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Abstract 
Purpose – The purpose of this study is to compare the performance of regression and artificial-neural-
networks (ANNs) methods to estimate the running-cost of building-projects towards improved accuracy. 
Design/methodology/approach – A data-set of 20 building-projects is used to test the performance of 
these two (ANNs/regression) models in estimating running cost. The concept of cost-significant-items is 
identified as important in assisting estimation. In addition, a stepwise technique is used to eliminate 
insignificant factors in regression-modelling. A connection-weight method is applied to determine the 
importance of cost factors in the performance of ANNs.  
Findings– The results illustrate that the value of the coefficient of determination = 99.75% for ANNs 
model(s), with a value of 98.1% utilising multiple-regression-model(s); secondly, the mean percentage error for 
ANNs at a testing stage is 0.179, which is less than that of the mean percentage error gained through multiple-
regression-modelling of 1.28; and thirdly, the average accuracy is 99% for ANNs model(s) and 97% for 
multiple-regression-model(s). On the basis of these results, it is concluded that an ANNs model is superior to a 
multiple-regression-model when predicting running-cost of building projects. 
Research limitations/implications – A means for continuous improvement for the performance of the 
models accuracy has been established; this may be further enhanced by future extended sample.  
Originality/value – This work extends the knowledge base of life-cycle estimation where ANNs method has 
been found to reduce preparation time consumed and increasing accuracy improvement of the cost estimation. 
Keywords Artificial-neural-networks (ANNs), Cost-Significant-Items (CSIs), multiple-regression, A 
connection weight (CW), Life-cycle estimation, Building projects. 
Paper type – Research paper 
 
    

Introduction 
 
The principle of Life Cycle Costing (LLC) is not new; the Japanese used LCC concepts widely post 
World-War-II to rejuvenate their economy through specification choices that would last longer 
and thus save costs in the long term. Implicit within LCC is the need to address a built asset’s 
running costs with reference to ongoing maintenance and operation expenditure. However, the main 
historic, perceived weakness of this term model was its incapability to predict accurately or 
confidently future costs (Boussabaine and Kirkham 2007). Term prediction capabilities increasingly 
dominated LCC methodologies to assess building costs throughout the late 1970s such that, as a result 
of increased coverage in the civil engineering sector, it is now widely acknowledged that the initial 
capital cost of construction represents only a small amount (25-40%) of building life cycle costs.   
 
In order to successfully complete projects and make long term profit, stakeholders now recognise that 
the acquisition decisions of construction project elements, at the design stage, should be based on life 
cycle costs rather on initial costs. Appropriate cost reduction measures can be easily taken to predict 
life cycle cost at an early design phase; however, when the construction project moves from early 
design stage to construction stage, possibilities to influence the whole construction project cost are 
decreased quite significantly. The significance of an implementation of a LCC approach is enhanced 
by injecting the maximum information into the design phase, assisting to decrease waste and to 
improve efficiency of design and construction as well as operation and maintenance. Recently LCC 
analysis has, once again, came to the fore as a result of Building I nformation Modelling (BIM) 
integrative initiatives that seek to extend design appreciation towards 4D (representing the four 



dimensions of width, length, height and time sequencing in a project) and then on into 5D and 6D 
(life-cycle cost estimating and facilities-management respectively). 
 
All construction-projects are unique with costs dependent upon an estimation of resources usage and 
specification choice. Risk and uncertainty face design-teams throughout all stages of a building-
project’s life-cycle; correct acknowledgement of all factors must be taken into account to avoid delay 
and cost-blowout. Cost-estimation inaccuracy is a major hurdle, where a lack of applied cost data can 
lead to inadequately completed projects, and failure to realise building objectives (Alqahtani and 
Whyte 2013). Therefore accurate, reliable cost-predictions should be developed to ensure that projects 
satisfy the design brief, enhance on-site construction and mange uncertainty throughout  an assets’ life 
(Yaman and Tas 2007). The significance and influence of construction cost estimating overall is 
supported by research: Carr (1989) contends that cost-estimation delivers substantial information for 
planning, resource controlling and decision making; cost-estimation is deemed key to the success of a 
project (Dysert and Elliott 2002);  Alcabes (1988) articulated that cost-estimators’ duties include 
preparation of all estimates, check-lists and pricing information, asserting that cost-estimation is at the 
heart of construction work as it involves cost reporting, accurate cost classification and calculation of 
profit; and indeed, Akintoye and Fitzgerald (2000), argue cost-estimation as a key facilitator for 
construction contractors for planning purposes. 
 
Markets will increasingly request buildings with low running costs and drive requests for digital tools 
that realistically estimate a building’s life cycle costs performance. It might be argued that, whilst 
much work has been done, knowledge-gaps do still remain in research related to accurate cost-
prediction, especially to address the full range of construction-industry variables. There remains a 
need for better cost estimation methodologies and tools; this is a key motivation for this research.  

The work presented here builds upon the argument that using simulation and statistical tools can help 
solve prediction problems and help create construction-cost models (Cheng et al. 2010). For example, 
a regression-model is one such statistical method towards identifying the impact of factors on 
construction-costs. Selecting the best regression equation to estimate construction-cost depends on the 
relations between specific factors and construction-costs.  
 
Simulation and modelling tools such as expert-systems, neural-networks (NNs), fuzzy-logic (FL), and 
genetic algorithms (GAs) are argued as being able to solve prediction problems (Cheng et al. 2010). 
Neural-networks (NNs) are considered as potentially important applied-methods to address cost-
estimation problems. Artificial-neural-networks (ANNs) are data modelling methods that try to 
address complicated problems by formulating data relationships; albeit that there is no simplistic 
equation that can map between data variables.  
 
The estimation methods alluded to above are deemed able to begin to address the issue of absent 
standardised methodologies for both data collection and analysis in cost-estimation; to extend such 
work, the research presented here aims to compare the performance of regression, and then neural-
networks to estimate the running-cost of building-projects. 
 
In addition, cost-significant items are used to identify the most significant cost-factors, rather than 
seeking to take into account all cost-factors. This will help model development by easing use and 
facilitating result(s) comparisons. In construction, typically ~80% of the value (total cost) of a project, 
might be expected to be contained within ~20% of bill-of-quantities items (Alqahtani and Whyte 
2013), typifying Pareto’s 80/20 rule. Furthermore, this research takes into account non-cost factors 
building upon previous studies conducted to identify the main non-cost factors affecting the life-cycle 
cost-estimation. Finally, cost-significant and non-cost factors are used as input data for both models.  
 
Building upon the rationale above, the structure for the remainder of this discussion involves: firstly, a 
brief summary of the application of multiple-regression & artificial-neural-networks in construction; 



then, descriptions of the data sets used in this study; after-which, the approach of both methods is 
presented and the results for both methods summarised. 
 
 
Review of past implementation of multiple-regression and neural-networks 
 
This research, seeking improved estimation accuracy, builds upon previous work that confirms that 
neural-networks and multiple-regression can be employed in economic related areas, providing 
answers in cases of complicated mathematical calculation and, can be used in data trade analysis and 
forecasting. Past implementation of both methods towards addressing construction issues such as cost-
estimation is discussed briefly below.  
 
In building projects sectors, Boussabaine and Elhag’s (1998) work investigated neural network to 
develop two ANNs models to predict the lowest tender price of primary and secondary school 
buildings. They concluded that the more significant factors contributed in developing an ANN model, 
the better the outcomes that will be achieved. Murat and Zeynep (2004) also examined cost estimation 
for residential buildings by artificial-neural-networking, concluding that a neural-network model can 
reduce the uncertainties in estimating a structural system of building. Kore et al (2005) conducted a 
study to compare the performance of the three estimating methods (regression, case based reasoning 
and ANN) in estimation construction cost and, concluded that neural networks models gave more 
accurate perdition results than multiple regression or case based reasoning models, albeit that the 
neural network models are unable to provide an explanation due to inherent ‘black box’ techniques. 
Also, they found that regression models have no specific approach that will help estimators select the 
cost model that best fits input and output variables to a given best accuracy of estimation. Two years 
later, Wheaton and Simonton (2007) developed hedonic cost models for residential and office 
properties focusing on ‘true’ trends and analysing cost/building activity correlation; cost-indicators/ 
and drivers, whilst were not central to Wheaton, direct similar semilog regression-models in this 
present study presented here.  

In Germany, based on 70 German residential properties, relevant building construction cost drivers 
were identified (Stoy, Pollalis, & Schalcher, 2008).  They reviewed previous studies’ supplies to list 
cost drivers and t h e n  re-examined t h e s e  via interviews with expert practitioners. They concluded 
that compactness of the building, number of elevators, size of the project, expected duration of 
construction, proportion of openings in external walls, and region are the most important variables 
affecting building construction cost. This study supports arguments that (re)identification of variables 
affecting the construction cost estimation process need explicit recognition.  
 
In Egypt, Elkassas et al (2009) also conducted research to predict construction project costs using 
neural-network modelling, creating 3 back-propagation neural-networks to develop a model. They 
found that neural network modelling provided a good, accurate estimation.  
 
Chang (2010) also sought to predict maintenance costs developing 4 neural-networks-models, 
comparing result(s) with regression to identify which model has the least error. Four main factors 
were argued to affect costs (age, floor, classroom, and elevator number). Four models were classified 
based on the number and type of variables in each model, concluding that the prediction accuracy of 
ANNs modelling is better than a regression. Arafa et al. (2011) also developed a neural-network 
model to predict construction-project cost, concluding that  neural-networks can estimate building-
cost without detailed design. 
 
In the highway construction sector, Hegazy and Ayed (1998) created a simple ANNs model to 
develop parametric cost estimating for highway-projects, towards determining network weighting by 
simplex optimisation and genetic-algorithms (GAs) and, back propagation towards training process 



optimisation, concluding that an ANNs improved estimate accuracy, over multiple regression 
analysis. Similarly, Al-Tabtabai (1999) reviewed 40 highway projects to develop an ANNs model to 
estimate the percentage increases in the cost from a baseline, with nine variables using input layers. 
This model generated a mean absolute percentage error of 8.1%. Sodikov (2005) also used neural-
network approaches to predict costs in highways arguing that error in multiple egression was higher 
than ANNs.  
 
In bridging construction sector, Creese and Li (1995) sought prediction of timber bridge costs using 
an ANNs model, finding that accuracy of estimation of total cost increased as the input variable used 
increases, concluding that prediction accuracy of neural networks model is superior to regression 
approaches. This is indicative of the fact that variables affecting the timber bridge costs, other than 
those used in the research, need to be identified and that, also increasing the input variables lead to 
decreases in margin error.   
 
For another purpose, Williams’ (1994) study into neural-network abilities in estimating a 
construction-cost index created two back-propagation neural-network models to estimate the 
change in cost index for one and six month periods, and concluded that the estimated result from 
neural-networks modelling gave greater error than both regression approaches and exponential 
smoothing. As far as accuracy is concerned, the research shows that the neural-network modeling is 
able to resolve disadvantages in the regression approach and provide more accurate results. This study 
supports arguments that variables affecting a construction cost estimation process must be identified. 
 
Another piece of work conducted by Attalla and Hegazy (2003) to investigate  the risky environment 
of reconstruction projects and identify the significant factors affecting their cost performance, 
comparing ANN-modelling with regression-modelling concluded that, both produced close 
predictabilities of cost-deviation. However, the neural-network-modelling technique estimated 
(similar) results using 18 variables, whilst regression utilised only 5, concluding ANNs as more 
suitable for high-levels of uncertainty where decision-support is needed. Regarding key variables, 
Aibinu and Pasco (2008) indicate that, in Australia, the size of project is the most influential factor in 
cost-estimation of construction and that (large) over-estimations are common in small projects and, 
argue that improving cost-estimation requires probability estimation and simulation of past estimates. 
 
For probability analysis methods there are several methods that can be conducted, with Monte Carlo 
Simulation perhaps most readily available; albeit that, disadvantages for this method might include: 
probability subjectively evaluated today may be different in future (Whyte & Scott, 2010); and, that  
sensitivity analysis does have a goal to quantify risk but rather to identify factors that are risk sensitive 
and only one parameter can be varied at a time (R. Flanagan & Norman, 1993). Similarly in terms of 
readily available tools, off-the-shelf computer software applications (stemming from early computer 
integrated construction (CIC) and BIM initiatives) also continue to split opinion. Researchers  (Hu, 
2008; Arayici, 2005; Green, 2009 and Waston 2005) have long debated the extent to which LCC has 
still to be fully integrated into current integrated packages, and that this remains an important part of 
roadmap towards future development of computer software. 
 
Upon reflection, the studies above find that two techniques - multiple-regression and artificial-neural-
networks - can interpret relationships between costs and specific variables. However, disadvantages 
for both techniques can be flagged explicitly: firstly, in impletion of regression methods, the 
relationship between variables must be assumed, with numbers of input variables somewhat limited; 
secondly, literature regards ANNs as a ‘black box’ approach, where the model is built and utilised 
without explanation of what the model has learned, thus is suitable if the main objective is only to 
apply ANNs to make estimations from existing data. To address the first point, this research argues 
that the main factors affecting cost-estimation accuracy can be identified by using the concept of cost-
significant-items CSIs. The second disadvantage (mentioned by previous research applications and 
techniques towards opening the ‘black box’ to explain how ANNs generate estimates) finds 
disagreement over the factors affecting final results (Garson 1991; Gevrey et al. 2003; Milne 1995; 
Olden and Jackson 2002; Recknagel et al. 2006), and perhaps need for Connection Weight (CW) 



methods, (Olden and Jackson (2002) which seem to outperform other approaches in assigning relative 
contributions of input variables in output estimations, goes towards (CW) clarification of black-box 
output. 
 

Methodology 
 
A comprehensive catalogue of 20 building-projects compiled previously by Al-Hajj (1991) is used to 
pilot this current study to compare the performance of both estimation methods (multiple regression 
and ANNs models) to estimate operation and maintenance costs. The data comes from three sources: 
York University, a facility management company and Building Maintenance Cost Information 
Services (BMCIS). The main cost factors affecting the accuracy of running cost estimation for these 
20 building projects has already been identified by Al-Hajj (1991), employing the concept of cost 
significant items (CSIs) where 11 items are identified as most important across all buildings studied 
over the period of 18 years; these items are internal decoration, roof repair, internal cleaning, staff 
engaged in servicing building (laundry and porterage), management fees, rate, insurance,  gas, 
electricity and fuel oil expenditure. This historical catalogue is give credence by recent readily 
available reports from the BCIS that, the result of LCC analysis of building projects does show that 
running costs represent 60% of total LCC and this percentage is increased by approximately 5% 
during changes in the period of analysis from 18 to 20 years. Similarly updated BCIS data identify 
operation cost as 70% of the total running cost and that this percentage is decreased by approximately 
3% during to changes in the period of analysis from 18 to 20 years. The 11 items identified by Al-Hajj 
still represent 70% of total running costs during a period of analysis of 18 years. Tax rate represents 
24% of total running cost and 35% of total operation costs. Internal cleaning represents 19% of total 
running cost and 27% of total operation costs. Gas, electricity and fuel oil expenditure represent 10% 
of total running cost and 14% of total operation costs. Internal decoration is representative of 4% of 
total running cost and 14% of total maintenance costs. Finally insurance, management fees and staff 
engaged in servicing building represent between 4%-6% of total running costs.  
  
Indeed the 7 important non-cost factors identified as affecting the building’s estimation cost remain: 
type of building, gross floor area, area of pitched roof, area of flat roof, area of external glazing, 
number of stories above ground floor and under ground floor. 
 
Input data for both methods consist of eight factors including: 7 non-cost factors and the total value of 
CSIs. Output data for both methods represents actual values of running-costs over the 20 building 
projects.  
 
 
Multiple linear regression-modelling: 
Multiple-regression-models are formed as equation (1): 
                                      Running-costs= a+ b1*X1+ b2*X2+…..+bn*Xn ……….(1) 
 
Where:  a- intercept b1 to bn; regression-coefficients- X1 to Xn ; independent variables of all 8 input 
variables considered independent variables for regression-models. 
 
For evaluation of the multiple regression model, the adjusted R2-value and P-value are key; the R2-
value represents the percentage variability in the costs that can be determined by the variables 
involved in the model. If R2 is equal or close to 1, then there is good correlation (good-fit) between 
the actual value and the estimation model output. Furthermore, In order to improve the result of 
multiple-regression for fair comparison with ANNs, a significance level (p-value) was used to identify 
the variables to be eliminated. In general, the variables with p-value close-to or less-than 0.05 are 
considered to have an important contribution to the model (Ontepeli 2005). The stepwise method will 
be applied to identify the most important variables. The procedure of this method starts by including 
all 8 variables (initial experimentation) in the model; then an identification of the p-value for each 



variable, if a variable has p-value more than 0.05; and, subsequent elimination until identification of 
the best model with a consistent variable, p-value equal or less-than 0.05.  
 
 
Validation of multiple linear regression-modelling 
The R2-value (good-fit) of a model is not always enough for an accurate estimation; performance of 
the models should also be assessed by applying cross validation techniques (Sonmez 2008). For this 
reason, the 20 projects are divided into two sets. One set consists of 17 projects used to ‘build’ the 
model, with 3 projects used towards model validation. The performance of the model will be 
evaluated based on the value of mean percentage error (MPE) (equation2) and R2 value, such that 
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where: Oi: the actual output;  Pi: The model output; i is the project number and n is the total number of 
projects. 
 
 
Neural-network modelling 
This paper uses spread-sheet optimization (Microsoft Excel’s inherent solver function) to build the 
ANNs model. This paper applied 7 steps (adapted from suggestions by Hegazy and Ayed (1998)) to 
build an ANNs model by spread-sheet. 
 
In this paper, the aim is optimization and to decrease the NN weighted error to reach the 0 value. In 
order to achieve this objective, the adjusted variable has been selected as the weight(s) from inputs to 
hidden nodes and from hidden nodes to outputs. Optimization constraints were set to limit the 
proportion error on both training and test project to 3% and 1% or lower to avoid erroneous network 
result(s) on individual training projects.  
 
Traditional parametric (trial and error) has been applied to select the number of hidden layers and the 
number of hidden nodes. During the training process, hidden layer numbers and hidden nodes are 
adjusted to find the best artificial-neural-network model to give the minimum value for the Root Mean 
Square (RMS) and MPE, equation (2 and 3) for output parameters. Tangent Sigmoid is used as a 
transfer function of NNs model. 
 

𝑅𝑀𝑆 = &
'

'
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RMS: a root-mean-square error, n: number of sample using in the training stage, Oi: the actual output. Pi: The 
model output.  
 
As with regression modelling above, the 20 projects are divided into two sets: 17 projects used for 
training the model; and the remaining 3 projects used to test the procedure. As mentioned, one of the 
objectives of training the model is to identify the best structure of a ANNs model. The acceptable 
level of the result of the model is evaluated based on the value of RMS (equation3) and MPE (in 
equation 2).  
 
  
Connection weight method (CW) 

The connection weight(ed) method was applied in order to rank the importance of input (eight) 
variables in predicting the output variables (running costs) for neural-networks. This method (Olden 
et al. 2004)) calculates the sum of products of weights of the connection from input nodes to the 
hidden nodes and the weight(ing) of the connection from hidden nodes to the output node for all input 
variables. The larger the sum of the connection weight(ing), the more important is the corresponding 
input variable. The relative importance of input variable i can be defined as:  

𝑅𝐼𝑖 = 𝑊𝑖9 ∗ 𝑊𝑁('
9,& ……… (4) 

 



Where: RIi: the relative importance of input variable I; n is the total number of hidden neuron; Wi=: the weight 
of connection from input neuron I and hidden neuron N; and, WN?: the weight of the connection between 
hidden neuron N and output neuron. 
 
 
Paired t-Test: 
In order to create statistical significance, a statistic test is suitable to comparatively analyse estimation 
accuracy between ANNs and multiple regression for predicting running costs. As the data used in this 
study in both models are same, paired t-test (two samples for mean) was applied to estimation 
accuracy (absolute mean percentage error) to test all hypotheses (paired t-test by SPSS software), 
where hypotheses are proposed such that: 
 
a)   H0: there is no prediction accuracy difference in regression and NNs methods (µ1= 0, Absolute mean 

percentage error is close to zero) 
b)   H1: There is prediction accuracy difference in regression and NNs methods (µ1≠ 0, Absolute mean 

percentage error is to large) 
 
 
Results  
 
Artificial-neural-network models 
 
The 6 model trails and error were applied to find the number of hidden nodes on hidden layers. It was 
obvious that increasing the number of nodes in hidden layers leads to changing the value of both RMS 
and Absolute Difference error. 4 hidden nodes provided the lowest RMS value of 0.011 and an 
absolute difference error value of 0.29%. 
 
The neural-network model developed in this paper consists of 3 layers: input layer of 8 nodes, one 
hidden with 4 nodes (trial and error in a training stage was applied to determine number of nodes) and 
output-layer contained in one node (the total running cost). 
 
It is shown from the results that the running-cost model developed by ANNs modelling performs well; 
no important differences are recognised between the estimated and actual running-costs. Results are 
tabulated below in Table 1. The MPE result from neural-network modelling for the testing projects 
was 0.179 %. The expected accuracy of the ANNs model at training and testing stage is described in 
table 1 below. 
 
The ANNs model is able to estimate the total running cost with an average accuracy of 99%. The 
neural-network model results from both training and testing stages and the actual value of running 
costs were passed to regression analysis in order to investigate the model response in more detail. The 
result of linearly regression is presented graphically in figure 1 below. 
 
In training and testing stages, the R2 is close to 1, indicating a good fit and linear correlation between 
the actual running-cost and the ANNs result at training and testing stages. 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure	
  1	
  	
  Comparisons	
  the	
  result	
  of	
  adjusted	
  R2,	
  MPE	
  and	
  RMS	
  for	
  two	
  models	
  at	
  each	
  stage. 



Projects     Stage   Actual  running  
cost  

ANNs     Multiple-­Regression  

Prediction   different  error  
[(Actual-
prediction)/Actual]*10
0  

Prediction   different  
error    

1   Training  
set  

63550.86 63495.95 0.086 62830.42 1.133 

2   58834.79 58833.92 0.001 58834.79 0 

3   72589.29 72952.23 -0.500 72167.02 0.581 

4   58006.39 58009.13 -0.005 58303.04 -0.511 

5   77712.42 77717.36 -0.006 78385.60 -0.866 

6   67320.86 67013.82 0.456 70108.44 -4.140 

7   62094.77 62103.54 -0.014 61437.80 1.058 

8   61905.1 62199.50 -0.476 61474.89 0.694 

9   72134.2 71773.57 0.500 72009.06 0.173 

10   56257.54 56258.64 -0.002 56853.24 1.058 

11   50832.14 50830.18 0.004 50415.96 0.818 

12   61296.04 60989.67 0.500 62304.16 -1.644 

13   76918.18 76533.59 0.500 75166.71 2.277 

14   70330.57 70108.58 0.316 69014.98 1.870 

15   53760.86 54029.55 -0.500 55004.36 -2.313 

16   47220.45 47456.55 -0.500 46234.51 2.087 

17   45350.81 45577.54 -0.500 45570.20 -0.483 

18   Test  set   60832.72 60832.69 0.000 60673.16 0.262 

19   89369.22 88890.31 0.536 86394.96 3.328 

20   53834.61 53834.61 0.000 53701.51 0.247 

Mean  percentage  error (testing)   0.179   1.279  

Expected Accuracy 

Models Stage 1-   Mean 
percentage 

error 
(MPE) 

2-   Standard 
Deviation(ST) 

3-   Accuracy range (MPE±ST) 

ANNs Training 
stage 

-0.008 ±0.378 (-0.386 to +0.370) 

Testing 
stage 

0.179 ±0.309 (-0.131 to +0.488) 

Multiple-
regression 

Training 
stage 

-0.019 ±1.668 (-1.687 to +1.649) 

Testing 
stage 

1.279 ±1.774 (-0.495 to +3.053) 

Table	
  1	
  the	
  main	
  results	
  for	
  both	
  models 
 
 
Relative importance of independent variables in case of ANNs: 
As mentioned one disadvantage of ANNs modelling is the (black box) lack of illustration for the 
relative importance affecting the independent variables. However, CW is applied to discover the 
relative importance affecting independent variable(s) (input data) to the dependent variables (output 
data). It is clear that ‘CSIs’  are most important variable(s) influencing running cost value(s);  number 
of storeys underground floor is the second most important variable, followed by project type; area of 
external glassing; number of storeys above ground floor; area of pitched roof and gross floor area with 
area of flat roof of lesser importance.  
 



 
Multiple-regression-model 
 
In this case study, Multiple-regression-modelling was developed to compare results with neural-
network modelling. Multiple-regression-models are formed as equation (1). 
 
Similar to ANNs model, 17 projects were used to develop the regression-model. Initial 
experimentation with multiple regression models include the 8 variables used in developing the ANNs 
models to clarify that there  are insignificant variables which need elimination to improve the result of 
the model. For example in initial experimentation ‘number of stories above ground floor’ in an 
insignificant factor, based on p-value (0.668).  
 
In order to improve the result of multiple-regression-modelling for fair comparison with ANNs 
modelling, significant level (p-value) was used to identify the variables to be eliminated. In general, 
the variables with p-value close to or less than 0.05 are considered to have an important contribution 
to the model (Ontepeli 2005). This method is termed a stepwise method. The procedure of this 
method starts by including all 8 variables (initial experimentation) in the model; then identifies the p-
value for each variable; if a variable has p-value more than 0.05 then it will be eliminated until 
identification of the best model with consist variable(s) with p-vale equal or less than 0.05.  
 
The influence of each independent variable (of input data) in regression modelling can be identified 
by checking the value of coefficient and p-value for each variable. The initial model considers two 
variables as the most important factor. They are, in order of importance: CSIs and project type. The 
relationship between running costs and these variables are positive. After an applied stepwise method 
and identification of the best model, six variables are highlighted as most influential, in order of 
importance: CSIs, area of flat roof, project type, and gross floor area, number of storeys underground 
floor, and area of pitched roof. Only the area of flat and pitched roof has a negative relationship with 
running-costs. It is clear that the stepwise method results lead to a very different conclusion(s) from 
the initial model. 
The best regression-model can thus far be represented with the following equation: 
Running-costs= -0.155+0.253*gross-floor-area-0.097*area of pitched roof-0.382*area of flat 
roof+0.095* number of storeys under ground floor+0.891*CSI+0.194*project type 
 
From the table (1), the MPE result from multiple regression modelling for the testing projects was 
1.279. The expected accuracy of the neural-network model at training and testing stage is introduced 
also in table (1). 
 
The multiple-regression-model is thus far, able to estimate the total-running-cost with an average 
accuracy of 97%. 
 
Paired t-Test: regression Vs NNs modelling 

The result of paired t-test indicate that the P-vale <0.05, H0 is rejected; this means the Absolute mean 
percentage error of regression modelling was significantly more than the neural-network model 
(approximately three times), indicating no similarity between the results of both models. Therefore it 
is argued that ANNs modelling gives more effective results than regression modelling alone.  

 
 
Discussion: 

Currently, building cost-estimation is complex and time consuming. Based on the results generated by 
this study’s models, cost-estimation function(s) may now go towards an appropriate/suitable cost 
estimate in a much reduced time-frame (than existing approaches).  



  
From the result presented above, it is clear that ANNs models provide excellent performance in terms 
of both training and testing projects when compared to multiple-regression-modelling; figure (1) 
illustrates the MPE at training and testing stage for both models with RMS. The best overall model 
developed here by ANNs is able to estimate running-costs with 99% accuracy.   
 
These results also show that an ANNs may be an attractive substitute for regression because the 
estimation process becomes more complex as the dimensionality of the cost drivers set grows and the 
neural networks are capable of accepting a larger number of potential cost drivers than regression. In 
addition the method of selecting a best model for neural network(s), dependent upon a learning curve, 
carries more worth than statistical models where decisions are fewer and guidance is readily available 
from texts and software.  Furthermore, the relationship between the dependent variables and 
independent variables in regression modeling must be reviewed in advance.	
  
 
Both methods presented above are able to identify ‘importance factors’ affecting an estimation of 
running costs. It is interesting to note that both methods provide the same result regarding the most 
important variable influencing estimation results, namely CSIs.  
 
Results here show that building type has an effect on LCC, with total cost of design, construction, 
maintenance and operation dependent upon the nature of asset specialisation and relative material, 
validation gained somewhat by literature (Al-Hajj (1991) where models of specific building types 
have a higher predictive accuracy. Roof type too influences cost estimation model outcomes, with flat 
roofs (empirically found to be) more expensive than pitched-roofs of comparable quality due to 
simplicity in spanning large areas with roof trusses rather than deep beams. Similarly gross floor area 
is important with large building areas requiring comparable larger resources beyond the design, 
construction phases to operate and maintain. Important factors identified by this research, reconfirm 
previous work studies highlighting project nature, roof type and gross floor area as key to an 
estimation of cost (Aibinu and Pasco 2008, Cheng et al. 2010, Elhag and Boussabaine 1998, Sonmez 
2008, , E.M. Elkassas et al. 2009). Further research is also appropriate to identify (through literature, 
historical data) supplementary (significant) cost driver(s) affecting cost estimation through detailed 
analyses of project location, inflation rate, and project design flexibility towards potential life cycle 
increases. 
 

Conclusion: 

Cost estimation has a very significant role in project decision-making and can contribute to enhanced 
design parameters by improving decisions related to best fit specifications, and effect customers’ 
satisfaction levels by advising of potential reductions in projects cost, as well as help timely project 
delivery of fit for purpose components onsite. Multiple-regression (MR) and ANNs modelling were 
used here in order to improve the quality of the estimation process. Identification of the main factors 
affecting the accuracy of an estimation of (whole) cost is an important first step in the research 
presented. Resultantly, using the concept of cost significant items (CSI) alongside an application of 
historical project cost data, the model developed and created by this work (using input data from 20 
previously catalogued building-projects) allowed a better estimate of the total running cost of 
construction assets. Regression models have no clear defined method to help estimators select the best 
design model that can be used to find the relationship between independent and dependent variables. 
ANNs do seem to be very flexible and can be adopted easily across different designs.  ANNs are able 
to accept a larger number of independent variables than regression. 
 
This research developed then compared the performance of estimating approaches MR and ANN. The 
results of this comparison reveal that ANNs modelling is the best (most accurate means and) method 
to estimate running-costs. The model developed in this paper, for running costs estimation of 
construction projects, is presented as a way to help enhance accuracy levels of future project cost 
estimation. 
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