true, or one can prove that L3(s
(n)) = 2n − (2i + 2j + 2q). In this case, it is obvious that

q 6= i, j.

Second, suppose that c2 is a 2-cube and L(c2) = 2n − (2i + 2j). It is easy to show that

L1(s
(n)) = 2n − (2i + 2j) and L3(s

(n)) = 2n − (2i + 2j + 2r), 0 ≤ r < n, r 6= i, j.

Next we investigate the distribution of L5(s
(n)).

Theorem 4.3.2 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n and
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L5(s
(n)) < L3(s

(n)) < L1(s
(n)), L1(s

(n)) = 2n − (2i + 2j), 0 ≤ i < j < n.

i). If L3(s
(n)) = 2n − (2p + 2q), 0 ≤ p < q < n, j < q, p 6= i, j, then L5(s

(n)) can be

2n − (2i1 + 2i2 + · · ·+ 2im) < 2n − (2p + 2q), where 0 ≤ i1 < i2 < · · · < im < n,m > 3.

For the case of m = 3. If j < p or i < p < j, {i1, i2, i3} 6= {i, p, q}; if i > p, {i1, i2, i3} 6=
{i, p, q} and {j, p, q}. For the case of m = 2, {i1, i2} can not include i, j, p or q.

ii). If L3(s
(n)) = 2n− (2i + 2j + 2r), 0 ≤ r < n, r 6= i, j, then L5(s

(n)) should be 2n− (2i1 +

2i2 + · · ·+ 2im) < 2n − (2p + 2q), where 0 ≤ i1 < i2 < · · · < im < n,m > 3.

For the case of m = 3, {i1, i2, i3} can not contain {i, j}. For the case of m = 2, {i1, i2}
can not include i, j or r.

Proof. The following proof is based on the framework: S + E = {t+ e|t ∈ S, e ∈ E} (see

definition in Chapter 2).

i). In the case that L5(s
(n)) = 2n − (2i1 + 2i2 + · · ·+ 2im) < 2n − (2i + 2j),m > 3, let s(n)

be a 2n-periodic binary sequence with linear complexity 2n, L1(s
(n)) = 2n − (2i + 2j) and

L3(s
(n)) = 2n − (2p + 2q).

Let S = {t|L(t) = 2n − (2i1 + 2i2 + · · · + 2im)}, E = {e|WH(e) = 5}, S + E = {t + e|t ∈
S, e ∈ E}, where t is a sequence with linear complexity 2n− (2i1 + 2i2 + · · ·+ 2im) and e is

a sequence with WH(e) = 5. With the sieve method, we aim to sieve sequences t+ e with

L5(t+ e) = 2n − (2i1 + 2i2 + · · ·+ 2im) from S + E.

We investigate the case that s+ u ∈ S + E, but L5(t+ u) < 2n − (2i1 + 2i2 + · · ·+ 2im).

This is equivalent to checking if there exists a sequence v ∈ E such that L(u + v) =

2n − (2i1 + 2i2 + · · · + 2im),m ≥ 4. As a 4-cube has 24 = 16 nonzero elements and

WH(u) = WH(v) = 5, thus it is impossible that L(u+v) = 2n−(2i1+2i2+· · ·+2im),m ≥ 4.

Therefore, L5(s
(n)) should be 2n − (2i1 + 2i2 + · · ·+ 2im) < 2n − (2p + 2q).

Second we consider the case that m = 3 and i > p.

Let s(n) be a 2n-periodic binary sequence with linear complexity 2n. If L1(s
(n)) = 2n −

(2i + 2j) and L3(s
(n)) = 2n − (2p + 2q), then L5(s

(n)) 6= 2n − (2p + 2i + 2q).

We will prove it by contradiction. Suppose that L5(s
(n)) = 2n − (2p + 2i + 2q). Let

S = {t|L(t) = 2n−(2p+2i+2q)}, E = {e|WH(e) = 5}, S+E = {t+e|t ∈ S, e ∈ E}, where
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t is a sequence with linear complexity 2n−(2p+2i+2q) and e is a sequence with WH(e) = 5.

With the sieve method, we aim to sieve sequences t+e with L5(t+e) = 2n− (2p+ 2i+ 2q)

from S + E.

We now investigate the case that s + u ∈ S + E, but L5(t + u) < 2n − (2p + 2i + 2q).

This is equivalent to checking if there exists a sequence v ∈ E such that L(u + v) =

2n − (2p + 2i + 2q).

For any u ∈ E such that L1(t+ u) = 2n − (2i + 2j) and L3(t+ u) = 2n − (2p + 2q). There

exists a sequence v ∈ E such that L1(t + v) = 2n − (2i + 2j), L3(t + v) = 2n − (2p + 2q)

and L(u + v) = 2n − (2p + 2i + 2q). So L5(t + u) < 2n − (2p + 2i + 2q). Therefore

{i1, i2, i3} 6= {i, p, q}.

(For example, let u = {1101 0100 1000 0000} with L(t) = 24 − (20 + 21 + 23), L1(t+ u) =

24−(2+22) and L3(t+u) = 24−(1+23). There exists a sequence v = {0010 0100 0111 0000}
such that L1(t + v) = 24 − (2 + 22) and L3(t + v) = 24 − (1 + 23). As L(u + v) =

24 − (20 + 21 + 23). So L5(t+ u) < 24 − (20 + 21 + 23).)

Similarly, let L(t) = 2n − (2p + 2j + 2q). There exists a sequence v ∈ E such that

L1(t+ v) = 2n − (2i + 2j), L3(t+ v) = 2n − (2p + 2q) and L(u+ v) = 2n − (2p + 2j + 2q).

So L5(t+ u) < 2n − (2p + 2j + 2q). Therefore {i1, i2, i3} 6= {j, p, q}.

In the case that m = 2, {i1, i2} can not include i, j, p or q. Suppose that {i1, i2} comprises

q and L = 2n − (2w + 2q). As L = 2n − (2w + 2q) < 2n − (2p + 2q), thus w > p. Note that

if the actual distance of two elements is 2w − 2p, then the distance (see Definition 3.2.1 in

Section 3.2) of these two elements is 2p. We give the following example to illustrate the

case.

Suppose that n = 5, i = 2, j = 3, p = 1, q = 4, w = 2,

u(5) = {1010 0010 0010 0000 1000 0000 0000 0000}.

Then L = 2n − (2w + 2q) = 12. There exists

v(5) = {0010 1010 0010 0000 0000 1000 0000 0000}, such that L(u(5) + v(5)) = 25 − (22 +

24) = 12. Therefore L5(s
(n)) 6= 2n − (2w + 2q).

ii). In the case that m = 3 and r > j, we only give the following example to illustrate the

proof.
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In the case that L3(s
(n)) = 2n− (2i + 2j + 2r). Note that c1 is a 0-cube and c2 is a 2-cube,

L(c2) = L1(s
(n)) = 2n − (2i + 2j). We also use the following example to illustrate the

proof.

Suppose that n = 4, i = 0, j = 1, r = 2, u(4) = {1111 1000 0000 0000}.

Then there exists v(4) = {0000 1000 1111 0000}, such that L(u(4)+v(4)) = 24−(1+2+23).

Therefore L5(s
(n)) 6= 2n − (2i + 2j + 2w) < 2n − (2i + 2j + 2r).

Similarly, for the case of m = 2, it is easy to show that {i1, i2} can not include i, j or r.

This completes the proof.

We next derive the counting formula of binary sequences with the prescribed 1-error

linear complexity, the prescribed 3-error linear complexity and the prescribed 5-error linear

complexity.

Theorem 4.3.3 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n.

1) Suppose that L5(s
(n)) < L3(s

(n)) < L1(s
(n)) and L1(s

(n)) = 2n−(2i+2j), 0 ≤ i < j < n,

L3(s
(n)) = 2n − (2p + 2q), 0 ≤ p < q < n, j < q, p 6= i, j, and L5(s

(n)) = 2n − (2i1 + 2i2 +

· · · + 2im) < L3(s
(n)), where 0 ≤ i1 < i2 < · · · < im < n,m > 1. Then the number of

2n-periodic binary sequences s(n) can be given by

δ × 25n−q−p−j−i−6 × 2L−1/(θ × µ× 2ε × 32n−im−1)

where θ is defined in (4.1) of the following proof, δ, µ and ε are defined in the following

proof according to j < p, i < p < j and p < i < j.

If L5(s
(n)) = 0, then the number of 2n-periodic binary sequences s(n) can be given by

γ × 25n−q−p−j−i−6

where if j < p then γ = 3, if j > p > i then γ = 2 else γ = 1.

2) Suppose that L5(s
(n)) < L3(s

(n)) < L1(s
(n)) and L1(s

(n)) = 2n−(2i+2j), 0 ≤ i < j < n,

L3(s
(n)) = 2n−(2i+2j+2r), 0 ≤ r < n, r 6= i, j, and L5(s

(n)) = 2n−(2i1 +2i2 +· · ·+2im) <

L3(s
(n)), where 0 ≤ i1 < i2 < · · · < im < n,m > 1. Then the number of 2n-periodic binary

sequences s(n) can be given by

δ × 25n−r−2j−i−6 × 2L−1/(θ × 2ε × 32n−im−1)
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where δ, θ and ε are defined in the following proof according to j < r, i < r < j and

r < i < j.

If L5(s
(n)) = 0, then the number of 2n-periodic binary sequences s(n) can be given by

γ × 25n−r−2j−i−6

where if r < i then γ = 1/2 else γ = 1.

Proof. 1) Let S = {t|L(t) = L}, E = {e|WH(e) = 5}, SE = {t + e|t ∈ S, e ∈ E}, where

t is a sequence with linear complexity L = 2n − (2i1 + 2i2 + · · · + 2im),m > 2 and e is a

sequence with WH(e) = 5, L1(e) = 2n − (2i + 2j) and L3(e) = 2n − (2p + 2q). With the

sieve method, we aim to sieve sequences t+ e with L5(t+ e) = L from S + E.

By Lemma 2.1.6 in Section 2.1, we know that the number of 2n-periodic binary sequences

t with L(t) = L is 2L−1. Now we will compute the number of sequences e with WH(e) = 5,

L1(e) = 2n − (2i + 2j) and L3(e) = 2n − (2p + 2q), j < q.

In the case of i < j < p < q. The number of 2j+1-periodic binary sequences e(j+1) with

linear complexity 2j+1 − 2j = 2j and WH(e(j+1)) = 2 is 2j . First one nonzero element is

added so that L1(e
(j+1)) = 2j+1 − (2i + 2j). The number of e(j+1) becomes 2j × 2j−i.

Second one 1-cube with linear complexity 2q+1 − 2q is added so that L3(e
(q+1)) = 2q+1 −

(2p + 2q). Note that for i = 0, j = 1, p = 2, q = 3, sequence {1110 0100} is from both

{1110 0000} and {1010 0100}. At the same time from sequence {1110 0100}, we have both

{1110 0100 0100 0000} and {1110 0100 0000 0100} with L3(e
(q+1)) = 2q+1− (2p + 2q). So

the number of e(q+1) becomes 22j−i × (23)p−j × 3× (24)q−p−1 × 23 = 3× 24q−p−j−i−1.

Finally the number of sequences e(n) with WH(e(n)) = 5, L1(e
(n)) = 2n − (2i + 2j) and

L3(e
(n)) = 2n − (2p + 2q) can be given by

3× 24q−p−j−i−1 × (25)n−q−1 = 3× 25n−q−p−j−i−6.

In the case of i < p < j < q. One 1-cube with linear complexity 2q+1− 2q is added so that

L3(e
(q+1)) = 2q+1− (2p+2q). The number of e(q+1) becomes 22j−i×2×2j−p× (24)q−j−1×

23 = 2× 24q−p−j−i−1.

Thus the number of sequences e(n) can be given by

2× 24q−p−j−i−1 × (25)n−q−1 = 2× 25n−q−p−j−i−6.
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In the case of p < i < j < q. One 1-cube with linear complexity 2q+1− 2q is added so that

L3(e
(q+1)) = 2q+1−(2p+2q). The number of e(q+1) becomes 22j−i×2j−p×(24)q−j−1×23 =

24q−p−j−i−1.

Thus the number of sequences e(n) can be given by

24q−p−j−i−1 × (25)n−q−1 = 25n−q−p−j−i−6.

In general, the number of these e(n) can be given by

γ × 25n−q−p−j−i−6

where if j < p then γ = 3, if j > p > i then γ = 2 else γ = 1.

(The following example is given to illustrate the case of j < p.

Suppose that n = 4, i = 0, j = 1, p = 2, q = 3. From v(4) = {0000 0001 0001 1111}, we can

have the following.

u
(4)
1 = {0000 0001 0001 1101},

u
(4)
2 = {0000 0001 0001 1011},

u
(4)
3 = {0000 0001 0001 1011}.

From u
(4)
1 = {0000 0001 0001 1101}, we can also have the following.

u
(4)
11 = {0000 1001 0001 0101},

u
(4)
12 = {0000 0101 0001 1001},

u
(4)
13 = {0000 1101 0001 0001}. )

We now investigate the case that s+ u, t+ v ∈ S +E and L5(s+ u) = L5(t+ v) = L with

s 6= t, u 6= v, but s + u = t + v. It is equivalent to checking if there exists a sequence v

such that L(u+ v) = L(s+ t) < L and if so, check the number of such sequence v, where

WH(u) = WH(v) = 5. We need to consider the following two cases.

The first case is related to the minimum i0 < q such that 2n− (2i0 + 2q) < L = 2n− (2i1 +

2i2 + · · ·+ 2im), where q = im. If p < i, j, then i0 can be i or j.
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For any u ∈ E, it is easy to show that there exist 2q−i0 − 1 sequences v, such that

L(u+ v) < L.

(The following example is given to illustrate the above case.

Suppose that n = 5, i = 0, j = 1, p = 2, q = 4, i1 = 0, i2 = 1, i3 = 2, i4 = 4. So

L = 2n − (2i1 + 2i2 + 2i3 + 2i4) = 9.

If u(5) = {1000 1110 0000 0000 1000 0000 0000 0000}, then

v(5) = {0000 1110 1000 0000 0000 0000 1000 0000}.

Thus L(u(5) + v(5)) = 25 − (23 + 24) = 8, i0 = 3. )

Second we consider the case of im < w < n.

Suppose that j < p. For im < w < n, there exist 31 × 32w−im−1 sequences v, such that

L(u+v) = 2n−(2q+2w) < L or L(u+v) = 2n−(2p+2w) < L or L(u+v) = 2n−(2j+2w) < L

or L(u+ v) = 2n − (2i + 2w) < L or L(u+ v) = 2n − 2w < L.

Note that for any sequence v with 5 nonzero elements, if we double the period of sequence

v, then 25 new sequences will be generated. Therefore there exist

31 + 31× 32 + · · ·+ 31× 32n−im−2 = 32n−im−1 − 1

sequences v, such that L(u+ v) < L.

(The following example is given to illustrate the above case.

Suppose that n = 5, i = 0, j = 1, p = 2, q = 3, i1 = 1, i2 = 2, i3 = 3, w = 4,

u(5) = {1011 1000 1000 0000 0000 0000 0000 0000}. Then

v
(5)
1 = {0011 1000 0000 0000 1000 0000 1000 0000}.

Thus L(u(5) + v
(5)
1 ) = 25 − (23 + 24).

v
(5)
2 = {0011 0000 1000 0000 1000 1000 0000 0000},

v
(5)
3 = {1011 0000 0000 0000 0000 1000 1000 0000},
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Thus L(u(5) + v
(5)
2 ) = L(u(5) + v

(5)
3 ) = 25 − (22 + 24).

v
(5)
4 = {0001 1000 1000 0000 1010 0000 0000 0000},

v
(5)
5 = {1001 0000 1000 0000 0010 1000 0000 0000},

v
(5)
6 = {1001 1000 0000 0000 0010 0000 1000 0000},

v
(5)
7 = {0001 0000 0000 0000 1010 1000 1000 0000}.

Thus L(u(5) + v
(5)
4 ) = L(u(5) + v

(5)
5 ) = L(u(5) + v

(5)
6 ) = L(u(5) + v

(5)
7 ) = 25 − (2 + 24).

· · · · · ·

v
(5)
31 = {0011 1000 1000 0000 1000 0000 0000 0000}.

Thus L(u(5) + v
(5)
31 ) = 25 − 24. )

On the other hand, if q < im and only 2n − (2q + 2im) < L then the number of v will be

increased by 32n−im−1.

If 2n − (2p + 2im) < L and 2n − (2j + 2im) > L then the number of v will be increased by

3× 32n−im−1.

If 2n − (2j + 2im) < L and 2n − (2i + 2im) > L then the number of v will be increased by

7× 32n−im−1.

If 2n − (2i + 2im) < L then the number of v will be increased by 15× 32n−im−1.

It follows that the number of 2n-periodic binary sequences s(n) with L(s(n)) = 2n, L1(s
(n)) =

2n − (2i + 2j), L3(s
(n)) = 2n − (2p + 2q) and L5(s

(n)) = L can be given by

δ × 25n−q−p−j−i−6 × 2L−1/(θ × µ× 2ε × 32n−im−1)

where

if q = im and there exits i0 < q then θ = 2q−i0 else θ = 1. (4.1)

For the case of j < p. If L = 2n − (2j + 2p + 2q) then δ = 1, if L = 2n − (2i + 2p + 2q)

then δ = 0 else δ = 3; if L > 2n − (2i + 2p + 2q) then µ = 2 else µ = 1; if q < im and only
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2n− (2q + 2im) < L then ε = 1, if 2n− (2p + 2im) < L and 2n− (2j + 2im) > L then ε = 2,

if 2n− (2j + 2im) < L and 2n− (2i+ 2im) > L then ε = 3, if 2n− (2i+ 2im) < L then ε = 4.

(The following example is given to illustrate the case of j < p.

Suppose that n = 4, i = 0, j = 1, p = 2, q = 3, L = 24 − (2j + 2p + 2q). u
(4)
1 =

{1110 1000 1000 0000}.

There exists v
(4)
1 = {0100 0010 0010 1010}, such that L(u

(4)
1 + v

(4)
1 ) = 24 − (2j + 2p + 2q).

There exists v
(4)
2 = {0010 0100 0100 1100}, such that L(u

(4)
1 + v

(4)
2 ) = 24 − (2i + 2p + 2q).

For u
(4)
2 = {1011 1000 1000 0000}.

There exists v
(4)
1 = {0001 0010 0010 1010}, such that L(u

(4)
2 + v

(4)
1 ) = 24 − (2j + 2p + 2q).

There exists v
(4)
2 = {0010 0001 0001 1001}, such that L(u

(4)
2 + v

(4)
2 ) = 24 − (2i + 2p + 2q).

For u
(4)
3 = {1101 1000 1000 0000}. Then there exists v

(4)
2 = {0001 0100 0100 1100}, such

that L(u
(4)
3 + v

(4)
2 ) = 24 − (2i + 2p + 2q) < L, but there is no v

(4)
1 such that WH(v

(4)
1 ) = 5

and L(u
(4)
3 + v

(4)
1 ) = L.

So, suppose that L(s(4)) = L. Then L5(s
(4) + u

(4)
3 ) = L. )

For the case of j > p > i. If L = 2n − (2j + 2p + 2q) then δ = 1, if L = 2n − (2i + 2j + 2q)

then δ = 1/2, if L = 2n− (2i+2p+2q) then δ = 0 else δ = 2; if L > 2n− (2i+2p+2q) then

µ = 2 else µ = 1; if q < im and only 2n− (2q + 2im) < L then ε = 1, if 2n− (2j + 2im) < L

and 2n − (2p + 2im) > L then ε = 2, if 2n − (2p + 2im) < L and 2n − (2i + 2im) > L then

ε = 3, if 2n − (2i + 2im) < L then ε = 4.

(The following example is given to illustrate the case of j > p > i.

Suppose that n = 4, i = 0, j = 2, p = 1, q = 3, L = 2n − (2i + 2j + 2q), u(4) =

{1110 0010 1000 0000}.

Then there exists v(4) = {0100 1000 0010 1010}, such that L(u(4) + v(4)) = 24− (2j + 2p +

2q) < L, but there is no v
(4)
1 such that WH(v

(4)
1 ) = 5 and L(u(4) + v

(4)
1 ) = L.

So, suppose that L(s(4)) = 2n − (2i + 2j + 2q). Then L5(s
(4) + u(4)) = 2n − (2i + 2j + 2q).
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There exists v
(4)
2 = {0001 0010 0111 0000}, such that L(u(4) +v

(4)
2 ) = 24− (2i+ 2p+ 2q). )

For the case of j > i > p. If L = 2n − (2j + 2p + 2q) or L = 2n − (2i + 2p + 2q) then δ = 0

else δ = 1; if L > 2n − (2i + 2p + 2q) and L > 2n − (2j + 2p + 2q) then µ = 4, if only

L > 2n− (2j + 2p + 2q) then µ = 2 else µ = 1; if q < im and only 2n− (2q + 2im) < L then

ε = 1, if 2n − (2j + 2im) < L and 2n − (2i + 2im) > L then ε = 2, if 2n − (2i + 2im) < L

and 2n − (2p + 2im) > L then ε = 3, if 2n − (2p + 2im) < L then ε = 4.

(The following example is given to illustrate the case of j > i > p.

Suppose that n = 4, i = 1, j = 2, p = 0, q = 3, L = 2n − (2i + 2j + 2q), u(4) =

{1101 0100 1000 0000}.

Then there exists v(4) = {0010 0100 0111 0000}, such that L(u(4)+v(4)) = 24−(2i+2p+2q).

There exists v
(4)
1 = {0001 1000 0100 1100}, such that L(u(4) + v

(4)
1 ) = 24 − (2j + 2p + 2q).

There is no v
(4)
0 such that WH(v

(4)
0 ) = 5 and L(u(4) + v

(4)
0 ) = L. So, suppose that

L(s(4)) = 2n − (2i + 2j + 2q). Then L5(s
(4) + u(4)) = 2n − (2i + 2j + 2q). )

2) First we consider the case of i < j < r. Suppose that s(i) is a 2i-periodic binary

sequence with linear complexity 2i and WH(s(i)) = 1, then the number of these s(i) is 2i.

So the number of 2i+1-periodic binary sequences s(i+1) with linear complexity 2i+1−2i = 2i

and WH(s(i+1)) = 2 is also 2i.

For j > i, if 2j-periodic binary sequences s(j) with linear complexity 2j−2i and WH(s(j)) =

2, then 2j − 2i − (2i+1 − 2i) = 2j−1 + 2j−2 + · · ·+ 2i+1.

Based on Algorithm 3.1.1 in Section 3.1, the number of these s(j) can be given by

(22)j−i−1 × 2i = 22j−i−2.

So the number of 2j+1-periodic binary sequences s(j+1) with linear complexity 2j+1−(2j+

2i) and WH(s(j+1)) = 4 is also 22j−i−2.

Thus the number of 2r+1-periodic binary sequences s(r+1) with linear complexity 2r+1 −
(2r + 2j + 2i) and WH(s(r+1)) = 8 is (24)r−j−1 × 22j−i−2 = 24r−2j−i−6.

There exist 24 2-cubes with linear complexity 2r+1− (2j + 2i) from one 3-cube with linear
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complexity 2r+1−(2r+2j+2i). Any pair of one 2-cube with linear complexity 2r+1−(2j+2i)

and one vertex from the 3-cube is come from exactly two different 2-cubes.

(The following example is given to illustrate the above case.

Suppose that n = 4, i = 0, j = 1, r = 3, u(4) = {1111 0000 1111 0000}. Then L(u(4)) =

24 − (2i + 2j + 2r).

There exist 24 2-cubes with linear complexity 2r+1−(2j+2i), such as {0111 0000 1000 0000}.
And {1111 0000 1000 0000} is from both {1111 0000 0000 0000} and {0111 0000 1000 0000}.
)

As u ∈ E such that L1(u) = 2n− (2i + 2j) and L3(u) = 2n− (2i + 2j + 2r). So the number

of these u can be given by

23 × 22 × (25)n−r−1 × 24r−2j−i−6 = 25n−r−2j−i−6.

Secondly, we consider the case of r < i < j.

We know that the number of 2n-periodic binary sequences s(n) with linear complexity

2n − (2j + 2i) and WH(s(n)) = 4 is (24)n−j−1 × 22j−i−2 = 24n−2j−i−6.

There exit 2n

2r+1 locations with the distance 2r (Definition 3.2.1 in Section 3.2) to every

vertex in a 2-cube. As u ∈ E such that L1(u) = 2n−(2i+2j) and L3(u) = 2n−(2i+2j+2r).

So the number of these u can be given by

2n

2r+1
× 24n−2j−i−6 = 25n−r−2j−i−7.

Thirdly, we consider the case of i < r < j.

We know that the number of 2n-periodic binary sequences s(n) with linear complexity

2n − (2j + 2i) and WH(s(n)) = 4 is 24n−2j−i−6.

There exit 2n

2r+1 locations with the distance 2r to every two vertices in a 2-cube. As u ∈ E
such that L1(u) = 2n − (2i + 2j) and L3(u) = 2n − (2i + 2j + 2r). So the number of these

u can be given by
2n

2r+1
× 2× 24n−2j−i−6 = 25n−r−2j−i−6.

(The following example is given to illustrate the above case.
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Suppose that n = 4, i = 0, j = 3, r = 2, v(4) = {1100 0000 1100 0000}. Then L(v(4)) =

24 − (2i + 2j).

There exist 4 binary sequences u with L1(u) = 2n−(2i+2j) and L3(u) = 2n−(2i+2j+2r),

such as

{1100 1000 1100 0000},

{1100 0000 1100 1000},

{1100 0100 1100 0000},

{1100 0000 1100 0100}. )

We now investigate the case that s+ u, t+ v ∈ S +E and L5(s+ u) = L5(t+ v) = L with

s 6= t, u 6= v, but s+ u = t+ v. We need to consider the following two cases.

The first case is related to the minimum i0 < j such that 2n − (2i0 + 2i + 2j) < L =

2n − (2i1 + 2i2 + · · · + 2im). Suppose that j = im and r < i, i0 < i. For any u ∈ E, it is

easy to show that there exist 2j−i0−1 − 1 sequences v, such that L(u+ v) < L.

(The following example is given to illustrate the above case.

Suppose that n = 5, i = 3, j = 4, r = 1, i1 = 0, i2 = 1, i3 = 3, i4 = 4. So L = 2n − (2i1 +

2i2 + 2i3 + +2i4) = 5.

If u(5) = {1010 0000 1000 0000 1000 0000 1000 0000}, then

v(5) = {0010 1000 0000 1000 0000 1000 0000 1000}.

Thus L(u(5) + v(5)) = 25 − (22 + 23 + 24) = 4, i0 = 2. )

Suppose that j = im and i < r < j, i < i0 < j. For any u ∈ E, it is easy to show that

there exist 2j−i0 − 1 sequences v, such that L(u+ v) < L.

The second case is related to im < w < n.

Suppose that j < r. For im < w < n, there exist 31 × 32w−im−1 sequences v, such that

L(u + v) = 2n − (2r + 2w) < L or L(u + v) = 2n − (2i + 2j + 2w) < L or L(u + v) =
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2n − (2j + 2w) < L or L(u+ v) = 2n − (2i + 2w) < L or L(u+ v) = 2n − 2w < L.

Note that for any sequence v with 5 nonzero elements, if we double the period of sequence

v, then 25 new sequences will be generated. Therefore there exist

31 + 31× 32 + · · ·+ 31× 32n−im−2 = 32n−im−1 − 1

sequences v, such that L(u+ v) < L.

(The following example is given to illustrate the above case.

Suppose that n = 5, i = 0, j = 1, r = 2, i1 = 1, i2 = 2, i3 = 3, w = 4,

u(5) = {1111 1000 0000 0000 0000 0000 0000 0000}. Then

v
(5)
1 = {0111 0000 0000 0000 1000 1000 0000 0000}.

Thus L(u(5) + v
(5)
1 ) = 25 − (22 + 24).

v
(5)
2 = {0000 1000 0000 0000 1111 0000 0000 0000},

v
(5)
3 = {1000 0000 0000 0000 0111 1000 0000 0000},

Thus L(u(5) + v
(5)
2 ) = L(u(5) + v

(5)
3 ) = 25 − (1 + 2 + 24).

v
(5)
4 = {0101 1000 0000 0000 1010 0000 0000 0000},

v
(5)
5 = {1010 1000 0000 0000 0101 0000 0000 0000},

v
(5)
6 = {1101 0000 0000 0000 0010 1000 0000 0000},

v
(5)
7 = {0010 0000 0000 0000 1101 1000 0000 0000}.

Thus L(u(5) + v
(5)
4 ) = L(u(5) + v

(5)
5 ) = L(u(5) + v

(5)
6 ) = L(u(5) + v

(5)
7 ) = 25 − (2 + 24).

· · · · · ·

v
(5)
31 = {0000 0000 0000 0000 1111 1000 0000 0000}.

Thus L(u(5) + v
(5)
31 ) = 25 − 24. )
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On the other hand, if r < im and only 2n − (2r + 2im) < L then the number of v will be

increased by 32n−im−1.

If 2n− (2i + 2j + 2im) < L and 2n− (2j + 2im) > L then the number of v will be increased

by 3× 32n−im−1.

If 2n − (2j + 2im) < L and 2n − (2i + 2im) > L then the number of v will be increased by

7× 32n−im−1.

If 2n − (2i + 2im) < L then the number of v will be increased by 15× 32n−im−1.

It follows that the number of 2n-periodic binary sequences s(n) with L(s(n)) = 2n, L1(s
(n)) =

2n − (2i + 2j), L3(s
(n)) = 2n − (2i + 2j + 2r) and L5(s

(n)) = L can be given by

δ × 25n−r−2j−i−6 × 2L−1/(θ × 2ε × 32n−im−1)

For the case of j < r. δ = 1, θ = 1. If r < im and only 2n − (2r + 2im) < L then ε = 1, if

2n − (2i + 2j + 2im) < L and 2n − (2j + 2im) > L then ε = 2, if 2n − (2j + 2im) < L and

2n − (2i + 2im) > L then ε = 3, if 2n − (2i + 2im) < L then ε = 4.

For the case of i < r < j. δ = 1. If j = im and i < i0 < j then θ = 2j−i0 else θ = 1.

If j < im and only 2n − (2i + 2j + 2im) < L then ε = 1, if 2n − (2j + 2im) < L and

2n− (2r + 2im) > L then ε = 2, if 2n− (2r + 2im) < L and 2n− (2i + 2im) > L then ε = 3,

if 2n − (2i + 2im) < L then ε = 4.

For the case of r < i < j. δ = 1/2. If j = im and i0 < i then θ = 2j−i0−1 else θ = 1.

If j < im and only 2n − (2i + 2j + 2im) < L then ε = 1, if 2n − (2j + 2im) < L and

2n − (2i + 2im) > L then ε = 2, if 2n − (2i + 2im) < L and 2n − (2r + 2im) > L then ε = 3,

if 2n − (2r + 2im) < L then ε = 4.

The proof is complete.

To further illustrate Theorem 4.3.3, we give the following two examples, which are verified

by a computer program as well.

Example 4.3.1 Suppose that n = 5, i = 0, j = 1, p = 2, q = 4, i1 = 0, i2 = 1, i3 = 2, i4 =

4. So L = 2n − (2i1 + 2i2 + 2i3 + 2i4) = 9. As j < p and q = i4, so δ = 3, i0 = 3,

θ = 2q−i0 = 2, ε = 0. The number of 25-periodic binary sequences s(5) with L(s(5)) = 32,
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L1(s
(5)) = 29, L3(s

(5)) = 12 and L5(s
(5)) = 9 can be given by

(3× 25×n−4−2−1−6)× 29−1/(2× 325−4−1) = 3× 219.

Example 4.3.2 Suppose that n = 5, i = 3, j = 4, r = 1, i1 = 0, i2 = 1, i3 = 3, i4 = 4. So

L = 2n−(2i1 +2i2 +2i3 +2i4) = 5. As r < i and j = i4, so i0 = 2, δ = 1/2, θ = 2j−i0−1 = 2,

ε = 0. The number of 25-periodic binary sequences s(5) with L(s(5)) = 32, L1(s
(5)) = 8,

L3(s
(5)) = 6 and L5(s

(5)) = 5 can be given by

(
1

2
× 25×n−1−8−3−6)× 25−1/(2× 325−4−1) = 29.

4.4 A constructive approach for computing descent points

of the k-error linear complexity

How many elements have to be changed to decrease the linear complexity? For a 2n-

periodic binary sequence s(n), Kurosawa et al. (2000) showed that the first descent point

of the k-error linear complexity is reached by k = 2WH(2n−L(s(n))), where WH(a) denotes

the Hamming weight of the binary representation of an integer a.

In this section, first, the k-error cube decomposition of 2n-periodic binary sequences is

developed based on the proposed cube theory. Second we investigate the formula to

determine the second descent points for the k-error linear complexity of 2n-periodic binary

sequences based on the linear complexity and the first descent points for the k-error linear

complexity. Third we study the formula to determine the third descent points for the k-

error linear complexity based on the linear complexity, the first and second descent points

for the k-error linear complexity.

For clarity of presentation, we first introduce some definitions.

Let k(i) denote the ith descent point of the k-error linear complexity, where i > 0. We

define S(a) as the binary representation of an integer a, and WH(S(a)) denotes the Ham-

ming weight of S(a). We further define L(i)(s(n)) as the k-error linear complexity of the

ith descent point for a 2n-periodic binary sequence s(n), and define

S(s(n)) = S(2n − L(s(n)))

S(i)(s(n)) = S(2n − L(i)(s(n)))
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where i ≥ 0 and L(s(n)) is also denoted as L(0)(s(n)). For a given binary digit rep-

resentation S1, one can prove easily that there exists only one linear complexity value

L1 = 2n−(2i1+2i2+· · ·+2im), where 0 ≤ i1 < i2 < · · · < im < n, such that S1 = S(2n−L1).

In this case, we define

S−1(S1) = i1, S
−m(S1) = im

S>ik(2n − L1) = S(2ik+1 + 2ik+2 + · · ·+ 2im)

Let S(a) = (x1, x2, · · · , xn) and S(b) = (y1, y2, · · · , yn). Then define S(a) ∩ S(b) =

(x1y1, x2y2, · · · , xnyn), S(a)∪S(b) = (x1 + y1− x1y1, x2 + y2− x2y2, · · · , xn + yn− xnyn).

To obtain our main results, we first present the following lemma.

Lemma 4.4.1 Let s(n) be a 2n-periodic binary sequence. Assume that the second last

decent point of k-error linear complexity of s(n) is (k(j), L(j)(s(n))). Then L(j)(s(n)) is

achieved by a cube c(j) exactly.

Proof. Suppose that the last decent point of k-error linear complexity is

(k(j+1), L(j+1)(s(n))). Then L(j+1)(s(n)) = 0. Assume that the second last decent point of

k-error linear complexity is (k(j), L(j)(s(n))).

By Algorithm 2.2, s(n) has a standard cube decomposition. Let s(n) = c1 + c2 + · · ·+ cm,

where L(c1) > L(c2) > · · · > L(cm).

By the definition of k-error linear complexity, the smallest k-error linear complexity greater

than 0 is achieved by a cube c(j), which can be constructed by cm, some nonzero elements

of c1, c2, · · · , cm−1 and adding some new nonzero elements to s(n). Other nonzero elements

of c1, c2, · · · , cm−1 will be changed to zero.

Suppose that there are x nonzero elements in cm, the number of nonzero elements of

c1, c2, · · · , cm−1 used by c(j) is y, and the number of nonzero elements of c1, c2, · · · , cm−1
not used by c(j) is z, where x > y > 0, z ≥ 0. To construct c(j), one has to add a 2n-

periodic binary sequence e
(n)
j to s(n), where e

(n)
j has x−y+z nonzero elements. Note that

the number of nonzero elements in s(n) is x+ y + z. So x− y + z < x+ y + z. Thus c(j)

has the smallest k-error linear complexity greater than 0.

It is easy to see that c(j) is not unique for some 2n-periodic binary sequences. For example,

let s(3) = {1110 0000}. Then c(j) can be {1111 0000} or {1110 0001}.
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Based on Lemma 4.4.1, next we present a very fundamental theorem regarding the CELCS,

followed by an important definition called the k-error cube decomposition.

Theorem 4.4.1 Let s(n) be a 2n-periodic binary sequence. Then

i) we have a decomposition s(n) = c(0)+c(1)+c(2)+· · ·+c(j), where c(i) is a cube with linear

complexity L(c(i)) = L(i)(s(n)), the second last decent point of k-error linear complexity

of s(n) is (k(j), L(j)(s(n))) and k(i+1) = WH(c(0) + c(1) + c(2) + · · ·+ c(i)), 0 ≤ i ≤ j;

ii) we have a decomposition s(n) = c(0) + c(1) + c(2) + · · · + c(m) + t
(n)
m , where c(i) is a

cube with linear complexity L(c(i)) = L(i)(s(n)), t
(n)
m is a 2n-periodic binary sequence with

L(m)(s(n)) > L(t
(n)
m ), and k(m+1) ≤WH(c(0) + c(1) + c(2) + · · ·+ c(m)).

Proof. i) Assume that the second last decent point of k-error linear complexity is

(k(j), L(j)(s(n))), and L(j)(s(n)) is achieved with a cube c(j) by adding a 2n-periodic binary

sequence e
(n)
j to s(n), where k(j) = WH(e

(n)
j ). Thus e

(n)
j + s(n) = c(j), which implies that

s(n) = e
(n)
j + c(j).

By the definition of k-error linear complexity, WH(e
(n)
j ) < WH(s(n)).

e
(n)
j is also a 2n-periodic binary sequence. Similarly, e

(n)
j = e

(n)
j−1 + c(j−1), and WH(e

(n)
j−1) <

WH(e
(n)
j ). If L(c(j−1)) ≤ L(c(j)), as s(n) = e

(n)
j +c(j) = e

(n)
j−1+c(j−1)+c(j), then adding a 2n-

periodic binary sequence e
(n)
j−1 to s(n), in this case L(e

(n)
j−1+s(n)) < L(c(j)). This contradicts

the fact that k(j) = WH(e
(n)
j ). Thus L(c(j−1)) > L(c(j)) and k(j−1) = WH(e

(n)
j−1).

· · · · · ·

Finally, based on the above analysis, we have that s(n) = c(0) +c(1) +c(2) + · · ·+c(j), where

L(c(0)) > L(c(1)) > L(c(2)) > · · · > L(c(j)), L(i)(s(n)) = L(c(i)), and k(i) = WH(e
(n)
i ) =

WH(c(0) + c(1) + c(2) + · · ·+ c(i−1)), 0 ≤ i ≤ j + 1.

ii) In the case of i), we first obtain the last cube c(j), then c(j−1), c(j−2), · · · · · · .

In this case, we first obtain the cube c(m), so that L(m)(s(n)) = L(c(m)).

Assume that L(m)(s(n)) is achieved with a cube c(m) by adding a 2n-periodic binary se-

quence e
(n)
m to s(n), which implies that s(n) = e

(n)
m + c(m) + t

(n)
m , where L(t

(n)
m ) < L(c(m)).
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By applying the result of i) to e
(n)
m , we have that s(n) = c(0) + c(1) + c(2) + · · ·+ c(m) + t

(n)
m ,

where L(c(i)) = L(i)(s(n)), k(i) = WH(e
(n)
i ) = WH(c(0)+c(1)+c(2)+ · · ·+c(i−1)), 0 ≤ i ≤ m.

It is obvious that k(m+1) ≤WH(c(0) + c(1) + c(2) + · · ·+ c(m)).

Next we give some examples in different situations to illustrate Theorem 4.4.1.

Example 4.4.1 In fact, there indeed exists the case that k(m+1) < WH(c(0) + c(1) + c(2) +

· · ·+ c(m)). Let

c(0) = {11001100 00000000 00000000 00000000},
c(1) = {10101010 10101010 00000000 00000000},
c(2) = {11001100 11001100 11001100 11001100},
t
(5)
2 = {11111111 11111111 11111111 11111111},

and s(5) = c(0) + c(1) + c(2) + t
(5)
2 . Then L(i)(s(5)) = L(c(i)), 0 ≤ i ≤ 2. It is easy to verify

that k(3) = 12 < WH(c(0) + c(1) + c(2)) = 16. This is the case of ii).

Example 4.4.2 Let

c(0) = {11001100 00000000 00000000 00000000},
c(1) = {10101010 10101010 00000000 00000000},
c(2) = {01100110 01100110 01100110 01100110},
c(3) = {10101010 10101010 10101010 10101010},
and s(5) = c(0) + c(1) + c(2) + c(3). Then L(i)(s(5)) = L(c(i)), 0 ≤ i ≤ 3. k(3) = WH(c(0) +

c(1) + c(2)) = 12, k(4) = WH(c(0) + c(1) + c(2) + c(3)) = 16. This is the case of i).

Example 4.4.3 We now still use the sequence s(4) = {1101 1001 1000 0000} to illustrate

Theorem 4.4.1. Let

c(0) = {0100 1000 0000 0000},
t
(4)
0 = {1001 0001 1000 0000}. Then s(4) = c(0) + t

(4)
0 .

Let

c(0) = {0000 1100 0000 0000},
c(1) = {0101 0101 0000 0000},
t
(4)
1 = {1000 0000 1000 0000}. Then s(4) = c(0) + c(1) + t

(4)
1 .

Let

c(0) = {0000 0100 0000 1000},
c(1) = {0100 0100 0001 0001},
c(2) = {1001 1001 1001 1001},
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t
(4)
2 = {0000 0000 0000 0000}. Then s(4) = c(0) + c(1) + c(2) + t

(4)
2 . It is easy to verify that

k(3) = WH(s(4)) = 6.

One can see for any 2n-periodic binary sequence s(n), there ism > 0, such that L(m+1)(s(n)) =

0. Then from part one of Theorem 4.4.1, we have that s(n) = c(0) + c(1) + c(2) + · · ·+ c(m),

where c(0) is a cube with linear complexity L(s(n)), c(i) is a cube with 2WH(S(i)(s(n))) nonzero

elements and linear complexity L(i)(s(n)), 0 < i ≤ m.

We define s(n) = c(0) + c(1) + c(2) + · · ·+ c(m) as the k-error cube decomposition of a

2n-periodic binary sequence s(n). For a 2n-periodic binary sequence s(n), its k-error cube

decomposition may be not unique and different from its standard cube decomposition,

which is unique. For sequence {1101 1001 1000 0000} used in standard decomposition, its

k-error cube decomposition is different from its standard decomposition and is given as

follows: {0000 0100 0000 1000}, {0100 0100 0001 0001}, {1001 1001 1001 1001}.

From part one of Theorem 4.4.1, one can see that there exists a k-error cube decomposition

for a given 2n-periodic binary sequence. Next we will use part two of Theorem 4.4.1 to

find the second and third descent points.

Theorem 4.4.2 For a 2n-periodic binary sequence s(n), the second descent point of

the k-error linear complexity is reached by k(2) = 2WH(S(s(n))) + 2WH(S(1)(s(n))) − 2 ×
2WH(S(s(n))∩S(1)(s(n))).

Proof. i) First we consider the case that L(s(n)) = 2n. In this case, S(s(n)) = S(2n −
L(s(n))) only contains zero elements. So, we only need prove that k(2) = 20+2WH(S(1)(s(n)))−
2× 20 = 2WH(S(1)(s(n))) − 1.

From the part two of Theorem 4.4.1, s(n) = c(0) + c(1) + t(n), where c(0) is a 0-cube (one

nonzero element), c(1) is a cube with 2WH(S(1)(s(n))) nonzero elements and linear complexity

L(1)(s(n)), and L(t(n)) < L(1)(s(n)). c(1) is constructed by adding a 2n-periodic binary

sequence c(0) to s(n). We need to consider the following two cases.

In the case that WH(c(0) + c(1)) = WH(c(0)) + WH(c(1)), from Lemma 2.1.2 in Section

2.1, L(1)(s(n)) is achieved by changing c(0) to a zero element, and L(2)(s(n)) is achieved by

constructing another cube c2 with linear complexity L(1)(s(n)), and using c(0) as a nonzero

element of c2. Thus k(2) = 2WH(S(1)(s(n))) − 1.

(For example, u(4) = {1111 1000 0000 0000}. L(1)(u(4)) = 24 − (1 + 2) is achieved by a 2-
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cube {1111 0000 0000 0000}. So L(2)(u(4)) is achieved by a 3-cube {1111 1111 0000 0000},
k(2) = 22 − 1 = 3.)

In the case that WH(c(0) + c(1)) < WH(c(0))+WH(c(1)), by changing the nonzero elements

of c(0)+c(1) to zero elements, the new linear complexity L(s(n)) will be less than L(1)(s(n)).

Thus k(2) = 2WH(S(1)(s(n))) − 1.

ii) Second we consider the case that L(s(n)) < 2n.

From the part two of Theorem 4.4.1, suppose that s(n) = c(0) + c(1) + t(n), where c(0)

is a cube with 2WH(S(s(n))) nonzero elements and linear complexity L(s(n)), and c(1) is a

cube with 2WH(S(1)(s(n))) nonzero elements and linear complexity L(1)(s(n)), and L(t(n)) <

L(1)(s(n)) < L(s(n)).

If WH(c(0) + c(1)) = WH(c(0)) +WH(c(1)), it is obvious that by changing

2WH(S(s(n))) − 2WH(S(s(n))∩S(1)(s(n))) + 2WH(S(1)(s(n))) − 2WH(S(s(n))∩S(1)(s(n))) nonzero ele-

ments, one can construct another cube c2 with linear complexity L(1)(s(n)), and us-

ing 2WH(S(s(n))∩S(1)(s(n))) nonzero elements of c(0). From Lemma 2.1.2 in Section 2.1,

L(c(1) + c2) < L(c(1)) = L(1)(s(n)). Thus the new linear complexity L(s(n)) will be less

than L(1)(s(n)).

In the case that WH(c(0) + c(1)) < WH(c(0)) +WH(c(1)), by changing

2WH(S(s(n))) − 2WH(S(s(n))∩S(1)(s(n))) + 2WH(S(1)(s(n))) − 2WH(S(s(n))∩S(1)(s(n))) nonzero ele-

ments, one can still construct another cube c2 with linear complexity L(1)(s(n)), and using

2WH(S(s(n))∩S(1)(s(n))) nonzero elements of c(0). Thus the new linear complexity L(s(n)) will

be less than L(1)(s(n)). In this case, c2 may be the same as c(1).

So k(2) = 2WH(S(s(n))) + 2WH(S(1)(s(n))) − 2× 2WH(S(s(n))∩S(1)(s(n))).

(For example, let c(0) = {0101 0000 0000 1010}, c(1) = {1010 1010 1010 1010}. Then

c(0) + c(1) = {1111 1010 1010 0000}, where c(0) and c(1) share 2 nonzero elements {1010}.
So k(2) = 22 + 23 − 2× 21 = 8.)

This completes the proof.

In fact, Chang and Wang (2013) proved this result in their Theorem 3 with a much

complicated approach.

Next we investigate the computation of the third descent point for the k-error linear
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complexity based on the linear complexity, the first and second descent points for the

k-error linear complexity. Before present our main result, we first give a result in special

case.

Proposition 4.4.1 For a 2n-periodic binary sequence s(n), let k(i) denote the ith descent

point of the k-error linear complexity, i > 0. If S(i)(s(n)) ⊃ S(0)(s(n)) ∪ S(1)(s(n)) ∪ · · · ∪
S(i−1)(s(n)), then k(i+1) = 2WH(S(i)(s(n))) − k(i), i > 1.

Proof. As S(i)(s(n)) ⊃ S(0)(s(n))∪S(1)(s(n))∪· · ·∪S(i−1)(s(n)), by changing 2WH(S(i)(s(n)))

− k(i) elements of s(n), the linear complexity of s(n) becomes 0 or less than L(i)(s(n)). So

k(i+1) = 2WH(S(i)(s(n))) − k(i).

For example, let s(4) = {1111 1111 1110 0000}, n = 4. Then S(0)(s(n)) = {0000},
S(1)(s(n)) = {0011}, S(2)(s(n)) = {0111}, S(3)(s(n)) = {1111}. So S(3)(s(n)) ⊃ S(0)(s(n)) ∪
S(1)(s(n)) ∪ S(2)(s(n)).

As L(1)(s(4)) is achieved by a 2-cube {0000 0000 1111 0000}, k(1) = 1, L(2)(s(4)) is achieved

by a 3-cube {1111 1111 0000 0000}, k(2) = 3. So k(3) = 23 − 3 = 5. By changing k(3)

elements, s(4) becomes a 4-cube {1111 1111 1111 1111}.

As L(3)(s(4)) is achieved by a 4-cube {1111 1111 1111 1111}, k(3) = 5, thus k(4) = 24−5 =

11. By changing k(4) elements, the linear complexity of s(4) becomes 0.

The above result is for the ith descent point computation in some special cases. Next we

will investigate the third descent point in general. First, we give the the famous principle

of inclusion-exclusion in combinatorics for finite sets A1, · · · , An, which can be stated as

follows.

|
n⋃

i=1

Ai| =
n∑

i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |+
∑

1≤i<j<k≤n

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n−1|A1 ∩ · · · ∩An|

Based on the principle of inclusion-exclusion, we give the following important theorem on

the third descent point.

Theorem 4.4.3 For a 2n-periodic binary sequence s(n), let k(i) denote the ith descent

point of the k-error linear complexity, i > 0, and

im(S1\S0S2) = S−m{S(1)(s(n)) \ [S(1)(s(n)) ∩ (S(0)(s(n)) ∪ S(2)(s(n)))]}.
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With the following conditions

(i) WH [S(1)(s(n)) ∩ (S(0)(s(n)) ∪ S(2)(s(n)))] < WH(S(1)(s(n)))

(ii) {S(0)(s(n)) ∩ S(2)(s(n)) = S(0)(s(n)) ∩ S(1)(s(n)) ∩ S(2)(s(n))

(iii)

[im(S1\S0S2) > min{S−1(S(1)(s(n)) ∩ S(2)(s(n))), S−1(S(0)(s(n)) ∩ S(2)(s(n)))}

and

(S
(0)
>im(S1\S0S2)

(s(n)) ∩ S(2)
>im(S1\S0S2)

(s(n))) ⊂ S(1)(s(n))]}

If (i) and (ii) or (i) and (iii) hold, then

k(3) = 2WH(S(0)(s(n))) + 2WH(S(1)(s(n))) + 2WH(S(2)(s(n)))

−2× 2WH(S(0)(s(n))∩S(1)(s(n)))−2× 2WH(S(0)(s(n))∩S(2)(s(n)))

−2× 2WH(S(1)(s(n))∩S(2)(s(n))) + 2× 2WH(S(0)(s(n))∩S(1)(s(n))∩S(2)(s(n)));

Otherwise, we have

k(3) = 2WH(S(0)(s(n))) + 2WH(S(1)(s(n))) + 2WH(S(2)(s(n)))

−2× 2WH(S(0)(s(n))∩S(1)(s(n))) − 2× 2WH(S(0)(s(n))∩S(2)(s(n)))

−2× 2WH(S(1)(s(n))∩S(2)(s(n))) + 4× 2WH(S(0)(s(n))∩S(1)(s(n))∩S(2)(s(n))).

Proof. The following proof is based on the framework that s(n) = c(0) + c(1) + c(2) + · · ·+
c(i)+t

(n)
i . For c(0)+c(1)+c(2)+· · ·+c(i), by changing k(i+1) elements, the linear complexity

of c(0) + c(1) + c(2) + · · ·+ c(i) can become 0 (in which case k(i+1) = WH(c(0) + c(1) + c(2) +

· · ·+ c(i))) or less than L(c(i)) (where k(i+1) < WH(c(0) + c(1) + c(2) + · · ·+ c(i))).

In the case that the linear complexity of c(0) + c(1) + c(2) + · · · + c(i) becomes less than

L(c(i)), our key approach is try to construct a cube c
(i)
1 , so that L(c

(i)
1 ) = L(c(i)) and the

linear complexity of c(0) + c(1) + c(2) + · · · + c
(i)
1 becomes 0 by changing k(i+1) elements,

which implies that c(0) + c(1) + c(2) + · · ·+ c
(i)
1 has exactly k(i+1) nonzero elements.

Therefore, the computation of k(i+1) is equivalent to counting the nonzero elements of

c(0) + c(1) + c(2) + · · ·+ c
(i)
1 .
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In the principle of inclusion-exclusion, if A1 ∩ A2 is not empty, then |A1 ∪ A2| = |A1| +
|A2| − |A1 ∩A2|.

In the computation of k(i+1), if WH(S(c(0)) ∩ S(c(1))) 6= 0, then c(0) and c(1) can have

common nonzero elements, the number of nonzero elements of c(0) + c(1) can become

WH(c(0)) +WH(c(1))− 2× 2WH(S(c(0))∩S(c(1))).

From Theorem 4.4.1, suppose that s(n) = c(0) + c(1) + c(2) + t(n), where c(0) is a cube with

linear complexity L(s(n)), c(1) is a cube with linear complexity L(1)(s(n)), c(2) is a cube

with linear complexity L(2)(s(n)), and L(t(n)) < L(2)(s(n)).

By Theorem 4.4.2, k(2) = 2WH(c(0)) + 2WH(c(1)) − 2 × 2WH(S(c(0))∩S(c(1))). After changing

k(2) nonzero elements, the sequence becomes c(2) + t(n), where L(t(n)) < L(c(2)). Thus

WH(c(0) + c(1)) = 2WH(c(0)) + 2WH(c(1)) − 2× 2WH(S(c(0))∩S(c(1))).

Without loss of generality, we consider the superposition of c(0) and c(1) with the alignment

of first nonzero elements of two cubes. Then c(0) + c(1) has exactly k(2) = 2WH(c(0)) +

2WH(c(1)) − 2× 2WH(S(c(0))∩S(c(1))) nonzero elements.

We construct a cube c
(2)
1 with linear complexity L(2)(s(n)), and furthermore, we consider

the superposition of c(0), c(1) and c
(2)
1 with the alignment of first nonzero elements of three

cubes. Then with an analysis similar to the principle of inclusion-exclusion, we have that

c(0)+c(1)+c
(2)
1 has exactly 2WH(S(c(0)))+2WH(S(c(1)))+2WH(S(c(2)))−2×2WH(S(c(0))∩S(c(1)))−

2× 2WH(S(c(0))∩S(c(2))) − 2× 2WH(S(c(1))∩S(c(2))) + 4× 2WH(S(c(0))∩S(c(1))∩S(c(2))) nonzero ele-

ments.

By adding c(0) + c(1) + c
(2)
1 to s(n) = c(0) + c(1) + c(2) + t(n), we have c

(2)
1 + c(2) + t(n). From

Lemma 2.1.2 in Section 2.1, L(c
(2)
1 +c(2)) < L(2)(s(n)). Thus k(3) ≤WH(c(0)+c(1)+c

(2)
1 ) =

2WH(S(c(0))) + 2WH(S(c(1))) + 2WH(S(c(2)))− 2× 2WH(S(c(0))∩S(c(1)))− 2× 2WH(S(c(0))∩S(c(2)))−
2× 2WH(S(c(1))∩S(c(2))) + 4× 2WH(S(c(0))∩S(c(1))∩S(c(2)))

(For example, let

c(0) = {11000000 11000000 00000000 00000000 00000000 00000000 00000000 00000000},
c(1) = {10101010 00000000 10101010 00000000 00000000 00000000 00000000 00000000},
c(2) = {11110000 00000000 00000000 00000000 11110000 00000000 00000000 00000000}.

Then c(0) + c(1) + c(2) has exactly 2WH(S(c(0))) + 2WH(S(c(1))) + 2WH(S(c(2)))

−2× 2WH(S(c(0))∩S(c(1))) − 2× 2WH(S(c(0))∩S(c(2))) − 2× 2WH(S(c(1))∩S(c(2)))

+4× 2WH(S(c(0))∩S(c(1))∩S(c(2))) = 4 + 8 + 8− 2− 4− 4 + 4 = 14 nonzero elements.)
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In the case that WH [S(1)(s(n))∩(S(0)(s(n))∪S(2)(s(n)))] < WH(S(1)(s(n))) and {S(0)(s(n))∩
S(2)(s(n)) = S(0)(s(n)) ∩ S(1)(s(n)) ∩ S(2)(s(n))

or [im(S1\S0S2) > min{S−1(S(1)(s(n)) ∩ S(2)(s(n))), S−1(S(0)(s(n)) ∩ S(2)(s(n)))}
and (S

(0)
>im(S1\S0S2)

(s(n))∩S(2)
>im(S1\S0S2)

(s(n))) ⊂ S(1)(s(n))]}, we try to construct a cube c
(2)
−1

with linear complexity L(c(2)), so that c(0) + c(1) + c
(2)
−1 has less nonzero elements than

c(0) + c(1) + c(2).

As WH [S(1)(s(n)) ∩ (S(0)(s(n)) ∪ S(2)(s(n)))] < WH(S(1)(s(n))), there exist

2WH(S(c(0))∩S(c(1))∩S(c(2))) nonzero elements in c(1), so that such nonzero elements will not

be canceled by addition operation with c(0) or c(2).

In the case that {S(0)(s(n)) ∩ S(2)(s(n)) = S(0)(s(n)) ∩ S(1)(s(n)) ∩ S(2)(s(n)) or

[im(S1\S0S2) > min{S−1(S(1)(s(n)) ∩ S(2)(s(n))), S−1(S(0)(s(n)) ∩ S(2)(s(n)))} and

(S
(0)
>im(S1\S0S2)

(s(n)) ∩ S(2)
>im(S1\S0S2)

(s(n))) ⊂ S(1)(s(n))]}, one can move the first

2WH(S(c(0))∩S(c(1))∩S(c(2))) nonzero elements in c(2) to the corresponding locations in which

the nonzero elements only appear in c(1). In this case, 2× 2WH(S(c(0))∩S(c(1))∩S(c(2))) addi-

tional nonzero elements will be cancelled in c(0) + c(1) + c
(2)
−1, where c

(2)
−1 is the new cube

with linear complexity L(c(2)).

(We follow the above example, let,

c
(2)
−1 = {01111000 00000000 00000000 00000000 01111000 00000000 00000000 00000000}.

Then c(0) + c(1) + c
(2)
−1 has 4 + 8 + 8− 2− 2− 4 = 12 nonzero elements.)

In other cases, if we move the first 2WH(S(c(0))∩S(c(1))∩S(c(2))) nonzero elements in c(2) sim-

ilarly as above, one can find that nonzero elements will not be reduced after adding

operation of these three sequences.

(For example, let

c(0) = {10100000 10100000 00000000 00000000 00000000 00000000 00000000 00000000},
c(1) = {11001100 00000000 11001100 00000000 00000000 00000000 00000000 00000000},
c(2) = {10101010 00000000 10101010 00000000 10101010 00000000 10101010 00000000}.

Then S(c(0)) = {001010}, S(c(1)) = {010101},S(c(2)) = {110110}.
WH [(S(c(0)) ∩ S(c(1))) ∪ (S(c(1)) ∩ S(c(2)))] = 2 < WH(S(c(1))) = 3 but

S(c(0)) ∩ S(c(2)) = {000010} ⊃ S(c(0)) ∩ S(c(1)) ∩ S(c(2)) = {000000}.

As S(c(0))∩S(c(2)) = {000010}, S(c(1))∩S(c(2)) = {010100}, S(c(1)) \ [S(c(1))∩ (S(c(0))∪
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S(c(2)))] = {000001}, so S−m({000001}) = 1 < S−1({000010}) = 2 < S−1({010100}) = 4.

Assume that

c
(2)
−1 = {01010101 00000000 01010101 00000000 01010101 00000000 01010101 00000000}.

Then c(0) + c(1) + c
(2)
−1 still has 4 + 8 + 16− 2− 8 = 18 nonzero elements.)

This completes the proof.

Next we give some examples in different situations to illustrate the effectiveness of Theorem

4.4.3.

Example 4.4.4 Let

c(0) = {10001000 00000000 00000000 00000000 00000000 00000000 00000000 00000000},
c(1) = {11000000 11000000 11000000 11000000 00000000 00000000 00000000 00000000},
c(2) = {11111111 00000000 11111111 00000000 11111111 00000000 11111111 00000000}.

Then S(c(0)) = {000100}, S(c(1)) = {011001},S(c(2)) = {110111}.
WH [(S(c(0)) ∩ S(c(1))) ∪ (S(c(1)) ∩ S(c(2)))] = 2 < WH(S(c(1))) = 3 and

S(c(0)) ∩ S(c(2)) = {000100} ⊃ S(c(0)) ∩ S(c(1)) ∩ S(c(2)) = {000000}.

As S(c(1)) ∩ S(c(2)) = {010001}, S(c(1)) \ [S(c(1)) ∩ (S(c(0)) ∪ S(c(2)))] = {001000}, so

im(S1\S0S2) = S−m({001000}) = 8 > S−1({010001}) = 1. As

S>im(S1\S0S2)
(c(0)) ∩ S>im(S1\S0S2)

(c(2)) = {000000}, thus this is the case that

[im(S1\S0S2) > min{S−1(S(1)(s(n)) ∩ S(2)(s(n))), S−1(S(0)(s(n)) ∩ S(2)(s(n)))}
and (S

(0)
>im(S1\S0S2)

(s(n)) ∩ S(2)
>im(S1\S0S2)

(s(n))) ⊂ S(1)(s(n))]}.

We move the first 2WH(S(c(0))∩S(c(1))∩S(c(2))) nonzero elements in c(2) to the location below

the not cancelled nonzero elements in c(1). Let,

c
(2)
−1 = {01111111 10000000 01111111 10000000 01111111 10000000 01111111 10000000}.

It is obvious that c(0)+c(1)+c
(2)
−1 contains exactly 2+23+25−2×20−2×21−2×22+2×20 = 30

nonzero elements. So k(3) = 30.

Example 4.4.5 Let

c(0) = {11001100 00000000 00000000 00000000},
c(1) = {10101010 10101010 00000000 00000000},
c(2) = {11001100 11001100 11001100 11001100}.
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Then S(c(0)) = {00101}, S(c(1)) = {01110},S(c(2)) = {11101}.
WH [(S(c(0)) ∩ S(c(1))) ∪ (S(c(1)) ∩ S(c(2)))] = 2 < WH(S(c(1))) = 3 and

S(c(0)) ∩ S(c(2)) = {00101} ⊃ S(c(0)) ∩ S(c(1)) ∩ S(c(2)) = {00100}.

As S(c(1)) ∩ S(c(2)) = {01100}, S(c(1)) \ [S(c(1)) ∩ (S(c(0)) ∪ S(c(2)))] = {00010}, so

im(S1\S0S2) = S−m({00010}) = 2 > S−1({00101}) = 1. As

S>im(S1\S0S2)
(c(0)) ∩ S>im(S1\S0S2)

(c(2)) = {00100} ⊂ S(c(1)), thus this is the case that

[im(S1\S0S2) > min{S−1(S(1)(s(n)) ∩ S(2)(s(n))), S−1(S(0)(s(n)) ∩ S(2)(s(n)))} and

(S
(0)
>im(S1\S0S2)

(s(n)) ∩ S(2)
>im(S1\S0S2)

(s(n))) ⊂ S(1)(s(n))]}.

We move the first 2WH(S(c(0))∩S(c(1))∩S(c(2))) nonzero elements in c(2) to the location below

the not cancelled nonzero elements in c(1). Let,

c
(2)
−1 = {01100110 01100110 01100110 01100110}.

It is obvious that c(0) + c(1) + c
(2)
−1 contains exactly 22 + 23 + 24

−2× 21 − 2× 22 − 2× 22 + 2× 21 = 12 nonzero elements. So k(3) = 12.

Example 4.4.6 Let

c(0) = {11110000 00000000 00000000 00000000 00000000 00000000 00000000 00000000},
c(1) = {11111111 11111111 00000000 00000000 00000000 00000000 00000000 00000000},
c(2) = {11111111 00000000 11111111 00000000 11111111 00000000 11111111 00000000}.

Then S(c(0)) = {000011}, S(c(1)) = {001111},S(c(2)) = {110111}.
WH [(S(c(0)) ∩ S(c(1))) ∪ (S(c(1)) ∩ S(c(2)))] = 3 < WH(S(c(1))) = 4 and

S(c(0)) ∩ S(c(2)) = S(c(0)) ∩ S(c(1)) ∩ S(c(2)) = {000011}.

So this is the case that S(0)(s(n)) ∩ S(2)(s(n)) = S(0)(s(n)) ∩ S(1)(s(n)) ∩ S(2)(s(n)).

We move the first 2WH(S(c(0))∩S(c(1))∩S(c(2))) nonzero elements in c(2) to the location below

the not cancelled nonzero elements in c(1). Let,

c
(2)
−1 = {00001111 11110000 00001111 11110000 00001111 11110000 00001111 11110000}, It is

obvious that c(0)+c(1)+c
(2)
−1 contains exactly 22+24+25−2×22−2×22−2×23+2×22 = 28

nonzero elements. So k(3) = 28.

For k(3), it is easy to verify that Proposition 4.4.1 is the special case of Theorem 4.4.3.

We have tested all 2n-periodic binary sequences (n = 4, 5) by a computer program to

verify Theorem 4.4.3.
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4.5 Summary

A new approach to determining the CELCS for the k-error linear complexity distribution

of 2n-periodic binary sequences was developed via the cube theory, the sieve method and

the Games-Chan algorithm. The second descent point distribution of the 3-error linear

complexity, the second descent point distribution of the 4-error linear complexity and the

third descent point distribution of the 5-error linear complexity for 2n-periodic binary

sequences were characterized completely.

The k-error cube decomposition of 2n-periodic binary sequences was also developed based

on the Cube Theory of Chapter 3. As an extension of the work by Kurosawa et al.

(2000), first we investigated the formula to determine the second descent points for the

k-error linear complexity of 2n-periodic binary sequences based on the linear complexity

and the first descent points for the k-error linear complexity. Second, we studied the

formula to determine the third descent points for the k-error linear complexity based on

the linear complexity, the first and second descent points for the k-error linear complexity.

Let s(n) be a 2n-periodic binary sequence with linear complexity less then 2n. Suppose that

c1, c2 and c3 are in the standard cube decomposition of sequence s(n) and L(s(n)) = L(c1).

L6(s
(n)) < L4(s

(n)) < L2(s
(n)) < L(s(n)) if and only if c1 is one 1-cube and c2 is one 2-cube

or c1, c2 and c3 are three 1-cubes. Similarly, we can compute the number of 2n-periodic

binary sequences s(n) with given L(s(n)), L2(s
(n)), L4(s

(n)) and L6(s
(n)). Accordingly,

the solution to the complete counting functions of 2n-periodic binary sequences with the

prescribed 6-error linear complexity can be obtained.

We expect that with the techniques proposed in this chapter, one can obtain other third

and fourth descent point distributions of the k-error linear complexity for 2n-periodic

binary sequences. The expected value of the k-error linear complexity of 2n-periodic

binary sequences could also be investigated based on our results. We will continue this

work in future due to its importance.
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Chapter 5

Construction of 2n-periodic binary

sequences with prescribed k-error

linear complexity profile

Let Ni,k(L) be the number of 2n-periodic binary sequences s(n) with linear complexity 2n,

the i-error linear complexity as the last descent point and the k-error linear complexity

being L. In Chapter 4, we mainly focus on Ni,k(L) of 2n-periodic binary sequences s(n)

with linear complexity 2n or linear complexity less than 2n. Usually only partial critical

points of a 2n-periodic binary sequences s(n) are considered. In contrast, all critical points

of a 2n-periodic binary sequences s(n), which are called the k-error linear complexity

profile of the sequence, are considered in this chapter (Zhou et al., 2016). The k-error

linear complexity profile of a periodic sequence was first defined by Stamp and Martin

(1993).

Based on the Games-Chan algorithm (Games and Chan, 1983) and the cube theory of

Chapter 3, we investigate 2n-periodic binary sequences s(n) with the given k-error linear

complexity profile. We first classify 2n-periodic binary sequences with the given k-error

linear complexity profile having descent points 1, 3, 5 and 7 into totally 68 cases, and then

present the counting formula of the periodic sequences for each case by constructing 2n-

periodic binary sequences with prescribed k-error linear complexity profile. In this chapter,

with prescribed linear complexity and k-error linear complexity, we aim to construct all

such 2n-periodic binary sequences. This is a challenging problem with broad applications.

Our approach to constructing a 2n-periodic binary sequence s(n) with the given k-error

linear complexity profile is based on the reverse process of Games-Chan algorithm. First

we construct a sequence consisting of multiple cubes but with a small period. Second we

increase the period of these cubes and add more cubes at the same time. Finally we obtain

the desired sequence. Next we will explain all these steps in detail.

The rest of this chapter is organized as follows. In Section 5.1, we mainly illustrate how to
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construct the 2n-periodic binary sequences with the given k-error linear complexity profile

of 0 = L7(s
(n)) < L5(s

(n)) < L3(s
(n)) < L1(s

(n)) < 2n. In Section 5.2, we partially discuss

how to construct the 2n-periodic binary sequences with the given k-error linear complexity

profile of 0 = L8(s
(n)) < L6(s

(n)) < L4(s
(n)) < L2(s

(n)) < L(s(n)) < 2n.

5.1 The k-error linear complexity profile having descent

points 1, 3, 5 and 7

We first give an example to illustrate our basic approach. Let n = 5, L1(s
(n)) = 32−(1+4),

L3(s
(n)) = 32 − (2 + 8), L5(s

(n)) = 32 − (2 + 8 + 16), L7(s
(n)) = 0. First construct

e1 = 11001000, L1(e1) = 8− (1 + 4). Then e2 = 11101000 10100000, L3(e2) = 16− (2 + 8).

Finally e3 = 11101000 10100000 10000000 00000000, L5(e3) = 32 − (2 + 8 + 16). At the

same time, L1(e3) = 32− (1 + 4), L3(e3) = 32− (2 + 8).

As an m-cube has 2m nonzero elements and L7(s
(n)) = 0, by Algorithm 3.2.1 in Section

3.2, the decomposition of s(n) does not include an m-cube for m > 2.

By Algorithm 3.2.1 in Section 3.2, s(n) can be decomposed into one 0-cube c1 (one nonzero

element) and three 1-cubes c2, c3, c4, where L(c2) > L(c3) > L(c4), or one 0-cube c1, one

2-cube c2 and one 1-cube c3 or one 0-cube c1, one 1-cube c2 and one 2-cube c3, where

L(c2) > L(c3). This covers all possible cases. We will cope with the three cases separately

in the following theorems.

First consider the case that s(n) can be decomposed into one 0-cube c1 and three 1-cubes

c2, c3, c4, where L(c2) > L(c3) > L(c4).

Theorem 5.1.1 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n and

L7(s
(n)) = 0 < L5(s

(n)) < L3(s
(n)) < L1(s

(n)). Suppose that s(n) can be decomposed into

one 0-cube c1 (one nonzero element), and three 1-cubes c2, c3, c4 by Algorithm 3.2.1 in

Section 3.2, we have the following four cases.

i) Suppose that L1(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n, L3(s

(n)) = 2n − (2p + 2q), 0 ≤
p < q < n and L5(s

(n)) = 2n − (2x + 2y), 0 ≤ x < y < n. Then the number of 2n-periodic
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binary sequences s(n) are given by

3× 5× 27n−y−x−q−p−j−i−9, i < j < p < q < x < y

2× 5× 27n−y−x−q−p−j−i−9, i < p < j < q < x < y

5× 27n−y−x−q−p−j−i−9, p < i < j < q < x < y

3× 4× 27n−y−x−q−p−j−i−9, i < j < p < x < q < y

32 × 27n−y−x−q−p−j−i−9, i < j < x < p < q < y

3× 2× 27n−y−x−q−p−j−i−9, i < x < j < p < q < y

3× 27n−y−x−q−p−j−i−9, x < i < j < p < q < y

2× 4× 27n−y−x−q−p−j−i−9, i < p < j < x < q < y

2× 3× 27n−y−x−q−p−j−i−9, i < p < x < j < q < y

2× 2× 27n−y−x−q−p−j−i−9, i < x < p < j < q < y

2× 27n−y−x−q−p−j−i−9, x < i < p < j < q < y

4× 27n−y−x−q−p−j−i−9, p < i < j < x < q < y

3× 27n−y−x−q−p−j−i−9, p < i < x < j < q < y

2× 27n−y−x−q−p−j−i−9, p < x < i < j < q < y

27n−y−x−q−p−j−i−9, x < p < i < j < q < y

ii) Suppose that L1(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n, L3(s

(n)) = 2n − (2p + 2q), 0 ≤
p < q < n and L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. Then the number of

2n-periodic binary sequences s(n) can be given by

3× 27n−2z−y−x−j−i−8, i < j < p = x < q = y < z

3× 27n−2z−y−x−j−i−8, i < p = x < j < q = y < z

3× 27n−2z−y−x−j−i−8, p = x < i < j < q = y < z

27n−z−2q−p−j−i−8, i < j = x < p < q = y < z

27n−z−2q−p−j−i−7, i = x < j < p < q = y < z

3× 27n−z−2q−p−j−i−9, i = x < p < j < q = y < z

3× 27n−z−q−p−2j−i−9, i = x < j = y < p < q < z

3× 27n−z−q−p−2j−i−9, i = x < p < j = y < q < z

27n−z−q−p−2j−i−9, p < i = x < j = y < q < z

27n−z−q−2p−j−i−7, i = x < j < p = y < q < z

27n−z−q−2p−j−i−8, i < j = x < p = y < q < z

27n−z−q−p−2j−i−9, i < p = x < j = y < q < z

iii) Suppose that L1(s
(n)) = 2n−(2i+2j), 0 ≤ i < j < n, L3(s

(n)) = 2n−(2p+2q+2r), 0 ≤
p < q < r < n and L5(s

(n)) = 2n − (2x + 2y), 0 ≤ x < y < n. Then the number of 2n-
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periodic binary sequences s(n) can be given by
5× 27n−y−x−r−2j−i−9, i = p < j = q < r < x

27n−y−x−r−2j−i−7, i = p < j = q < x < r

27n−y−x−r−2j−i−8, i = p < x < j = q

27n−y−x−r−2j−i−9, x < i = p < j = q

iv) Suppose that L1(s
(n)) = 2n−(2i+2j), 0 ≤ i < j < n, L3(s

(n)) = 2n−(2p+2q+2r), 0 ≤
p < q < r < n and L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. Then the number

of 2n-periodic binary sequences s(n) can be given by{
27n−z−2r−2j−i−9, i = p < j = q = x < r = y < z

27n−z−2r−2j−i−8, i = p = x < j = q < r = y < z

Proof. Suppose s(n) can be decomposed into one 0-cube c1 and three 1-cubes c2, c3, c4,

where L(c2) > L(c3) > L(c4).

Assume that L1(s
(n)) is achieved by a 3-cube. Based on the result by Kurosawa et al.

(2000), the minimum number k for which the k-error linear complexity of a 2n-periodic

binary sequence s is strictly less than the linear complexity L(s) of s is determined by

kmin = 2WH(2n−L(s)). For a 3-cube, kmin = 8, which means that to further decrease the

linear complexity of the 3-cube, we have to change 8 elements. So L5(s
(n)) = L3(s

(n)) =

L1(s
(n)). Therefore, we only consider the case that L5(s

(n)) or L3(s
(n)) is achieved by a

3-cube.

In summary, we need to cope with the following four cases separately, which correspond

the four cases in the theorem.

A) All L5(s
(n)), L3(s

(n)), and L1(s
(n)) are achieved by 2-cubes.

B) Only L5(s
(n)) is achieved by a 3-cube.

C) Only L3(s
(n)) is achieved by a 3-cube.

D) Both L5(s
(n)) and L3(s

(n)) are achieved by 3-cubes.

Now we prove these cases one by one.

i) Assume that s(n) can be decomposed into one 0-cube c1, and three 1-cubes c2, c3, c4.

Now we will compute the number of sequences e with WH(e) = 7, L1(e) = 2n − (2i + 2j),
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L3(e) = 2n − (2p + 2q) and L5(e) = 2n − (2x + 2y). As j < q < y, there are 15 possible

cases:

1.i < j < p < q < x < y, 2.i < p < j < q < x < y, 3.p < i < j < q < x < y,

4.i < j < p < x < q < y, 5.i < j < x < p < q < y, 6.i < x < j < p < q < y,

7.x < i < j < p < q < y, 8.i < p < j < x < q < y, 9.i < p < x < j < q < y,

10.i < x < p < j < q < y, 11.x < i < p < j < q < y, 12.p < i < j < x < q < y,

13.p < i < x < j < q < y, 14.p < x < i < j < q < y, 15.x < p < i < j < q < y.

1. In the case of i < j < p < q < x < y.

As the number of 2j-periodic binary sequences e(j) with linear complexity 2j andWH(e(j)) =

1 is 2j , thus the number of 2j+1-periodic binary sequences e(j+1) with linear complexity

2j+1 − 2j = 2j and WH(e(j+1)) = 2 is 2j . We use the following nine steps to construct all

the required sequences.

Step 1. one nonzero element is added so that L1(e
(j+1)) = 2j+1 − (2i + 2j), which means

that we can place a nonzero element p3 in e(j+1), such that both the distance (based on

Definition 2.1) of p1 and p3, and the distance of p2 and p3 are 2i, where p1 and p2 are

in e(j+1), and the distance of p1 and p2 is 2j . The number of such new sequences e(j+1)

becomes 2j × 2j+1

2i+1 = 22j−i.

Step 2, we construct e(p) so that L1(e
(p)) = 2p − (2i + 2j). The number of such e(p) is

22j−i × (23)p−j−1 = 23p−j−i−3.

Step 3, we construct e(p+1) by adding another nonzero element p4 so that the distance of

p4 and one nonzero element of p1, p2 or p3 is 2p. There are 3 options. For the convenience

of presentation, suppose that the distance of p4 and p1 is 2p. Then p2 and p3 have 22

options. The number of such e(p+1) becomes 23p−j−i−3 × 3× 22.

Step 4, we construct e(q) so that the distance among p1, p2, p3 and p4 are unchanged. The

number of such e(q) becomes 23p−j−i−3 × 3× 22 × (24)q−p−1 = 3× 24q−p−j−i−5.

Step 5, we construct e(q+1) by adding nonzero element p5 so that the distance of p5 and one

nonzero element of p1, p4 is 2q. There are 2 options. For the convenience of presentation,

suppose that the distance of p5 and p1 is 2q. Then p2, p3 and p4 have 23 options. The

number of such e(q+1) becomes 3× 24q−p−j−i−5 × 2× 23 = 3× 24q−p−j−i−1.

Step 6, we construct e(x) so that the distance among p1, p2, p3, p4 and p5 are unchanged.

The number of such e(x) becomes 3× 24q−p−j−i−1 × (25)x−q−1 = 3× 25x−q−p−j−i−6.
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Step 7, we construct e(x+1) by adding a nonzero element p6 so that the distance of p6 and

one nonzero element of p1, p2, p3, p4 or p5 is 2x. There are 5 options. For the convenience

of presentation, suppose that the distance of p6 and p1 is 2x. Then p2, p3, p4 and p5

have 24 options. The number of such e(x+1) becomes 3 × 25x−q−p−j−i−6 × 5 × 24 =

15× 25x−q−p−j−i−2.

Step 8, we construct e(y) so that the distance among p1, p2, p3, p4, p5 and p6 are unchanged.

The number of such e(y) becomes 15×25x−q−p−j−i−2× (26)y−x−1 = 15×26y−x−q−p−j−i−8.

Step 9, construct e(y+1) by adding nonzero element p7 so that the distance of p7 and one

nonzero element of p1, p6 is 2y. There are 2 options. For the convenience of presentation,

suppose that the distance of p7 and p1 is 2y. Then p2, p3, p4, p5 and p6 have 25 options.

The number of such e(y+1) becomes 15×26y−x−q−p−j−i−8×2×25 = 15×26y−x−q−p−j−i−2.

We now prove that L1(e
(y+1)) = 2y+1 − (2i + 2j), L3(e

(y+1)) = 2y+1 − (2p + 2q) and

L5(e
(y+1)) = 2y+1 − (2x + 2y). For the convenience of presentation, we only consider the

case that the distance of p4 and p1, the distance of p5 and p1, the distance of p6 and p1

and the distance of p7 and p1, are 2p, 2q, 2x and 2y respectively.

By adding a nonzero element p8, so that p2, p3, p8 and p4 form a 2-cube with linear

complexity 2y+1 − (2i + 2j). Hence p1, p7 form a 1-cube with linear complexity 2y+1 − 2y,

and p5, p6 form a 1-cube with linear complexity 2y+1−2q. So L1(e
(y+1)) = 2y+1−(2i+2j).

By changing p2, p3 to zeros, and adding a nonzero element p9, so that p4, p5, p9 and p6

form a 2-cube with linear complexity 2y+1 − (2p + 2q). Hence p1, p7 form a 1-cube with

linear complexity 2y+1 − 2y. So L3(e
(y+1)) = 2y+1 − (2p + 2q).

By changing p2, p3, p4, p5 to zeros, and adding a nonzero element p10, so that p1, p6, p7 and

p10 form a 2-cube with linear complexity 2y+1−(2x+2y). So L5(e
(y+1)) = 2y+1−(2x+2y).

(We give the following example to illustrate the above proof, where the indexes of p1, p2,

p3, p4, p5, p6, p7, p8, p9 and p10 are 1,3,2,5,9,17,33,4,13 and 49 respectively.

For sequence {11101000 10000000 10000000 00000000 10000000 00000000 00000000 00000000},
n = 6, i = 0, j = 1, p = 2, q = 3, x = 4, y = 5. With 1 bit change, it becomes one 2-cube

and two 1-cubes:

{11111000 10000000 10000000 00000000 10000000 00000000 00000000 00000000}.

With 3 bits change, it becomes one 2-cube and one 1-cube:
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{10001000 10001000 10000000 00000000 10000000 00000000 00000000 00000000}.

With 5 bits change, it becomes a 2-cube:

{10000000 00000000 10000000 00000000 10000000 00000000 10000000 00000000}.)

Finally the number of sequences e(n) with WH(e(n)) = 7, L1(e
(n)) = 2n − (2i + 2j),

L3(e
(n)) = 2n − (2p + 2q) and L5(e

(n)) = 2n − (2x + 2y) can be given by

15× 26y−x−q−p−j−i−2 × (27)n−y−1 = 15× 27n−y−x−q−p−j−i−9.

2. In the case of i < p < j < q < x < y. One 1-cube with linear complexity 2q+1 − 2q

is added so that L3(e
(q+1)) = 2q+1 − (2p + 2q). Suppose that there are nonzero elements

p1, p2, p3, p4 and p5 in e(q+1). The distance of p1 and p2 are 2i, p2 and p3 are 2p, p1 and

p4 are 2j , p2 and p5 are 2q or p3 and p5 are 2q. Note that the distance of p1 and p3 are 2i,

thus the number of e(q+1) of this kind is 22j−i × 2j−p × (24)q−j−1 × 23.

Assume that The distance of p1 and p2 are 2i, p1 and p3 are 2p, p1 and p4 are 2j , p3 and

p5 are 2q. Thus the number of this kind e(q+1) is 22j−i × 2j−p × (24)q−j−1 × 23.

So, the number of e(q+1) becomes 22j−i × 2 × 2j−p × (24)q−j−1 × 23 = 2 × 24q−p−j−i−1.

Similarly, the number of sequences e(n) can be given by

2× 5× 26y−x−q−p−j−i−2 × (27)n−y−1 = 2× 5× 27n−y−x−q−p−j−i−9.

3. In the case of p < i < j < q < x < y. One 1-cube with linear complexity 2q+1 − 2q is

added so that L3(e
(q+1)) = 2q+1− (2p + 2q). The number of e(q+1) becomes 22j−i× 2j−p×

(24)q−j−1 × 23 = 24q−p−j−i−1.

The number of sequences e(n) can be given by

5× 26y−x−q−p−j−i−2 × (27)n−y−1 = 5× 27n−y−x−q−p−j−i−9.

4. In the case of i < j < p < x < q < y. One 1-cube with linear complexity 2y+1 − 2y

is added so that L5(e
(y+1)) = 2y+1 − (2x + 2y). The number of e(y+1) becomes 3 ×

24q−p−j−i−1 × 4× 2q−x × (26)y−q−1 × 25 = 3× 4× 26y−x−q−p−j−i−2.

The number of sequences e(n) can be given by

3× 4× 26y−x−q−p−j−i−2 × (27)n−y−1 = 3× 4× 27n−y−x−q−p−j−i−9.
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5. In the case of i < j < x < p < q < y. One 1-cube with linear complexity 2y+1 − 2y

is added so that L5(e
(y+1)) = 2y+1 − (2x + 2y). The number of e(y+1) becomes 3 ×

24q−p−j−i−1 × 3× 2q−x × (26)y−q−1 × 25 = 32 × 26y−x−q−p−j−i−2.

The number of sequences e(n) can be given by

32 × 26y−x−q−p−j−i−2 × (27)n−y−1 = 32 × 27n−y−x−q−p−j−i−9.

The other 10 cases can obtained similarly. Based on the above results, the numbers of

sequences e(n) can be given as follows.

3× 5× 27n−y−x−q−p−j−i−9, i < j < p < q < x < y

2× 5× 27n−y−x−q−p−j−i−9, i < p < j < q < x < y

5× 27n−y−x−q−p−j−i−9, p < i < j < q < x < y

3× 4× 27n−y−x−q−p−j−i−9, i < j < p < x < q < y

32 × 27n−y−x−q−p−j−i−9, i < j < x < p < q < y

3× 2× 27n−y−x−q−p−j−i−9, i < x < j < p < q < y

3× 27n−y−x−q−p−j−i−9, x < i < j < p < q < y

2× 4× 27n−y−x−q−p−j−i−9, i < p < j < x < q < y

2× 3× 27n−y−x−q−p−j−i−9, i < p < x < j < q < y

2× 2× 27n−y−x−q−p−j−i−9, i < x < p < j < q < y

2× 27n−y−x−q−p−j−i−9, x < i < p < j < q < y

4× 27n−y−x−q−p−j−i−9, p < i < j < x < q < y

3× 27n−y−x−q−p−j−i−9, p < i < x < j < q < y

2× 27n−y−x−q−p−j−i−9, p < x < i < j < q < y

27n−y−x−q−p−j−i−9, x < p < i < j < q < y

ii) Assume that s(n) can be decomposed into one 0-cube c1, and three 1-cubes c2, c3, c4,

where L(c2) > L(c3) > L(c4), L1(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n, L3(s

(n)) =

2n − (2p + 2q), 0 ≤ p < q < n and L5(s
(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n.

It is easy to prove that L(c2) = 2n − 2j , L(c3) = 2n − 2q and L(c4) = 2n − 2z (refer to

Appendix 6) for the proof).

Note that by Algorithm 3.2.1 in Section 3.2, we have a standard cube decomposition, but

s(n) may have other cube decompositions.

As L5(s
(n)) = 2n − (2x + 2y + 2z), thus L5(s

(n)) is achieved by a 3-cube c̈. If c̈ includes 7

nonzero elements of s(n), then L5(s
(n)) = L1(s

(n)), which is a contradiction. If c̈ includes
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6 nonzero elements of s(n), then L5(s
(n)) = L3(s

(n)), which is a also contradiction. So c̈

should only include 5 nonzero elements of s(n).

Thus s(n) include a 2-cube (refer to Appendix 4) for the proof).

(For example, Sequence {11100000 10001000 10001000 00000000}, n = 5, can be decom-

posed into one 0-cube c1, and three 1-cubes c2, c3, c4. At the same time, the sequence

includes a 2-cube {00000000 10001000 10001000 00000000}.)

Suppose that the 0-cube c1 includes a nonzero element e1, the 1-cubes c2 and c3 includes 4

nonzero elements e2, e3, e4, e5, and the 1-cube c4 includes 2 nonzero elements e6, e7. Thus

c̈ should include e6, e7.

If L(c3) = 2n − 2q, then L3(s
(n)) = 2n − (2p + 2q).

According to Appendix 4), we may assume that e1, e2, e3 and e7 constitute a 2-cube with

linear complexity 2n − (2x + 2y).

When we implement Step 2 of Algorithm 3.1.1 in Section 3.1, if the nonzero elements are

canceled in the second time, we assume the removed two nonzero elements are e2, e3, then

this is the case that q = y. So j < q = y. As e1, e2, e3 and e7 constitute a 2-cube with

linear complexity 2n − (2x + 2y), thus p ≥ x, D(e1, e2) = 2x, D(e1, e7) = 2y. If p = x, the

possible cases are:

i < j < p = x < q = y < z,

i < p = x < j < q = y < z,

p = x < i < j < q = y < z.

If p > x, then without loss of generality we suppose that D(e2, e4) = 2p, so D(e1, e4) ≡
D(e1, e2) + D(e2, e4) mod (2p) = 2x. As 2n − (2i + 2j) is determined by the distance

among e1, e4, e5, so x = i or j. The possible cases are:

i < j = x < p < q = y < z,

i = x < j < p < q = y < z,

i = x < p < j < q = y < z.
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When we implement Step 2 of Algorithm 3.1.1 in Section 3.1, if the nonzero elements are

canceled in the second time, we assume the two nonzero elements are e4, e5, then this is

the case that i = x, j = y < q, but p 6= x, p 6= y (refer to Appendix 5) for the proof)

The possible cases are:

i = x < j = y < p < q < z,

i = x < p < j = y < q < z,

p < i = x < j = y < q < z.

When we implement Step 2 of Algorithm 3.1.1 in Section 3.1, if the nonzero elements are

canceled in the second time, we assume the removed two nonzero elements are e3, e4, then

we only need to consider 3 cases as below:

i = x < j < p = y < q,

i < j = x < p = y < q,

i < p = x < j = y < q.

Other cases are included in previous consideration as illustrated by Appendix 7).

Now consider the case of i < j < p = x < q = y < z.

Suppose that e(j) is a 2j-periodic binary sequence with linear complexity 2j andWH(e(j)) =

1. Then the number of these e(j) is 2j . So the number of 2j+1-periodic binary sequences

e(j+1) with linear complexity 2j+1 − 2j = 2j and WH(e(j+1)) = 2 is also 2j . Similarly we

have the following steps to construct the required sequences.

Step 1 one nonzero element is added so that L1(e
(j+1)) = 2j+1 − (2i + 2j), which means

that we place a nonzero element p3 in e(j+1), such that both the distance of p1 and p3,

and the distance of p2 and p3 are 2i, where p1 and p2 are in e(j+1), and the distance of p1

and p2 is 2j . The number of new e(j+1) becomes 2j × 2j+1

2i+1 = 2j × 2j−i = 22j−i.

Step 2 we construct e(x) such that L1(e
(x)) = 2x − (2i + 2j). The number of such e(x)

becomes 22j−i × (23)x−j−1 = 23x−j−i−3.
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Step 3 we construct e(x+1) by adding another nonzero element p4 so that the distance of

p4 and one nonzero element of p1, p2 or p3 is 2x. There are 3 options. For the convenience

of presentation, suppose that the distance of p4 and p1 is 2x. Then p2 and p3 have 22

options. The number of e(x+1) becomes 23x−j−i−3 × 3× 22.

Step 4 we construct e(y) so that the distance (based on Definition 2.1) among p1, p2, p3

and p4 are unchanged. The number of e(y) becomes 23x−j−i−3 × 3 × 22 × (24)y−x−1 =

3× 24y−x−j−i−5.

Step 5 we construct e(y+1) by adding two nonzero elements p5, p6 so that the distance

of p1 and p5 is 2y, and the distance of p4 and p6 is 2y. The number of e(y+1) becomes

3× 24y−x−j−i−5 × 22.

Step 6 we construct e(z+1) by adding another nonzero element p7 so that the distance

of p7 and one nonzero element of p1, p5 or p4, p6 is 2z. The number of e(z+1) becomes

3× 24y−x−j−i−5 × 22 × 4× (25)z−y = 3× 25z−y−x−j−i−1.

Finally the number of sequences e(n) with WH(e(n)) = 7, L1(e
(n)) = 2n − (2i + 2j),

L3(e
(n)) = 2n − (2p + 2q) and L5(e

(n)) = 2n − (2x + 2y + 2z) can be given by

3× 25z−y−x−j−i−1 × (27)n−z−1 = 3× 27n−2z−y−x−j−i−8.

(We just give the following example to illustrate the proof.

For sequence {11100000 00000000 10001000 10001000}, n = 5, i = 0, j = 1, p = x =

2, q = y = 3, z = 4. With 1 bit change, it becomes one 2-cube and one 2-cube:

{11110000 00000000 10001000 10001000}. With 3 bits change, it becomes one 2-cube:

{00000000 00000000 10001000 10001000} With 5 bits change, it becomes a 3-cube:

{10001000 10001000 10001000 10001000})

For the case of i < p = x < j < q = y < z, here we only give the brief construction process

as follows.

e(j+1) : 22j−i × 2j−x =⇒ e(y) : 22j−i × 2j−x × (24)y−j−1

=⇒ e(y+1) : 22j−i × 2j−x × (24)y−j−1 × 3× 22 = 3× 24y−j−x−i−2
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=⇒ e(z+1) : 3× 24y−j−x−i−2 × 2× (25)z−y = 3× 25z−y−x−j−i−1.

For the case of i < j = x < p < q = y < z, the brief construction process is as follows.

e(p) : 22j−i × (23)p−j−1 =⇒ e(p+1) : 23p−j−i−3 × 2× 22

=⇒ e(q) : 23p−j−i × (24)q−p−1 =⇒ e(q+1) : 24q−p−j−i−4 × 2× 22

=⇒ e(z) : 24q−p−j−i−1 × (26)z−q−1 =⇒ e(z+1) : 26z−2q−p−j−i−7 × 2× 25 = 26z−2q−p−j−i−1.

For the case of i = x < j < p < q = y < z, the brief construction process is as follows.

e(y+1) : 22y−x−2 × 2× 2y−j × 2× 2y−p =⇒ e(z) : 24y−x−j−p × (26)z−y−1

=⇒ e(z+1) : 26z−2y−x−p−j−6 × 2× 25 = 26z−2y−x−p−j .

For the case of i = x < p < j < q = y < z, here we only give the brief construction process

as follows.

e(j+1) : 22j−i × 2× 2j−p =⇒ e(q) : 23j−p−i+1 × (24)q−j−1

Suppose that both the distance of p1 and p3, and the distance of p2 and p3 are 2i, where

p1 and p2 are in e(j+1), and the distance of p1 and p2 is 2j . Then p4 has 2 options: the

distance of p1 and p4 is 2p or the distance of p3 and p4 is 2p.

Add p5, so that the distance of p5 and p4 is 2q. If the distance of p1 and p4 is 2p, add p6,

so that the distance of p6 and p3 is 2q; otherwise if the distance of p3 and p4 is 2p, add p6,

so that the distance of p6 and p1 or p2 is 2q. There are totally 3 options.

e(q+1) : 24q−p−j−i−3 × 3
2 × 22 =⇒ e(z) : 3× 24q−p−j−i−2 × (26)z−q−1 = 3× 26z−2q−p−j−i−8

=⇒ e(z+1) : 3× 26z−2q−p−j−i−8 × 2× 25 = 3× 26z−2q−p−j−i−2.

For the case of i = x < j = y < p < q < z, here we only give the brief construction process

as follows.

e(p) : 22j−i−2 × (24)p−j−1 =⇒ e(p+1) : 24p−2j−i−6 × 4× 23

=⇒ e(q) : 24p−2j−i−1×(25)q−p−1 =⇒ e(q+1) : 24p−2j−i−1×(25)q−p−1×2×24 = 25q−p−2j−i−1
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=⇒ e(z) : 25q−p−2j−i−1 × (26)z−q−1 =⇒ e(z+1) : 25q−p−2j−i−1 × (26)z−q−1 × 3 × 25 =

3× 26z−q−p−2j−i−2.

For the case of i = x < p < j = y < q < z, here we only give the brief construction process

as follows.

e(q) : 22j−i−2 × 2× 2j−p × (25)q−j−1 =⇒ e(q+1) : 25q−p−2j−i−6 × 24

=⇒ e(z) : 25q−p−2j−i−2 × (26)z−q−1 =⇒ e(z+1) : 26z−q−p−2j−i−8 × (4 + 2) × 25 = 3 ×
26z−q−p−2j−i−2.

(The reason to multiply 1×4+2×1 = 6 is similar to the case of i = x < p < j < q = y < z).

For the case of p < i = x < j = y < q < z, here we only give the brief construction process

as follows.

e(q) : 22j−i−2 × 2j−p × (25)q−j−1 =⇒ e(q+1) : 25q−p−2j−i−7 × 24

=⇒ e(z) : 25q−p−2j−i−3 × (26)z−q−1 =⇒ e(z+1) : 26z−q−p−2j−i−9 × 4× 25 = 26z−q−p−2j−i−2.

For the case of i = x < j < p = y < q < z, here we only give the brief construction process

as follows.

e(q) : 22y−i−2 × 2× 2y−j × (25)q−y−1 =⇒ e(q+1) : 25q−2y−j−i−6 × 4× 24

=⇒ e(z) : 25q−2y−j−i × (26)z−q−1 =⇒ e(z+1) : 26z−q−2y−j−i−6 × 2× 25 = 26z−q−2y−j−i.

For the case of i < j = x < p = y < q < z, here we give the brief construction process as

follows.

e(q) : 22y−j−2 × 2y−i × (25)q−y−1 =⇒ e(q+1) : 25q−2y−j−i−7 × 4× 24

=⇒ e(z) : 25q−2y−j−i−1 × (26)z−q−1 =⇒ e(z+1) : 26z−q−2y−j−i−7 × 2× 25 = 26z−q−2y−j−i−1.

For the case of i < p = x < j = y < q < z, here we give the brief construction process as

follows.

e(q) : 22y−x−2 × 2y−i × (25)q−y−1 =⇒ e(q+1) : 25q−2y−x−i−7 × 4× 24
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=⇒ e(z) : 25q−2y−x−i−1 × (26)z−q−1 =⇒ e(z+1) : 26z−q−2y−x−i−7 × 25 = 26z−q−2y−x−i−2.

In summary, the numbers of sequences e(n) can be given by

3× 27n−2z−y−x−j−i−8, i < j < p = x < q = y < z

3× 27n−2z−y−x−j−i−8, i < p = x < j < q = y < z

3× 27n−2z−y−x−j−i−8, p = x < i < j < q = y < z

27n−z−2q−p−j−i−8, i < j = x < p < q = y < z

27n−z−2q−p−j−i−7, i = x < j < p < q = y < z

3× 27n−z−2q−p−j−i−9, i = x < p < j < q = y < z

3× 27n−z−q−p−2j−i−9, i = x < j = y < p < q < z

3× 27n−z−q−p−2j−i−9, i = x < p < j = y < q < z

27n−z−q−p−2j−i−9, p < i = x < j = y < q < z

27n−z−q−2p−j−i−7, i = x < j < p = y < q < z

27n−z−q−2p−j−i−8, i < j = x < p = y < q < z

27n−z−q−p−2j−i−9, i < p = x < j = y < q < z

iii) Now we consider the case that s(n) can be decomposed into one 0-cube c1, and three

1-cubes c2, c3, c4, L1(s
(n)) = 2n−(2i+2j), 0 ≤ i < j < n, L3(s

(n)) = 2n−(2p+2q+2r), 0 ≤
p < q < r < n and L5(s

(n)) = 2n − (2x + 2y), 0 ≤ x < y < n.

Suppose that the 0-cube c1 includes a nonzero element e1, the 1-cube c2 includes 2 nonzero

elements e2, e3, the 1-cube c3 includes 2 nonzero elements e4, e5, and the 1-cube c4 includes

2 nonzero elements e6, e7.

As c2, c3, c4 are three 1-cubes and L(c2) > L(c3) > L(c4), so j < r < y.

If L3(s
(n)) is achieved with a 3-cube ċ by changing e6 or e7, and adding two nonzero

elements, then this is the case iv).

So L3(s
(n)) is achieved with a 3-cube ċ composed of e1, e2, e3, e4, e5 and three nonzero

elements. Thus ċ contains e1, e2 and e3. So {i, j} ⊂ {p, q, r}. By j < r, we know that

i = p, j = q. Therefore, there are 4 cases: i = p < j = q < r < x < y, i = p < j = q <

x < r < y, i = p < x < j = q < r < y, x < i = p < j = q < r < y.

1. Now consider the case of i = p < j = q < r < x < y.

Step 1 we construct e(j+1) with linear complexity 2j+1 − (2i + 2j).
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Suppose that e(i) is a 2i-periodic binary sequence with linear complexity 2i and WH(s(i)) =

1. Then the number of these e(i) is 2i. So the number of 2i+1-periodic binary sequences

e(i+1) with linear complexity 2i+1 − 2i = 2i and WH(e(i+1)) = 2 is also 2i.

For j > i, if 2j-periodic binary sequences e(j) with linear complexity 2j−2i and WH(e(j)) =

2, then 2j − 2i − (2i+1 − 2i) = 2j−1 + 2j−2 + · · · + 2i+1. Based on Algorithm 3.1.1 in

Section 3.1, the number of these e(j) can be given by (22)j−i−1 × 2i = 22j−i−2. So the

number of 2j+1-periodic binary sequences s(j+1) with linear complexity 2j+1 − (2j + 2i)

and WH(s(j+1)) = 4 is also 22j−i−2.

Step 2 we construct e(r) so that the distance (based on Definition 2.1) among all nonzero

elements p1, p2, p3 or p4 are unchanged. The number of e(r) becomes 22j−i−2×(24)r−j−1 =

24r−2j−i−6.

Step 3 we construct e(r+1) by adding one nonzero element p5 so that the distance of p5

and one nonzero element of p1, p2, p3 or p4 is 2r. There are 4 options. For the convenience

of presentation, suppose that the distance of p5 and p1 is 2r. Then p2, p3 and p4 have 23

options. The number of e(r+1) becomes 24r−2j−i−6 × 4× 23 = 24r−2j−i−1.

Step 4 we construct e(x) so that the distance among all nonzero elements are unchanged.

The number of e(x) becomes 24r−2j−i−1 × (25)x−r−1 = 25x−r−2j−i−6.

Step 5 we construct e(x+1) by adding another nonzero element p6 so that the distance of p6

and one nonzero element of p1, p2, p3 or p4 is 2x. There are 5 options. For the convenience

of presentation, suppose that the distance of p6 and p1 is 2x. Then p2, p3, p4 and p5 have

24 options. The number of e(x+1) becomes 25x−r−2j−i−6 × 5× 24 = 5× 25x−r−2j−i−2.

Step 6 we construct e(y) so that the distance among all nonzero elements are unchanged.

The number of e(y) becomes 25x−r−2j−i−2 × (26)y−x−1 = 26y−x−r−2j−i−8.

Step 7 we construct e(y+1) by adding another nonzero element p7 so that the distance of

p7 and one nonzero element of p1 or p6 is 2y. There are 2 options. For the convenience of

presentation, suppose that the distance of p7 and p1 is 2x. Then p2, p3, p4, p5 and p6 have

25 options. The number of e(x+1) becomes 26y−x−r−2j−i−8 × 2× 25 = 5× 26y−x−r−2j−i−2.

Finally the number of sequences e(n) with WH(e(n)) = 7, L1(e
(n)) = 2n − (2i + 2j),

L3(e
(n)) = 2n − (2p + 2q + 2r) and L5(e

(n)) = 2n − (2x + 2y) can be given by

5× 26y−x−r−2j−i−2 × (27)n−y−1 = 5× 27n−y−x−r−2j−i−9.
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(For sequence {10001000 10000000 11110000 00000000}, n = 5, i = p = 0, j = q =

1, r = 2, x = 3, y = 4. With 1 bit change, it becomes one 2-cube and one 1-cube:

{10000000 10000000 11110000 00000000} With 3 bits change, it becomes one 3-cube and

one 1-cube: {10001111 10000000 11110000 00000000} With 5 bits change, it becomes a

2-cube: {10000000 10000000 10000000 10000000})

2. In the case of i = p, j = q, q < x < r. Similar to case 1, the number of e(r+1) in Step 1

is 24r−2j−i−1.

In Step 2, one 1-cube with linear complexity 2y+1 − 2y is added so that L5(e
(y+1)) =

2y+1 − (2x + 2y). Note that j < x < r, the number of e(y+1) becomes 24r−2j−i−1 × 2r−x ×
4× (26)y−r−1 × 25 = 26y−x−r−2j−i.

Finally the number of sequences can be given by

26y−x−r−2j−i × (27)n−y−1 = 27n−y−x−r−2j−i−7.

(For example, with s sequence {00000000 00000001 00000010 00011111}, n = 5, i = 0, j =

1, p = 0, q = 1, r = 3, x = 2, y = 4. With 1 bit change, it becomes a 2-cube and a 1-cube:

{00000000 00000001 00000000 00011111}. With 3 bits change, it becomes a 3-cube and

a 1-cube: {00000000 00000001 00011110 00011111}. With 5 bits change, it becomes a

2-cube: {00000000 00010001 00000000 00010001}.)

3. In the case of i = p, j = q, p < x < q. Similar to case 1, one 1-cube with linear

complexity 2y+1− 2y is added so that L5(e
(y+1)) = 2y+1− (2x + 2y). Note that i < x < j,

the number of e(y+1) becomes 24r−2j−i−1 × 2r−x × 2× (26)y−r−1 × 25 = 26y−x−r−2j−i−1.

Finally the number of sequences can be given by

26y−x−r−2j−i−1 × (27)n−y−1 = 27n−y−x−r−2j−i−8.

(For sequence {00000000 00000001 00000010 01100111}, n = 5, i = 0, j = 2, p = 0, q =

2, r = 3, x = 1, y = 4. With 1 bit change, it becomes a 2-cube and a 1-cube:

{00000000 00000001 00000000 01100111}. With 3 bits change, it becomes a 3-cube and

a 1-cube: {00000000 00000001 01100110 01100111}. With 5 bits change, it becomes a

2-cube: {00000000 00000101 00000000 00000101}.)
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Similarly, the numbers of sequences e(n) can be given by
5× 27n−y−x−r−2j−i−9, i = p < j = q < r < x

27n−y−x−r−2j−i−7, i = p < j = q < x < r

27n−y−x−r−2j−i−8, i = p < x < j = q

27n−y−x−r−2j−i−9, x < i = p < j = q

iv) Finally we consider the case that s(n) can be decomposed into one 0-cube c1, and three

1-cubes c2, c3, c4, L1(s
(n)) = 2n−(2i+2j), 0 ≤ i < j < n, L3(s

(n)) = 2n−(2p+2q+2r), 0 ≤
p < q < r < n and L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < n. Suppose that the

0-cube c1 includes a nonzero element e1, the 1-cube c2 includes 2 nonzero elements e2, e3,

the 1-cube c3 includes 2 nonzero elements e4, e5, and the 1-cube c4 includes 2 nonzero

elements e6, e7.

As c2, c3, c4 are three 1-cubes and L(c2) > L(c3) > L(c4), so j < r < z.

Note that L3(s
(n)) is achieved with a 3-cube ċ by changing e6 or e7, and adding two

nonzero elements, thus ċ contains e1, e2 and e3. So {i, j} ⊂ {p, q, r}. By j < r, we know

that i = p, j = q.

Also, e1, e2, e3, e4, e5 and e6 include a 2-cube with linear complexity 2n − (2x + 2y) (refer

to Appendix 4) on the proof). Thus {x, y} ⊂ {p, q, r}. So, there are three possible cases:

i = p < j = q = x < r = y < z, i = p = x < j = q < r = y < z, i = p = x < j = q = y <

r < z.

Note that y = r (refer to Appendix 8) for the proof), thus the case that i = p = x < j =

q = y < r < z is impossible.

Now consider the case of i = p < j = q = x < r = y < z with the following steps.

Step 1 we construct e(j+1) with linear complexity 2j+1 − (2i + 2j).

Suppose that s(i) is a 2i-periodic binary sequence with linear complexity 2i and WH(s(i)) =

1. Then the number of these s(i) is 2i. So the number of 2i+1-periodic binary sequences

s(i+1) with linear complexity 2i+1 − 2i = 2i and WH(s(i+1)) = 2 is also 2i.

For j > i, if 2j-periodic binary sequences s(j) with linear complexity 2j−2i and WH(s(j)) =

2, then 2j − 2i − (2i+1 − 2i) = 2j−1 + 2j−2 + · · · + 2i+1. Based on Algorithm 3.1.1 in

Section 3.1, the number of these s(j) can be given by (22)j−i−1 × 2i = 22j−i−2. So the
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number of 2j+1-periodic binary sequences s(j+1) with linear complexity 2j+1 − (2j + 2i)

and WH(s(j+1)) = 4 is also 22j−i−2.

Step 2 we construct e(r) so that the distance (based on Definition 2.1) among all nonzero

elements p1, p2, p3 or p4 are unchanged. The number of e(r) becomes 22j−i−2×(24)r−j−1 =

24r−2j−i−6.

Step 3 we construct e(r+1) by adding two nonzero elements p5, p6 so that p5, p6 and two

nonzero elements of p1, p2, p3 or p4 constitute a 2-cube with linear complexity 2r+1− (2r +

2j). There are 2 options. For the convenience of presentation, suppose that p1, p2, p5

or p6 constitute a 2-cube. Then p3, p4 have 22 options. The number of e(r+1) becomes

24r−2j−i−6 × 2× 22 = 24r−2j−i−3.

Step 4 we construct e(z) so that the distance among all nonzero elements are unchanged.

The number of e(z) becomes 24r−2j−i−3 × (26)z−r−1 = 26z−2r−2j−i−9.

Step 5 we construct e(z+1) by adding one nonzero element p7 so that the distance of p7 and

one nonzero elements of p1, p2, p5 or p6 is 2z. There are 4 options. For the convenience of

presentation, suppose that the distance of p1 and p7 is 2z.. Then p2, p3, p4, p5 and p6 have

25 options. The number of e(z+1) becomes 26z−2r−2j−i−9 × 4× 25 = 26z−2r−2j−i−2.

Finally the number of sequences e(n) with WH(e(n)) = 7, L1(e
(n)) = 2n − (2i + 2j),

L3(e
(n)) = 2n − (2p + 2q + 2r) and L5(e

(n)) = 2n − (2x + 2y + 2z) can be given by

26z−2r−2j−i−2 × (27)n−z−1 = 27n−z−2r−2j−i−9.

(For sequence {11110000 10100000 10000000 00000000}, n = 5, i = p = 0, j = q =

x = 1, r = y = 3, z = 4. With 1 bit change, it becomes one 2-cube and one 1-

cube: {11110000 10000000 10000000 00000000} With 3 bits change, it becomes one 3-

cube: {11110000 11110000 0000000 00000000} With 5 bits change, it becomes a 3-cube:

{10100000 10100000 10100000 10100000})

For the case of i = p = x < j = q < r = y < z, here we only give the brief construction

process as follows.

e(r) : 22j−i−2 × (24)r−j−1 =⇒ e(r+1) : 24r−2j−i−6 × 4× 22

=⇒ e(z) : 24r−2j−i−2 × (26)z−r−1 =⇒ e(z+1) : 26z−2r−2j−i−8 × 4× 25 = 26z−2r−2j−i−1.

171



Based on the above results, the numbers of sequences e(n) can be given by{
27n−z−2r−2j−i−9, i = p < j = q = x < r = y < z

27n−z−2r−2j−i−8, i = p = x < j = q < r = y < z

Now we consider the second case that s(n) can be decomposed into one 0-cube c1 one

2-cube c2 and one 1-cube c3, where L(c2) > L(c3).

Theorem 5.1.2 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n and

L7(s
(n)) = 0 < L5(s

(n)) < L3(s
(n)) < L1(s

(n)), and s(n) can be decomposed into one

0-cube c1, one 2-cube c2 and one 1-cube c3, where L(c2) > L(c3). In this case, we have

two situations.

i) Suppose that L1(s
(n)) = 2n− (2i+ 2j), 0 ≤ i < j < n, L3(s

(n)) = 2n− (2p+ 2q + 2r), 0 ≤
p < q < r < n, L5(s

(n)) = 2n − (2x + 2y), 0 ≤ x < y < n, and r < y. Then the number of

2n-periodic binary sequences s(n) can be given by

5× 27n−y−x−q−2j−i−9, i = p < q < j = r < x

3× 27n−y−x−q−2j−i−9, i = p < q < x < j = r

27n−y−x−q−2j−i−8, i = p < x < q < j = r

27n−y−x−q−2j−i−9, x < i = p < j = r

5× 27n−y−x−p−2j−i−10, i = q < j = r < x

3× 27n−y−x−p−2j−i−10, i = q < x < j = r

27n−y−x−p−2j−i−9, p < x < i = q < j = r

27n−y−x−p−2j−i−10, x < p < i = q < j = r

ii) Suppose that L1(s
(n)) = 2n− (2i+2j), 0 ≤ i < j < n, L3(s

(n)) = 2n− (2p+2q+2r), 0 ≤
p < q < r < n, L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. Then the number of

2n-periodic binary sequences s(n) can be given by

27n−2j−i−z−2y−8, i = p = x, j = q, r = y

27n−2j−i−z−2y−9, i = p = x, j = r, q = y

27n−2j−i−z−2y−9, i = p, j = q = x, r = y

27n−2j−i−z−2x−9, i = p, j = r = y, q = x

27n−2j−2i−z−x−10, i = q = y, j = r, p = x

27n−3j−i−z−x−10, i = q, j = r = y, p = x

Proof. i) First we prove that {i, j} ⊂ {p, q, r} and j = r < y.
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Suppose that the 0-cube c1 includes a nonzero element e1, the 2-cube c2 includes 4 nonzero

elements e2, e3, e4, e5, and the 1-cube c3 includes 2 nonzero elements e6, e7.

Based on the result by Kurosawa et al. (2000), the minimum number k for which the

k-error linear complexity of a 2n-periodic binary sequence s is strictly less than the linear

complexity L(s) of s is determined by kmin = 2WH(2n−L(s)). As c2 is a 2-cube, thus

kmin = 4, which means that in order to decrease the linear complexity of the 2-cube, we

have to change 4 elements. So L1(s
(n)) = L(c2) = 2n − (2i + 2j), is achieved by changing

the nonzero element e1.

Next, we have to add a new 2-cube with linear complexity L(c2). If the new 2-cube does

not include nonzero element e1, then we have to change 5 elements. So the new 2-cube has

to include the nonzero element e1. We have to add 3 nonzero elements. Now s(n) becomes

a 3-cube, thus L3(s
(n)) = 2n − (2i + 2j + 2u). So {i, j} ∈ {p, q, r}. Based on Algorithm

3.2.1 in Section 3.2, the cube with longer edge length will be first removed, so u < j.

Similarly, L5(s
(n)) is achieved by adding a 1-cube with linear complexity L(c3), i.e., we

need to change 4 nonzero elements of s(n) and add one new nonzero element. As L5(s
(n)) =

2n − (2x + 2y), 0 ≤ x < y < n, thus L(c3) = 2n − 2y.

L3(s
(n)) = 2n − (2i + 2j + 2u) > L(c3) is immediately followed by y > r = j.

Now we will compute the number of sequences e(n) with WH(e) = 7, L1(e
(n)) = 2n− (2i +

2j), L3(e
(n)) = 2n − (2p + 2q + 2r) and L5(e

(n)) = 2n − (2x + 2y). As c2 is a 2-cube, so

r = j. Note that j = r < y, there are 8 possible cases:

1. i = p < q < j = r < x; 2. i = p < q < x < j = r; 3. i = p, j = r, p < x < q; 4.

i = p, j = r, x < p;

5. i = q < j = r < x; 6. i = q, j = r, q < x < r; 7. i = q, j = r, p < x < q; 8.

i = q, j = r, x < p;

We now cope with these cases respectively.

1. In the case of i = p < q < j = r < x.

As the number of 2i+1-periodic binary sequences e(i+1) with linear complexity 2i+1−2i = 2i

and WH(e(i+1)) = 2 is 2i. For j > i, we aim to obtain 2j-periodic binary sequences s(j)

with linear complexity 2j−2i and WH(s(j)) = 2 from above 2i+1-periodic binary sequences

173



s(i+1). In this case, when the sequence period changes from 2i+1 to 2j , the increase of

linear complexity is 2j − 2i − (2i+1 − 2i) = 2j−1 + 2j−2 + · · ·+ 2i+1. Based on Algorithm

3.1.1 in Section 3.1, the number of these e(j) can be given by (22)j−i−1 × 2i = 22j−i−2.

So the number of 2j+1-periodic binary sequences e(j+1) with linear complexity 2j+1−(2j+

2i) and WH(e(j+1)) = 4 is also 22j−i−2.

First one nonzero element is added so that L1(e
(j+1)) = 2j+1 − (2i + 2j) and L3(e

(j+1)) =

2j+1−(2i+2q+2j). Note that i < q < j, the number of e(j+1) becomes 22j−i−2×2×2j−q =

23j−q−i−1.

Suppose that p1, p2, p3, p4 and p5 are nonzero elements of e(j+1). Second construct e(x) so

that the distance among p1, p2, p3, p4 and p5 are unchanged. The number of e(x) becomes

23j−q−i−1 × (25)x−j−1 = 25x−2j−q−i−6.

Third construct e(x+1) by adding a nonzero element p6 so that the distance of p6 and one

nonzero element of e(x), say p1, is 2x. The number of e(x+1) becomes 25x−2j−q−i−6×5×24 =

5× 25x−2j−q−i−2.

Step 4 we construct e(y) so that the distance among p1, p2, p3, p4, p5 and p6 are unchanged.

The number of e(y) becomes 5× 25x−2j−q−i−2 × (26)y−x−1 = 5× 26y−x−2j−q−i−8.

Step 5 we construct e(y+1) by adding a nonzero element p7 so that the distance of p7 and

p1 or p6, say p6, is 2y. Then p1, p2p3, p4 and p5 have 25 options. The number of e(y+1)

becomes 5× 26y−x−2j−q−i−8 × 2× 25 = 5× 26y−x−2j−q−i−2.

Finally the number of sequences e(n) with WH(e(n)) = 7, L1(e
(n)) = 2n − (2i + 2j),

L3(e
(n)) = 2n − (2p + 2q + 2r) and L5(e

(n)) = 2n − (2x + 2y) can be given by

5× 26y−x−2j−q−i−2 × (27)n−y−1 = 5× 27n−y−x−2j−q−i−9.

(For example, with a sequence {00000001 00000000 00000001 00110111}, n = 5, i = 0, j =

2, p = 0, q = 1, r = 2, x = 3, y = 4. With 1 bit change, it becomes a 2-cube and a 1-cube:

{00000001 00000000 00000001 00110011}. With 3 bits change, it becomes a 3-cube and a

1-cube {00000001 00000000 00000001 11111111}. With 5 bits change, it becomes a 2-cube:

{00000001 00000001 00000001 00000001}.)

2. In the case of i = p < q < x < j = r < y.
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Suppose that e(q) is a 2q-periodic binary sequence with linear complexity 2q andWH(e(q)) =

1. Then the number of these e(q) is 2q. So the number of 2q+1-periodic binary sequences

e(q+1) with linear complexity 2q+1 − 2q = 2q and WH(e(q+1)) = 2 is also 2q.

Step 1 one nonzero element is added to e(q+1) such that L1(e
(q+1)) = 2q+1−(2i+2q). This

implies that we place a nonzero element p3 in e(q+1), so that both the distance of p1 and

p3, and the distance of p2 and p3 are 2i, where p1 and p2 are in e(q+1), and the distance of

p1 and p2 is 2q. The number of new e(q+1) becomes 2q × 2q+1

2i+1 = 2q × 2q−i = 22q−i.

Step 2 we construct e(x) so that L1(e
(x)) = 2x−(2i+2q). The number of such e(x) becomes

22q−i × (23)x−q−1 = 23x−q−i−3.

Step 3 we construct e(x+1) by adding another nonzero element p4 so that the distance of

p4 and one nonzero element of p1, p2 or p3 is 2x. There are 3 options. For the convenience

of presentation, suppose that the distance of p4 and p1 is 2x. Then p2 and p3 have 22

options. The number of such e(x+1) becomes 23x−q−i−3 × 3× 22.

Step 4 we construct e(j) so that the distance (based on Definition 2.1) among p1, p2, p3

and p4 are unchanged. The number of such e(j) becomes 3 × 23x−q−i−1 × (24)j−x−1 =

3× 24j−x−q−i−5.

Step 5 we construct e(j+1) by adding two nonzero elements p5, p6 so that p1 ( or p2), p3, p5

and p6 constitute a 2-cube with linear complexity 2j+1 − (2i + 2j). The number of e(j+1)

becomes 3× 24j−x−q−i−5 × 2× 22.

Step 6 we construct e(y) so that the distance (based on Definition 2.1) among p1, p2, p3, p4, p5

and p6 are unchanged. The number of such e(y) becomes 3 × 24j−x−q−i−2 × (26)y−j−1 =

3× 26y−2j−x−q−i−8.

Step 7 we construct e(y+1) by adding one nonzero element p7 so that the distance of p1 (

or p4) and p7 is 2y. The number of e(y+1) becomes 3× 26y−2j−x−q−i−8 × 2× 25.

Finally the number of sequences e(n) with WH(e(n)) = 7, L1(e
(n)) = 2n − (2i + 2j),

L3(e
(n)) = 2n − (2p + 2q + 2r) and L5(e

(n)) = 2n − (2x + 2y) can be given by

3× 26y−x−2j−q−i−2 × (27)n−y−1 = 3× 27n−y−x−2j−q−i−9.

(For sequence {00000000 00010000 00000011 00010111}, n = 5, i = 0, j = 3, p = 0, q =

1, r = 3, x = 2, y = 4. With 1 bit change, it becomes a 2-cube and a 1-cube:
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{00000000 00010000 00000011 00010011}. With 3 bits change, it becomes a 3-cube and

a 1-cube: {00000000 00010000 00001111 00011111}. With 5 bits change, it becomes a

2-cube: {00000000 00010001 00000000 00010001}.)

Similarly we can obtain results for other cases. In summary, the numbers of sequences

e(n) can be given by

5× 27n−y−x−q−2j−i−9, i = p < q < j = r < x

3× 27n−y−x−q−2j−i−9, i = p < q < x < j = r

27n−y−x−q−2j−i−8, i = p < x < q < j = r

27n−y−x−q−2j−i−9, x < i = p < j = r

5× 27n−y−x−p−2j−i−10, i = q < j = r < x

3× 27n−y−x−p−2j−i−10, i = q < x < j = r

27n−y−x−p−2j−i−9, p < x < i = q < j = r

27n−y−x−p−2j−i−10, x < p < i = q < j = r

ii) Suppose that s(n) can be decomposed into one 0-cube c1, one 2-cube c2 and one 1-

cube c3, where L(c2) > L(c3), L1(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n, L3(s

(n)) =

2n − (2p + 2q + 2r), 0 ≤ p < q < r < n, L5(s
(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n.

Similar to the analysis of i), we know that {i, j} ⊂ {p, q, r}.

As L5(s
(n)) = 2n − (2x + 2y + 2z), thus L5(s

(n)) is achieved by a 3-cube c′. If c′ includes

7 nonzero elements of s(n), then L5(s
(n)) = L1(s

(n)), which is a contradiction. If c′

includes 6 nonzero elements of s(n), then L5(s
(n)) = L3(s

(n)), which is also a contradiction.

So c′ should only include 5 nonzero elements of s(n). Therefore, {p, q} ⊂ {x, y, z} or

{p, r} ⊂ {x, y, z} or {q, r} ⊂ {x, y, z}.

Note that r < z ( refer to Appendix 1) for the proof). Thus there are 3 possible cases:

1. p = x, q = y. 2. p = x, r = y. 3. q = x, r = y.

Note that i = x and j = y can not be true at the same time ( refer to Appendix 2) for the

proof). Thus there are 6 possible cases:

1.i = p = x, j = q, r = y, 2.i = p = x, j = r, q = y, 3.i = q = y, j = r, p = x,

4.i = q, j = r = y, p = x, 5.i = p, j = q = x, r = y, 6.i = p, j = r = y, q = x.
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We now deal with these cases respectively.

1. In the case of i = p = x, j = q, r = y.

Suppose that s(i) is a 2i-periodic binary sequence with linear complexity 2i and WH(s(i)) =

1. Then the number of these s(i) is 2i. So the number of 2i+1-periodic binary sequences

s(i+1) with linear complexity 2i+1 − 2i = 2i and WH(s(i+1)) = 2 is also 2i.

For j > i, if 2j-periodic binary sequences s(j) with linear complexity 2j−2i and WH(s(j)) =

2 is obtained from s(i), then the increase of linear complexity is 2j − 2i − (2i+1 − 2i) =

2j−1 + 2j−2 + · · ·+ 2i+1. Based on Algorithm 3.1.1 in Section 3.1, the number of these s(j)

can be given by (22)j−i−1 × 2i = 22j−i−2.

So the number of 2j+1-periodic binary sequences s(j+1) with linear complexity 2j+1−(2j+

2i) and WH(s(j+1)) = 4 is also 22j−i−2.

It is easy to show that the number of 2y+1-periodic binary sequences s(y+1) with linear

complexity 2y+1 − (2j + 2i) and WH(s(y+1)) = 4 is 22j−i−2 × (24)y+1−j−1 = 24y−2j−i−2.

Next we discuss how many options to add two nonzero elements to s(y+1) such that

L2(s
(y+1)) = 2y+1 − (2i + 2y).

As there exist 22 pairs of nonzero elements with distance 2i in a 2-cube with linear

complexity 2y+1 − (2i + 2j), we can construct 22 2-cubes with smaller linear complex-

ity 2y+1 − (2i + 2y).

(For example, we can construct {0011 0011}, {1100 1100}, {1001 1001} and {0110 0110}
from {0000 1111} with i = 0, j = 1, y = 2.)

Therefore, we can construct the sequences s(y+1) (not 2-cube anymore) with L2(s
(y+1)) =

2y+1 − (2i + 2y), Wh(s(y+1)) = 6 and containing a 2-cube with linear complexity 2y+1 −
(2i+2j). As we can obtain the same s(y+1) from 22 distinct 2-cubes with linear complexity

2y+1 − (2i + 2j), the total number of such sequences s(y+1) is 24y−2j−i−2 × 22 × 1
22

=

24y−2j−i−2 after calculating the overlaps.

(For example, the sequence {0011 1111} is produced by all of the following sequences

{0000 1111}, {0010 1101}, {0001 1110} and {0011 1100}).

Next we construct s(z) so that the distance (based on Definition 2.1) among nonzero ele-
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ments of s(y+1) are unchanged. The number of such s(z) becomes 24y−2j−i−2×(26)z−y−1 =

26z−2y−2j−i−8.

Suppose that p1, p2, p3, p4, p5 and p6 are nonzero elements of s(z), and p1, p2, p5 and p6

constitute a 2-cube with linear complexity 2z − (2i + 2y). Now we construct s(z+1) by

adding nonzero element p7 so that the distance of p7 and p1, p2, p5 or p6 is 2z. There are

4 options. Then other 5 nonzero elements have 25 options. The number of such s(z+1)

becomes 26z−2y−2j−i−8 × 4× 25 = 26z−2y−2j−i−1.

Finally the number of sequences s(n) with WH(s(n)) = 7, L1(s
(n)) = 2n − (2i + 2j),

L3(s
(n)) = 2n − (2p + 2q + 2r) and L5(s

(n)) = 2n − (2x + 2y + 2z) can be given by

26z−2y−2j−i−1 × (27)n−z−1 = 27n−z−2y−2j−i−8.

(For example, with a sequence {0000 0001 0011 1111}, n = 4, i = 0, j = 1, p = 0, q =

1, r = 2, x = 0, y = 2, z = 3. With 1 bit change, it becomes a 2-cube and a 1-cube:

{0000 0001 0001 1111}. With 3 bits change, it becomes a 3-cube: {0000 0000 1111 1111}.
With 5 bits change, it becomes a 3-cube: {0011 0011 0011 0011}.)

2. In the case of i = p = x, j = r, q = y.

The number of sequences s(y+1) with linear complexity 2y+1−(2i+2y) and WH(s(y+1)) = 4

is 22y−i−2.

The number of sequences s(j+1) with linear complexity 2j+1−(2i+2y) is 22y−i−2×(24)j−y =

24j−2y−i−2.

Similar to the analysis of case 1, the number of s(j+1) becomes 24j−2y−i−2, where L2(s
(j+1)) =

2j+1−(2i+2j), WH(s(j+1)) = 6 and s(j+1) contains a 2-cube c′ with L(c′) = 2j+1−(2i+2y).

The number of sequences s(z) with L2(s
(z)) = 2z − (2i + 2j) becomes 24j−2y−i−2 ×

(26)z−j−1 = 26z−2j−2y−i−8.

While keeping L1(s
(z+1)) = 2z+1− (2i + 2j), we have two options to construct s(z+1) from

a sequence s(z), such that L5(s
(z+1)) = 2z+1−(2i+2y+2z). The number of such sequences

s(z+1) becomes 26z−2j−2y−i−8 × 2× 25 = 26z−2j−2y−i−2.

Finally the number of sequences s(n) with WH(s(n)) = 7, L1(s
(n)) = 2n − (2i + 2j),
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L3(s
(n)) = 2n − (2p + 2q + 2r) and L5(s

(n)) = 2n − (2x + 2y + 2z) can be given by

26z−2j−2y−i−2 × (27)n−z−1 = 27n−z−2y−2j−i−9.

(For sequence {0000 0001 0110 1111}, n = 4, i = 0, j = 2, p = 0, q = 1, r = 2, x = 0, y =

1, z = 3. With 1 bit change, it becomes a 2-cube and a 1-cube: {0000 0001 0110 0111}.
With 3 bits change, it becomes a 3-cube {0000 0000 1111 1111}. With 5 bits change, it

becomes a 3-cube: {0000 1111 0000 1111}.)

We can obtain results for other cases similarly. Finally, the numbers of sequences e(n) can

be given by 

27n−2j−i−z−2y−8, i = p = x, j = q, r = y

27n−2j−i−z−2y−9, i = p = x, j = r, q = y

27n−2j−i−z−2y−9, i = p, j = q = x, r = y

27n−2j−i−z−2x−9, i = p, j = r = y, q = x

27n−2j−2i−z−x−10, i = q = y, j = r, p = x

27n−3j−i−z−x−10, i = q, j = r = y, p = x

This completes the proof.

Finally, we consider the case that s(n) can be decomposed into one 0-cube c1 one 1-cube

c2 and one 2-cube c3, where L(c2) > L(c3).

Theorem 5.1.3 Let s(n) be a 2n-periodic binary sequence with linear complexity 2n and

L7(s
(n)) = 0 < L5(s

(n)) < L3(s
(n)) < L1(s

(n)). Suppose that s(n) can be decomposed

into one 0-cube c1, one 1-cube c2 and one 2-cube c3, where L(c2) > L(c3). We have the

following situations.

i) Suppose that L1(s
(n)) = 2n− (2i+ 2j), 0 ≤ i < j < n, L3(s

(n)) = 2n− (2p+ 2q + 2r), 0 ≤
p < q < r < n, L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. Then the number of

2n-periodic binary sequences s(n) can be given by



27n−2j−i−2z−y−8, i = p = x, j = q < y, r = z

27n−2j−i−2z−x−10, i = p < x, j = q = y, r = z

27n−2j−i−2z−y−9, i = p, j = q = x, r = z

27n−3j−i−x−y−10, i = p < x, j = r = z, q = y

27n−3j−i−x−y−9, i = p, j = r = z, q = x

27n−3j−i−x−y−10, i = q < y, j = r = z, p = x
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ii) Suppose that L1(s
(n)) = 2n− (2i+2j), 0 ≤ i < j < n, L3(s

(n)) = 2n− (2p+2q), 0 ≤ p <
q < n, L5(s

(n)) = 2n− (2x + 2y + 2z), 0 ≤ x < y < z < n. Then the number of 2n-periodic

binary sequences s(n) can be given by

3× 27n−2q−y−p−j−i−9, p = x < i < j < y < q = z

3× 27n−2q−y−p−j−i−9, i < p = x < j < y < q = z

3× 27n−2q−y−p−j−i−9, i < j < p = x < y < q = z

27n−2q−y−p−j−i−8, p = x < i < y < j < q = z

27n−2q−y−p−j−i−8, i < p = x < y < j < q = z

27n−2q−y−p−j−i−9, p = x < y < i < j < q = z

27n−2q−x−p−j−i−10, x < p = y < i < j < q = z

27n−2q−x−p−j−i−10, x < i < p = y < j < q = z

27n−2q−x−p−j−i−9, i < x < p = y < j < q = z

27n−2q−y−x−j−i−9, i < x < j < p = y < q = z

3× 27n−2q−y−x−j−i−10, i < j < x < p = y < q = z

27n−2j−i−2z−p−9, i = x > p, j = y, q = z

27n−2j−i−2z−p−9, i = x < p, j = y, q = z

27n−2j−i−2z−p−9, p = x, j = y, q = z

27n−2j−i−2z−y−10, j = x, p = y, q = z

Proof. Suppose that s(n) can be decomposed by Algorithm 3.2.1 in Section 3.2 into one

0-cube c1 (one nonzero element e1), one 1-cube c2 (two nonzero elements e2, e3) and one 2-

cube c3 (four nonzero elements e4, e5, e6, e7) with linear complexity 2n−(2u+2v), u < v, and

L(c2) > L(c3). Let 2d be the maximum of {D(ei, ej)|1 ≤ i ≤ 3, 4 ≤ j ≤ 7}, where D(ei, ej)

denotes the distance of ei and ej based on Definition 2.1. Without loss of generality,

suppose that D(e1, e4) = 2d. Then one can change e2, e3, and add e8, e9, e10, such that

e1, e8, e9 and e10 constitute a 2-cube c4 with linear complexity 2n − (2u + 2v), and c3 and

c4 constitute a 3-cube. So L5(s
(n)) = 2n − (2x + 2y + 2z), where d ∈ {x, y}. The 3-cube

with linear complexity 2n− (2x + 2y + 2z) must include four nonzero elements e4, e5, e6, e7

and one nonzero element of e1, e2, e3.

i) Suppose that L1(s
(n)) = 2n− (2i+ 2j), 0 ≤ i < j < n, L3(s

(n)) = 2n− (2p+ 2q + 2r), 0 ≤
p < q < r < n, L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n.

If the distance of one pair of nonzero elements of e1, e2, e3 is u or v. Assume D(e1, e2) = 2u.

Then one can change e3, and add e8, e9, so that e1, e2, e8 and e9 constitute a 2-cube c4

with linear complexity 2n− (2u + 2v), and c3 and c4 constitute a 3-cube. Thus L3(s
(n)) =

2n − (2p + 2q + 2r), where u, v ∈ {p, q, r}. As L3(s
(n)) is achieved by a 3-cube containing

c3, thus r = z = v. In this case, there are 6 possible cases as follows.
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1. i = p = x, j = q < y, r = z, 2. i = p < x, j = q = y, r = z, 3. i = p, j = q = x, r = z,

4. i = p < x, j = r = z, q = y, 5. i = p, j = r = z, q = x, 6. i = q < y, j = r = z, p = x.

We now deal with these cases respectively.

1. In the case of i = p = x, j = q < y, r = z.

It is easy to show that the number of 2z+1-periodic binary sequences s(z+1) with linear

complexity 2z+1 − (2j + 2i) and WH(s(z+1)) = 4 is 22j−i−2 × (24)z+1−j−1 = 24z−2j−i−2.

Suppose that the nonzero elements of s(z+1) are p1, p2, p3 and p4. Next we add two

nonzero elements to s(z+1) so that L2(s
(z+1)) = 2z+1− (2i + 2z). As there exist 22 pairs of

nonzero elements with distance 2i in a 2-cube with linear complexity 2z+1 − (2i + 2j), we

can construct 22 2-cubes with linear complexity 2z+1 − (2i + 2z). (For example, we can

construct {0011 0011}, {1100 1100}, {1001 1001} and {0110 0110} from {0000 1111} with

i = 0, j = 1, z = 2.)

Therefore, we can construct the sequences s(z+1) (not 2-cube anymore) with L2(s
(z+1)) =

2z+1 − (2i + 2z), Wh(s(z+1)) = 6 and containing a 2-cube with linear complexity 2z+1 −
(2i+2j). As we can obtain the same s(z+1) from 22 distinct 2-cubes with linear complexity

2z+1 − (2i + 2j), the total number of such sequences s(z+1) is 24z−2j−i−2 × 22 × 1
22

=

24z−2j−i−2 after calculating the overlaps.

(For example, the sequence {0011 1111} is produced by all of the following sequences

{0000 1111}, {0010 1101}, {0001 1110} and {0011 1100}).

Further we add one nonzero element to s(z+1) such that L5(s
(z+1)) = 2z+1− (2i+ 2y + 2z).

Suppose that s(z+1) now has two more nonzero elements p5 and p6. Add one nonzero

element p7 such that the distance D(p5, p7) = 2y or D(p6, p7) = 2y. Thus the number of

s(z+1) becomes 24z−2j−i−2 × 2× 2z−y = 25z−y−2j−i−1.

Finally the number of sequences s(n) with WH(s(n)) = 7, L1(s
(n)) = 2n − (2i + 2j),

L3(s
(n)) = 2n − (2p + 2q + 2r) and L5(s

(n)) = 2n − (2x + 2y + 2z) can be given by

25z−y−2j−i−1 × (27)n−z−1 = 27n−2j−i−2z−y−8.

(For sequence {0000 0011 0001 1111}, n = 4, i = 0, j = 1, p = 0, q = 1, r = 3, x = 0, y =

2, z = 3. With 1 bit change, it becomes two 2-cubes: {0000 0011 0011 1111}. With 3 bits
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change, it becomes a 3-cube {0000 1111 0000 1111}. With 5 bits change, it becomes a

3-cube: {0011 0011 0011 0011}.)

2. In the case of i = p < x, j = q = y, r = z.

It is easy to show that the number of 2z+1-periodic binary sequences s(z+1) with linear

complexity 2z+1 − (2j + 2i) and WH(s(z+1)) = 4 is 22j−i−2 × (24)z+1−j−1 = 24z−2j−i−2.

Suppose that the nonzero elements of s(z+1) are p1, p2, p3 and p4. Next we add two nonzero

elements to s(z+1) so that L2(s
(z+1)) = 2z+1 − (2j + 2z). From a 2-cube with linear

complexity 2z+1 − (2i + 2j), we have two 2-cubes with linear complexity 2z+1 − (2j + 2z).

Next we add two nonzero elements to s(z+1) so that L2(s
(z+1)) = 2z+1 − (2j + 2z),

Wh(s(z+1)) = 6 and s(z+1) contains a 2-cube c′ with L(c′) = 2z+1 − (2i + 2j).

As we can obtain the same s(z+1) from 22 distinct 2-cubes with linear complexity 2z+1 −
(2i + 2j), the total number of such sequences s(z+1) is 24z−2j−i−2 × 2 × 1

22
= 24z−2j−i−3

after calculating the overlaps.

(For example, the sequence {0011 1111} is produced by all of the following sequences

{0000 1111}, {0010 1101}, {0001 1110} and {0011 1100}).

Further add one nonzero element to s(z+1) so that L5(s
(z+1)) = 2z+1 − (2x + 2j + 2z).

Suppose that s(z+1) now has two more nonzero elements p5 and p6. Add one nonzero

element p7 such that the distance D(p5, p7) = 2x ( at the same time D(p6, p7) = 2x). Thus

the number of s(z+1) becomes 24z−2j−i−3 × 2z−x = 25z−x−2j−i−3.

Finally the number of these s(n) can be given by

25z−x−2j−i−3 × (27)n−z−1 = 27n−2j−i−2z−x−10.

(For sequence {0001 0001 0011 0111}, n = 4, i = 0, j = 2, p = 0, q = 2, r = 3, x = 1, y =

2, z = 3. With 1 bit change, it becomes two 2-cubes: {0001 0001 0111 0111}. With 3 bits

change, it becomes a 3-cube {0011 0011 0011 0011}. With 5 bits change, it becomes a

3-cube: {0101 0101 0101 0101}.)

3. In the case of i = p, j = q = x, r = z. Note that from a 2-cube with linear complexity

2y+1 − (2i + 2j), we can have two 2-cubes with linear complexity 2y+1 − (2j + 2y). Thus
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the number of these e can be given by

24y−2j−i−2 × 2× 1

22
× 2× (25)z−y−1 × 22 × 23 × (27)n−z−1 = 27n−2j−i−2z−y−9.

(For sequence {0000 0101 0001 1111}, n = 4, i = 0, j = 1, p = 0, q = 1, r = 3, x = 1, y =

2, z = 3. With 1 bit change, it becomes two 2-cubes: {0000 0101 0101 1111}. With 3 bits

change, it becomes a 3-cube {0000 1111 0000 1111}. With 5 bits change, it becomes a

3-cube: {0101 0101 0101 0101}.)

4. In the case of i = p < x, q = y, j = r = z. The number of these sequences e can be

given by

22j−i−2 × 2× 2j−x−1 × 2j−y−1 × 1

2
× 2× (27)n−j−1 = 27n−3j−i−x−y−10.

(For sequence {0001 0111 0001 0011}, n = 4, i = 0, j = 3, p = 0, q = 2, r = 3, x = 1, y =

2, z = 3. With 1 bit change, it becomes two 2-cubes: {0001 0111 0001 0111}. With 3 bits

change, it becomes a 3-cube {0011 0011 0011 0011}. With 5 bits change, it becomes a

3-cube: {0101 0101 0101 0101}.)

5. In the case of i = p, q = x, j = r = z. The number of these e can be given by

22j−i−2 × 2× 2j−x−1 × 2j−y−1 × 1

2
× 22 × (27)n−j−1 = 27n−3j−i−x−y−9.

(For sequence {0000 0111 0001 0111}, n = 4, i = 0, j = 3, p = 0, q = 1, r = 3, x = 1, y =

2, z = 3. With 1 bit change, it becomes two 2-cubes: {0001 0111 0001 0111}. With 3 bits

change, it becomes a 3-cube: {0000 1111 0000 1111}. With 5 bits change, it becomes a

3-cube: {0101 0101 0101 0101}.)

6. In the case of i = q < y, j = r = z, p = x. The number of these e can be given by

22j−i−2 × 2j−x−1 × 2j−y−1 × 1

2
× 22 × (27)n−j−1 = 27n−3j−i−x−y−10.

(For sequence {0001 1010 0001 1011}, n = 4, i = 1, j = 3, p = 0, q = 1, r = 3, x = 0, y =

2, z = 3. With 1 bit change, it becomes two 2-cubes: {0001 1011 0001 1011}. With 3 bits

change, it becomes a 3-cube: {0001 1110 0001 1110}. With 5 bits change, it becomes a

3-cube: {0011 0011 0011 0011}.)

ii) Suppose that L1(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n, L3(s

(n)) = 2n − (2p + 2q), 0 ≤
p < q < n, L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. Then the distance among
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nonzero elements of e1, e2, e3 (see notations in the beginning of the proof) is neither u

nor v. As L3(s
(n)) is achieved by c3, so L3(s

(n)) = 2n − (2p + 2q) = 2n − (2u + 2v), thus

q = z = v.

If s(n) contains only one 2-cube c3, then both i and j are not in {p, q}, {p, q} ⊂ {x, y, z}.
There are 11 possible cases as follows.

1. p = x < i < j < y, 2. i < p = x < j < y, 3. i < j < p = x < y, 4. p = x < i < y < j,

5. i < p = x < y < j, 6. p = x < y < i < j, 7. x < p = y < i < j, 8. x < i < p = y < j,

9. i < x < p = y < j, 10. i < x < j < p = y, 11. i < j < x < p = y.

If s(n) contains two distinct 2-cubes. There are another 4 possible cases as follows (refer

to Appendix 9) for the proof).

12. i = x > p, j = y, q = z, 13. i = x < p, j = y, q = z,

14. p = x, j = y, q = z, 15. j = x, p = y, q = z.

1. Now consider the case of p = x < i < j < y < q = z as follows.

Suppose that e(j) is a 2j-periodic binary sequence with linear complexity 2j andWH(e(j)) =

1. Then the number of these e(j) is 2j . So the number of 2j+1-periodic binary sequences

e(j+1) with linear complexity 2j+1 − 2j = 2j and WH(e(j+1)) = 2 is also 2j .

First one nonzero element is added to e(j+1) such that L1(e
(j+1)) = 2j+1 − (2i + 2j). This

implies that we place a nonzero element p3 in e(j+1), so that both the distance of p1 and

p3, and the distance of p2 and p3 are 2i, where p1 and p2 are in e(j+1), and the distance of

p1 and p2 is 2j . The number of new e(j+1) becomes 2j × 2j+1

2i+1 = 2j × 2j−i = 22j−i.

Second construct e(y) so that L1(e
(y)) = 2y − (2i + 2j). The number of such e(y) becomes

22j−i × (23)y−j−1 = 23y−j−i−3.

Third construct e(y+1) by adding another nonzero element p4 so that the distance of p4

and one nonzero element of p1, p2 or p3 is 2y. There are 3 options. For the convenience

of presentation, suppose that the distance of p4 and p1 is 2y. Then p2 and p3 have 22

options. The number of such e(y+1) becomes 23y−j−i−3 × 3 × 22. Further add a nonzero

element p5 so that the distance of p4 and p5 is 2p. Thus the number of e(y+1) becomes
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3× 23y−j−i−1 × 2y−p.

Step 4 we construct e(q) so that the distance (based on Definition 2.1) among p1, p2, p3, p4

and p5 are unchanged. The number of such e(q) becomes 3 × 24y−p−j−i−1 × (25)q−y−1 =

3× 25q−y−p−j−i−6.

Step 5 we construct e(q+1) by adding two nonzero elements p6, p7, so that p4 ( or p1), p5,

p6 and p7 constitute a 2-cube with linear complexity 2q+1 − (2p + 2q). The number of

e(q+1) becomes 3× 25q−y−p−j−i−6 × 2× 23.

Finally the number of sequences e(n) with WH(e(n)) = 7, L1(e
(n)) = 2n − (2i + 2j),

L3(e
(n)) = 2n − (2p + 2q) and L5(e

(n)) = 2n − (2x + 2y + 2z) can be given by

3× 25q−y−p−j−i−2 × (27)n−q−1 = 3× 27n−q−y−p−j−i−9

(For sequence {11000000 10101000 11000000 00000000}, n = 5, i = 1, j = 2, p = x =

0, y = 3, q = z = 4. With 1 bit change, it becomes one 2-cube and one 2-cube:

{11000000 10101010 11000000 00000000}. With 3 bits change, it becomes one 2-cube:

{11000000 00000000 11000000 00000000} With 5 bits change, it becomes a 3-cube:

{11000000 11000000 11000000 11000000})

2. For the case of i < p = x < j < y < q = z, here only give the brief construction process.

e(y) : 22j−i × (23)y−j−1 =⇒ e(y+1) : 23y−j−i−3 × 3× 22 × 2y−p

=⇒ e(q) : 3 × 24y−p−j−i−1 × (25)q−y−1 =⇒ e(q+1) : 3 × 25q−y−p−j−i−6 × 2 × 23 = 3 ×
25q−y−p−j−i−2.

3. For the case of i < j < p = x < y < q = z, here only give the brief construction process.

e(y) : 22j−i × (23)y−j−1 =⇒ e(y+1) : 23y−j−i−3 × 3× 22 × 2y−p

=⇒ e(q) : 3 × 24y−p−j−i−1 × (25)q−y−1 =⇒ e(q+1) : 3 × 25q−y−p−j−i−6 × 2 × 23 = 3 ×
25q−y−p−j−i−2.

4. For the case of p = x < i < y < j < q = z, here only give the brief construction process.

e(j+1) : 22j−i × 2× 2j−y × 2j−p = 24j−y−p−i+1
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=⇒ e(q) : 24j−y−p−i+1 × (25)q−j−1 =⇒ e(q+1) : 25q−y−p−j−i−4 × 23 = 25q−y−p−j−i−1.

5. For the case of i < p = x < y < j < q = z, here only give the brief construction process.

e(j+1) : 22j−i × 2× 2j−y × 2j−p = 24j−y−p−i+1

=⇒ e(q) : 24j−y−p−i+1 × (25)q−j−1 =⇒ e(q+1) : 25q−y−p−j−i−4 × 23 = 25q−y−p−j−i−1.

6. For the case of p = x < y < i < j < q = z, here only give the brief construction process.

e(j+1) : 22j−i × 2j−y × 2j−p = 24j−y−p−i

=⇒ e(q) : 24j−y−p−i × (25)q−j−1 =⇒ e(q+1) : 25q−y−p−j−i−5 × 23 = 25q−y−p−j−i−2.

7. For the case of x < p = y < i < j < q = z, here only give the brief construction process.

e(i+1) : 22p−x × (23)i−p−1 × 22 = 23i−x−p−1 =⇒ e(j+1) : 23i−x−p−1 × (24)j−i−1 × 2× 23

=⇒ e(q) : 24j−x−p−i−1 × (25)q−j−1 =⇒ e(q+1) : 25q−x−p−j−i−6 × 23 = 25q−x−p−j−i−3.

8. For the case of x < i < p = y < j < q = z, here only give the brief construction process.

e(p+1) : 22i−x × (23)p−i−1 × 22 = 23p−x−i−1 =⇒ e(j+1) : 23p−x−i−1 × (24)j−p−1 × 2× 23

=⇒ e(q) : 24j−x−p−i−1 × (25)q−j−1 =⇒ e(q+1) : 25q−x−p−j−i−6 × 23 = 25q−x−p−j−i−3.

9. For the case of i < x < p = y < j < q = z, here only give the brief construction process.

e(p+1) : 22x−i × (23)p−i−1 × 2× 22 = 23p−x−i =⇒ e(j+1) : 23p−x−i × (24)j−p−1 × 2× 23

=⇒ e(q) : 24j−x−p−i × (25)q−j−1 =⇒ e(q+1) : 25q−x−p−j−i−5 × 23 = 25q−x−p−j−i−2.

10. For the case of i < x < j < p = y << q = z, here only give the brief construction

process.

e(j+1) : 22x−i × (23)j−i−1 × 2× 22 = 23j−x−i =⇒ e(y+1) : 23j−x−i × (24)y−j−1 × 2× 23

=⇒ e(q) : 24y−j−x−i × (25)q−j−1 =⇒ e(q+1) : 25q−y−x−j−i−5 × 23 = 25q−y−x−j−i−2.
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11. For the case of i < j < x < p = y < q = z, here only give the brief construction

process.

e(x+1) : 22j−i× (23)x−j−1× 3× 22 = 3× 23x−j−i−1 =⇒ e(y+1) : 3× 23x−j−i−1× (24)y−x−1×
2× 23

=⇒ e(q) : 3 × 24y−x−j−i−1 × (25)q−y−1 =⇒ e(q+1) : 3 × 25q−y−x−j−i−6 × 23 = 3 ×
25q−y−x−j−i−3.

12. For the case of i = x > p, j = y, q = z. From a 2-cube with linear complexity

2j+1 − (2i + 2j), we have 2j−p × 22 1-cubes with linear complexity 2j+1 − 2p. Thus the

number of these e can be given by

22j−i−2 × 2j−p × 22 × (25)z−j−1 × 23 × (27)n−z−1 = 27n−2j−i−2z−p−9.

(For sequence {0000 0011 1010 1011}, n = 4, i = 1, j = 2, p = 0, q = 3, x = 1, y = 2, z = 3.

With 1 bit change, it becomes a 2-cube and a 1-cube: {0000 0001 1010 1011}. With 3

bits change, it becomes a 2-cube {0000 0011 0000 0011}. With 5 bits change, it becomes

a 3-cube: {1010 1010 1010 1010}. )

13. For the case of i = x < p, j = y, q = z. From a 2-cube with linear complexity

2j+1−(2i+2j), we have 2j+1−p−1×2 sequences containing a 1-cube with linear complexity

2j+1 − 2p. Thus the number of these e can be given by

22j−i−2 × 2j−p × 22 × (25)z−j−1 × 23 × (27)n−z−1 = 27n−2j−i−2z−p−9.

(For sequence {0000 0011 0110 0111}, n = 4, i = 0, j = 2, p = 1, q = 3, x = 0, y = 2, z = 3.

With 1 bit change, it becomes a 2-cube and a 1-cube: {0000 0001 0110 0111}. With 3 bits

change, it becomes two 2-cubes {0010 0111 0010 0111}. With 5 bits change, it becomes a

3-cube: {0011 0011 0011 0011}.)

14. For the case of p = x, j = y, q = z. The number of these e can be given by

22j−i−2 × 2j−p × 22 × (25)z−j−1 × 23 × (27)n−z−1 = 27n−2j−i−2z−p−9.

(For sequence {0000 0101 0011 0111}, n = 4, i = 0, j = 2, p = 1, q = 3, x = 1, y = 2, z = 3.

With 1 bit change, it becomes a 2-cube and a 1-cube: {0000 0100 0011 0111}. With 3

bits change, it becomes a 2-cube {0000 0101 0000 0101}. With 5 bits change, it becomes

a 3-cube: {0101 0101 0101 0101}. )
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15. For the case of j = x, p = y, q = z, the number of these e can be given by

24z−2j−i−6 × 4× 2z−y−1 × 1

2
× 23 × (27)n−z−1 = 27n−2j−i−2z−y−10.

(For sequence {0001 0001 0001 1111}, n = 4, i = 0, j = 1, p = 2, q = 3, x = 1, y = 2, z = 3.

With 1 bit change, it becomes a 2-cube and a 1-cube: {0001 0001 0000 1111}. With 3

bits change, it becomes a 2-cube {0001 0001 0001 0001}. With 5 bits change, it becomes

a 3-cube: {0101 0101 0101 0101}.)

In summary, the number of 2n-periodic binary sequences s(n) can be given by



3× 27n−2q−y−p−j−i−9, p = x < i < j < y < q = z

3× 27n−2q−y−p−j−i−9, i < p = x < j < y < q = z

3× 27n−2q−y−p−j−i−9, i < j < p = x < y < q = z

27n−2q−y−p−j−i−8, p = x < i < y < j < q = z

27n−2q−y−p−j−i−8, i < p = x < y < j < q = z

27n−2q−y−p−j−i−9, p = x < y < i < j < q = z

27n−2q−x−p−j−i−10, x < p = y < i < j < q = z

27n−2q−x−p−j−i−10, x < i < p = y < j < q = z

27n−2q−x−p−j−i−9, i < x < p = y < j < q = z

27n−2q−y−x−j−i−9, i < x < j < p = y < q = z

3× 27n−2q−y−x−j−i−10, i < j < x < p = y < q = z

27n−2j−i−2z−p−9, i = x > p, j = y, q = z

27n−2j−i−2z−p−9, i = x < p, j = y, q = z

27n−2j−i−2z−p−9, p = x, j = y, q = z

27n−2j−i−2z−y−10, j = x, p = y, q = z

This completes the proof.

To verify Theorem 5.1.1, Theorem 5.1.2 and Theorem 5.1.3, we give the complete 2n-

periodic binary sequence distribution with the given k-error linear complexity profile of

0 = L7(s
(n)) < L5(s

(n)) < L3(s
(n)) < L1(s

(n)) < L(s(n)) = 2n for n = 5, which is checked

by a computer program (refer to Appendix 10) for the detail). In general, with higher

linear complexity and k-error linear complexity, the number of the sequences will increases.

However, we noticed some interesting exceptions in the example.
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5.2 The k-error linear complexity profile having descent

points 2, 4, 6 and 8

Based on the Games-Chan algorithm (Games and Chan, 1983) and the cube theory of

Chapter 3, we illustrated a constructive approach for determining the distribution of 2n-

periodic binary sequences with the given k-error linear complexity profile of 0 = L7(s
(n)) <

L5(s
(n)) < L3(s

(n)) < L1(s
(n)) < L(s(n)) = 2n. Suppose that 0 = L8(s

(n)) < L6(s
(n)) <

L4(s
(n)) < L2(s

(n)) < L(s(n)) < 2n. Using this approach, we now discuss some special

cases. In this case, L(s(n)) is variable, so it is much more difficult to have a complete

characterization.

Theorem 5.2.1 Let s(n) be a 2n-periodic binary sequence with linear complexity less

than 2n and 0 = L8(s
(n)) < L6(s

(n)) < L4(s
(n)) < L2(s

(n)) < L(s(n)) < 2n. Suppose that

s(n) can be decomposed into one 2-cube and two 1-cubes, L(s(n)) = 2n − 2i0 , 0 ≤ i0 < n,

L2(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n, L4(s

(n)) = 2n − (2p + 2q + 2r), 0 ≤ p < q < r < n

and L6(e) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. Then the number of 2n-periodic

binary sequences s(n) can be given by



28n−2z−2j−2q−p−9, i0 = p, i = x, q < j = y, r = z

28n−2z−3q−p−i−9, i0 = p, i = x, q = j = y, r = z

28n−4j−q−p−i−8, i0 = p, i = x, q = y, j = r = z

28n−2z−2j−2q−p−10, i0 = q, i = p = x, j = y, r = z

28n−z−r−2j−2q−p−9, i0 = p, i = x, q < j = y < r < z

28n−z−2j−2q−2p−14, i0 = p, i = x, q < j < y = r < z

Proof. As 0 = L8(s
(n)) < L6(s

(n)) < L4(s
(n)) < L2(s

(n)) < L(s(n)) < 2n, s(n) can be

decomposed into one 2-cube and two 1-cubes or four 1-cubes. Here we only discuss six

special cases of one 2-cube and two 1-cubes.

1. In the case of i0 = p, i = x, q < j = y, r = z. It is easy to show that there are

two kinds of sequences s(n), illustrated by the following examples, meeting the condition

of L(s(n)) = 2n − 2i0 , L2(s
(n)) = 2n − (2i + 2j), L4(s

(n)) = 2n − (2p + 2q + 2r) and

L6(e) = 2n − (2x + 2y + 2z).

A) {0000 0011 0101 1111}; B) {0000 0101 0011 1111}, where n = 4, i0 = 0, i = 1, j = 2,

p = 0, q = 1, r = 3, x = 1, y = 2, z = 3.
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We now derive the counting formula of 2n-periodic binary sequences of type A.

As p < q < j, the number of 2j-periodic binary sequences s(j) with linear complexity

2j − (2q + 2p) and WH(s(j)) = 4 is 24j−2q−p−6.

From a 2-cube with linear complexity 2j+1−(2p+2q), we can have two 2-cubes with linear

complexity 2j+1 − (2q + 2j).

Note that we can have 23 sequences, such as {0000 0011 0101 1111}, from the same

sequence {0000 0000 0101 1111}. Furthermore, in the sequence {0000 0011 0101 1111},
all nonzero elements have alternate locations except the first two nonzero elements and

the last two nonzero elements. Thus the number of these s(n) of type A can be given by

24j−2q−p−6 × 2× 22 × (26)z−j−1 × 23 × 24 × (28)n−z−1 = 28n−2z−2j−2q−p−10.

Similarly, we may derive the same counting formula of 2n-periodic binary sequences of

type B. Thus the total number of these s(n) can be given by

28n−2z−2j−2q−p−9.

(For sequence {0000 0011 0101 1111}, n = 4, i0 = 0, i = 1, j = 2, p = 0, q = 1, r = 3, x =

1, y = 2, z = 3. With 2 bits change, it becomes a 2-cube and a 1-cube: {0000 0010 0101 0111}.
With 4 bits change, it becomes a 3-cube: {0000 1111 0000 1111}. With 6 bits change, it

becomes a 3-cube: {0101 0101 0101 0101}.)

2. In the case of i0 = p, i = x, q = j = y, r = z. It is easy to show that there are

two kinds of sequences s(n), illustrated by the following examples, meeting the condition

of L(s(n)) = 2n − 2i0 , L2(s
(n)) = 2n − (2i + 2j), L4(s

(n)) = 2n − (2p + 2q + 2r) and

L6(e) = 2n − (2x + 2y + 2z).

A) {0000 0011 0111 0111}; B) {0001 0001 0011 1111}, where n = 4, i0 = 0, i = 1, j = 2,

p = 0, q = 2, r = 3, x = 1, y = 2, z = 3.

From a 2-cube with linear complexity 2q+1 − (2p + 2q), we can have 2q−i−1 × 2 2-cubes

with linear complexity 2q+1 − (2i + 2q).

Thus the number of these s(n) of type A can be given by

22q−p−2 × 2q−i−1 × 2× 1

2
× (26)z−q−1 × 23 × 24 × (28)n−z−1 = 28n−2z−3q−p−i−10.
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Similarly, we may derive the same counting formula of 2n-periodic binary sequences of

type B. Thus the total number of these s(n) can be given by

28n−2z−3q−p−i−9.

(For sequence {0000 0011 0111 0111}, n = 4, i0 = 0, i = 1, j = 2, p = 0, q = 2, r = 3, x =

1, y = 2, z = 3. With 2 bits change, it becomes a 2-cube and a 1-cube: {0000 0010 0101 0111}.
With 4 bits change, it becomes a 3-cube: {0011 0011 0011 0011}. With 6 bits change, it

becomes a 3-cube: {0101 0101 0101 0101}.)

3. In the case of i0 = p, i = x, q = y, j = r = z. It is easy to show that there are

two kinds of sequences s(n), illustrated by the following examples, meeting the condition

of L(s(n)) = 2n − 2i0 , L2(s
(n)) = 2n − (2i + 2j), L4(s

(n)) = 2n − (2p + 2q + 2r) and

L6(e) = 2n − (2x + 2y + 2z).

A) {0000 0111 0011 0111}; B) {0001 0011 1101 0011}, where n = 4, i0 = 0, i = 1, j = 3,

p = 0, q = 2, r = 3, x = 1, y = 2, z = 3.

The number of these s(n) of type A can be given by

22j−p−2 × 2j−i−1 × 2× 1

2
× 2j−q−1 × 23 × (28)n−j−1 = 28n−4j−q−p−i−9.

Similarly, we may derive the same counting formula of 2n-periodic binary sequences of

type B. Thus the total number of these s(n) can be given by

28n−4j−q−p−i−8.

(For sequence {0000 0111 0011 0111}, n = 4, i0 = 0, i = 1, j = 3, p = 0, q = 2, r = 3,

x = 1, y = 2, z = 3. With 2 bits change, it becomes two 2-cubes: {0010 0111 0010 0111}.
With 4 bits change, it becomes a 3-cube: {0011 0011 0011 0011}. With 6 bits change, it

becomes a 3-cube: {0101 0101 0101 0101}.)

4. In the case of i0 = q, i = p = x, j = y, r = z. As p < q < j, the number of 2j-periodic

binary sequences s(j) with linear complexity 2j− (2q+2p) and WH(s(j)) = 4 is 24j−2q−p−6.

From a 2-cube with linear complexity 2j+1− (2p + 2q), we can have 22 2-cubes with linear

complexity 2j+1 − (2p + 2j). Note that we only have 22 sequences, such as

{0000 0110 0011 1111}, not being a 2-cube from the same sequence {0000 0000 0011 1111}.
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Thus the number of these s(n) can be given by

24j−2q−p−6 × 22 × 22 × (26)z−j−1 × 22 × 24 × (28)n−z−1 = 28n−2z−2j−2q−p−10.

(For sequence {0000 0011 0110 1111}, n = 4, i0 = 1, i = 0, j = 2, p = 0, q = 1, r = 3, x =

0, y = 2, z = 3. With 2 bits change, it becomes a 2-cube and a 1-cube: {0000 0001 0110 0111}.
With 4 bits change, it becomes a 3-cube: {0000 1111 0000 1111}. With 6 bits change, it

can become a 3-cube: {0011 0011 0011 0011}.)

5. In the case of i0 = p, i = x, q < j = y < r < z. As p < q < j, the number of 2j-periodic

binary sequences s(j) with linear complexity 2j− (2q+2p) and WH(s(j)) = 4 is 24j−2q−p−6.

From a 2-cube with linear complexity 2j+1 − (2p + 2q), we have 22 2-cubes with linear

complexity 2j+1 − (2p + 2j). Note that we can have 23 sequences, such as

{00000000 00000001 00010000 00111111} and {00000000 00010000 00001000 00111111},
from the same sequence

{00000000 00000000 00000000 00111111}. Thus the number of these s(n) can be given by

24j−2q−p−6×22×22×(26)r−j−1×23×25×(27)z−r−1×26×(28)n−z−1 = 28n−z−r−2j−2q−p−9.

(For sequence {00000000 00000001 00000100 00111111}, n = 5, i0 = 0, i = 1, j = 2,

p = 0, q = 1, r = 3, x = 0, y = 2, z = 4. With 2 bits change, it becomes one 2-cube and

two 1-cubes: {00000000 00000001 00000100 10101111}. With 4 bits change, it becomes

a 3-cube: {00000000 00000000 00001111 00001111}. With 6 bits change, it becomes a

3-cube: {00000000 00110011 00000000 00110011}.)

6. In the case of i0 = p, i = x, q < j < y = r < z. As p < q < j, the number of 2j+1-

periodic binary sequences s(j+1) with linear complexity 2j+1−(2q+2p) and WH(s(j+1)) = 4

is 24j−2q−p−2.

From a 2-cube with linear complexity 2j+2−(2p+2q), we have two 2-cubes with linear com-

plexity 2j+2−(2q+2(j+1)). Note that we can have 2j−(p+1)×2z+1−(j+1) sequences, such as

{00000000 00000001 10000101 00001111} and {00000000 00000001 00000101 00101111},
from the same sequence {00000000 00000001 00000101 00001111}, where p = 0, q = 1, j =

2, z = 4. Thus the number of these s(n) can be given by

24j−2q−p−2×2×22×2j−(p+1)×2j+2−(j+1)×(27)z−j−2×2×26×(28)n−z−1 = 28n−z−2j−2q−2p−14

(For sequence {00000000 00000100 10000101 00001111}, n = 5, i0 = 0, i = 1, j = 2,

p = 0, q = 1, r = 3, x = 1, y = 3, z = 4. With 2 bits change, it becomes one 2-cube and
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two 1-cubes: {00000000 00000100 10100001 00001111}. With 4 bits change, it becomes

a 3-cube: {00000000 00000000 00001111 00001111}. With 6 bits change, it becomes a

3-cube: {00000101 00000101 00000101 00000101}.)

This completes the proof.

5.3 Summary

The k-error linear complexity profile of a periodic sequence was first defined by Stamp

and Martin (1993). Based on the Games-Chan algorithm (Games and Chan, 1983) and

the cube theory, a constructive approach has been presented to construct 2n-periodic

sequences with the given k-error linear complexity profile. Consequently, the complete

counting formula of 2n-periodic binary sequences has been derived with the given k-error

linear complexity profile having descent points 1, 3, 5 and 7. The k-error linear complexity

profile having descent points 2, 4, 6 and 8 has been also partially discussed. The proposed

constructive approach can be used to construct 2n-periodic binary sequences with the

given linear complexity and k-error linear complexity.

We observed from the illustrative example in Appendix 10) that there are more sequences

for large linear complexity and k-error linear complexity. However, there are some excep-

tions in the example. In fact, it is meaningful to investigate when the number of sequences

can be achieved the maximum for some linear complexity and k-error linear complexity

distribution. This would be our future research topic.

In future, we may further investigate the 2n-periodic binary sequences with the k-error

linear complexity profile of 5 or more descent points.
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Chapter 6

Conclusions and Future Directions

The linear complexity and the k-error linear complexity of a sequence have been used

as important security measures for key stream sequence strength in linear feedback shift

register design. To further the study of the k-error linear complexity distribution for 2n-

periodic binary sequences, we began by proposing a framework in Chapter 2 as follows.

Let S = {s|L(s) = c}, E = {e|WH(e) ≤ w}, S + E = {s + e|s ∈ S, e ∈ E}, where s is

a sequence with linear complexity c, e is an error sequence with WH(e) ≤ w. We aimed

to sieve sequences s + e with Lk(s + e) = c from S + E. This is the first fundamental

contribution of this thesis. By a divide and conquer method of combinatorics, we

investigated sequences with linear complexity 2n, and sequences with linear complexity

less than 2n, separately. With our approach, the issue to study k-error linear complexity

distribution for 2n-periodic binary sequences becomes a combinatorial problem of these

subsequences.

With our framework in Chapter 2 along with the sieve method, for k = 2, 3, 4, the com-

plete counting functions on the k-error linear complexity of 2n-periodic binary sequences

with both linear complexity 2n and linear complexity less than 2n are characterized.

We also obtained some partial results about the 5-error linear complexity of 2n-periodic

binary sequences. The first descent point (critical point) distribution of the k-error lin-

ear complexity for 2n-periodic binary sequences was characterized completely in Chapter

2. We obtained the complete counting functions on the 2m-error linear complexity of

2n-periodic binary sequences with linear complexity 2n − (2i1 + 2i2 + · · · + 2im), where

0 ≤ i1 < i2 < · · · < im < n.

To address a sequence from different perspectives, we presented a new tool called the

Cube Theory in Chapter 3. It is proved that a binary sequence with period 2n can be

decomposed into some disjoint cubes. Based on the Games-Chan Algorithm, we proposed

a standard cube decomposition for any binary sequence with period 2n. This is the

second fundamental contribution of this thesis. With such cube decomposition theory, we

are capable to construct sequences with the maximum stable k-error linear complexity.

It was also proved that the maximum k-error linear complexity is 2n − (2l − 1) over all

2n-periodic binary sequences, where 2l−1 ≤ k < 2l and l < n.
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We then diverted our attention to the CELCS (critical error linear complexity spectrum)

in Chapter 4. By the cube theory, a new approach to determining the CELCS for the

k-error linear complexity distribution of 2n-periodic binary sequences is developed via the

sieve method and the Games-Chan algorithm. The second descent point distribution

of the 3-error linear complexity, the second descent point distribution of the 4-error linear

complexity and the third descent point distribution of the 5-error linear complexity for

2n-periodic binary sequences were characterized completely. The k-error cube decompo-

sition of 2n-periodic binary sequences was also developed based on the Cube Theory

of Chapter 3. As an extension of the work by Kurosawa et al. (2000), we derided the

formulas to determine the second descent points and third descent points for the k-error

linear complexity, respectively. This is the third important contribution of this thesis.

To conclude the thesis, we investigated k-error linear complexity profile in Chapter 5.

Based on the Games-Chan algorithm and cube theory, a constructive approach was pre-

sented to construct 2n-periodic sequences with the given k-error linear complex-

ity profile. Consequently, the complete counting formula of 2n-periodic binary sequences

was derived with the given k-error linear complexity profile having descent points 1, 3,

5 and 7. The k-error linear complexity profile having descent points 2, 4, 6 and 8 was

also partially discussed. The proposed constructive approach can be used to construct 2n-

periodic binary sequences with the given linear complexity and k-error linear complexity.

This is the fourth important contribution of this thesis.

6.1 Future Study

With all of our proposed approaches and techniques, the study in this thesis opens many

directions for periodic sequences with arbitrary period or periods of other forms. Despite

all the significant achievements of this thesis, extensions to pn-periodic sequences over Fp

can also be considered. As a matter of fact, we have obtained some results for pn-periodic

sequences over Fp, where p is a prime number. However, due to the time limit, we did

not cover them here. Specifically, we still have the following possible problems to study

in near future.

• With our Unified Approach in Chapter 2, the issue to study k-error linear com-

plexity distribution for 2n-periodic binary sequences becomes a combinatorial prob-

lem of these subsequences. For k ≥ 5, it is extremely complicated to calculate all

the possible combinations of these subsequences. To develop some new techniques

to address k-error linear complexity distribution for large k is a challenging future
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work.

• To cope with a sequence from different perspectives, we present a new tool called

the Cube Theory in Chapter 3. It is proved that a binary sequence with period

2n can be decomposed into some disjoint cubes. We could further study how to

construct sequences consisting of more than one cube and possessing both high

linear complexity and k-error linear complexity. By using methods similar to that

of the binary sequence, we may also study a sequence with period pn over Fp, where

p is a prime number.

• A new approach to determining the CELCS for the k-error linear complexity distri-

bution of 2n-periodic binary sequences was developed based on the cube theory in

Chapter 4. Let s(n) be a 2n-periodic binary sequence with linear complexity less then

2n. Suppose that c1, c2 and c3 are in the standard cube decomposition of sequence

s(n) and L(s(n)) = L(c1). L6(s
(n)) < L4(s

(n)) < L2(s
(n)) < L(s(n)) if and only if

c1 is one 1-cube and c2 is one 2-cube or c1, c2 and c3 are three 1-cubes. Similarly,

we can compute the number of 2n-periodic binary sequences s(n) with given L(s(n)),

L2(s
(n)), L4(s

(n)) and L6(s
(n)). Accordingly, the solution to the complete counting

functions of 2n-periodic binary sequences with the prescribed 6-error linear complex-

ity can be obtained. We expect that with the techniques proposed in Chapter 4, one

can obtain other third and fourth descent point distributions of the k-error linear

complexity for 2n-periodic binary sequences.

• In Chapter 5, based on the Games-Chan algorithm (Games and Chan, 1983) and

the cube theory, a constructive approach has been presented to construct 2n-periodic

sequences with the given k-error linear complexity profile. In future, we may inves-

tigate completely the k-error linear complexity profile having descent points 2, 4,

6 and 8. Furthermore, we also can consider the 2n-periodic binary sequences with

the k-error linear complexity profile of 5 or more descent points. Lastly, we believe

that the proposed constructive approach can be used to construct 2n-periodic binary

sequences with the given linear complexity and k-error linear complexity.
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Appendix A

Appendix for Chapter 5

In this appendix, we present some assertions once used in the proof of main results or

some corollaries of the main results in Chapter 5. Of course, some of them have their own

independent interests.

One can observe that every sequence s(n) has a unique standard cube decomposition by

Algorithm 3.2.1 in Section 3.2, but sequence s(n) may has other cube decompositions as

well.

1). Let s(n) be a 2n-periodic binary sequence with linear complexity 2n and L7(s
(n)) =

0 < L5(s
(n)) < L3(s

(n)) < L1(s
(n)). Suppose that s(n) can be decomposed into one 0-cube

c1, one 2-cube c2 and one 1-cube c3 by Algorithm 3.2.1 in Section 3.2, with L(c2) > L(c3),

L1(s
(n)) = 2n− (2i + 2j), 0 ≤ i < j < n, L3(s

(n)) = 2n− (2p + 2q + 2r), 0 ≤ p < q < r < n,

L5(s
(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. Then r < z.

Proof. As L5(s
(n)) = 2n − (2x + 2y + 2z), thus L5(s

(n)) is achieved by a 3-cube c̈. If c̈

includes 7 nonzero elements of s(n), then L5(s
(n)) = L1(s

(n)), which is a contradiction. If c̈

includes 6 nonzero elements of s(n), then L5(s
(n)) = L3(s

(n)), which is also a contradiction.

So c̈ should only include 5 nonzero elements of s(n). Therefore, an edge length (based on

Definition 2.3) is the distance (based on Definition 2.1) between two nonzero elements of

s(n). Thus L(c3) = 2n − 2z.

Suppose that L3(s
(n)) is achieved by a 3-cube ċ. So ċ should include 6 nonzero elements

of s(n).

Let T = {nonzero element e|e ∈ ċ and e ∈ c̈}. So the number of nonzero elements in T is

at least 4.

If the 4 nonzero elements in T does not constitute a 2-cube, then there are 3 distinct

distance (based on Definition 2.1) among these nonzero elements in T . As a 3-cube only

has 3 distinct edge length, thus ċ and c̈ have same edge length, which is followed by
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L5(s
(n)) = L3(s

(n)). Therefore, the 4 nonzero elements in T does constitute a 2-cube.

If r = z, then there are 2 nonzero elements p1, p2 with distance z. As the 4 nonzero

elements in T does constitute a 2-cube, so there are also other 2 nonzero elements p3, p4

with distance z, which contradicts the fact that c3 is 1-cube.

This completes the proof.

2). Let s(n) be a 2n-periodic binary sequence with linear complexity 2n and L7(s
(n)) =

0 < L5(s
(n)) < L3(s

(n)) < L1(s
(n)). Suppose that s(n) can be decomposed into one 0-cube

c1, one 2-cube c2 and one 1-cube c3 by Algorithm 3.2.1 in Section 3.2, with L(c2) > L(c3),

L1(s
(n)) = 2n− (2i + 2j), 0 ≤ i < j < n, L3(s

(n)) = 2n− (2p + 2q + 2r), 0 ≤ p < q < r < n,

L5(s
(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. Then i = x and j = y can not be true

at the same time.

Proof. As L5(s
(n)) = 2n − (2x + 2y + 2z), thus L5(s

(n)) is achieved by a 3-cube c̈. If c̈

includes 7 nonzero elements of s(n), then L5(s
(n)) = L1(s

(n)), which is a contradiction. If c̈

includes 6 nonzero elements of s(n), then L5(s
(n)) = L3(s

(n)), which is also a contradiction.

So c̈ should only include 5 nonzero elements of s(n).

In this case, we will prove the assertion by contradiction. Suppose that i = x and j = y

are true at same time.

Suppose that the 0-cube c1 includes a nonzero element e1, the 2-cube c2 includes 4 nonzero

elements e2, e3, e4, e5, and the 1-cube c3 includes 2 nonzero elements e6, e7. Thus c̈ should

include e6, e7.

We will cope with the following 2 cases separately.

A) Suppose that c̈ also includes e2, e3, e4.

Based on Algorithm 3.1.1 in Section 3.1, when the period of s(n) becomes 2z+1, with

Left(s(z+1))
⊕
Right(s(z+1)), e6, e7 will be removed, but e2, e3, e4 will be remained. Oth-

erwise, suppose that two nonzero elements of e2, e3, e4 are removed. Then c3 must be a

2-cube, which is a contradiction.

Thus, e2, e3, e4 and e7 constitute a 2-cube with linear complexity 2z − (2x + 2y) = 2z −
(2i + 2j) ( refer to Appendix 3) for the proof).
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Suppose the distance of e3, e2 is 2y. Then the distance of e4 and e7 is also 2y.

As e2, e3, e4, e5 constitute a 2-cube with linear complexity 2z − (2x + 2y) = 2z − (2i + 2j),

thus the distance of e4 and e5 is also 2y. So the distance of e5 and e7 is 2y+1.

Now we construct a 2-cube c̃ with linear complexity 2n − (2y+1 + 2z) and e6, e7, e5, by

adding a new nonzero element e8, and changing e1, e2, e3, e4. As 2n − (2y+1 + 2z) <

2n − (2x + 2y + 2z), thus L5(s
(n)) = 2n − (2y+1 + 2z), which is a contradiction. Therefore,

i = x and j = y can not be true at the same time in this case.

B) Suppose that c̈ also includes e1, e2, e3.

Based on Algorithm 3.1.1 in Section 3.1, when the period of s(n) becomes 2z+1, with

Left(s(z+1))
⊕
Right(s(z+1)), e6, e7 will be removed, but e1, e2, e3 will remain. Otherwise,

suppose that two nonzero elements of e1, e2, e3 are removed. Then c3 must be a 2-cube,

which is a contradiction.

As i = x and j = y, the distance among e1, e2, e3 must be 2x and 2y. In fact, e1, e2, e3

and e7 constitute a 2-cube with linear complexity 2z − (2x + 2y) = 2z − (2i + 2j) ( refer to

Appendix 3) for the proof).

Suppose the distance of e1, e2 is 2y. Then the distance of e3 and e7 is 2y.

As e2, e3, e4, e5 constitute a 2-cube with linear complexity 2z − (2x + 2y) = 2z − (2i + 2j),

thus we can suppose that the distance of e3 and e5 is 2y. So the distance of e5 and e7 is

2y+1.

Now we construct a 2-cube c̃ with linear complexity 2n − (2y+1 + 2z) and e6, e7, e5, by

adding a new nonzero element e8, and changing e1, e2, e3, e4. As 2n − (2y+1 + 2z) <

2n − (2x + 2y + 2z), thus L5(s
(n)) = 2n − (2y+1 + 2z), which is a contradiction. Therefore,

i = x and j = y can not be true at the same time in this case.

In conclusion, the assertion is true in general.

3). Let c be a 3-cube with linear complexity 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n.

Suppose that c incudes nonzero elements of ei,j , 1 ≤ i ≤ 2, 1 ≤ j ≤ 4 and e1,j , 1 ≤ j ≤ 4

constitute a 2-cube with linear complexity 2n− (2x + 2y). Then eij ,j , 1 ≤ j ≤ 4 constitute

a 2-cube with linear complexity 2n − (2x + 2y), where ij is 1 or 2.
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Proof. From Definition 2.2, we know that e2,j , 1 ≤ j ≤ 4 constitute a 2-cube with linear

complexity 2n − (2x + 2y).

Let D(ei, ej) denote the distance of ei and ej . We only need to prove that D(e1,j1 , e1,j2) =

D(e1,j1 , e2,j2) for 1 ≤ j1 ≤ 4, 1 ≤ j2 ≤ 4.

As D(e1,j1 , e1,j2)|D(e1,j2 , e2,j2), where D(e1,j1 , e1,j2) = 2x or 2y, D(e1,j2 , e2,j2) = 2z, thus

D(e1,j1 , e2,j2) ≡ (D(e1,j1 , e1,j2) +D(e1,j2 , e2,j2)) mod (D(e1,j2 , e2,j2)) = D(e1,j1 , e1,j2)

4). Assume that s(n) can be decomposed into one 0-cube c1, and three 1-cubes c2, c3, c4

by Algorithm 3.2.1 in Section 3.2, with L1(s
(n)) = 2n− (2i+2j), 0 ≤ i < j < n, L3(s

(n)) =

2n− (2p + 2q), 0 ≤ p < q < n and L5(s
(n)) = 2n− (2x + 2y + 2z), 0 ≤ x < y < z < n. Then

s(n) includes a 2-cube.

Proof. As L5(s
(n)) = 2n − (2x + 2y + 2z), thus L5(s

(n)) is achieved by a 3-cube c̈. If c̈

includes 7 nonzero elements of s(n), then L5(s
(n)) = L1(s

(n)), which is a contradiction. If c̈

includes 6 nonzero elements of s(n), then L5(s
(n)) = L3(s

(n)), which is also a contradiction.

So c̈ should only include 5 nonzero elements of s(n).

Suppose that the 0-cube c1 includes a nonzero element e1, the 1-cubes c2 and c3 includes 4

nonzero elements e2, e3, e4, e5 and the 1-cube c4 includes 2 nonzero elements e6, e7. Thus

c̈ should include e6, e7.

Suppose that c̈ also includes e1, e2, e3.

Based on Algorithm 3.1.1 in Section 3.1, when the period of s(n) becomes 2z+1, with

Left(s(z+1))
⊕
Right(s(z+1)), e6, e7 will be removed, but e1, e2, e3 will be remained. Oth-

erwise, suppose that two nonzero elements of e1, e2, e3 are removed. Then c4 must be a

2-cube, which is a contradiction.

Thus e1, e2, e3 and e6 constitute a 2-cube with linear complexity 2n − (2x + 2y) ( refer to

Appendix 3) for the proof).

5). Assume that s(n) can be decomposed into one 0-cube c1, and three 1-cubes c2, c3, c4

by Algorithm 3.2.1 in Section 3.2, L1(s
(n)) = 2n − (2i + 2j), 0 ≤ i < j < n, L3(s

(n)) =
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2n − (2p + 2q), 0 ≤ p < q < n and L5(s
(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n.

Suppose that the 0-cube c1 includes a nonzero element e1, the 1-cube c2 includes 2 nonzero

elements e2, e3, the 1-cube c3 includes 2 nonzero elements e4, e5, and the 1-cube c4 includes

2 nonzero elements e6, e7. Assume that e1, e2, e3 and e7 constitute a 2-cube with linear

complexity 2n − (2x + 2y). Then i = x, j = y < q, but p 6= x and p 6= y.

Proof. Based on Algorithm 3.1.1 in Section 3.1, when the period of s(n) becomes 2z+1,

with

Left(s(z+1))
⊕
Right(s(z+1)), e6, e7 will be removed, but e1, e2, e3 will be remained.

Suppose that L(c3) = 2n − 2q. When the period of s(n) becomes 2q+1, e4, e5 will be

removed, so the distance among e1, e2, e3 are 2i = 2x, 2j = 2y and j < q.

Let D(ei, ej) denote the distance of ei and ej based on Definition 2.1. Suppose D(e1, e2) =

D(e1, e3) = 2x, D(e2, e3) = 2y, where x < y.

We will prove p 6= y by contradiction.

Suppose that p = y. Then there exits a nonzero element e in {e1, e2, e3}, so that D(e, e4) =

2y.

If D(e2, e4) = 2y, then D(e3, e4) ≥ 2y+1. So p ≥ y+ 1. The 2-cube with linear complexity

2n − (2p + 2q) is achieved by changing e1, e2, and adding e8, so that e3, e4, e5 and e8

constitute a 2-cube with linear complexity 2n − (2p + 2q).

If D(e1, e4) = 2y, then D(e4, e3) = 2x. Thus e1, e2, e3 and e4 constitute a 2-cube with

linear complexity 2n − (2x + 2y). So by adding three new nonzero elements, e1, e2, e3, e4

and e5 can constitute a 3-cube with linear complexity 2n−(2x+2y+2q), which contradicts

to L3(s
(n)) = 2n − (2p + 2q).

Thus we can conclude that p 6= y.

Similarly, we can prove that p 6= x.

6). Assume that s(n) can be decomposed into one 0-cube c1, and three 1-cubes c2, c3, c4

by Algorithm 3.2.1 in Section 3.2, with L1(s
(n)) = 2n− (2i+2j), 0 ≤ i < j < n, L3(s

(n)) =

2n− (2p + 2q), 0 ≤ p < q < n and L5(s
(n)) = 2n− (2x + 2y + 2z), 0 ≤ x < y < z < n. Then
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L(c2) = 2n − 2j , L(c3) = 2n − 2q and L(c4) = 2n − 2z.

Proof. Suppose that the 0-cube c1 includes a nonzero element e1, the 1-cube c2 includes

2 nonzero elements e2, e3, the 1-cube c3 includes 2 nonzero elements e4, e5, and the 1-cube

c4 includes 2 nonzero elements e6, e7.

Based on the result by Kurosawa et al. (2000), the minimum number k for which the

k-error linear complexity of a 2n-periodic binary sequence s is strictly less than the linear

complexity L(s) of s is determined by kmin = 2WH(2n−L(s)). For a 1-cube c2, kmin = 2,

which means that to further decrease the linear complexity of the 1-cube, we have to

change 2 elements. So the L1(s
(n)) is achieved by a 2-cube, which is composed of e1, e2, e3

and a new nonzero element e8. From Algorithm 3.2.1 in Section 3.2, the distance of

e2, e3 is greater than both the distance of e1, e2 and the distance of e1, e3. As L1(s
(n)) =

2n − (2i + 2j), 0 ≤ i < j < n, thus the distance of e2, e3 is 2j , which is followed by

L(c2) = 2n − 2j .

Let 2d be the maximum of {D(ei, ej)|1 ≤ i ≤ 3, 4 ≤ j ≤ 5}, where D(ei, ej) denotes the

distance of ei and ej based on Definition 2.1. Without loss of generality, suppose that

D(e1, e4) = 2d. Then L3(s
(n)) is achieved by a 2-cube, which is composed of e1, e4, e5

and a new nonzero element e9. From Algorithm 3.2.1 in Section 3.2, the distance of

e4, e5 is greater than both the distance of e1, e4 and the distance of e1, e5. As L3(s
(n)) =

2n − (2p + 2q), 0 ≤ p < q < n, thus the distance of e4, e5 is 2q, which is followed by

L(c3) = 2n − 2q.

Suppose that L(c4) = 2n − 2z
′
. As L5(s

(n)) = 2n − (2x + 2y + 2z) ≤ L(c4), thus z ≥ z′.

Refer to Appendix 4), we know that L5(s
(n)) is achieved by a 3-cube c̈ and c̈ should include

5 nonzero elements of s(n), thus z ≤ z′. Therefore, z = z′.

7). Assume that s(n) can be decomposed into one 0-cube c1, and three 1-cubes c2, c3, c4

by Algorithm 3.2.1 in Section 3.2, L1(s
(n)) = 2n− (2i+2j), 0 ≤ i < j < n, with L3(s

(n)) =

2n − (2p + 2q), 0 ≤ p < q < n and L5(s
(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n.

Further suppose that the 0-cube c1 includes a nonzero element e1, the 1-cubes c2 and c3

includes 4 nonzero elements e2, e3, e4, e5, and the 1-cube c4 includes 2 nonzero elements

e6, e7. Based on Appendix 4), we can assume that e1, e2, e3 and e7 constitute a 2-cube

with linear complexity 2n − (2x + 2y). Now by Algorithm 3.2.1 in Section 3.2, if the

second removed two nonzero elements are e3, e4, then we only need to consider 3 cases:

i = x < j < p = y < q, i < j = x < p = y < q, and i < p = x < j = y < q. Other cases
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are covered by the case in which the removed two nonzero elements in the second time at

Step 2 of Algorithm 3.2.1 in Section 3.2 are e4, e5.

Proof. There are two cases: D(e3, e7) = 2x or 2y.

A) Suppose that D(e3, e7) = 2x. Note that that e1, e2, e3 and e7 constitute a 2-cube with

linear complexity 2n − (2x + 2y). Without loss of generality, suppose that D(e3, e1) = 2y.

Then D(e1, e2) = 2x, D(e2, e7) = 2y and D(e3, e2) = 2x

Refer to Appendix 6), L3(s
(n)) is determined by e1, e2, e3, e4, e5.

If D(e3, e5) < 2y, then D(e4, e5) ≡ D(e4, e3) + D(e3, e5) ≡ 2q + D(e3, e5) mod (2q) =

D(e3, e5) < 2y. Thus L3(s
(n)) = 2n − (2y + 2q). So p = y.

L1(s
(n)) is determined by e1, e2, e5. So i = x or j = x. There are two cases: i = x < j <

p = y < q, i < j = x < p = y < q.

If D(e3, e5) = 2p > 2y, then D(e5, e7) ≡ D(e5, e3) + D(e3, e7) ≡ 2p + 2x ≡ 2x mod (2p),

D(e5, e1) ≡ D(e5, e3) + D(e3, e1) ≡ 2p + 2y ≡ 2y mod (2p), D(e5, e2) ≡ D(e5, e3) +

D(e3, e2) ≡ 2p + 2x ≡ 2x mod (2p).

Thus e1, e2, e5 and e7 constitute a 2-cube with linear complexity 2n − (2x + 2y). This is

the case that i = x < j = y < p < q < z, which is already covered by the case that the

second removed two nonzero elements are e4, e5.

B) Suppose that D(e3, e7) = 2y.

Without loss of generality, suppose that D(e3, e1) = 2x. Then D(e1, e2) = 2y, D(e2, e7) =

2x and D(e3, e2) = 2x

Refer to Appendix 6), L3(s
(n)) is determined by e1, e2, e3, e4, e5.

If D(e3, e5) < 2x, then D(e4, e5) ≡ D(e4, e3) + D(e3, e5) ≡ 2q + D(e3, e5) mod (2q) =

D(e3, e5) < 2x. Thus L3(s
(n)) = 2n − (2x + 2q). So p = x.

L1(s
(n)) is determined by e1, e2, e5. So j = y. Thus i < p = x < j = y < q.

If 2x < D(e3, e5) = 2p < 2y, then D(e4, e5) ≡ D(e4, e3) +D(e3, e5) ≡ 2q + 2p mod (2q) =

2p, D(e2, e5) ≡ D(e2, e3)+D(e3, e5) ≡ 2x+2p mod (2p) = 2x, Thus L3(s
(n)) = 2n− (2p+
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2q).

L1(s
(n)) is determined by e1, e2, e5. As D(e1, e2) = 2y, so i = x, j = y. Thus i = x < p <

j = y < q < z, which is already covered by the case that the second removed two nonzero

elements are e4, e5.

If D(e3, e5) = 2p > 2y, then D(e5, e7) ≡ D(e5, e3) + D(e3, e7) ≡ 2p + 2y ≡ 2y mod (2p),

D(e5, e1) ≡ D(e5, e3) + D(e3, e1) ≡ 2p + 2x ≡ 2x mod (2p), D(e5, e2) ≡ D(e5, e3) +

D(e3, e2) ≡ 2p + 2x ≡ 2x mod (2p).

Thus e1, e2, e5 and e7 constitute a 2-cube with linear complexity 2n − (2x + 2y). This is

the case that i = x < j = y < p < q < z, which is already covered by the case that the

second removed two nonzero elements are e4, e5.

8). Assume that s(n) can be decomposed into one 0-cube c1, and three 1-cubes c2, c3, c4

by Algorithm 3.2.1 in Section 3.2, with L1(s
(n)) = 2n− (2i+2j), 0 ≤ i < j < n, L3(s

(n)) =

2n − (2p + 2q + 2r), 0 ≤ p < q < r < n and L5(s
(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < n.

Then y = r.

Proof. It is obvious that L(c2) = 2n − 2j , L(c3) = 2n − 2r, L(c4) = 2n − 2z.

Suppose that the 0-cube c1 includes a nonzero element e1, the 1-cubes c2 and c3 includes

4 nonzero elements e2, e3, e4, e5 and the 1-cube c4 includes 2 nonzero elements e6, e7.

Note that L3(s
(n)) = 2n − (2p + 2q + 2r) is achieved with a 3-cube ċ by changing e6 or e7,

and adding two new nonzero elements.

Thus there are at least two pairs of nonzero elements in e1, e2, e3, e4, e5 and e6, so that

distance of each pair of nonzero elements is 2r.

Without loss of generality, suppose that D(e4, e5) = 2r and D(e1, e6) = 2r. As c3 is a

1-cube, thus one nonzero element in e1, e4, e5 and e6 and e7 must constitute a 1-cube c4

with linear complexity 2n − 2z.

Suppose that D(e4, e1) = 2p. Then we can construct a 3-cube c̈ with linear complexity

2n − (2p + 2r + 2z) by changing e2 and e3, and adding three new nonzero elements. As

2n − (2p + 2r + 2z) ≥ 2n − (2x + 2y + 2z), so r ≤ y.
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Note that e1, e2, e3 and e6 constitute a 2-cube with linear complexity 2n− (2x+ 2y) ( refer

to Appendix 3) for the proof), thus y ≤ r. So y = r.

9). Suppose that s(n) can be decomposed into one 0-cube c1 with one nonzero element

e1, one 1-cube c2 with two nonzero elements e2, e3) and one 2-cube c3 with four nonzero

elements e4, e5, e6, e7. Also s(n) has linear complexity 2n− (2u+2v), u < v from Algorithm

3.2.1 in Section 3.2, with L(c2) > L(c3). Further assume that L1(s
(n)) = 2n−(2i+2j), 0 ≤

i < j < n, L3(s
(n)) = 2n − (2p + 2q), 0 ≤ p < q < n, L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤
x < y < z < n. If s(n) contains two distinct 2-cubes, then there are only 4 possible cases

as follows: 1. i = x > p, j = y, q = z, 2. i = x < p, j = y, q = z, 3. p = x, j = y, q = z, 4.

j = x, p = y, q = z.

Proof. Assume that L1(s
(n)) = 2n− (2i+2j), 0 ≤ i < j < n, L3(s

(n)) = 2n− (2p+2q), 0 ≤
p < q < n, L5(s

(n)) = 2n − (2x + 2y + 2z), 0 ≤ x < y < z < n. We know that the

distance among nonzero elements e1, e2, e3 is neither u nor v. L3(s
(n)) is achieved by c3,

so L3(s
(n)) = 2n − (2p + 2q) = 2n − (2u + 2v), thus q = z = v.

Assume that the 2-cube c4 is different from 2-cube c3. From Algorithm 3.2.1 in Section

3.2, L(c4) < L(c3). Thus L1(s
(n)) is achieved by a 2-cube containing nonzero elements

e1, e2, e3, and 2i, 2j are the distance among nonzero elements e1, e2, e3.

Let Sj be the intersection of the nonzero elements of c3 and the nonzero elements of c4.

If Sj contains two nonzero elements e8, e9, then the distance of e8, e9 is u or v. It means

that the distance of two nonzero elements of e1, e2, e3 is u or v, which is a contradiction.

So Sj contains only one nonzero elements e8. Thus e1, e2, e3 and e8 constitute the 2-cube

c4 with linear complexity 2n − (2i + 2j).

If L5(s
(n)) is achieved by a 3-cube containing c4, then {i, j} ⊂ {x, y, z}. Thus x = i, y = j.

So we have the following cases. 1. i = x > p, j = y, q = z, 2. i = x < p, j = y, q = z.

If L5(s
(n)) is achieved by a 3-cube containing c3, then {p, q} ⊂ {x, y, z} and x or y must be

max{i, j} = j. So we have the cases of 3. p = x, j = y, q = z, 4. j = x, p = y, q = z.

10). The complete 2n-periodic binary sequence distribution with the given k-error linear

complexity profile of 0 = L7(s
(n)) < L5(s

(n)) < L3(s
(n)) < L1(s

(n)) < L(s(n)) = 2n for

n = 5.
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Table 1. The sequence distribution for n = 5

L1 L3 L5 Number of sequences

12 10 6 128

12 11 7 256

14 6 4 128

14 10 4 256

14 13 7 512

14 13 11 1024

15 7 4 256

15 7 6 512

15 11 4 512

15 11 10 1024

15 13 6 1024

15 13 10 2048

20 14 4 512

20 14 13 2048

20 15 4 1024

20 15 13 4096

20 18 6 512

20 18 10 1024

20 18 15 4096

20 19 7 1024

20 19 11 2048

20 19 14 8192

22 6 4 256

22 12 4 512

22 12 6 512

22 12 11 2048

22 15 6 2048

22 15 11 8192

22 18 4 1024

22 18 10 2048

22 18 15 8192

22 21 7 2048

22 21 12 12288

22 21 13 8192

22 21 19 8192

23 7 4 512

23 7 6 1024

23 12 4 1024

23 12 7 1024

23 12 10 4096

23 14 6 2048

L1 L3 L5 Number of sequences

23 14 7 2048

23 14 10 8192

23 14 11 8192

23 19 4 2048

23 19 11 4096

23 19 14 16384

23 19 18 8192

23 21 6 4096

23 21 12 24576

23 21 13 16384

23 21 18 16384

26 8 4 512

26 8 7 2048

26 10 4 1024

26 10 6 2048

26 15 7 12288

26 15 10 8192

26 18 4 2048

26 18 6 4096

26 18 15 16384

26 23 7 24576

26 23 10 16384

26 23 11 16384

26 23 13 32768

26 23 18 32768

26 25 8 40960

26 25 11 16384

26 25 13 32768

26 25 19 32768

26 25 21 65536

27 8 4 1024

27 8 6 4096

27 11 4 2048

27 11 7 4096

27 11 10 4096

27 14 6 12288

27 14 7 12288

27 14 10 8192

27 14 11 8192

27 19 4 4096

27 19 7 8192
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L1 L3 L5 Number of sequences

27 19 14 32768

27 19 18 16384

27 22 6 24576

27 22 7 24576

27 22 10 16384

27 22 11 49152

27 22 13 65536

27 22 18 32768

27 22 19 32768

27 25 8 81920

27 25 10 32768

27 25 13 65536

27 25 18 65536

27 25 21 131072

29 8 4 6144

29 8 6 4096

29 12 4 12288

29 12 6 8192

29 12 7 16384

29 12 10 8192

29 13 6 8192

29 13 7 16384

29 13 10 16384

29 13 11 32768

29 20 4 24576

29 20 6 16384

29 20 7 32768

29 20 10 32768

29 20 11 65536

29 20 13 98304

29 20 18 32768

29 21 6 16384

29 21 7 32768

29 21 12 131072

29 21 18 65536

29 21 19 131072

29 25 8 163840

29 25 10 65536

29 25 11 131072

29 25 18 131072

29 25 19 262144

Here are some illustrative examples of computation.
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For n = 5, L1(s
(n)) = 12 = 32 − (4 + 16), L3(s

(n)) = 10 = 32 − (2 + 4 + 16), L5(s
(n)) =

6 = 32− (2 + 8 + 16). We know that j = r = z = 4, i = q = 2, p = x = 1, y = 3, which is

the case of i = q < y, j = r = z, p = x. From Theorem 5.1.3 i)., the number of sequences

s(n) is 27n−3j−i−x−y−10 = 27 = 128.

For n = 5, L1(s
(n)) = 26 = 32 − (2 + 4), L3(s

(n)) = 8 = 32 − (8 + 16), L5(s
(n)) = 4 =

32 − (4 + 8 + 16). We know that j = x = 2, p = y = 3, q = z = 4, i = 1, which is the

case of j = x, p = y, q = z. From Theorem 5.1.3 ii)., the number of sequences s(n) is

27n−2j−i−2z−y−10 = 29 = 512.

For n = 5, L1(s
(n)) = 29 = 32− (1 + 2), L3(s

(n)) = 25 = 32− (1 + 2 + 4), L5(s
(n)) = 19 =

32 − (1 + 4 + 8). We know that i = p = x = 0, j = q = 1, r = y = 2, z = 3, which is the

case of i = p = x < j = q < r = y < z. From Theorem 5.1.1 iv)., the number of sequences

s(n) is 27n−z−2r−2j−i−8 = 218 = 262144.
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