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Tuning rules for robust FOPID controllers based on multi-objective
optimization with FOPDT models

Abstract

This paper addresses the problem of tuning fractional-order proportional-integral-derivative (PID)

controllers for a balanced servo/regulation operation. In particular, we consider the control prob-

lem of minimizing the integrated absolute error for both the set-point step response and the load

disturbance step response, by constraining at the same time the value of the maximum sensitiv-

ity in order to provide a satisfactory robustness. The control problem is therefore stated as a

multi-objective optimization problem where a first-order-plus- dead-time process model has been

considered. A set of Pareto optimal solutions is obtained for different normalized dead times and

the optimal balance between the competing objectives is determined by choosing the Nash solu-

tion as a bargain game based trade-off solution among the Pareto-optimal ones. The results have

been eventually fitted in order to obtain simple tuning rules. Several simulation results show the

effectiveness of the proposed approach.
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1. Introduction

A considerable number of tuning rules for Proportional-Integrative-Derivative (PID) controllers

has been developed in the last decades. Indeed, they are with no doubt the most extensively em-

ployed controller in industrial applications [1, 2].

In recent years, fractional control has received a great interest from the control community due to

the fact that it provides more flexibility in the design phase than the classical integer order one.

This leads to controllers that are capable to accomplish more demanding control requirements

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Owing to this, it seems natural to generalize the derivative and

the integral orders of the PID controller to any real number leading to the fractional-order PID

(FOPID) controller [14, 15]. The use of a FOPID controller implies that a better performance can

be achieved, but on the other hand it means that design can be more difficult. However, in order

to foster the application of FOPID controllers in industry, the same ease of use as classical PID

controllers must be ensured. For this purpose, the stability issue of this kind of controllers has

been investigated in [16, 17]. Then, a large number of strategies to tune a FOPID controller has

been proposed in the literature to facilitate their implementation [18]. In particular, optimization

techniques have been proposed, mainly with the aim of achieving the so-called iso-damping prop-

erty [19, 20, 21], that is, achieving a flat phase at the gain crossover frequency so that the same

overshoot is obtained in the set-point step response despite process gain variations [22]. It has

however to be recognized that, as for standard PID controllers, the presence of tuning rules can

represent a key factor for the success of FOPID controllers. Taking this into account, rules that

consider the optimization of the load disturbance response with a robustness constraint have been

proposed [23, 24]. Similarly, the minimization of the integrated absolute error with a constraints

on the maximum sensitivity has been pursued in [25], where both the set-point following and the

load disturbance rejection tasks have been considered separately.

It turns out that a FOPID controller tuning rule that addresses both the set-point following task

(servo mode) and the load disturbance task (regulatory mode) at the same time is still missing. In-

deed, for the design of a control system, it is important to take into account the trade-off between

these specifications. Moreover, the other important trade-off between performance and robustness
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has to be considered. Nevertheless, it is well known that these are in general competing objectives

that have been already investigated for standard, integer order, PID controllers (see [26], where

however the robustness issue is disregarded).

In this context, as there are different conflicting requirements to handle, it is natural to set up a

Multi-Objective Problem (MOP) [27]. In fact, in general, a good disturbance rejection response is

not compatible with a good set-point step response and a high performance is often not compatible

with a controller which is robust to process model mismatch. The controller design can be there-

fore be viewed as the search for the best compromise between all the specifications and thereby

the idea of using a Multi-Objective Optimization Design (MOOD) procedure can be an effective

approach to solve this kind of problems [28]. Eventually, tuning techniques can be obtained based

on the so called Pareto front approximation, where all the solutions are Pareto-optimal and offer

different trade-offs between the objectives, see for example [29, 30, 31, 32].

In this paper the MOOD procedure is implemented in order to find a controller with an optimal

balance between the posed objectives. For this purpose a new approach for the Multi-Objective

Optimization (MOO) procedure has been implemented in order to improve the convergence capa-

bilities. We consider a servo/regulatory optimally balanced tuning, where the MOO procedure is

performed by optimizing the set-point following and the load disturbance rejection performance,

measured in terms of the integrated absolute error (IAE) and considering First-Order-Plus-Dead-

Time (FOPDT) processes with different normalized dead times. In order to achieve a reasonable

performance/robustness trade-off, the maximum sensitivity Ms has been used as a measure of the

system robustness. Regarding the robustness constraint, a double approach has been pursued: in

the first case the value of Ms has been constrained in a reasonable range while in the second case

the value of Ms has been constrained to a specific value that the user can selected depending on

the application. Then, in order to select the best compromise between the different objectives,

the Nash solution (NS) has been determined [33] as a Multi-Criteria Decision Making (MCDM)

technique for each normalized dead time. Finally, tuning rules have been determined by using

a least squares fitting technique with the obtained optimal results with respect to the normalized

dead time. It is worth to highlight that the obtained tuning rules follow the same structure for all

the situations considered.
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The main contribution of the present paper are the balanced tuning rules. Existing optimal

tunings for fractional-order PID controllers should of course offer better performance than the one

proposed in this paper as far as just one operation mode is considered. The proposed controller

tuning provides a better trade-off when a global performance is considered, that is, when the con-

trol systems addresses both the operating modes. This is operating in any one of both modes. The

key point achieved by the use of the multi-objective optimization approach is that of maintaining

as much as possible the optimality with respect to both tasks. Hence, it is from a global viewpoint

that the proposed tuning rules for fractional-order PID controllers provides an improvement with

respect to pre-existing results. In this context, the paper also proposes a Global Performance Index

(GPI) that includes the different considered performance indicators. Simulations results show the

effectiveness and the robustness of the proposed tuning rules and the advantage of a unique tuning

strategy capable to address both the servo and the regulatory tasks.

The paper is organized as follows. In Section 2 the control system is described while, in

Section 3, the control problem is formulated. In Section 4 the MOOD procedure for tuning the

FOPID controller is described. In Section 5 the optimization results are presented along with the

optimal tuning rules. Section 6 is devoted to the performance assessment. Simulation results are

presented and discussed in Section 7. Finally, conclusions are drawn in Section 8.

2. Control system

The purpose of a control system is to obtain a desired response for a given system. We consider

the typical feedback control system represented in Figure 1, where P is the process, K is the

controller, r is the set-point signal, u is the control signal, d is the load disturbance signal, y is the

process output and e := r− y is the control error. The process dynamics, described by the transfer

function P (s), is considered to be self-regulating and represented by a FOPDT model of the form:

P (s) =
K

1 + Ts
e−Ls, (1)
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Figure 1: Feedback control scheme.

where K is the process gain, T is the time constant and L is the dead time. The process dynamics

can be fully characterized in terms of the normalized dead-time defined in (2), which represents a

measure of the difficulty in controlling the process:

τ =
L

T
, τε [0.1, 4]. (2)

Note that FOPDT models are frequently used in process control because they are simple and they

describe with a sufficient accuracy the dynamics of many industrial processes [2]. Further, such

models can be obtained by means of very simple step tests or relay experiments and therefore they

are also often employed in automatic tuning techniques.

In this paper, the process will be controlled with a fractional-order PID controller, which is

defined as a generalization of the standard ISA form for the PID controller, whose transfer function

is given by [34]:

K(s) = Kp

(
1 +

1

Tisλ
+

Tds
µ

Td
Nµ sµ + 1

)
, (3)

where Kp is the proportional gain, Ti is the integral time constant, Td is the derivative time con-

stant, N is the derivative filter parameter, λ and µ are the non-integer order of the integral and of

the derivative actions, respectively (i.e., the tuning parameters).

Remark 1. It is worth mentioning that the derivative filter time constant Td
Nµ is selected in such

a way that the phase transition of the filter occurs in log(N) decades after the derivative term

Tds
µ crosses the 0 dB axis, regardless of the derivative order µ. Indeed, selecting the filter time

constant as Td
Nµ prevents the fractional poles migration [35] when the derivative order changes.

Here, N = 10 has been selected as it is usual in industrial controllers [36, 2].

5



Finally, it must be pointed out that, in order to implement the fractional-order controller, the

Oustaloup continuous integer-order approximation [6] has been used; it consists in using the fol-

lowing approximation based on a recursive distribution of zeros and poles:

sν ∼= k
N̄∏
n=1

1 + s
ωz,n

1 + s
ωp,n

, ν > 0, (4)

where ωz,n and ωp,n are, respectively, the frequencies at which the zeros and the poles occurs,

ν ∈ R is the fractional order, N̄ is the number of poles an zeros used for the approximation and k

is the gain. The approximation is only valid in a frequency interval [ωl, ωh], where ωl and ωh are,

respectively, the lower and the higher limit. Finally, the gain is adjusted so that both sides of (4)

have the same gain in the logarithmic mid point of the interval.

In this paper the values of ωl and ωh have been selected as 0.001ωc and 1000ωc, respectively, where

ωc is the gain crossover frequency of the loop transfer function. Furthermore, N̄ has been chosen

equal to 8. It is worth stressing that the use of these criteria to select the approximation param-

eters leads to a mismatch between the responses that would be obtained with the ideal fractional

controller and the approximated controller that is negligible. Indeed, within the approximation

frequency range, the selected number of poles and zeros makes the two controllers virtually undis-

tinguishable. Below the lower approximation limit, because of the large approximation range

centered at ωc, the presence of a (possibly fractional) integrator flats the closed-loop frequency

response, both in the ideal and in the approximated cases, along the 0 dB axis. Finally, above the

upper limit, the high frequency roll-off makes again the ideal-approximated closed-loop mismatch

negligible.

3. Problem formulation

As stated in the introduction, we aim at finding an optimal tuning for the proposed FOPID

controller taking in to account both the servo and the regulatory modes.

In order to measure the performance of a given set of tuning parameters, we use here the Integrated

Absolute Error (IAE) defined as

IAE :=

∫ ∞
0

|e(t)|dt =

∫ ∞
0

|r(t)− y(t)|dt. (5)
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Indeed, it is well-known that in general it yields both a low overshoot and a low settling time at

the same time [37].

Nevertheless, since we must take into account both the servo and the regulatory mode, we must

consider two different IAEs, the one obtained in the set-point step response (servo mode) and the

other obtained in the load-disturbance step response (regulatory mode). The problem arises since

these two objectives are conflicting. Indeed, it is well known that a good servo tuning may result

in a sluggish disturbance rejection response and, viceversa, a good regulatory tuning may result

too aggressive for the servo task ending up in an oscillatory set-point response.

Hence, the FOPID controller has to be tuned in order to simultaneously minimize two cost func-

tions: the IAE of the set-point step response, IAE sp, and the IAE of the load disturbance step

response, IAE ld.

Moreover, aiming just at obtaining the minimal IAE may lead to a poor control performance be-

cause the robustness issue is not taken into account. For this reason, in this work we also consider

the maximum sensitivity, defined as

Ms := max
w∈[0,+∞)

∣∣∣∣ 1

1 +K(s)P (s)

∣∣∣∣
s=jw

. (6)

It represents the inverse of the minimum distance of the Nyquist plot from the critical point (-

1,0). This index is an indication of the system robustness (relative stability) and typical values

range form 1.4 (robust tuning) to 2.0 (aggressive tuning) [38]. The maximum sensitivity is used

as a constraint during the IAE minimization procedure and may be fixed to a specific value or

constrained to a given range. Both approaches will be pursued in the paper.

Bearing in mind the previous reasoning, it appears that the control problem has a clear multi-

objective nature. Accordingly, in the next section, after introducing the fundamentals of MOO, the

control problem will be recast as MOP.

4. Multi-objective optimization

This section provides an overview about multi-objective optimization, showing how the FOPID

controller design can be tackled with this technique. As it has been mentioned in [39], a MOP can
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always be expressed as follows:

min
θ∈Rn

J(θ) = [J1(θ), . . . , Jm(θ)] ∈ Rm (7)

subject to:

g(θ) ≤ 0 (8)

h(θ) = 0 (9)

θli ≤ θi ≤ θui, i = [1, ..., n] (10)

where θ = [θ1, ..., θn] is defined as the decision variables vector, J(θ) is the objective vector,

g(θ) and h(θ) are the inequality and equality constraint vectors, respectively, and θli and θui are

the lower and upper bounds in the decision space of the θi variable. Therefore, a set of optimal

solutions is defined as the Pareto set and each solution within this set defines an objective vector.

The projection into the objective space is known as Pareto front (PF). All the solutions in the PF

are said to be non-dominated and Pareto-optimal solutions. This means in the PF, there is not

a solution that is better than another one for all the conflictive objectives. To improve in one

objective will imply to introduce a loss regarding the other ones. It is important to mention that

the true PF is unknown, for this reason MOO techniques search for a discrete description of the

Pareto set capable of generating a good approximation of the PF, see Figure 2. Finally, when the

PF approximation has been obtained, the multi-criteria decision making (MCDM) stage is carried

out in order to select the most preferable solution for the designer.

 (  ) Dominated solutions

(  ) Discrete PF approximation

True PF

J1

J 2

A design alternative

Figure 2: PF concept and design alternative (for a particular design concept).
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Figure 3: Multi-objective Optimization Design Procedure for FOPID controller.

In order to incorporate the MOO into any engineering design procedure, a general framework

is required [40, 41]: i) the MOP definition (objectives, decision variables and constraints), ii) the

MOO process (search) and iii) the MCDM stage (analysis and selection). Overall, this procedure

is known as Multi-objective Optimization Design (MOOD) procedure and is represented in Fig-

ure 3. Hence, to obtain the best trade-off from the Pareto front approximation for the controller

tuning, the aforementioned steps are needed [28]. In the next subsection, they will be specifically

developed for the stated problem.

4.1. MOP definition for the FOPID controller

In the previous two sections the control system has been described and the control problem

formulated. Therefore, the MOP statement for FOPID controller tuning could be formulated as:

min
θc

J(θc) = [Jsp(θc),Jld(θc)] (11)

such that

gls ≤ g(θc) ≤ gus, (12)

where

θc = [Kp, Ti, Td, µ, λ]

are the parameters of the FOPID controller (decision space).

According to the control problem stated in Section 3, the goals for the controller tuning are the
9



minimization of the IAEs for the set-point and the load disturbance step response, namely:

Jsp(θc) = IAE sp :=

∞∫
0

|e(t)|dt, d = 0 (13)

when a set-point step response is considered, and

Jld(θc) = IAE ld :=

∞∫
0

|e(t)|dt, r = 0 (14)

for a load disturbance step response.

The minimization is constrained by using the maximum sensitivity Ms, that is:

g(θc) = Ms = max
w∈[0,+∞)

∣∣∣∣ 1

1 +K(s;θc)P (s)

∣∣∣∣
s=jw

(15)

gls ≤ g(θc) ≤ gus, (16)

where gls, gus, are the lower (Ms = 1.4) and upper (Ms = 2.0) constraint limits.

As stated in Section 3, Ms can be constrained to be into a range or to be fixed to a specific value.

Therefore, the alternative to the inequality constraint (12), is to use an equality constraint

h(θc) = h, (17)

where h(θc) = Ms and h ∈ {1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}.

4.2. MOO

In this paper, a multi-stage approach is proposed (see Figure 4), where two algorithms are

merged1 in a sequential manner for controller tuning, when a MOP as described by (11)-(12) is

being solved:

• The Normalized Normal Constraint (NCC) algorithm: it is a deterministic algorithm pro-

posed in [42]. It is used in a bi-objective statement, where the optimization problem is less

1Both algorithms are available in Matlab Central at http://www.mathworks.com/matlabcentral/

fileexchange/38976 and http://www.mathworks.com/matlabcentral/fileexchange/

39215.
10



sensitive to the anchor solutions and more likely to converge to the PF. In this context, it

is in charge of searching the local space (convergence area). This algorithm incorporates

a critical linear mapping of the design objectives. This mapping has the desirable property

that the resulting performance of the method is entirely independent of the design objectives

scales and in the ability to generate a well distributed set of Pareto points even in numerically

demanding situations.

• The Multi-objective Differential Evolution Algorithm with Spherical Pruning (sp-MODE):

it is an evolutionary optimization approach based on differential evolution [43]. This al-

gorithm is in charge of searching the global space. It uses the locally Pareto-optimal ap-

proximation calculated by the deterministic (NCC) approach as the initial population. The

basic idea of the spherical pruning is to analyze the proposed solutions in the current PF

approximation by using normalized spherical coordinates from a reference solution.

Algorithm I: Multi-stage approach

1 : Determine the initial solution for the NNC algorithm.

2 : Compute the anchor points for objectives            and           .    

3 : Approximate the sub-Pareto front J' (  ) = [          ,           ] with NNC 

     algorithm and the computed anchor points.       

4 : Use the Pareto set approximation     , computed previously as initial

     population for sp-MODE algorithm.

5 : Approximate the Pareto front J (  ) = [          ,           ].     

6 : Perform decision making step for controller selection.

c

'*
p

Jld (  )cJsp (  )c

Jld (  )cJsp (  )c

Jld (  )cJsp (  ) c

c

Figure 4: Algorithm I: Multi-stage approach

It should be noted that using this approach the sought set of solutions will have some desir-

able characteristics as exploitation capabilities (local and dominated solution are avoided from the

Pareto front). Furthermore, it allows both algorithms to complement each other despite of their

drawbacks and to improve the results of optimization in terms of convergence and accuracy. This

approach has been shown in a previous works [44] to be effective in addressing control engineering

problems.
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This approach will improve the exploitation capabilities of the algorithms and it will reduce the

numerical burden associated with the generation of the Pareto front approximations for reliability

problems. It is worth stressing that, if a solution gives the desirable trade-off, then it is possible to

optimize such solution, looking for a locally Pareto optimal solution that dominates the preferable

solution. In this way, the preferability (from the point of view of the trade-off among conflicting

objectives) and convergence are fulfilled.

4.3. MCDM stage

In this final step of the MOOD procedure, the designer needs to analyze the trade-off among the

competitive objectives and select the most reasonable solution according to his/her preferences. In

fact, all points within the PF are equally acceptable solutions. However, there is the need to choose

one of that points as the final solution to the MOP for the implementation phase. It is worth

recalling that an analytical expression of the PF is usually unknown and the decision-making can

only rely on the discrete approximation. Therefore, for decision making, we propose the Nash

Solution (NS) [33]. This criteria provides an automatic selection and a direct approach for the

choice of one point from the PF approximation. The NS lies on the PF surface and is computed

as the intersection between the surface and the diagonal line that passes through two opposite

vertexes of the smallest cube that inscribes the surface. In Figure 3, in the MCDM stage there is an

image that shows where the NS is located into the PF. As it can be seen, there is a rectangle defined

by the disagreement point, B, NS and A. The disagreement point can not be a common solution for

the MOP because none of the objectives would agree on this point due to the fact that it represents

the worst situation. Furthermore, this point can be improved with respect to both objectives; the

area of the rectangle (see Figure 3) represents the set of solution dominated by the NS. Therefore,

the NS provides the PF solution that dominates the larger number of solutions (being absolutely

better), with respect to both objectives at the same time. This criterion has already been used

successfully in [45, 46, 47].

12



5. Optimal tuning

In order to find a set of optimal tuning rules for the FOPID controller, the MOOD procedure

stated in the previous section has been applied to a set of FOPDT process models with different

values of the normalized dead time τ ranging from 0.1 to 4.0. Note that the considered range of

normalized dead times spans from lag dominant processes to truly delay dominant ones, being the

upper limit τ = 4.0 whereas most of the existing tuning rules cover just till τ = 2.0.

The gain of each process has been set equal to one and the time constant has been normalized to

one without loss of generality since the gain is a pure scale factor and the process dynamics is

completely parameterized by using the normalized dead time τ .

Unit step signals have been employed for the set-point following and load disturbance rejection

tasks in order to compute the corresponding IAEs (13)-(14).

The optimization problem (11) has been solved by using two different types of constraints:

1. the maximum sensitivity Ms has to be in a range (hereafter addressed as Ms-range case):

1.4 ≤Ms ≤ 2.0; (18)

2. the maximum sensitivity Ms has to be equal to a given value (hereafter addressed as Ms-

value case):

Ms = {1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0} . (19)

The following framework has been used in order to solve the MOO problem:

• the servo and the regulation operation modes have been considered in the same optimization

problem;

• as initial guess for the NNC algorithm, the optimal parameters proposed in [25] have been

used and the parameter search space selected as Kp ∈ [0.1, 11], Ti ∈ [0.01, 3], Td ∈ [0.01, 3]

and µ ∈ [0.9, 2];

• the sp-MODE algorithm has been used with:

13



– the scaling factor (F), which is a real and constant factor that controls the amplification

of the differential variations that allows the mutant vector. In this context, F=0.5 is

usually a good initial choice (see [48]);

– for each target vector and its mutant vector, a trial child vector is calculated. In order

to increase the diversity of the disturbed parameter vector the Crossover rate (Cr) is

introduced. A good choice for it is Cr=0.9, according to the guidelines proposed in

[48, 43, 49].

The outcome of the MOO procedure is a set of PFs, for different normalized dead times and, in

the Ms-value case, for different maximum sensitivities. It is worth stressing that the PFs obtained

for the Ms-value case are two dimensional curves where the x and y axes are, respectively, IAEld

and IAEsp . Conversely, for the Ms-range case, the obtained PFs are three dimensional surfaces

where the x and y axes remain the same, while the z axis is Ms.

Once a suitable set of PFs has been obtained, the NS for each PF is computed. An optimal tuning

for the FOPID controller, i.e., a set of optimal parameter Kp, Ti, Td, λ and µ , corresponds to each

NS.

It is worth noting that, when considering the IAE minimization as the objective function, the

obtained optimal integrator is always of integer order (that is λ = 1), as pointed out in [25, 50, 34].

In fact, the optimizer always tries to decrease the integrator order λ. However, for λ < 1 the IAE

is unbounded. Indeed, by using the final value theorem it is immediate to check that the integral

error for the set point unit step response is

lim
s→0

s

s2

1

1 + P (s)K(s)
=

1

s

sλ
(
1 + Td

Nµ s
µ
)

(Ts+ 1)(
1 + Td

Nµ sµ
)

(Ts+ 1) + (Tisλ + 1)(Tdsµ + 1)e−Ls
, (20)

while the integral error for the unit load disturbance step response is

lim
s→0

s

s2

P (s)

1 + P (s)K(s)
=

1

s

sλ
(
1 + Td

Nµ s
µ
)(

1 + Td
Nµ sµ

)
(Ts+ 1) + (Tisλ + 1)(Tdsµ + 1)e−Ls

. (21)

Evidently, both of them are unbounded when λ < 1, but a bounded integral error is a necessary

condition for a bounded IAE. Hence, the solution λ = 1 is chosen, also coherently with the

necessary condition for the existence of a finite IAE presented in [51]. This allows the selection of
14
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Figure 5: (a) PFs for the Ms-range case for different normalized dead times and the corresponding NSs and (b) the

PF for τ = 0.7 and the corresponding NS.

the optimal integrator order analytically. Moreover, another advantage of these results is that the

dimensionality of the optimization problem is reduced since λ is fixed in advance.

Eventually, all the optimal parameters are computed as functions of the normalized dead time

and, for the Ms-value case, also as functions of the desired maximum sensitivity. The fitting

function, suitably scaled with respect to the process dc-gain and with respect to process time

constant will constitute the set of tuning rules.

5.1. Ms-range case

As a first case we consider the Ms-range case introduced above. We consider the MOP where

the Ms is constrained in a range between 1.4 and 2.0. The results obtained for the different nor-

malized dead times are shown in Figure 5, where a set of PFs in the (IAEsp, IAEld,Ms) space is

obtained and the NSs are displayed. It is worth stressing that PFs are actually surfaces even if this

can be hardly appreciated from the figure. Moreover, in order to clarify this issue, the PF for the

case τ = 0.7 is shown as an illustrative example.
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Figure 6: Tuning parameters for the FOPID controller for the Ms-range case. Plus sign: optimal values of the

parameter. Solid line: fitting function.
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Table 1: Tuning rules coefficients of the FOPID controllers for the Ms-range case.

a b c d

Kp 0.5951 -1.0417 0.4161 -0.2331

Ti -0.0558 0.6356 0.7086

Td -0.0246 0.3127 -0.0091

µ -0.0342 1.1456

5.1.1. Tuning rules

After the MCDM stage is carried out, a set of NSs is obtained. Each one of them is the

optimal solution for a different normalized dead time τ . A set of optimal tuning parameters

[Kp, Ti, Td, λ, µ], therefore a specific optimal controller tuning, corresponds to each NS.

The whole set of tuning parameters has been calculated by using the least squares fitting technique,

as a function of the normalized dead time τ , leading to the results shown in Figure 6. Eventually,

the following structure for the controller parameters has been devised:

Kp =
1

K

(
aτ b + cτ d

)
, (22)

Ti = T λ
(
aτ 2 + bτ + c

)
, (23)

Td = T µ
(
aτ 2 + bτ + c

)
, (24)

µ = aτ + c, (25)

λ = 1, (26)

where the values of the coefficients are show in Table 1. It is worth noting that the fitting functions

have been scaled with respect to the process dc-gain K and with respect to the process time con-

stant T . In this way the obtained tuning rules have the nice property of being both time scale and

gain invariant. In order to achieve this result, the scaling factor of Ti and Td depends, respectively,

on λ and µ. This prevents, again, the fractional pole/zero migration when the orders change.
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Table 2: Tuning rules coefficients for the FOPID controllers for the Ms-value case with Ms = 1.4.

a b c d

Kp 0.4937 -1.0286 0.2082 -0.1928

Ti -0.0190 0.3847 0.7913

Td -0.0137 0.3188 -0.0117

µ -0.0691 1.1682

5.2. Ms-value case

As a second case we consider the Ms-value approach, in which the MOP considered has the

value of Ms constrained to each one of the specific values of the set (19). Following the same

approach used in the previous section, the MOOD procedure has been repeated for different nor-

malized dead times and for different value of Ms. For each PF obtained, the NS is eventually

computed.

5.2.1. Tuning rules

Once again, in order to obtain a set of tuning rules for each considered Ms value, each tuning

parameter has been calculated by using the least squares fitting technique, as a function of the

normalized dead time τ . Hence, the number of fitting is equal to the number of considered levels of

Ms, i.e., seven fitting have been performed for each parameter. The structure of the obtained tuning

rules for the controller parameters is reported in (22)-(26), where the values of the coefficients are

in Tables 2-8, depending on the desired level of robustness. It is worth noting that the formulas are

the same as the Ms-range case due to the fact that the parameters have the same trend. The plots

of the fitting curves are not shown for the sake of brevity.

6. Performance assessment

The performance assessment of the proposed rules is addressed in this section in order to

provide, in a single and direct way, the expected outcome for the selected controller. The main

purpose of the performance assessment is to allow the user to know in advance the values of the
18



Table 3: Tuning rules coefficients for the FOPID controllers for the Ms-value case with Ms = 1.5.

a b c d

Kp 0.2321 -0.0826 0.5987 -1.0242

Ti -0.0448 0.5446 0.6857

Td -0.0165 0.3128 -0.0102

µ -0.0467 1.1556

Table 4: Tuning rules coefficients for the FOPID controllers for the Ms-value case with Ms = 1.6.

a b c d

Kp 0.3812 -0.2357 0.5658 -1.0813

Ti -0.1105 0.8771 0.5574

Td -0.0177 0.3043 -0.0085

µ -0.0449 1.1555

Table 5: Tuning rules coefficients for the FOPID controllers for the Ms-value case with Ms = 1.7.

a b c d

Kp 0.7256 -1.0221 0.3064 -0.0624

Ti -0.0900 0.8472 0.5113

Td -0.0273 0.3198 -0.0075

µ -0.0343 1.1403
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Table 6: Tuning rules coefficients for the FOPID controllers for the Ms-value case with Ms = 1.8.

a b c d

Kp 0.6788 -1.0718 0.4356 -0.1779

Ti -0.0625 0.7417 0.5621

Td -0.0249 0.3187 -0.0087

µ -0.0343 1.1378

Table 7: Tuning rules coefficients for the FOPID controllers for the Ms-value case with Ms = 1.9.

a b c d

Kp 0.6818 -0.3413 0.4936 -1.1998

Ti -0.0767 0.8260 0.4788

Td -0.0272 0.3320 -0.0111

µ -0.0464 1.1544

Table 8: Tuning rules coefficients for the FOPID controllers for the Ms-value case with Ms = 2.0

a b c d

Kp 0.4646 -0.1509 0.7615 -1.0902

Ti -0.0571 0.7219 0.5585

Td -0.0301 0.3464 -0.0133

µ -0.0440 1.1430
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Figure 7: Performance and robustness assessment index function for the range case. Solid line: fitting function (27),

(28) and (29). Plus sign: optimal value of IAEld , IAEsp and Ms for the Ms-range case.
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IAE cost function that will be obtained (both for set-point following and the load disturbance re-

jection) when applying the proposed tuning rules. Thus, the user can evaluate the effectiveness of

the proposed rules against other ones and decide if they are suitable for a given application without

the need of a simulation. Further, the user can calculate the IAE obtained with an existing con-

troller and he/she can decide if it is worth substituting it, as the performance (and the robustness)

that can be achieved with the proposed tuning rules can be determined a priori by knowing the

FOPDT process model.

When using Ms-range rules, the obtained maximum sensitivity is not constrained to a specific

value, but in a range from 1.4 to 2.0. Hence, in addition, for the Ms-range case, the robustness

assessment for the Ms is also presented so that the user can calculate in advance the maximum

sensitivity that will be obtained.

In order to obtain the performance assessment rules, the IAE has been calculated for all the consid-

ered normalized dead times and maximum sensitivities. The obtained IAE values in the Ms-range

and in the Ms-value case has been calculated by using a fitting technique with suitable functions.

Also, the obtained Ms in the case of Ms-range has been fitting as a function of the normalized

dead time. The obtained results can be expressed as

IAE ld = KT (a1τ + a2) , (27)

IAE sp = KT (b1τ + b2) , (28)

Ms = c1τ
3 + c2τ

2 + c3τ + c4, (29)

where the values of the coefficients to be employed are shown in Tables 9 and 10.

The optimal values of IAEld , IAEsp for the Ms-range case, along with the Ms values and the

corresponding fitting functions are reported, for the different values of τ , in Figure 7. Finally, in

Figure 8 the same results are illustrated for the Ms-value case where, for the sake of comparison,

also the Ms-range results are plotted. By looking at the results in Figure 8, it can be noticed that,

after a certain limit that is outlined by the results for the Ms − range case, there is no point in

increasing theMs, because the performance improvement is not significant compared to the loss of

robustness. This behavior is even more evident for low time delays and, for the set-point tracking
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Table 9: Performance assessment function parameters for IAE in load disturbance rejection and set-point following

task.

a1 a2 b1 b2

Ms-range 1.4184 -0.1046 1.3731 0.0687

Ms = 1.4 1.8603 -0.0537 1.8413 -0.0153

Ms = 1.5 1.6148 -0.0508 1.5808 0.0742

Ms = 1.6 1.5670 -0.0902 1.5169 0.0613

Ms = 1.7 1.4290 -0.0740 1.3793 0.0888

Ms = 1.8 1.3217 -0.0521 1.2900 0.1286

Ms = 1.9 1.2872 -0.0673 1.2675 0.1541

Ms = 2.0 1.2644 -0.0978 1.2734 0.1433

Table 10: Robustness assessment function parameters for Ms-range in load disturbance rejection and set-point fol-

lowing task.

c1 c2 c3 c4

Ms-range 0.0096 -0.0705 0.1543 1.5797

task, a performance loss is eventually obtained by increasing too much the Ms. Finally, another

effect of this behavior can be appreciated in Figure 7, where the optimal Ms indeed exhibits a

decrement for low dead times.

7. Simulation results

In order to verify the effectiveness of the proposed tuning rules, different illustrative simulation

results are presented in this section. Moreover, for the sake of comparison, other methods proposed

in the literature will be also considered. In particular:

• the optimal tuning rules for FOPID controllers proposed in [25]. These tuning rules are

denoted as SP or LD (which means that the set-point following or the load disturbance re-
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Figure 8: Performance assessment index function for the Ms-value case. Red line: Performance assessment index for

Ms-range case.

jection task are optimized, respectively) followed by the target maximum sensitivity (which

can be 1.4 or 2.0) and the letter F (which means that the controller is of fractional order).

These rules have been obtained by minimizing the IAE with a constraint on the maximum

sensitivity, but the set-point following and the load disturbance rejection tasks have been

considered separately. Hence, these rules represent the anchor points of the PFs. Thus,

it is worth considering them in order to underlying the benefits of a balanced tuning that

considers both tasks at once;

• the intermediate tuning rules for integer order PID controller design proposed in [26], de-

noted by α = 0.50, which means that the load disturbance and the set-point responses are

considered to be equally important. These rules, in general, lead to high values of Ms. In-

deed, the pure IAE optimization is not sufficient to achieve good level of robustness. Hence,

they have been considered in the comparison in order to show the need of constraining the

value of Ms also in a balanced tuning framework.

Optimal tuning from [25] are considered because they provide the extremum optimal cases but

just considering one operational task for the control system. Therefore the balanced tuning ben-
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efits should be faced against the eventual poor performance when the loop operates on the task it

was not designed for and, also with the optimal one to evaluate the level of optimality achieved by

the balanced tuning. On the other hand, the tuning proposed in [26] has been choosen because it

follows similar spirit as the ones proposed here but without the MOO framework and without con-

sidering robustness. Therefore some advantages of the current proposal are to be advised. In order

to thoroughly test the proposed method, three kinds of processes will be considered: a FOPDT

process (with different normalized dead times), a high-order process and a non-minimum-phase

process. In all cases, the processes are represented by FOPTD models with different instances for

the value of the normalized dead-time and also representing different kind of plant-model mis-

match (higher order and non-minimum phase dynamics). For each process and for each tuning,

with the exception of the rules proposed in[26], a global performance index (GPI) has been com-

puted by considering the obtained IAE in both the servo and the regulatory tasks, the Ms and the

Total Variation (TV) of the control variable for each task. Indeed, although it is clear that reducing

the Ms (when considering time delay processes) means also reducing the bandwidth, hence the

control effort, a direct evaluation of the control effort in terms of TV is interesting.

The proposed global performance index is computed by normalizing each performance index

(IAE(sp), IAE(ld), TV(sp), TV(ld) and Ms) against its highest value, obtained by ranging over

the considered set of tuning rules. Then, the normalized indexes are summed up and the result is

eventually divided by the number of considered performance indexes (5 in this case). In this way,

the global performance index is always between 0 and 1, where 1 is the worst possible tuning and

0 is the utopia point.

Roughly speaking, the GPI is a compact index that synthesizes the radar plot information. Hence,

exactly as for the radar plot, it does not have an absolute meaning; rather, it can be used to evaluate

a given approach against a selected benchmark tuning rules. In this context, the GPI and the radar

plot are only provided for the proposed rules and the ones of [25], aiming at evaluating the NS

against the PF anchor points. On the contrary, the rules proposed in [26] have such a different

behavior that it can be appreciated directly from the tables with results and from plot of the re-

sponses. Moreover, they would flat down all the differences between the proposed balance tuning

and the anchor points (recall that the GPI is relative index) and for this reason they have not been
25



included.

7.1. FOPDT processes

The following FOPDT processes are considered, where K = 1 and T = 1:

P1(s) =
1

s+ 1
e−0.67s, τ = 0.67, (30)

P2(s) =
1

s+ 1
e−2.5s, τ = 2.5. (31)

First, the tuning rules for the Ms-range and Ms-value have been applied to the process (30)

and the resulting values of the controller parameters, of the integrated absolute errors, the total

variations and the maximum sensitivity for the different cases are shown in Table 11. The process

responses and the control variables for the different cases and for both the set-point following

and load disturbance rejection tasks are plotted in Figure 9. In particular, the Ms-range case is

considered with the Ms-value cases for Ms = 1.4 and Ms = 2.0. In these latter two cases the

step responses obtained with the tuning rules proposed in this paper (solid line) are compared with

those obtained by applying correctly the tuning rules specifically devised in [25] for a single task

(dashed line) and with those that are obtained by inverting the use of them, that is, the tuning

rule devised for the load disturbance is applied to the set-point following task and vice versa

(dotted line). In this way, the balancing of the tuning between the two tasks can be clearly seen.

Moreover, the performance obtained with the considered tuning rules is compared in a synthetic

way by means of the radar diagram in Figure 10 and the corresponding global performance indices

are shown in Table 12. Finally, a deeper analysis has been carried out in order to show the effect

of the selected Ms on the process response; the results are shown in Figure 11, where the physical

meaning of the Ms choice appears.
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Tuning rule Kp Ti Td µ λ IAEsp IAEld TVsp TVld Ms

Ms-range 1.36 1.11 0.19 1.12 1 1.02 0.82 30.26 1.40 1.66

Ms=1.4 0.97 1.04 0.20 1.12 1 1.26 1.11 18.94 1.17 1.40

Ms=2.0 1.67 1.02 0.21 1.11 1 1.04 0.65 43.31 2.03 2.00

SP 1.4 F 0.83 0.98 0.22 1.2 1 1.26 1.20 41.20 1.14 1.42

SP 2.0 F 1.26 1.03 0.27 1.2 1 0.92 0.83 78.80 2.06 2.15

LD 1.4 F 0.61 0.54 0.33 1.2 1 1.38 1.12 29.71 1.38 1.44

LD 2.0 F 0.91 0.52 0.38 1.1 1 1.15 0.70 24.50 1.65 1.95

α = 0.50 1.78 0.80 0.35 1 1 1.24 0.58 41.07 3.43 3.26

Table 11: Results related to P1(s) (τ = 0.67).
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Figure 9: Set-point and load disturbance step responses for P1(s). Solid line: proposed tuning rules for

FOPID controllers. Dash-dot line: tuning rules for PID controllers proposed in [26]. Dashed line: tuning

rules for FOPID controllers proposed in [25]. Dotted line: tuning rules for FOPID controllers proposed in

[25] used for the other control task they have been devised.
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Figure 10: Radar diagram for P1(s)

Tuning rule GPI

Ms-range 0.65

SP 1.4 F 0.73

SP 2.0 F 0.87

LD 1.4 F 0.73

LD 2.0 F 0.69

Table 12: Global performance index for each tuning of P1(s)

Results related to the other FOPDT process (31) are shown in Table 13. The process responses

and the control variables for both the set-point following and load disturbance rejection tasks

are plotted in Figure 12. Further, the performance obtained with the considered tuning rules is

compared by means of the radar diagram in Figure 13 and the corresponding global performance

indices are shown in Table 14.

A deeper analysis has been then carried out again in order to show the effect of the selected Ms

on the process response; the results are shown in Figure 14, where the physical meaning of the Ms

choice appears.
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Figure 11: Step responses for P1(s). Comparison between the tuning rules for Ms-range and Ms-value case and

the tuning rules proposed in [25]. (a) Set-point following task. (b) Load disturbance rejection task. Solid red line:

Ms-range tuning. Solid blue lines: boundaries of the Ms-value tuning. Dashed line: optimal tuning rules proposed

in [25]. Dotted line: response obtained using the tuning proposed in [25] for opposite operation mode. Dash-dot line:

intermediate tuning rules proposed in [26].
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Tuning rule Kp Ti Td µ λ IAEsp IAEld TVsp TVld Ms

Ms-range 0.57 1.95 0.62 1.06 1 3.46 3.44 11.17 1.42 1.68

Ms=1.4 0.37 1.63 0.70 1 1 4.51 4.50 5.21 1.07 1.41

Ms=2.0 0.69 2.01 0.66 1.03 1 3.32 2.99 14.03 1.94 2.00

SP 1.4 F 0.21 0.96 1.07 1.2 1 4.81 4.80 9.71 1.09 1.38

SP 2.0 F 0.35 1.03 1.31 1.2 1 3.40 3.27 19.33 1.94 2.08

LD 1.4 F 0.26 1.08 0.93 1.2 1 4.44 4.42 12.26 1.13 1.44

LD 2.0 F 0.53 1.40 0.90 1.2 1 3.40 2.96 32.59 2.57 2.34

α = 0.50 not applicable

Table 13: Results related to P2(s) (τ = 2.5).

31



0 5 10 15 20
−1

−0.5

0

0.5

1

Ms − range

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20
0

1

2

3

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20

0

0.5

1
Ms − range

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20

−1

−0.5

0

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20
0

0.5

1

Ms = 1.4

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20
0

1

2

3

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20

0

0.5

1
Ms = 1.4

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20

−1

−0.5

0

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20
0

0.5

1

Ms = 20

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20
−1

0

1

2

3

time

co
n
tr
o
l
v
a
ri
a
b
le

0 5 10 15 20

0

0.5

1
Ms = 2.0

time

p
ro
ce
ss

v
a
ri
a
b
le

0 5 10 15 20

−1

−0.5

0

time

co
n
tr
o
l
v
a
ri
a
b
le

Figure 12: Set-point and load disturbance step responses for P2(s). Solid line: proposed tuning rules for

FOPID controllers. Dash-dot line: tuning rules for PID controllers proposed in [26]. Dashed line: tuning

rules for FOPID controllers proposed in [25]. Dotted line: tuning rules for FOPID controllers proposed in

[25] used for the other control task they have been devised.
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Tuning rule GPI

Ms-range 0.61

SP 1.4 F 0.66

SP 2.0 F 0.72

LD 1.4 F 0.66

LD 2.0 F 0.86

Table 14: Performance index for each tuning of P2(s)

Figure 13: Radar diagram for P2(s)
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Figure 14: Step responses for P2(s). Comparison between the tuning rules for Ms-range and Ms-value case and

the tuning rules proposed in [25]. (a) Set-point following task. (b) Load disturbance rejection task. Solid red line:

Ms-range tuning. Solid blue lines: boundaries of the Ms-value tuning. Dashed line: optimal tuning rules proposed in

[25]. Dotted line: response obtained using the tuning proposed in [25] for opposite operation mode.

From the obtained results it can be appreciated that the proposed approach is effective and that
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the obtained results are very close and sometimes better in both the objectives compared to the op-

timal ones achieved in [25]. Nevertheless, from the comparison with the tuning rules specifically

devised in [25] for a single task (dashed line) and with those that are obtained by inverting the use

of them, the balancing of the tuning between the two tasks can be clearly seen.

7.2. High-order process

As another example, in order to verify the robustness of the proposed rules, the following

high-order process has been considered:

P3(s) =
1

(s+ 1)8
. (32)

In order to apply the tuning rules originally devised for FOPID controller, the process has been

modelled as a FOPDT process with K = 1, T = 3.06, L = 4.95 and τ = 1.62 (note that the

process is therefore dead time dominant). Then, the optimal tuning rules have been applied. The

results obtained are shown in Table 15 and in Figure 15. As for the previous process, the radar

diagram and the global performance index for the different considered tuning rules have been

determined. They are shown in Figure 16 and in Table 16, respectively. From the obtained results

it can be appreciated that the proposed approach gives satisfactory performance and the sensitivity

values are acceptable

7.3. Non-minimum-phase process

Finally, a non-minimum-phase process is considered:

P4(s) =
1− s

(s+ 1)3
. (33)

Again, the process has been modeled as a FOPDT process with K = 1, T = 1.62, L = 2.39 and

τ = 1.48. Then, the optimal tuning rules have been applied. Results are shown in Table 17, the

responses are plotted in Figure 17, the radar diagram is in Figure 18 and the global performance

indices are in Table 18.

35



Tuning rules Kp Ti Td µ λ IAEsp IAEld TVsp TVld Ms

Ms-range 0.73 4.87 1.46 1.09 1 7.42 6.98 9.81 1.16 1.68

Ms=1.4 0.49 4.17 1.53 1.06 1 8.91 8.79 6.18 1.04 1.42

Ms=2.0 0.88 4.83 1.55 1.07 1 7.29 6.36 11.31 1.38 1.98

SP 1.4 F 0.34 2.96 2.43 1.2 1 9.25 9.20 17.10 1.02 1.40

SP 2.0 F 0.54 3.15 2.97 1.2 1 6.88 6.48 26.78 1.14 2.00

LD 1.4 F 0.33 2.63 2.53 1.2 1 8.95 8.81 16.56 1.06 1.44

LD 2.0 F 0.59 3.07 2.62 1.2 1 7.28 6.40 29.50 1.35 2.00

α = 0.50 0.91 4.16 2.20 1 1 6.91 5.90 9.80 1.49 2.92

Table 15: Results related to the high-order process P3(s).

Tuning rule GPI

Ms-range 0.72

SP 1.4 F 0.81

SP 2.0 F 0.84

LD 1.4 F 0.80

LD 2.0 F 0.89

Table 16: Performance index for each tuning for process P3(s).
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Figure 15: Set-point and load disturbance step responses for P3(s). Solid line: proposed tuning rules for

FOPID controllers. Dash-dot line: tuning rules for PID controllers proposed in [26]. Dashed line: tuning

rules for FOPID controllers proposed in [25]. Dotted line: tuning rules for FOPID controllers proposed in

[25] used for the other control task they have been devised.
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Figure 16: Radar diagram for the high-order process P3(s)

Tuning rules Kp Ti Td µ λ IAEsp IAEld TVsp TVld Ms

Ms-range 0.78 2.47 0.68 1.10 1 3.34 3.45 9.91 1.39 1.68

Ms=1.4 0.52 2.13 0.72 1.07 1 4.29 4.46 6.42 1.26 1.41

Ms=2.0 0.93 2.43 0.73 1.08 1 3.04 3.00 11.13 1.55 1.97

SP 1.4 F 0.37 1.57 1.01 1.2 1 4.46 4.66 16.11 1.24 1.39

SP 2.0 F 0.59 1.67 1.24 1.2 1 3.15 3.32 25.01 1.47 2.05

LD 1.4 F 0.35 1.33 1.10 1.2 1 4.32 4.45 15.16 1.30 1.43

LD 2.0 F 0.61 1.51 1.10 1.1 1 3.09 2.91 11.86 1.61 2.16

α = 0.50 0.97 2.09 1.09 1 1 2.78 2.87 10.60 1.85 2.90

Table 17: Results related to the non-minimum-phase process P4(s).

Tuning rule GPI

Ms-range 0.71

SP 1.4 F 0.81

SP 2.0 F 0.86

LD 1.4 F 0.80

LD 2.0 F 0.76

Table 18: Performance index for each tuning for process P4(s)
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Figure 17: Set-point and load disturbance step responses for P4(s). Solid line: proposed tuning rules for

FOPID controllers. Dash-dot line: tuning rules for PID controllers proposed in [26]. Dashed line: tuning

rules for FOPID controllers proposed in [25]. Dotted line: tuning rules for FOPID controllers proposed in

[25] used for the other control task they have been devised.
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Figure 18: Radar diagram for the non-minimum-phase process P4(s)

7.4. Discussion

According to the simulation results, it can be seen that the intermediate tuning rules for PID

controllers proposed in [26] achieve the best IAE performance for all the simulated processes for

the load disturbance rejection and also the best IAE performance for set-point step response for

P4(s). However, this comes at the expense of a higher value of the maximum sensitivity and

therefore of a higher control action (indeed, as already mentioned, the maximum sensitivity has

not been taken into account in the development of the intermediate tuning rules proposed in [26]),

as it can be observed by looking at the step responses. On the contrary, the proposed tuning rules

for the Ms-range case ensure a medium-high robustness level (Ms ≈ 1.7) and also a smoother

response for both operation modes (less oscillations in the output response and a smoother control

variable) in all the examples.

For the cases of Ms = 1.4 and Ms = 2.0, it can be noticed that using the tuning rules for the Ms-

value case, in all the processes the set-point step response shows an overshoot, but not significantly

higher than the one obtained with the rules for FOPID controllers proposed in [25]. However, in

the load disturbance step response, the rules for the Ms-value cases provide less oscillations in

comparison with the rules proposed in [25]. Furthermore, it can be observed that, for P3(s) and

P4(s), the optimal values of each operation mode with the rules in [25] are similar to those obtained

with the Ms-value rules.

In general, it appears that the proposed rules are effective, especially considering their simplicity:
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Figure 19: The PF for the Ms-valued case, Ms = 1.7.

indeed, the user is not forced to decide which task (servo or regulatory) is more important. Indeed,

both operation modes are balanced in an optimal way by choosing the Nash solution.

It is also interesting to note that the value of Ms obtained by using the Ms-range tuning is quite

close to 1.7, especially for processes with τ > 1 (see Figure 7). Indeed, the NS in the Ms-

range case is optimally balanced between three objectives, namely the set-point following, the

load disturbance rejection and the robustness. By considering the results in Figure 8, as well as

the simulation results, it turns out that there is no point in further increasing the value of Ms after

1.7 since the performance improvements are minimal in spite of the loss of robustness. As a final

consideration, it is interesting to note that, for the normalized dead time greater than 2 (τ = 2)

the PF curve (surface, in the Ms-range case) approximation tends to collapse into a single point

(curve, in the Ms-range case) as it can be observed in Figure 19, where only the case Ms=1.7

is considered for the sake of readability (but the other cases lead to similar results). Hence, the

trade-off between load disturbance rejection and set-point following task is no longer appreciable

for high delays and the optimal tuning for pure load disturbance rejection tends to coincide with

the one for pure set-point following.
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8. Conclusions

A set of optimally balanced tuning rules for FOPID controllers has been presented in this

paper. Based on a MOOD procedure, the problem of tuning the FOPID controller with several

requirements is addressed. Such procedure implemented a multi-stage approach into a MOO

process in order to improve the convergence properties for the PF approximation. The primary

goal of this work has been to minimize the IAE for either the load disturbance rejection task and

the set-point following task with a constraint on the maximum sensitivity.

The NS criterion is applied to select a preferable solution among the PF approximation and finally

the tuning rules for the FOPID controller have been obtained by fitting the optimal results.

The obtained rules have the valuable features to be able to take into account at once both the servo

and the regulatory modes in an optimal way. Moreover, the user can select the desired level of

robustness or keep it between given bounds depending on his/her preferences.

The performance assessment for both cases has been presented. This allows the designer to know

in advance the performance index he/she will obtain and evaluate if the performance obtained with

an existing controller can be improved.
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Appendix A

In this work, the optimal parameters proposed in [25] were used in the framework to solve the

MOO problem. This tuning rules have the following structure:

τ =
L

L+ T
, (34)

Kp =
1

K

(
aτ b + c

)
, (35)

Ti = T λ

(
a

(
L

T

)b
+ c

)
, (36)

Td = T µ

(
a

(
L

T

)b
+ c

)
, (37)

where the values of a, b and c are shown in Tables 19-21 . The tuning rules for λ and µ are

shown in Table 22.

Table 19: Kp tuning rule parameters for a FOPID controller.

Control Ms = 1.4 Ms = 2.0

task a b c a b c

set-point 0.6846 -0.9166 -0.7096 0.9294 -0.933 -0.9205

load disturbance 0.2776 -1.095 -0.1426 0.164 -1.449 0.2108

Table 20: Ti tuning rule parameters for a FOPID controller.

Control Ms = 1.4 Ms = 2.0

task a b c a b c

set-point 0.04701 -0.2611 0.9276 -0.001427 -1.003 1.031

load disturbance 0.6241 0.5573 0.0442 0.6426 0.8069 0.05627
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Table 21: Td tuning rule parameters for a FOPID controller.

Control Ms = 1.4 Ms = 2.0

task a b c a b c

set-point 0.3563 1.2 0.0003108 0.4203 1.229 0.01822

load disturbance 0.4793 0.7469 -0.02393 0.597 0.5568 -0.09536

Table 22: λ and µ tuning rule parameters for a FOPID controller.

Control Ms = 1.4 Ms = 2.0

task λ µ λ µ

set-point 1
1.1 if τ < 0.1

1.2 if 0.1 ≤ τ
1

1.0 if τ < 0.1

1.1 if 0.1 ≤ τ < 0.4

1.2 if 0.4 ≤ τ

load disturbance 1

1.0 if τ < 0.1

1.1 if 0.1 ≤ τ < 0.4

1.2 if 0.4 ≤ τ

1

1.0 if τ < 0.2

1.1 if 0.2 ≤ τ < 0.6

1.2 if 0.6 ≤ τ
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