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Abstract  

An integrated study using bulk chemical composition, mineralogy and mineral chemistry of 

sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented 

in order to understand the depositional and tectonic settings during the Neogene. Sedimentary 

rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist 

of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of 

them are highly matured and were derived from a moderate to intensively weathered source.  

Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to 

metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. 

The chondrite normalized REE signature indicates the presence of felsic rocks in the source 

region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. 

Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the 

Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the 

principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. 

Additionally, presence of chromian spinels and their chemistry indicate a minor influence of 

mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau 

Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift 

settings. Our key geochemical observation on tectonic setting is comparable to the regional 

geological setting of northwestern Borneo as described in the literature.  

 

Keywords: Geochemistry; Mineralogy; Mineral chemistry; Zircon geochronology; Provenance; 

Borneo.   



  

1. Introduction 

Chemistry of fine-grained clastic sediments provides useful information about provenance, 

depositional environments (climate and tectonic setting), and post depositional processes 

(McLennan et al., 1993; Rahman and Suzuki, 2007; Ohta, 2008; Lee, 2009; Nagarajan et al., 

2014; Armstrong-Altrin et al., 2015; Sahoo et al., 2015; Zaid, 2015;  Pacle et al., 2016; Zhang et 

al., 2016). However, heavy mineral assemblages are better indicators of provenance compared to 

the whole rock chemistry as the major and trace element distributions are controlled by multiple 

and complex mineralogical associations (Mange and Maurer, 1992; Ratcliffe et al., 2007; 

Sevastjanova et al., 2012). Similarly, chemistry of different heavy mineral grains has also been 

used to infer provenance of different sedimentary basins (Henry and Guidotti, 1985; Morton, 

1991; Asiedu et al., 2000; Weltje and Von Eynatten, 2004; Mange and Morton, 2007; Meinhold 

et al., 2009; Stern and Wagreich, 2013; Baxter et al., 2016;  White et al. 2016). For example, 

presence of tourmaline indicates granite, granite pegmatite, contact and regionally 

metamorphosed rocks as the possible provenance. It also relates the provenance to recrystallized 

schist and gneiss (Mange and Maurer, 1992).  Occurrence of chromian spinel suggests mafic and 

ultramafic provenance (i.e., peridotite, serpentinite and ophiolite) (Irvine, 1965; Dick and Bullen, 

1984; Mange and Morton, 2007; Al-Juboury et al., 2009; Meinhold et al., 2009). Thus, an 

integrated approach involving information of bulk chemistry, mineralogy and mineral chemistry 

can overcome shortcomings of individual techniques. It can also provide a clear picture of 

influences of weathering, sorting and maturity on the chemical signatures of any sedimentary 

basin (Morton et al., 2010). 

 



  

The Borneo Island is politically divided into Indonesia (Kalimantan), East Malaysia (Sarawak 

and Sabah) and Brunei. In East Malaysia, thick sedimentary sequences are present in the 

northern part of the Sarawak province. They were deposited during the Late Paleogene and 

Neogene and were recycled from accreted deposits belonging to the Rajang Group of central 

Borneo (Hutchison, 2005; Kessler and Jong 2015a; Jong et al., 2016; Nagarajan et al., 2014, 

2015, 2017; Van Hattum et al., 2003, 2013). Sediments of the Rajang Group were exhumed in 

the Middle Miocene and show phyllite to greenschist facies metamorphism (Hutchison, 1996). 

These rocks are also referred to as the Rajang fold-thrust belt (Tongkul, 1997). Fragments of 

ophiolites are likely thrusted within this group (Hutchison, 1996). Apatite and zircon fission 

track studies by Moss (1998) and Moss et al. (1998) show a relatively subdued burial and 

exhumation with central ages between 22 and 31 Ma. This interval of rapid cooling (~1.3 km 

exhumation) occurred in the Late Paleogene and was characterized by a temperature drop of over 

40°C in an interval of ~2 Ma.  

 

The northern part of the Rajang Group was uplifted during the Paleogene and became a source 

for the Neogene sedimentary basins (Morley and Back, 2008). The Schwaner Mountains from 

western parts of the Sarawak and Kalimantan provinces were the principal provenances and 

minor additions were derived from ophiolite debris. Heavy mineral suites of these sedimentary 

rocks were derived from the basement rocks such as granite (Van Hattum et al., 2003). There 

was a significant change in the sedimentation pattern during the Early Neogene. A large amount 

of sediments were eroded from the uplifted hinterlands and deposited into the deep foreland 

basins to the north and east. Major deltas were developed and rapidly prograded from the 

hinterland (Hall and Nichols, 2002). These sedimentary rocks were recycled from ~10 km thick 



  

nearby elevated basement rocks (Hamilton, 1979; Hall and Nichols, 2002; Morley and Back, 

2008). However, Kessler and Jong (2015a) report that the basement rocks were uplifted and 

eroded to the order of ~6-7 km. Mineralogy and geochemistry of these Neogene sedimentary 

rocks are poorly studied (Tanean et al., 1996; Van Hattum et al., 2006, 2013; Nagarajan et al., 

2014, 2015, 2017). Based on major and trace element compositions, Nagarajan et al. (2014) 

studied geochemical characters of the Lower Tukau Formation and reported that the sedimentary 

rocks were of recycled nature with minor ultramafic input. However, it is noted that the 

mineralogy and the source were not clearly defined for the Neogene sedimentary rocks. Thus, the 

present study is an integration of new data based on mineralogy and mineral chemistry, and bulk 

rock geochemistry to better understand provenance, depositional environments and tectonic 

settings of the Tukau Formation. Apart from helping to establish the potential provenance of the 

sedimentary rocks, their mineralogical composition would also allow for a better textural and 

compositional study, where the Tukau Formation represents a key hydrocarbon-bearing reservoir 

of the producing fields in the study area. The outcomes of the geochemical investigation are 

helpful in sand-to-sand correlation of the reservoir rocks, especially in ones that are heavily 

faulted and compartmentalised. Sedimentary rocks of the Tukau Formation are well-exposed and 

consist of alternations of mudstone and siltstones with occasional quartz pebbles. Their 

investigations can provide better indications for the provenance compared to separate studies 

focussing solely on sandstone dominated Lambir Formation, or mudstone dominated formations 

such as the Sibuti Formation (e.g., Potter et al., 2005). Thus, the main objectives of the present 

study are: 1) evaluation of mineralogical and geochemical characters of the recycled sedimentary 

rocks; 2) estimation of the weathering states; and 3) identification of provenance and possible 

source area of the Neogene sedimentary rocks and the possible tectonic setting.  



  

 

2. Study Area 

The northern Sarawak area hosts Neogene and younger sedimentary rocks, which are exposed 

towards the north and north-northeast (Fig. 1a, Liechti et al., 1960). The age of the deposits 

belonging to the Nyalau, Setap, Tangap, Sibuti, Belait, Lambir, Miri and Tukau Formations are 

in the range from the Oligocene to Pliocene (Fig. 1b). The Tukau Formation is the youngest 

amongst these deposits (~10-2.58 Ma). The formation overlies a prominent unconformity above 

the Lambir Formation (Kessler, 2005, 2009a, 2009b) and is exposed near the Bakam and Sungai 

Rait region located approximately 40 km southwest of Miri (Lat: 4.248586° and Long: 

113.959417°; Fig. 1a,b). Lithologically, it has alternate layers of siltstone and mudstone with 

occasional massive silt/sandstone and mudstone (top of the sequence near Sungai Rait) with thin 

lenses of coal and quartz pebble beds at the channel base. These pebbles are monomyct and 

probably derived from hydrothermal quartz veins of the Rajang Group (Kessler and Jong, 2015b, 

2016).  Pyrite concretions and ambers are common and both of them are present along with iron 

rich layers. Sedimentary rocks of this formation may have been deposited during the intervals of 

transgression and regression and tectonic events. Relative absence of planktonic foraminifera 

suggests that the sedimentary rocks of the Tukau Formation were deposited in shallow marine to 

deltaic environments (Hutchison, 2005; Kessler, 2009a, 2009b).  Similarly, the presence of 

lignite layers and amber balls indicate that they were deposited on a coastal plain setting 

(Hutchison, 2005), whilst Kessler (2009a) described the formation as a shoreface deposit.  

 

3. Materials and Methods 

3.1 Sampling and sediment bulk chemistry 



  

Different lithological units present in the Upper Tukau Formation were sampled in an exposed 

profile in northwestern Sarawak (Fig. 1c). A total of 50 samples were selected and processed for 

measuring major oxides, and trace and rare earth elements (REE). Samples were oven dried at 

40
0
C, homogenized and subsequently ground to 230 mesh using an agate mortar. Oxides of 10 

major elements (Si, Al, Ti, Fe, Ca, Mg, Na, K, Mn and P) were measured in fused discs after the 

methods of Verma et al. (1996) in Siemens SRS 3000 X-ray fluorescence (XRF) spectrometer 

with  precision of <10% (Roy et al., 2010; Nagarajan et al., 2014). Trace and REE were analysed 

with ICP and ICPMS. Accuracy and precision for both these analyses were better than 10% 

except for Sn, Ag and Tl. 

 

3.2 Mineralogy  

Identification of bulk minerals, clay minerals and heavy minerals and chemistry of individual 

minerals were carried out in 20 samples collected from the same outcrops selected for 

geochemical analyses (11 sandstones, 7 mudstones and 2 mixed/interbedded rocks). All these 

samples were analysed in Quantitative Evaluation of Minerals by Scanning electron microscopy 

(QEMSCAN) and 7 samples were analysed in X-ray diffraction (XRD). Significant number of 

heavy minerals were recovered from 4 samples and subsequently photographed, and individually 

analysed for their chemical compositions.  

 

For the QEMSCAN analysis, samples were cleaned (oil-free), resin impregnated and prepared as 

30 mm polished epoxy resin blocks. Mineral mapping was carried out using a field image 

technique. The QEMSCAN image analysis software (iDiscover) processed the images and 

reported the minerals present (see supplementary File 1 for the detailed methodology). XRD was 



  

carried out in two aliquots: whole rock and clay fraction. Aliquot for whole rock analysis was 

milled and a known quantity of an internal reference (i.e., fluorite) was added to the sample. 

Addition of an internal standard serves for quality control as well as to quantify amorphous 

material present in the samples. Samples were micronized and the resulting homogeneous 

powder was analysed by XRD.  Minerals were identified and quantified by the Rietveld 

refinement method. Clay fraction was concentrated through a combination of ultrasound and 

centrifugation. The concentrated clay fraction was first analysed by XRD and subsequently re-

analysed after glycolation and heat treatments. 

 

3.3 Heavy mineral separation and mineral chemistry 

Heavy minerals were concentrated using heavy liquid separation techniques and analysed in 

scanning electron microscopy (SEM), optical microscopy and QEMSCAN. Grains of chromite, 

tourmaline and garnet were analysed for chemical compositions. For heavy mineral analysis, the 

whole rock samples were dried, weighed and crushed to 150 μm size, following the procedures 

described in the supplementary File 1. Samples were wet screened at 20 μm, dried and weighed. 

Fraction of >20 μm material was subjected to heavy liquid separation using Tetrabromoethane 

(TBE) with a specific gravity of 2.96 g/cm³. Sinks were washed with acetone, subsequently dried 

and weighed. All the material was retained for subsequent analysis. Grains were identified on the 

basis of backscatter electron brightness and qualitative Energy Dispersive Spectroscopy (EDS) 

spot chemical analysis. Chromite, tourmaline and garnet were analyzed at a range of accelerating 

voltages (from 15 kV to 25 kV; typically 25 kV) and beam currents during imaging in order to 

maximise image quality and optimise EDS spot analysis. Other dense minerals present in the 



  

heavy mineral concentrates (i.e., pyrite and siderite) were excluded from the data set. All data are 

presented as normalised grain counts, i.e., percentage of a specific mineral. 

 

3.4 Zircon geochronology 

Three sandstone samples collected from lower part of the Tukau Formation, near to the boundary 

of the Lambir Formation, were used for U-Pb dating of zircons at Actlabs, Canada. Ziron grains 

were concentrated, subsequently embedded in epoxy resin and polished prior to laser ablation 

analysis using a Resonetics RESOlution M-50 series 193nm excimer laser ablation system 

equipped with a Laurin Technic Pty S-155 ablation cell. A minimum of 60-70 grains were used 

for the analysis. The offline data reduction using Vizual Age involved an attempt to find the 

longest possible integration that yields a concordant point with overlapping 
206

Pb/
238

U, 
207

Pb/
235

U 

and 
207

Pb/
206

Pb ages.  A common-Pb correction is also applied whenever necessary and we chose 

integrations that yield a concordant 204-corrected ellipse (see supplementary File 1). The 

Plešovice zircon from the Bohemian Massif (Czech Republic) with concordant U–Pb age with a 

weighted mean 
206

Pb/
238

U of 337.13 ± 0.37 Ma was used as a standard (Sláma et al., 2008).  

 

4. Results 

4.1 Geochemistry 

4.1.1 Major element oxide 

The modified diagram of Herron (1988) was used to classify the clastic sedimentary rocks. 

Sedimentary rocks are classified as shale (n=2), wacke (n=24), arkose (n=3), litharenite (n=15) 

and quartz arenite (n=6) (Fig.2). We have grouped arkose and subarkose together and grouped 

litharenite and sublitharenite together as the individual fields have limited number of samples.  



  

 

SiO2 is the most dominant oxide and it has concentrations of 97.75 wt%; 89.67 wt%; 79.31 wt 

%; 70.90 wt%; and 64.50 wt% in quartz arenite, litharenite, arkose, wacke and shale, 

respectively (Table 1).  Al2O3 is higher in shale (16.29 wt%) and wacke (16.47 wt%) compared 

to litharenite (6.02 wt.%), arkose (12.69 wt.%) and quartz arenite (1.23 wt.%). Shale has higher 

K2O (2.51 wt%) and are depleted in Na2O (0.10 wt.%). Both CaO and Na2O are lower (<0.1 wt 

%) in all the samples. Compared to the upper continental crust (UCC), shale, wacke and arkose 

have higher TiO2 and all the rock types have higher SiO2. Shale is also enriched in Fe2O3 

compared to UCC and all the other rocks have major oxides lower than UCC (Fig. 3). 

 

4.1.2. Trace element  

Transitional trace element (TTE; V, Cr, Co, Ni, Cu and Zn): Shale and wacke have higher 

concentrations of V (102 and 94 ppm), Co (15.5 and 8.2 ppm) and Ni (35 and 31.7 ppm) 

compared to litharenite (V: 44.6 ppm; Co: 2.4 ppm; Ni: Below Detection Limit (BDL), arkose 

(V: 82.3 ppm; Co: 2 ppm and Ni: BDL), and quartz arenite (V: 13.2 ppm; Co and Ni: BDL) 

(Table 1). Quartz arenite are enriched in Cu (95 ppm) and Zn (160 ppm) and arkose are enriched 

in Cr (86.7 ppm). Positive correlation between Cr, V and Co with Al2O3 and K2O (Al2O3 vs Cr: r 

=0.8; Al2O3 vs: r=0.9; K2O vs Cr: r=0.7; K2O vs V: r=0.8 and K2O vs Co: r=0.6) suggest that 

transitional trace elements are mainly associated with K-bearing phyllosilicates. 

 

Large ion lithophile element (LILE; Rb, Cs, Ba and Sr): Shale and wacke have higher average 

concentrations of Rb (118, 114.7 ppm), Cs (8.7 and 9 ppm), Ba (252.5, 240 ppm) and Sr (74.5, 

63.5ppm) compared to arkose (Rb: 48.7 ppm; Cs: 7.7 ppm; Ba:213 ppm; Sr: 48.7 ppm) 



  

litharenites (Rb: 48.6 ppm; Cs: 3.6 ppm; Ba: 118.3 ppm; Sr: 41 ppm) and quartz arenites (Rb: 9.3 

ppm; Cs: 0.8 ppm; Ba: 35.8 ppm and Sr: 16.2 ppm). Positive correlations of Ba and Rb with K2O 

(r  0.9), Al2O3 (r  0.90) and TiO2 (r = 0.7-0.8) suggest the association of large ion lithopile 

elements in Al, Ti and K bearing minerals (e.g., Feng and Kerrich, 1990; Bauluz et al., 2000; Ali 

et al., 2014). 

 

High field strength element (HFSE; Zr, Nb, Hf, Ta, Y, Th, U, and W): Arkose (342 ppm), 

litharenite (250 ppm) and wacke (247 ppm) have higher Zr than shale (205 ppm) and quartz 

arenite (79 ppm). Distribution of Hf is similar to Zr (arkose: 7.6 ppm; litharenite: 5.8 ppm; 

wacke: 5.7 ppm; shale: 4.8 ppm; quartz arenite: 2 ppm). Shale has higher Th (12.8 ppm) and U 

(3.5ppm) followed by wacke (12.6, 3.2ppm), arkose (12.4, 3.4ppm), litharenite (7.6, 2.1ppm) and 

quartz arenite (2.3, 0.7ppm). Similarly, contents of Y and Nb are higher in shale (28 and 8ppm), 

wacke (25 and 7.8ppm) and arkose (24 and 5.3ppm) compared to litharenite (14.3 and 4.2 ppm) 

and quartz arenite (5.3 and 1.8ppm). W is higher in wacke (2.3ppm) and arkose (2 ppm) than 

litharenite (1.1ppm), shale (1ppm) and quartz arenite (BDL). 

 

Except quartz arenite, tendencies of the UCC normalized trace element concentrations are 

similar in all the sedimentary rocks (Fig. 3). Quartz arenite and litharenite are enriched with Cu 

and Zn, and are depleted in all the trace elements. Shale and wacke show an opposite trend. Both 

are enriched in all the trace elements contents except for Co Ni, Ba and Sr. LILE elements are 

depleted in all the lithotypes except for Cs. Cs is enriched in shale, wacke and arkoses. HFSE 

have comparable concentrations in shale, wacke and arkose. All of them are slightly enriched 

when compared to UCC except for W. 



  

  

4.1.3. Rare Earth Element (REE) 

Wacke (166 ppm), arkose (161ppm) and shale (160 ppm) have comparable ∑REE. Litharenite 

(93 ppm) and quartz arenite (39 ppm) have ∑REE lower compared to wacke, arkose and shale. 

Chondrite normalized average REE patterns are characterized by LREE enriched/fractionated 

(La/YbCN :7.18-9.27; 2.29-8.83; 7.81-8.20; 5.81-10.81 and 7.21-16.89 for wacke, arkose, shale, 

litharenite and quartz arenite, respectively), HREE depleted/parallel to subparallel (Gd/YbCN 

:1.00-2.15; 0.95-1.35; 1.29-1.65; 0.89-1.35 and 1.01-1.30 for wacke, arkose, shale, litharenite 

and quartz arenite, respectively) and consistent negative Eu/Eu* anomalies (0.65-0.73; 0.62-

0.67; 0.70-0.72; 0.55-0.72 and 0.64-0.75 for wacke, arkose, shale, litharenite and quartz arenite, 

respectively). REE characteristics of wacke, shale and arkose are comparable to the post Archean 

Australian Shale (PAAS; Taylor and McLennan, 1985) and UCC (McLennan, 2001). Both 

litharenite and quartz arenite have less REE compared to PAAS and UCC (Fig. 4). All the REEs 

show moderate to strong positive correlations (r ≥ 0.6) with Al2O3, K2O, V, Ga, Rb, Cs, Ba and 

Th. Both Zr and P2O5 show no correlation and negative relationships with REEs.  

 

4.2. Mineralogy  

4.2.1. QEMSCAN 

Quartz is the major constituent (46-97 wt%). K-feldspar occurs in trace amounts (<1 wt%) and 

plagioclases are absent. Clay mineral assemblage comprises illite and illite-smectite (1-41 wt%) 

and minor kaolinite (1.5-9 wt%) (Fig. 5). Chlorite is present in all the samples (0.02 to 9.1wt %) 

and two samples show high contents (6.3 wt% and 9.1 wt%).  Mica (biotite: up to 4%; 

muscovite: up to 1 wt%) and pyrite (up to 2 wt%) occur sporadically.  Heavy minerals include 

rutile and Ti silicates (anatase), tourmaline, zircon and chromite (see supplementary table 1 for 



  

figure 5 enlarged with only heavy minerals). They have abundances varying between 0.1 and 0.4 

wt% with an average of 0.2 wt%. Clay mineral occurs as cements within the sandstone. Kaolinite 

occurs as lenticular masses scattered throughout the pore network, intermixed with detrital clays 

in more argillaceous laminae, and also as rounded, grain replacive concentrations. Illite occurs as 

a grain coating / pore lining cement and may also occur as a detrital phase in association with 

micas. In addition to clay cements, pore-filling of a number of samples have siderite. 

 

4.2.2. XRD 

XRD data are in accord with information obtained in QEMSCAN (Table 2). Quartz is more in 

whole rock (>2 µm size; 79-97 wt %) and less in clay fraction (<2 µm size 6-56 wt %). On the 

other hand, illite is present less in whole rock (2-19 wt %) and more in clay fraction (29 – 49 wt 

%). Illite in whole rock fraction might be detrital illite and mica. Kaolinite is abundant (15-50 wt 

%) in the clay fraction. Absence of chlorite was possibly because of its abundance below the 

detection limit (< 3 wt %) of the XRD analysis. Except for in one sample, minor smectite is 

identified (up to 10 wt %) in the clay fraction.  

 

4.2.3. Heavy Minerals 

Out of the 4 analysed samples, significant numbers of heavy minerals were obtained in 3 samples 

(n=1966; 2449 and 5082 for S02, S07 and S14), in which S02 is arkose and the rest are wacke. A 

variety of heavy mineral grains with a range of shapes were observed.  The common heavy 

mineral assemblage includes zircon and rutile/anatase and relatively less tourmaline, chromite, 

ilmenite, monazite, and garnet (Fig.6). In some samples, both xenotime and florencite are 



  

present. Contents of tourmaline, garnet, and florencite broadly follow rutile / anatase.  The 

zircon-rich samples have highest contents of xenotime and monazite.  

 

Textural characteristics (i.e., roundness) suggest different transport distances (recycling) for 

zircon. Zircon and tourmaline are present as euhedral, highly abraded and rounded crystals (Fig. 

7a-i). The detrital zircon grains show sub-rounded to well-rounded morphologies with evidence 

of mechanical damage by alluvial transport. The euhedral grains of zircon and tourmaline were 

transported a shorter distance (i.e., nearby sources) (Fig. 7b,c). However, the highly abraded and 

rounded grains of zircon were transported from sources present at longer distances or from 

relatively more reworked sources (Fig. 7a, d, g, h). Anhedral (with a pronounced conchoidal 

fracture for the broken ones) to angular detrital chromian spinels indicate shorter transportation. 

Some chromite grains have internal dissolution pits (Fig. 7 f, g). Rutile and ilmenite grains also 

display dissolution features (Fig. 7e-i). Both hematite and goethite are present in the weathered 

samples.  

 

4.3. Heavy mineral chemistry 

Heavy minerals are commonly present in the accessory phase of sediments (<1 wt%). The 

average chemical composition based on EDS spot quantitative analysis of tourmaline, chromian 

spinel and garnet grains are presented in Table 3 with their stoichiometric proportions.  

Composition of tourmalines ranges from dravite (Mg end member) to schorl (Fe end member) 

(Table 3). Tourmalines are characterized by higher and variable concentrations of Al2O3 (33.08-

46.85 wt%), SiO2 (32.19-37.02 wt%) and FeO (6.11-18.53 wt%). MgO is variable and ranges 

from below detection limit (BDL) of the equipment to 12.45 wt % (avg. 6.62 wt%). TiO2 content 



  

is also variable as well and ranges from BDL to 4.38 wt% with an average of 1.51 wt%. Na2O 

and CaO show distributions of BDL-5.09 wt% (avg. 2.67 wt%) and BDL-1.70 wt% (avg.0.73 

wt%), respectively. Tourmaline grains are mostly Fe-rich and some of them are Mg-rich.  

Chromium spinels are chromites except for one sample and all of them belong to 

magnesiochromite and hericynite. Cr2O3 contents range from 19.27 to 55.88 wt%, and 83% of 

the grains have Cr2O3 > 30 wt% (Table 3). Al2O3 contents range from 11.79 to 51.84 wt% with 

an average of 23.42 wt%. FeO contents range from 11.84 to 35.37 wt% (avg. 25.54 wt%) and 

MgO ranges between BDL to 16.62 wt% with an average of 7.69 wt%. Cr2O3 vs Al2O3 and FeO 

vs. MgO are negatively correlated. TiO2 content is ranged between 0.44 and 2.50 wt% with an 

average of 1.19 wt%. Total Fe was measured as FeOt. The ratios of ferrous (Fe
2+

) and ferric 

(Fe
3+

) ions were calculated assuming spinel stoichiometry. The parameters Mg#, Cr# and Fe
3+

# 

are defined as Mg/(Mg+Fe
2+

), Cr/(Cr+Al), and Fe
3+

/ (Cr+Al+Fe
3+

), respectively. The Cr# and 

Mg# ratios vary between 0.20-0.74 (avg.0.55) and 0-0.71 (avg.0.35), respectively. Traces of 

garnet grains were observed in one sample (i.e., spessartine; MnO=34.2 wt%, Al2O3=21.7 wt%, 

FeO=7.6 wt% and almandine; FeO=29.3 wt%, Al2O3=24.9 wt%, MnO=9.8 wt%). Only one 

sample yielded ilmenite (n=8), and it is enriched in SiO2 (42.7 wt%) and TiO2 (33.8 wt%). 

Ilmenites are also enriched in Al2O3 (15.4 wt%) and depleted in FeO (6.1wt%). Na2O (2.0 wt%) 

is lower and these ilmenites are leucozene.  

 

4.4. U-Pb dating of zircon grains 

The studied zircons were mostly detrital and the U-Pb dating revealed three age clusters for 

samples from the Tukau-Lambir boundary. Based on 
206

Pb/
238

U age of <10% discordant data, the 

youngest group was 117-130 Ma with dominant peaks in 114-119 Ma age range (Lower 



  

Cretaceous). Another age group was of 220-240 Ma with a peak in 225 Ma (Upper Triassic). The 

older zircons were of 1300-2440 Ma (Meso-Paleo Proterozoic) in age. The conventional U-Pb 

concordia plots for whole zircon analysis and younger age zircons are presented in Figure 8a and 

relative frequency plots of youngest zircon ages are presented in Figure 8b. Uranium and Th 

concentrations in the studied zircons range from 45 - 2300 ppm (avg. 458 ppm) and 25 - 771 

ppm (avg. 179 ppm) respectively. U/Th ratio varies between 0.76 and 21.4 with an average of 

3.2. 

 

5. Discussion 

5.1. Paleoweathering and sediment sorting 

Chemical Index of Alteration (CIA; Nesbitt and Young, 1982) and Plagioclase Index of 

Alteration (PIA; Fedo et al., 1995) are used to evaluate the intensity of weathering. Gradual 

increase in weathering leads to removal of easily displaced cations (K
+
 Na

+
 and Ca

2+
) relative to 

more stable elements/residual constituents (Al
3+

 and Ti
4+

) through conversion of feldspar to clay 

minerals (Nesbitt and Young, 1982). Unweathered and fresh igneous rocks have CIA and PIA 

values of 45-55 and highly weathered sediments with abundant kaolinite, gibbsite, chlorite and 

bohemite have CIA and PIA values up to 100. Moderate weathering is reflected by presence of 

smectite and illite group of clay minerals and CIA and PIA values of 60-80.  

 

Except for one quartz arenite sample, all the sedimentary rocks of the Tukau Formation have 

uniform and higher values of CIA. CIA varies between 65 and 86 (quartz arenite: 78-86; shale: 

84; wacke: 84-86, litharenite: 83-86 and arkose: 82-85) and PIA (93-98) mirrors the CIA values 

and indicates intensive weathering. Only one quartz arenite sample shows CIA of 65 suggesting 



  

its moderate weathering nature due to high content of iron oxide cement and less clay minerals. 

Moderate to strong weathering in the source region is also shown by the sample distributions in 

A-CN-K ternary diagram (Fig. 9). All samples from the Tukau Formation are plotted above the 

feldspar line and most of them (except quartz arenites) are clustered near the field of illite. 

Intensive weathering in the source region is also supported by the mineralogical assemblages. 

Plagioclase is either absent or present in trace amounts. Similarly, clay minerals are more 

abundant compared to feldspar and ratio of clay/feldspar is higher for all the sedimentary rocks. 

Mineralogy of the bulk samples shows presence of more illite, less kaolinite and absent to traces 

of smectite. Some quartz arenites are compositionally more matured and are dominated by 

quartz. 

 

Illite and chlorite are considered to form by weak hydrolysis and/or strong physical erosion of 

parent rocks under relatively dry climatic conditions (Galan and Ferrel, 2013; Hu et al., 2014). 

Similarly, Adatte and Keller (1998) relate the presence of illite in association with quartz and 

feldspars to detrital origin and deposition in an arid climate. Kaolinite forms under intense 

weathering and tropical conditions (Biscaye, 1965; Wan and Chen, 1988). Illite present in the 

Tukau Formation sedimentary rocks shows both moderate and poor crystallinity. Moderately 

crystalline illites indicate predominantly physical weathering. It was not degraded further and 

lacked neoformation (Gaucher, 1981). The poorly crystalline illites were formed due to intense 

hydrolysis in the hinterland source area under warm humid climatic conditions. More kaolinite in 

two arkose samples (i.e., S01 and S08) indicates intensive hydrolysis under warm and humid 

climate. During the Oligocene-Miocene, active tectonic setting of the northern Borneo favoured 

stronger physical erosion of parent rocks (Hutchison, 2005; Rangin et al., 1990). The intense 



  

seasonal precipitation also supported physical erosion and deposition of illite and chloite 

dominated clay minerals (i.e., Liu et al., 2012). In addition, the moderate chemical weathering of 

recycled sediments increased the abundance of kaolinite in some samples. In the QEMSCAN 

analysis, kaolinite occurs as pore-lining to filling and commonly as a grain replacive authigenic 

phase, whilst illite occurs both as pore-lining cement and also as possible detrital material (i.e., in 

the more argillaceous laminae). Trace amounts of smectite can be either detrital or in situ 

formation through early diagenesis, alteration of volcanic glasses and hydrothermal activity (e.g., 

Ehrmann et al., 2005).  

 

The A-CN-K plot indicates that all the sedimentary rocks were derived from felsic dominated 

cratons. Additionally, the deviation of some samples from the weathering trend towards K2O in 

the A-CN-K diagram can be interpreted as provenance mixing with more continental signature 

(Cox et al., 1995). Higher average values of Rb/Sr (wacke: 1.8; shale: 1.6; litharenite: 1.2; 

arkose: 2.0; quartz arenite: 0.6) indicate intense weathering and recycling history. Weathering 

and sediment recycling increase the Rb/Sr values (McLennan et al., 1993). Surface textures of 

chromian spinels indicate the combined effects of mechanical attrition and chemical etching 

during the transportation. Subhedral habit with evidence of dissolution and presence of grooves 

indicate higher degree of chemical weathering. The observed conchoidal fractures in chromian 

spinels were formed as a result of mechanical weathering. Immature chemical weathering of the 

ophiolites under highly oxidizing and alternating wet/dry conditions or metamorphosed 

ophiolites such as serpentinites might be the sources for the chromian spinel present in the Tukau 

Formation.  

 



  

The Al2O3-TiO2-Zr ternary plot (Fig. 10) illustrates fractionation of zircon related to sorting 

(Garcia et al., 1994). The Tukau sedimentary rocks plot towards Zr and are characterized by 

changes in Al2O3/TiO2 ratio (Fig.  10). Zr is mainly controlled by zircon and it is enriched due to 

sorting and recycling (Basu et al. 1990; McLennan et al. 1993). Detrital zircon present in the 

Paleogene sandstones of southern Borneo was derived from the Schwaner Mountains (Williams 

et al., 1988) and it was recycled further to the north during the Neogene (Van Hattum et al., 

2003). SiO2/Al2O3 ratio estimates the sediment maturity as it reflects the quartz abundance at the 

expense of primary clay minerals (McLennan et al., 1993). Both the quartz arenite and litharenite 

show higher maturity compared to arkose, wacke and shale. The zircon-tourmaline-rutile (ZTR) 

index proposed by Hubert (1962) is used to estimate the mineralogical "maturity" of the heavy 

mineral assemblage. The ZTR index (>95) also indicate that sedimentary rocks of the Tukau 

Formation are highly matured.  

 

5.2. Provenance 

Sedimentary rocks of the Tukau Formation contain abundant rutile/anatase and zircon, plus 

minor amounts of chromite. Zircon grains display a range of shapes ranging from the pristine 

euhedral crystals to rounded and heavily abraded grains. Variable shapes suggest that the zircon 

grains were derived from several sources (of different ages) and/or might have undergone 

extensive transport and/or reworking. In the Tukau Formation, zircon was sourced from the 

felsic igneous rocks and rutile was derived from high-grade metamorphic rocks. Minor amounts 

of chromian spinels were sourced from the ultramafic/mafic rocks such as veins or embedded 

masses in peridotites and serpentinites. Presence of both euhedral and well-rounded grains of 

heavy minerals suggests a mixture of metamorphic/metasedimentary and granitic rocks as the 



  

possible sources with minor influence from the ultramafic/mafic rocks. Heavy mineral ratios 

such as garnet/zircon (GZi: 5.5-24.7) and rutile/zircon (RuZi: 38.6-87.2) also support a 

metasedimentary source (i.e., and/or metamafic rocks) and/or an acid igneous rock (i.e., allanite 

bearing granitoid) as the possible sources (e.g., Ratcliffe et al., 2007).  

 

Major elements based discrimination diagrams of Roser and Korsch (1988) also suggest a mixed 

provenance. Most of the samples fall in quartzose sedimentary provenance field and only two 

shale samples plot in mafic igneous provenance. This indicates that source rocks were mainly of 

felsic nature with minor contribution from mafic-ultramafic rocks (Fig. 11). Felsic source and the 

recycled nature of the sedimentary rocks are reaffirmed by the Hf vs La/Th plot of Floyd and 

Leveridge (1987). Increasing concentration of Hf indicates recycled/old sedimentary passive 

margin source or progressive dissection of an arc (Fig. 12). Wackes plot mostly in acidic arc 

field and are comparable with UCC and PAAS. One quartz arenite sample falls in mixed felsic 

and mafic sources indicating some contribution from the mafic to ultramafic sources. According 

to Kessler and Jong (2016), large quartz pebbles of the Tukau Formation were possibly derived 

from the Belaga Mountains, composed of clastics of the Rajang Group and some hydrothermal 

quartz veins. The same source possibly provided the large quartz pebbles during the hinterland 

uplift and exhumation since the Late Miocene (Kessler and Jong, 2015a). 

 

The felsic dominated source rocks from the source region is also confirmed by REE systematics: 

LREE enriched, HREE depleted, negative Eu/Eu* anomaly and higher values of LREE/HREE 

(Fig. 4). The obvious negative Eu anomalies reflect sources that had experienced fractionation of 

feldspar. It suggests a granitoids dominated provenance for the first cycle of sedimentation. 



  

Litharenites and arkoses have Eu/Eu* values similar to PAAS (Eu/Eu*=0.6-0.7) and values of 

this anomaly are higher (Eu/Eu*=0.6-0.7; 0.7 and 0.6-0.8) for wacke, shale and quartz arenite. 

The higher values are due to recycling and dissolution of more feldspar in a second cycle of 

weathering (e.g., Hassan et al., 1999). Mongelli et al. (2006) reported that Eu released during the 

feldspar dissolution are retained by clay minerals and thus reduce the Eu anomaly. Lower 

K2O/Al2O3 ratio (<0.2), enrichment of LREE/HREE values (>8) and less soluble elements (i.e., 

Th and Y), and depletion of highly soluble elements (i.e., U and Sr) suggest recycling (e.g., Cox 

and Lowe, 1995; Cox et al., 1995).  

 

Contribution of mafic-ultramafic rocks from the source region was evaluated by concentrations 

of Cr, V, Ni, Sc (Cullers, 2000) and ratios of Y/Ni and Cr/V (Hiscott, 1984). Higher Cr (>150 

ppm) and Ni (>100 ppm) are indicators of ultramafic sources (Garver et al., 1996). Cr content of 

40-87 ppm and Ni of ≤40 ppm in wacke, shale, litharenite, arkoses, and quartz arenite indicate 

less or no significant input from ultramafic source rocks.  However, one wacke sample with 

higher Cr (12D; 230 ppm) and presence of chromian spinels suggest a significant input from 

mafic-ultramafic rocks. Shale and some wacke received minor input from mafic/ultramafic 

sources and both have MgO > 1% and Cr+Ni ≤ 260ppm.  

 

In addition to mineralogy and bulk rock geochemistry, chemistry of tourmaline and chromian 

spinels was also used to reconstruct the provenance. As tourmaline is stable in both weathering 

and diagenetic environments, chemistry of detrital tourmaline based provenance discrimination 

diagrams (Fe-Mg-Al and Fe-Mg-Ca; Henry and Guidotti, 1985) were used to evaluate 

similarities and differences between detrital tourmaline populations and the nature of source 



  

areas (Morton and Hallsworth, 2007). The tourmalines fall in fields B and D of the Al-Mg-Fe 

plot (Fig. 13a) and plot in fields 2 and 4 in the Fe-Mg-Ca plot (Fig. 13b). Both indicate that the 

tourmalines were predominantly derived from metasedimentary rocks (metapelites, 

metapsammites, alumunious) with subordinate input from Li poor granitoids, pegmatites and 

aplites.  

 

The detrital chromian spinels are characterized by Cr# and Mg# >0.5 and <0.5 and <0.5 and 

>0.5, respectively. It corresponds to both Al rich chromite composition ( 0.6) and Cr-rich 

chromite compositions ( 0.6) (Proenza et al., 2008). Spinels with Cr# <0.5 are derived from 

lherzolitic bodies (such as the abyssal peridotites of slow spreading ridges (Lee, 1999), and also 

from back arc basins (Cookenboo et al., 1997). In the Al2O3 vs. Cr2O3 diagram, many samples 

plot in podiform field (Fig. 14a) and in the transition between stratiform and podiform fields. It 

suggests that the chromian spinels are mainly derived from the Alpine type ophiolite. In Cr
3+

, 

Al
3+

 and Fe
3+

 triangular plot (Fig. 14b), all the samples are in Alpine type peridotite field which 

indicates the signature of ophiolites crystallized in a forearc setting (Lenaz et al., 2000). The 

Alpine type peridotites are similar to podiform type and are richer in Al and Cr
3+

 and have lower 

Fe
3+

 (Lee, 1999). Comparable with the present study, Hutchison (2005) reported that abundance 

of chromian spinels was lower in peridotite and serpentinized peridotite in northern Borneo. 

Similarly, the Cr# vs Mg# plot shows that chromian spinels were mainly derived from 

metamorphosed ophiolites and some of them were sourced from lherzolites (Fig. 14c). In the 

Al2O3 vs TiO2 diagram of Kamenetsky et al. (2001), chromian spinels of the Tukau Formation 

fall in island-arc basalts and Mid-Oceanic Ridge Basalts (MORB) type volcanic rocks (Fig. 14d). 

Serpentinized peridotites of northern Borneo are comparable to the Alpine type peridotites. 



  

Hence, the Alpine type serpentinized peridotites (e.g., Lupar ophiolites within the Rajang 

accretionary complex) were one of the possible sources for the studied chromian spinels. 

 

Three zircon age clusters of this study are comparable to age clusters reported for the Crocker 

and Rajang Group of sediments by Van Hattum et al. (2013). Cretaceous and Triassic were the 

two major age clusters. The first age cluster can be related to the Schwaner pluton, whilst the 

second cluster can be related to plutons from the Malaysia Peninsular. The older zircons might 

have sourced from a more distal source (e.g., Indo-Australian plate) and possibly undergone 

several recycling phases. The Schwaner plutons are widely accepted as source rock for the 

Borneo Orogenic Belt. Ages of these plutons range from 130±2.8 Ma to 77.4±1.7 Ma (Williams 

et al., 1988; Van Hattum et al., 2006; Witts et al., 2012; Li et al., 2015). According to White et 

al. (2016), samples collected within Borneo yielded dominant age populations between 75 and 

110 Ma. Comparable ages of both suggests that the Schwaner Mountains were the principal 

source rocks for the Rajang Group of rocks and were subsequently recycled further north and 

northwest of Borneo during the Neogene.  

In addition to the Schwaner Mountains, granitoids of the Malaysia Peninsular is another possible 

source area. The Bentong-Roub suture (consisting of serpentinites, deeps sea radiolarian cherts 

and Middle Devonian to Late Permian sedimentary rocks) divides granitoids of the Malaysia 

Peninsular into Main Range and Eastern provinces (Ng et al., 2015 and references provided there 

in). Eastern province granitoids have U-Pb zircon ages of 289-220 Ma with some younger ages 

(~80 Ma). The Main Range province magmatism was constrained between 219 and 198 Ma (Ng 

et al., 2015). According to the same authors, a progressive westward younging trend was 

apparent across the Eastern province and it was less obvious in the Main Range province. The 



  

Main Range granites of the Malaysia Peninsular consist of tin-bearing S-type granites of Triassic 

age (Bignell and Snelling, 1977; Liew and Page, 1985) and the Eastern provinces are dominated 

by I-type granite of Permian-Triassic age (Searle et al. 2012 and references provided there in). 

Similarly, the southwestern Thailand-Myanmar province granites are mixture of tin bearing S-

type and I-type plutons of the Cretaceous age. Zircon age of the Tukau Formation is comparable 

to the Main Range granites rather than the southwestern Thailand-Myanmar province. In 

different studies, detrital cassiterites (tin bearing mineral) were found in the Crocker range 

sediments (Van Hattum et al., 2013) as well as the Neogene sediments of northwestern Borneo 

(Nagarajan et al., 2015). It supports that the tin bearing granitoids were one of the major possible 

sources for the sediments of Crocker-Rajang accretionary complex. Identification of the 

Schwaner Mountains and peninsular Main Range as source rocks for the sedimentary rocks of 

central Borneo and their subsequent recycling for the Neogene deposits of northern Borneo is in 

agreement with the previous studies by Van Hattum et al. (2003, 2013) and White et al. (2016). 

 

5.3. Tectonic setting 

The tectonic history of Borneo is complex and yet to be fully understood. However, several 

authors (e.g., Hall, 2002, 2009; Hall et al., 2008; Cullen, 2010; Morley et al., 2003; Hutchison, 

1996, 2005) have suggested occurrence of major tectonic events affecting the study area. The 

Sarawak Orogeny caused change in sedimentation as a transition from flysch to molasse 

occurred in northwestern Borneo during the Late Eocene (Hutchison, 2007). During this event, 

turbidite flysch of the Rajang Group were folded, thrusted and uplifted (Kessler and Jong, 2015a, 

2015b; Jong et al., 2016). During the Early Miocene, the proto-South China Sea rifted; both 

rifting and subduction were subsequently slowed and the Borneo landmass was uplifted further. 



  

According to Kessler and Jong (2015a), transition from the muddy Middle Miocene shelf (Setap 

Shale and Sibuti Formation) to an unusual sandy formation during the Middle to Late Miocene 

can be attributed to tectonic compression. Regional tectonism in addition to climatic influence 

enhanced the erosion of Rajang/Crocker Formations and deposited sand-rich sedimentary rocks. 

The northern part of Borneo possibly had a collisional tectonic setting at the time and the passive 

rifts might have developed along faulted margins in the zones of continental collision (e.g. 

Ingersoll, 1988). Rifts are common along the collisional boundaries due to irregularities of 

continental margins and by normal faulting due to nonperpendicular collision (e.g., Condie, 

2011). 

 

Many discrimination diagrams have been proposed to discriminate the active and passive margin 

settings (Bhatia, 1983; Bhatia and Crook, 1986; Roser and Korsch, 1986, 1988). All samples 

from the Tukau Formation are plotted in passive margin field of the K2O/Na2O-SiO2 

(recalculated to 100% volatile free; Roser and Korsch, 1986) discrimination diagram (Fig. 15). 

However, Totten et al. (2000), Armstrong and Verma (2005), Ryan and Williams (2007), Pe-

piper et al. (2008), Von Eynatten et al. (2012),  Verma and Armstrong-Altrin (2013, 2016) and 

Basu et al. (2016)  have cautioned as the proposed discrimination plots do not always 

successfully classify the correct tectonic settings. Recently, Verma and Armstrong-Altrin (2016) 

proposed a new tectonic discrimination diagrams based on log ratio transformation and linear 

discrimination analysis of an extensive geochemical database from the Neogene-Quaternary 

siliciclastic sediments from the active and passive margin tectonic settings. In this study, all the 

samples fall in the passive margin setting in the major oxides based plot, whereas some of the 



  

samples plot in the active tectonic setting boundary in the major - trace element based 

discriminant plot (Fig. 16).  

 

6. Conclusion 

New data on bulk mineral, heavy mineral, mineral chemistry and bulk rock geochemistry for 

sedimentary rocks of the Tukau Formation of the Borneo Island in East Malaysia were used for 

an integrated study to identify provenance, estimate paleo-weathering and infer tectonic setting 

during the Neogene. More specifically;  

i. Sedimentary rocks are dominated by wacke and shale is present in minor abundance. 

Mineralogical and geochemical indices (ZTR, CIA and PIA) characterize these 

sedimentary rocks as highly matured and the source area has undergone moderate to 

intensively weathering.  

ii. Zircon chronology of the Tukau Formation has two young age populations: 

Cretaceous and Triassic. The Schwaner Mountains and Tin Belt of the Malaysia 

Peninsular have comparable ages. Granitoids present in both of them were the 

important sources for the Rajang Group, which further recycled during the Neogene 

and minor contribution came from mafic and ultramafic rocks present in the Rajang 

Group.  

iii. We postulate that the Tukau Formation was deposited in a passive margin with minor 

deviation towards an active margin boundary. In addition to tectonic settings, climate 

(chemical weathering) played a major influence on chemistry of these sedimentary 

rocks. 
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Figure Captions 

Figure 1 Map showing geology and location of the study area: (A) geology of the northwestern 

Borneo (after Liechti et al., 1960), (B) location of the Tukau Formation, and (C) stratigraphy of 

the present study with sample locations. 

 

Figure 2 Geochemical classification of clastic sedimentary rocks of the Tukau Formation (after 

Herron, 1988). 

 

Figure 3 Upper Continental Crust (UCC; McLennan, 2001) normalised major oxides and trace 

elements in different sedimentary rocks of the Tukau Formation. 

 

Figure 4 Chondrite normalized REE (Sun and McDonough, 1989) patterns of sedimentary rocks 

from the Tukau Formation. 

 

Figure 5 Bulk mineralogy (in wt %) of sedimentary rocks from the Tukau Formation analysed in 

QEMSCAN 

 

Figure 6 Distribution of heavy minerals in one arkose (S02) and two different wacke (S07 and 

S14) from the Tukau Formation analysed in SEM, Optical microscopy and QEMSCAN.  

 

Figure 7a-i Morphological features of heavy minerals present in sedimentary rocks from the 

Tukau Formation (Zr= Zircon; Rut = Rutile; Tour = Tourmaline; Mon = Monazite; Cr = 

Chromian spinel; Ilm = Ilmenite) 



  

Figure 8 (a) Conventional U-Pb Concordia plots (total zircons and younger age zircons: data 

point error ellipses are 2) of the U-Pb isotoic analyses results obtained from the Laser ablation, 

and (b) relative frequency plots of youngest zircon ages obtained for the Tukau Formation.  

 

Figure 9 Sedimentary rocks of the Tukau Formation in Al2O3 - (CaO* +Na2O) - K2O (A-CN-K; 

after Nesbitt and Young, 1982) ternary diagram.  

 

Figure 10 Al2O3-Zr-TiO2 plot showing sorting trend for the sedimentary rocks from the Tukau 

Formation (after Garcia et al., 1994). 

 

Figure 11 Major oxide based provenance discrimination plot of Roser and Korsch (1988) for 

sedimentary rocks from the Tukau Formation. 

 

Figure 12 Hf vs. La/Th bi-plot of sedimentary rocks from the Tukau Formation after Floyd and 

Leveridge, 1987). 

 

Figure 13 Composition of detrital tourmalines in (a) Ca-Fetotal-Mg ternary diagram and (b) Al-

Fetotal-Mg ternary diagram of Henry and Guidotti (1985).  

 

Figure 14 Chemical composition of chromian spinels in (a) Al2O3 versus Cr2O3 diagram after 

Bonavia et al. (1993) (b) Trivalent major cation plot (Fe
3+
–Al

3+
–Cr

3+
) after Cookenboo et al. 

(1997), (c) variation of Mg# against Cr# of detrital chromian spinels. Fields of spinels are 

reconstructed after Pober and Faupl, (1988) and (d) Al2O3 vs TiO2 (Wt%) in chromian spinels 



  

from sediments of the Tukau Formation. The discrimination fields of chromian spinel from 

Kamenetsky et al. (2001). 

 

Figure 15 SiO2 vs K2O/Na2O plot shows the tectonic setting discrimination fields for Tukau 

Formation sedimentary rocks (after Roser and Korsch, 1986). 

 

Figure 16 (a) Discrimination diagrams based on major element (oxides) and (b) major and trace 

elements (after Verma and Armstrong-Altrin, 2016) for the Tukau Formation sedimentary rocks.  

 

Table Captions 

Table 1 Summary of major and trace element concentrations of the sedimentary rocks, Tukau 

Formation. 

 

Table 2 Mineralogy of whole rock (WR) and clay fraction (<2m) of sedimentary rocks from the 

Tukau Formation obtained with XRD. 

 

Table 3 Composition of heavy minerals (Tourmaline, Chromian Spinel and Garnet) from 

sedimentary rocks of the Tukau Formation. 

  

Supplementary Files 

1. Detailed methodology for QEMSCAN and heavy mineral analyses 

2. Table 1 QEMSCAN bulk mineralogy (in %) of the sedimentary rocks of Tukau 

Formation, East Malaysia. 



  

3. Table 2 Whole rock geochemistry results for sedimentary rocks of the Tukau Formation. 

4. Table 3 Geochemical results of tourmaline, chromian spinels and garnet grains separated 

from sedimentary rocks of the Tukau Formation. 
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Figure 8



  

 

 

Figure 8b 



  

Figure 9

http://ees.elsevier.com/jaes/download.aspx?id=657593&guid=1fcc64b3-97af-4130-9aff-813c9248020f&scheme=1


  

Figure 10

http://ees.elsevier.com/jaes/download.aspx?id=657594&guid=d445e219-9400-453f-ac5a-379871d1ba06&scheme=1


  

Figure 11

http://ees.elsevier.com/jaes/download.aspx?id=657595&guid=d0d6c30c-4f7c-4a63-858f-a857a5722152&scheme=1


  

Figure 12

http://ees.elsevier.com/jaes/download.aspx?id=657596&guid=db05da7b-8c36-4979-ae5e-a80f2b46d818&scheme=1


  

Figure 13

http://ees.elsevier.com/jaes/download.aspx?id=657597&guid=a04de1d2-5dc0-4a52-9222-b524311f8414&scheme=1


  

Figure 14

http://ees.elsevier.com/jaes/download.aspx?id=657598&guid=28aa9e8f-8e74-492e-9794-e8c2f956c677&scheme=1


  

Figure 15

http://ees.elsevier.com/jaes/download.aspx?id=657599&guid=28eb6047-0882-4288-bf0d-f7eb69365d29&scheme=1


  

 

 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

DF(A-P)M

Passive Active(a)
Wacke

Shale

Litharenite

Arkose

Arenite

 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DF(A-P)MT

PassiveActive(b)
Wacke

Shale

Litharenite

Arkose

Arenite

Figure 16 

Figure 16



  

Table 1 

Oxide 

(%) 

Wacke (n=24) Shale (n=2) Litharenites (n=15) Arkoses (n=3) Arenite (n=6) 

Range Avg Range Avg. Range Avg Range Avg Range Avg 

SiO2  66.25-75.16 70.90 62.57 -66.43 64.50 80.20 - 96.19 89.67 74.13 -89.06 79.31 96.89 -98.45 97.75 

SiO2(adj) 73.01-78.61 75.60 69.26 -72.33 70.80 82.72- 96.59 90.93 77.14 -89.71 81.98 97.28 -98.67 97.75 

TiO2  0.73 - 0.95 0.85 0.75 - 0.77 0.76 0.11- 0.68 0.36 0.50 -1.19 0.84 0.06 -0.16 0.09 

Al2O3  13.20 - 18.06  16.47 15.38 -17.19 16.29 2.22- 12.02 6.02 7.54 -15.97 12.69 0.60 -1.96 1.23 

Fe2O3t  1.11 - 3.59 2.20 5.52 - 5.80 5.66 0.62- 2.60 1.37 0.80 -1.37 1.05 0.32 -1.57 0.70 
MnO  0.004 - 0.021 0.009 0.023 -0.029 0.026 0.001 -0.009 0.004 0.001 -0.007 0.004 0.002 -0.006 0.004 

MgO  0.41 - 1.12 0.63 1.12 -1.12 1.12 0.05 -0.41 0.19 0.16 -0.59 0.43 0.00 -0.04 0.01 

CaO  0.06 - 0.10 0.07 0.07 -0.07 0.07 0.06 -0.09 0.07 0.07 -0.07 0.07 0.05 -0.07 0.06 

Na2O 0.00 - 0.19 0.09 0.07 -0.13 0.10 0.00 -0.08 0.03 0.00 -0.10 0.06 0.00 -0.09 0.01 
K2O  1.91 - 2.83 2.50 2.42 -2.61 2.51 0.25 -1.65 0.84 1.12 -3.01 2.13 0.07 -0.23 0.14 

P2O5  0.03 - 0.06 0.04 0.05 -0.06 0.06 0.01 -0.04 0.02 0.03 -0.06 0.04 0.01 -0.02 0.01 

Element 

(ppm) 99.35 - 101.10 100.19 99.91 -100.23 100.07 98.96 -100.96 100.41 99.81 -100.37 100.14 99.98 -100.93 100.49 
V 35.00 - 119.00 93.96 96.00 -108.00 102.00 19.00 -83.00 44.60 67.00 -90.00 82.33 5.00 -22.00 13.20 

Cr 40.00 - 230.00 84.58 80.00 -80.00 80.00 20.00 -80.00 53.85 80.00 -90.00 86.67 40.00 -40.00 40.00 

Co 1.00 - 28.00 8.17 15.00 -16.00 15.50 1.00 -7.00 2.43 1.00 -3.00 2.00 - - 

Ni 20.00 - 40.00 31.67 30.00 -40.00 35.00 - - - - - - 
Cu 10.00 - 50.00 27.50 20.00 -20.00 20.00 10.00 -260.00 63.33 10.00 -20.00 15.00 20.00 -170.00 95.00 

Zn 30.00 - 110.00 50.00 50.00 -100.00 75.00 40.00 -100.00 57.50 - - 160.00 -160.00 160.00 

Ga 6.00 - 21.00 16.92 16.00 -18.00 17.00 3.00 -15.00 8.27 13.00 -17.00 15.33 2.00 -4.00 2.60 

Ge 1.00 - 2.00 1.36 1.00 - 1.00 1.00 1.00 -2.00 1.20 1.00 -1.00 1.00 1.00 -1.00 1.00 
As 5.00 - 11.00 7.40 6.00 - 7.00 6.50 5.00 -16.00 8.70 5.00 -6.00 5.50 19.00 -19.00 19.00 

Rb 32.00 - 142.00 114.71 114.00 -122.00 118.00 13.00 -84.00 48.60 77.00 -111.00 98.33 4.00 -19.00 9.33 

Sr 23.00- 89.00 63.46 74.00 -75.00 74.50 14.00 -70.00 41.00 42.00 -54.00 48.67 9.00 -31.00 16.17 

Y 9.00 - 44.00 25.04  24.00 -32.00 28.00 6.00 -25.00 14.33 19.00 -27.00 24.00 3.00 -8.00 5.33 
Zr 126.00 -369.00 246.83  205.00 -205.00 205.00 60.00 -749.00 250.00 244.00 -439.00 342.00 37.00 -209.00 79.00 

Nb 4.00 -10.00 7.75  5.00 -11.00 8.00 2.00 -8.00 4.20 4.00 -6.00 5.33 1.00 -3.00 1.75 

Sn 2.00 - 6.00 2.52 1.00 - 2.00 1.50 1.00 -3.00 1.89 1.00 -2.00 1.67 1.00 -1.00 1.00 
Cs 2.60 -11.40 8.98 8.40 - 9.00 8.70 0.90 -6.70 3.59 6.00 -9.30 7.70 0.50 -1.20 0.78 

Ba 77.00 -293.00 240.00 243.00 -262.00 252.50 40.00 -204.00 118.27 180.00 -230.00 213.00 24.00 -62.00 35.83 

Hf 2.90 - 8.40 5.70 4.50 - 5.00 4.75 1.60 -16.90 5.75 5.60 -9.70 7.57 0.90 -5.00 2.00 

Ta 0.40 - 1.20 0.96 0.80 - 0.90 0.85 0.20 -0.90 0.55 0.70 -1.00 0.90 0.10 -0.30 0.17 
W 1.00 -11.00 2.25 1.00 - 1.00 1.00 1.00 -2.00 1.14 2.00 -2.00 2.00 -  - 

Tl 0.30 - 0.50 0.43 0.30 - 0.40 0.35 0.10 -0.30 0.20 0.20 -0.40 0.33 - - 

Pb 9.00 -60.00 20.21 13.00 -14.00 13.50 6.00 -21.00 11.57 12.00 -29.00 21.33 5.00 -11.00 7.50 

Th 4.50 -16.50 12.60 11.80 -13.80 12.80 3.50 -13.10 7.63 11.60 -13.10 12.43 1.30 -4.60 2.33 
U 1.10 - 4.00 3.21 3.40 - 3.60 3.50 0.80 -3.40 2.09 2.90 -3.80 3.37 0.50 -1.20 0.70 

La 12.70 -42.50 35.39 31.20 -35.20 33.20 9.60 -31.60 20.33 28.50 -39.20 34.43 4.90 -25.00 9.85 

Ce 24.60 -90.00 69.99 61.90 -70.70 66.30 17.50 -63.00 39.26 55.30 -80.20 68.43 8.60 -37.30 16.48 

Pr 2.79 -10.80 7.85 6.96 - 8.14 7.55 1.97 -6.97 4.41 6.07 -8.98 7.64 0.96 -3.11 1.65 
Nd 10.70 -42.70 28.87 25.70 -30.70 28.20 7.10 -25.60 16.03 21.80 -33.80 28.13 3.60 -11.40 6.00 

Sm 2.00 -10.50 5.45 4.90 - 6.40 5.65 1.20 -4.50 2.91 4.10 -6.30 5.20 0.60 -2.00 1.02 

Eu 0.39 - 2.51 1.14 1.08 - 1.40 1.24 0.20 -0.90 0.55 0.73 -1.21 0.96 0.12 -0.40 0.21 

Gd 1.70 -10.60 4.55 4.30 - 5.90 5.10 1.00 -3.50 2.32 2.70 -5.00 3.97 0.50 -1.40 0.83 
Tb 0.30 - 1.60 0.73 0.70 - 0.90 0.80 0.20 -0.60 0.39 0.50 -0.80 0.67 0.10 -0.30 0.14 

Dy 1.50 - 9.00 4.42 4.10 - 5.50 4.80 1.00 -3.80 2.35 3.20 -4.60 4.07 0.60 -1.40 0.87 

Ho 0.30 - 1.60 0.88 0.80 - 1.10 0.95 0.20 -0.80 0.49 0.70 -0.90 0.83 0.10 -0.30 0.18 

Er 1.00 - 4.40 2.70 2.50 - 3.10 2.80 0.60 -2.60 1.53 2.00 -2.90 2.57 0.40 -0.90 0.57 
Tm 0.15 - 0.62 0.41 0.39 - 0.45 0.42 0.10 -0.42 0.24 0.32 -0.48 0.41 0.05 -0.14 0.09 

Yb 1.00 - 4.00 2.80 2.70 - 2.90 2.80 0.60 -3.00 1.68 2.30 -3.30 2.87 0.40 -1.00 0.60 

Lu 0.16 - 0.59 0.45 0.40 - 0.48 0.44 0.09 -0.49 0.27 0.39 -0.53 0.47 0.06 -0.18 0.10 



  

Table 2 

Mineral/ 

Sample No Fraction 

S1 

Arkose 

S04 

Arkose 

S08 

Arkose 

S12 

Arkose 

S13 

Arkose 

S06 

Wacke 

S09 

Wacke 

Quartz       

(wt %) 

WR 86.69 82.95 97.33 93.07 79.19 80.69 86.69 

-2 µm 18.4 28.3 6.1 44.3 26 55.7 23.6 

Kaolinite 
(wt%) 

WR 1.89 1.49 0.82 1.47 1.69 1.799 1.36 

-2 µm 49.7 15.2 46 15.8 24.4 15.301 27.5 
Crystallinity Poor Mod Poor Poor Poor Mod Mod 

Illite      

(wt%) 

WR 11.42 15.54 1.85 5.46 19.12 16.65 11.75 

-2 µm 28.7 46.92 47.9 38.8 49.1 26.2 45.9 

Crystallinity Poor Mod Mod Mod Mod Mod Mod 

Smectite   

(wt %) 
WR - - - - - - - 

-2 µm Tr 9.6 Tr 0.2 0.5 - 3 

Pyrite       

(wt %) 

WR - - - -  - 0.86 0.2 

-2 µm - - - - - 2.8 - 

Jarosite     

(wt %) 

WR - - - - - - - 

-2 µm 3.2 - Tr 0.9 - - - 

Total    

(wt%) 

WR 100 100 100 100 100 100 100 

-2 µm 100 100 100 100 100 100 100 

WR= whole rock; Tr=trace; - = not detected; Mod = moderate 
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Table 3 

 

  

Tourmalines (n=17) Chromian Spinels (n=12) Garnets (n=2) 

Parameters Range Avg Parameters Range Avg. Parameters Range Avg 

SiO2 32.2-37.0 34.7 SiO2 0-6.0 0.8 SiO2 30.9-34.6 32.78 

TiO2 0-4.4 1.5 TiO2 0.4-2.5 1.2 TiO2 0-1.1 0.54 

Al2O3 33.1-46.9 42.2 Al2O3 11.8-51.8 23.4 Al2O3 21.7-24.9 23.28 

Cr2O3 - - Cr2O3 19.3-55.9 41.3 Cr2O3 0 0.00 

FeO 6.1-18.5 11.6 FeO 11.8-35.4 25.5 FeO 5.3-29.2 17.24 

Fe2O3 - - Fe2O3 - - Fe2O3 0.2-2.5 1.34 

MnO 0 0 MnO 0 0 MnO 0-34.2 17.12 

MgO 0-12.5 6.6 MgO 0-16.6 7.7 MgO 0-9.8 4.90 

CaO 0-1.7 0.7 CaO 0 0 CaO 1.3-4.5 2.94 

Na2O 0-5.1 2.7 Na2O 0 0 Na2O 0 0 

Atomic ratio 

stoichiometric 
calculation based on 

24.5O   Atomic ratio 
stoichiometric 

calculation based on 4O   Atomic ratio 

stoichiometric 
calculation based on 

12O  inc. Fe2/Fe3 

Si 4.7-5.3 5.0 Si 0-0.2 0.1 Si 2.6 - 2.7 2.65 

Ti 0-0.5 0.17 Ti 0.01-0.06 0.03 Ti 0-0.1 0.03 

Al 5.9-7.8 7.2 Al 0.5-1.7 0.9 Al 2.1-2.3 2.2 

Fe 0.7-2.5 1.4 Cr 0.4-1.5 1.1 Cr 0 0 

Fe3+ - - Fe3+ 0.0-0.2 0.04 Fe3+ 0.01-0.2 0.1 

Fe2+ - - Fe2+ 0.3-0.9 0.6 Fe2+ 0.4-1.9 1.1 

Mg 0-2.6 1.4 Mg 0-0.7 0.35 Mg 0-1.1 0.6 

Mn 0 0 Mn 0 0 Mn 0-2.4 1.2 

Ca 0-0.3 0.1 ∑cat. 3.0 3.0 Ca 0.1-0.4 0.3 

Na 0-1.5 0.8 ∑O. 4.0-4.2 4.0 Total 8.2-8.2 8.2 

Total 15.2-16.6 16.1 Cr# 0.2-0.7 0.6 XMn 0-0.8 0.4 

Si 4.7-5.3 5.0 Mg# 0.0-0.7 0.4 Almandine 0-53.7 26.8 

Al 0.7-1.3 1.0 Fe3+# 0.0-0.1 0.0 Andradite 0.6-9.1 4.8 

Fe/(Fe+Mg) 0.2-1.0 0.5 Al3+# 0.2-0.8 0.4 Grossular 0-3.6 1.8 

Na/(Na+Ca) 0-1.0 0.6 Fe2+/(Fe2++Mg) 0.3-1.0 0.7 Pyrope 42.2 21.1 

Mg/(Fe+Mg) 0-0.8 0.5    Cr#=Cr/(Cr+Al); Mg#=Mg/(Mg+Fe2+); 

Fe3+=Fe3+/(Fe3++Cr+Al) 

Spessartine 0-90.9 45.5 

Al/(Al+Fe+Mg) 0.6-0.8 0.7 Alm+Spess 53.7-90.9 72.3 
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Highlights 

 Integrated approach to infer weathering, provenance and tectonic setting of the Tukau 

Formation.  

 High maturity and moderate to intensively weathered sedimentary rocks.  

 The Schwaner Mountains and Tin Belt of the Malaysia Peninsular were principal 

provenances. 

 Minor contribution from the mafic and ultramafic rocks. 

 Deposition in a passive margin with passive collisional and rift settings. 

 

 

 


