
Multi-objective optimization of nonlinear switched

time-delay systems in fed-batch process

Chongyang Liua,b, Zhaohua Gonga, Kok Lay Teob, Enmin Fengc

aSchool of Mathematics and Information Science, Shandong Institute of Business and

Technology, Yantai 264005, Shandong, China
bDepartment of Mathematics and Statistics, Curtin University, Perth 6845, Australia
cSchool of Mathematical Sciences, Dalian University of Technology, Dalian 116024,

Liaoning, China

Abstract

Maximization of productivity and minimization of consumption are two top
priorities for biotechnological industry. In this paper, we model a fed-batch
process as a nonlinear switched time-delay system. Taking the productivity of
target product and the consumption rate of substrate as the objective func-
tions, we present a multi-objective optimization problem involving the non-
linear switched time-delay system and subject to continuous state inequality
constraints. To solve the multi-objective optimization problem, we first convert
the problem into a sequence of single-objective optimization problems by using
convex weighted sum and normal boundary intersection methods. A gradient-
based single-objective solver incorporating constraint transcription technique is
then developed to solve these single-objective optimization problems. Final-
ly, a numerical example is provided to verify the effectiveness of the numerical
solution approach. Numerical results show that the normal boundary intersec-
tion method in conjunction with the developed single-objective solver is more
favourable than the convex weighted sum method.

Key words: Switched time-delay system; Multi-objective optimization;
Convex weighted sum; Normal boundary intersection; Fed-batch process

1. Introduction

Fed-batch processes are extensively used in the biotechnological industry.
To ensure product quality and economic viability of a fed-batch process, it is
important to optimally design its operating strategy. Typically, in the litera-
ture, a single objective, e.g., maximization of product productivity, is consid-
ered [1, 2, 3, 4]. However, product productivity alone is not sufficient to provide
a full indication of the economic viability of the fermentor, since the substrate
consumption must also be taken into consideration. Thus, optimization of the
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fermentation processes is, in fact, a multi-objective optimization (MOO) prob-
lem.

1,3-Propanediol (1,3-PD) is a bulk chemical used as a monomer in the pro-
duction of polyesters, polyethers and polyurethanes. These polymers possess
fine qualities and will continue to be used widely in the future [5]. Produc-
tion methods for 1,3-PD can be divided into two categories: chemical synthesis
and microbial conversion. Compared with chemical synthesis, microbial con-
version method has become increasingly attractive in the industry due to easy
availability of renewable feedstock, such as glycerol – a byproduct of biodiesel
production [6]. Glycerol is converted to 1,3-PD via bacterial fermentation [7].
Glycerol fermentation to produce 1,3-PD is a complex bioprocess, since the
microbial growth is subjected to multiple inhibitions of substrate and product-
s [5] and there exist time-delays in the process [8, 9]. Regarding the various
fermentation techniques, which include batch mode, fed-batch mode and con-
tinuous mode, the fed-batch fermentation is typically implemented by switching
between batch mode (in which the feeding of substrate is closed) and feeding
mode (in which the feeding of substrate is open). This switching manner can
reduce effectively the substrate inhibition and improve the 1,3-PD productivity,
making the fed-batch fermentation being the most efficient cultivation method
in 1,3-PD production [10]. The fed-batch process for converting glycerol to 1,3-
PD begins with a batch operation. During this initial batch phase, the biomass
tends to grow exponentially. Once the exponential growth phase ends, glycerol
and alkali are added to the reactor to provide nutrition and regulate the pH
level. The process then reverts to batch mode, and so on until the end of the
final batch mode.

To achieve economically competitive production of 1,3-PD, optimization of
the microbial conversion process is critical. Thus, many studies have been car-
ried out on modelling and optimization of fed-batch process. The process is
modelled as a nonlinear impulsive system in [11], where the addition of glyc-
erol and alkali is assumed to be in an impulsive form. For this system, the
corresponding parameter identification problem was investigated in [11, 12].
Furthermore, by taking the concentration of 1,3-PD at the terminal time as the
objective function, a dynamic optimization problem was discussed in [13]. How-
ever, in reality, glycerol and alkali are added continuously. Thus, the fed-batch
process is modelled as a nonlinear multistage system in [14]. Again, taking
the concentration of 1,3-PD at the terminal time as the objective function, dy-
namic optimization problems involving the nonlinear multistage system were
discussed in [14, 15, 16]. However, time-delays are ignored in the nonlinear sys-
tems mentioned above. In fact, like most real systems, fed-batch process is also
influenced by time-delays. For this, a nonlinear multistage time-delay system
was proposed in [17], where the corresponding parameter identification problem
was also discussed. More recently, many important results obtained from the
optimization of 1,3-PD production processes are summarized in [18]. However,
only one objective function is involved in these optimization problems, meaning
that they are single-objective optimization (SOO) problems.

In this paper, we model the 1,3-PD fed-batch process as a nonlinear switched
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time-delay system with free terminal time. By taking both maximization of 1,3-
PD productivity and minimization of consumption rate of substrate as the ob-
jectives, we then present a MOO problem involving this nonlinear switched time-
delay system with free terminal time and subject to continuous state inequality
constraints, where the feeding rate of glycerol, switching instants between batch
and feeding modes, and duration of the fermentation process are regarded as
the decision variables. As pointed out in [19, 20, 21], it is cumbersome to solve
this free time optimization problem numerically, because numerical integration
of the dynamic system must be conducted over a variable time interval at each
optimization iteration. Thus, we introduce a time-scaling transformation [21] to
convert the free time MOO problem into an equivalent one with fixed terminal
time. However, unlike the case involving delay-free optimization problem, this
time-scaling transformation causes the involving dynamic system to become a
new switched system with variable time-delay. For the transformed MOO prob-
lem, it is conceptually different from a SOO problem. A key characteristic of a
MOO problem is that the optimality is characterized by a set of solutions, called
Pareto set, denoting the trade-offs between the competing objectives [22]. A so-
lution is said to be Pareto optimal, if there is no other solution with better
values of both objectives. Hence, when moving from one Pareto solution to
another, any improvement in one objective can only occur with the worsening
of at least one other. To generate the Pareto set of the MOO problem, two
different approaches are often used [23]. The first approach, which is known as
a scalarization method, transforms a MOO problem into a sequence of para-
metric SOO problems. By varying the parameters of the method involved, a
representation of the Pareto set is obtained. This approach includes the classic
convex weighted sum (CWS) [24] and normal boundary intersection (NBI) [25].
The second approach is referred to as a vectorization method. It utilizes heuris-
tic optimization methods, such as genetic algorithm [26] and particle swarm
optimization [27], to generate the Pareto set directly from the multi-objective
formulation. Note that, for the scalarization approach, gradient-based determin-
istic optimization routes can be combined with to find (at least locally) optimal
solutions for large-scale and highly constrained MOO problems in a fast and ef-
ficient way [28]. Consequently, such scalarization approach has been extensively
used to solve MOO problems in biochemical processes [29, 30, 31, 32].

To solve the MOO problem considered in this paper, we transcribe the equiv-
alent MOO problem into a sequence of SOO problems by using the CWS and
the NBI methods. It should be noted that the existing single-objective solvers,
including those solvers mentioned in [29, 30, 31, 32], only deal with problems
involving ordinary differential systems and thus cannot be used to solve the
resulting SOO problems, which involve switched time-delay systems. Further-
more, it is well known that variable switching times pose a significant challenge
for conventional numerical optimization techniques [33, 34, 35]. To overcome
this challenge, an extended version of the time-scaling transformation in [21] is
typically used to map the variable switching times to fixed time points in a new
time horizon. However, this extended time-scaling transformation is not appli-
cable to switched time-delay systems [36]. For these reasons, we develop a new
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single-objective solver to solve the resulting SOO problems. On the one hand,
by employing the constraint transcription technique [37], we approximate the
continuous state inequality constraints by constraints in canonical form. On the
other hand, we derive the gradients of the objective functions and the constraint
functions with respect to the decision variables. On this basis, the CWS and
the NBI methods in conjunction with the new gradient-based single-objective
solver are used to solve the MOO problem, respectively. A numerical example
is used to verify the effectiveness of the solution approach. Numerical results
show that the NBI method is more favourable than the CWS method.

The rest of the paper is organized as follows. Section 2 gives the switched
time-delay system for describing the fed-batch process. Section 3 presents the
MOO problem and its equivalent form. The numerical solution methods for the
MOO problem are developed in Section 4. A numerical example is discussed in
Section 5. Finally, Section 6 provides some concluding remarks.

2. Nonlinear switched time-delay system

The fed-batch process for converting glycerol to 1,3-PD includes two modes:
batch mode and feeding mode. Based on the work in [17], the dynamic model
for batch mode is given by







































ẋ1(t) = µ(x(t))x1(t− α),

ẋ2(t) = −q2(x(t))x1(t− α),

ẋ3(t) = q3(x(t))x1(t− α),

ẋ4(t) = q4(x(t))x1(t− α),

ẋ5(t) = q5(x(t))x1(t− α),

ẋ6(t) = 0,

where t denotes the process time; x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t))
⊤

is the state vector whose components are, respectively, the extracellular concen-
trations of biomass, glycerol, 1,3-PD, acetic acid, ethanol, and the volume of
culture fluid at time t in the fermentor; α is a delay argument; µ(x(t)) is the
specific growth rate of cells; q2(x(t)) is the specific consumption rate of sub-
strate; and qℓ(x(t)), ℓ = 3, 4, 5, are, respectively, the specific formation rates
of the reaction products 1,3-PD, acetic acid and ethanol. These functions are
given as follows:

µ(x(t)) :=
∆1x2(t)

x2(t) + k1

5
∏

ℓ=2

(

1−
xℓ(t)

x∗ℓ

)

,

qℓ(x(t)) := mℓ + Yℓµ(x(t)) +
∆ℓx2(t)

x2(t) + kℓ
, ℓ = 2, 3, 4,

q5(x(t)) := q2(x(t))

(

c1
c2 + µ(x(t))x2(t)

+
c3

c4 + µ(x(t))x2(t)

)

,
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where ∆1, k1, mℓ, Yℓ, ∆ℓ, kℓ, c1, c2, c3, and c4 are kinetic parameters and x∗ℓ
are the maximal residual concentrations of substrate and reaction products.

The dynamic model for feeding mode is given by










































ẋ1(t) = µ(x(t))x1(t− α)−D(x(t), ξj)x1(t),

ẋ2(t) = D(x(t), ξj)
( cs0
1 + r

− x2(t)
)

− q2(x(t))x1(t− α),

ẋ3(t) = q3(x(t))x1(t− α)−D(x(t), ξj)x3(t),

ẋ4(t) = q4(x(t))x1(t− α)−D(x(t), ξj)x4(t),

ẋ5(t) = q5(x(t))x1(t− α)−D(x(t), ξj)x5(t),

ẋ6(t) = (1 + r)ξj ,

where cs0 is the concentration of the initial feed of glycerol; r is the velocity
ratio of adding alkali to glycerol; ξj is the feeding rate of glycerol in the jth
feeding mode; and D(x(t), ξj) is the dilution rate at time t defined as

D(x(t), ξj) :=
(1 + r)ξj
x6(t)

.

The complete fed-batch process switches between batch and feeding modes,
and starts and ends in batch mode. Let N be the number of feeding modes.
Then, there are exactly 2N + 1 modes in total (N feeding modes, N + 1 batch
modes). Thus, the complete fed-batch process can be expressed as the following
nonlinear switched time-delay system:

{

ẋ(t) = f i(x(t), x(t − α), ξ), t ∈ (τi−1, τi], i = 1, . . . , 2N + 1,

x(t) = φ(t), t ≤ τ0,
(1)

where x(t−α) := (x1(t−α), x2(t−α), x3(t−α), x4(t−α), x5(t−α), x6(t−α))
⊤

is the delayed state; ξ := (ξ1, ξ2, . . . , ξN )⊤ is the feeding rate vector of glycerol;

f2j+1(x(t), x(t − α), ξ) :=

















µ(x(t))x1(t− α)
−q2(x(t))x1(t− α)
q3(x(t))x1(t− α)
q4(x(t))x1(t− α)
q5(x(t))x1(t− α)
0,

















, j = 0, . . . , N ;

f2j(x(t), x(t − α), ξ)

:=



















µ(x(t))x1(t− α)−D(x(t), ξj)x1(t)

D(x(t), ξj)
( cs0
1 + r

− x2(t)
)

− q2(x(t))x1(t− α)

q3(x(t))x1(t− α)−D(x(t), ξj)x3(t)
q4(x(t))x1(t− α)−D(x(t), ξj)x4(t)
q5(x(t))x1(t− α)−D(x(t), ξj)x5(t)
(1 + r)ξj



















, j = 1, . . . , N ;
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τ1, . . . , τ2N , are switching instants such that 0 = τ0 ≤ τ1 ≤ · · · ≤ τ2N+1 = tf ; tf
is the terminal time; and φ : R→ R6 is a given history function. Note that the
state of system (1) does not undergo jumps at the switching instants.

The feeding rate of glycerol during feeding mode cannot be unbounded.
Thus, define the set of admissible feeding rate vectors as

Ξ := {ξ ∈ RN | aj ≤ ξj ≤ bj, j = 1, . . . , N}, (2)

where aj > 0 and bj > 0 are lower and upper bounds for the feeding rate of
glycerol during the jth feeding mode. Any ξ ∈ Ξ is called an admissible vector
of feeding rates.

Since biological considerations limit the rate of switching, there are maxi-
mal and minimal time durations that are spent on each of the batch and feeding
modes. On this basis, define the set of admissible switching instants and termi-
nal times as

Γ := {(τ1, . . . , tf )
⊤ ∈ R2N+1| ρi ≤ τi − τi−1 ≤ δi, i = 1, . . . , 2N,

ρ2N+1 ≤ tf ≤ δ2N+1}, (3)

where ρi and δi are lower and upper bounds, respectively. Any τ := (τ1, . . .,
τ2N+1)

⊤ ∈ Γ is called an admissible vector of switching instants and terminal
time.

For system (1), there exists a unique continuous solution x(·|ξ, τ) corre-
sponding to each given pair ξ × τ ∈ Ξ × Γ on (−∞,+∞) [38]. Moreover, the
concentrations of biomass, glycerol, reaction products and volume of culture
fluid must be restricted to biological meaningful ranges. Thus, define

x(t|ξ, τ) ∈ W :=

6
∏

ℓ=1

[x∗ℓ, x
∗

ℓ ], t ∈ [0, tf ], (4)

where x∗ℓ are, respectively, the lower thresholds for cell growth for biomass,
glycerol, 1,3-PD, acetic acid, ethanol and volume of culture fluid, and x∗ℓ are
the corresponding upper thresholds (as used in the formula for µ(x(t))).

3. Multi-objective optimization problem

The economic viability of any fermentation-based production process de-
pends on the performance of the fermentor. There is no exception in the fed-
batch process for converting glycerol to 1,3-PD. Thus, for the fed-batch process
operated as described by system (1), we consider the following objective func-
tions to characterize the fermentor performance:
(i) Maximizing 1,3-PD productivity:

max
x3(tf |ξ, τ)x6(tf |ξ, τ)

tf
,
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(ii) Minimizing consumption rate of substrate:

min
(x6(tf |ξ, τ)− φ6(0))cs0

tf
.

It should be noted that similar objectives have been considered in optimizing
other biochemical processes, see for example [29, 30].

Let the two competing objectives be denoted as the following vector objec-
tive, which is to be minimized:

J(ξ, τ) :=

(

−
x3(tf |ξ, τ)x6(tf |ξ, τ)

tf
,
(x6(tf |ξ, τ)− φ6(0))cs0

tf

)⊤

. (5)

Furthermore, taking into consideration of constraints (2), (3) and (4), we present
the following MOO problem:

(MP) min J(ξ, τ)

s.t. x(t|ξ, τ) ∈ W, t ∈ [0, tf ],

(ξ, τ) ∈ Ξ× Γ,

where W is as defined in (4). For (MP), there are three non-standard features:
(i) the terminal time is free instead of fixed; (ii) the objective is not a scalar
but a vector; and (iii) constraint (4) is a continuous state inequality constraint
(i.e., it must be satisfied at an infinite number of points in the time interval).

To circumvent the first difficulty, we apply a time-scaling transformation [21]
from [0, tf ] to [0, 1] as given below:

t = t(s) = tfs, (6)

where s ∈ [0, 1] is a new time variable. Clearly, s = 0 corresponds to t = 0,
s = 1 corresponds to t = tf and the switching instants become θi := τi/tf , i =
1, . . . , 2N+1. Under time-scaling transformation (6), system (1) is transformed
into an equivalent form given below:

{

˙̃x(s) = f̃ i(x̃(s), x̃(s− t−1
f α), ξ, tf ), s ∈ (θi−1, θi], i = 1, . . . , 2N + 1,

x̃(s) = φ̃(s), s ≤ θ0,
(7)

where x̃(s) := x(tfs); f̃
i(x̃(s), x̃(s − t−1

f α), ξ, tf ) := tff
i(x̃(s), x̃(s − t−1

f α), ξ);

and φ̃(s) := φ(tfs). Note that system (7) is of fixed terminal time and involves
a variable time-delay. In addition, constraint (3) becomes

Θ := {(θ1, . . . , θ2N )⊤ ∈ R2N | ρ̃i ≤ θi − θi−1 ≤ δ̃i, i = 1, . . . , 2N}, (8)

and
T := {tf ∈ R| ρ2N+1 ≤ tf ≤ δ2N+1}, (9)

where ρ̃i := ρi/tf ; and δ̃i := δi/tf .
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Let x̃(·|tf , ξ, θ) be the solution of system (7) corresponding to each given
pair (tf , ξ, θ) ∈ T × Ξ× Θ on (−∞, 1]. Then, constraint (4) turns into

x̃(s|tf , ξ, θ) ∈W, s ∈ [0, 1], (10)

and vector objective (5) becomes

J̃(tf , ξ, θ) :=

(

−
x̃3(1|tf , ξ, θ)x̃6(1|tf , ξ, θ)

tf
,
(x̃6(1|tf , ξ, θ)− φ̃6(0))cs0

tf

)⊤

. (11)

Therefore, (MP) can be stated equivalently as given below:

(EMP) min J̃(tf , ξ, θ)

s.t. x̃(s|tf , ξ, θ) ∈W, s ∈ [0, 1],

(tf , ξ, θ) ∈ T × Ξ×Θ.

Obviously, (EMP) is a MOO problem with fixed terminal time but involving a
new switched system with variable time-delay.

4. Numerical solution approach

The optimal solutions of (EMP) are characterized by the Pareto set. In this
section, we will develop numerical solution approach for (EMP).

4.1. Multi-objective optimization strategies

In this subsection, we shall introduce two strategies, i.e., CWS [24] and
NBI [25], to convert (EMP) into a sequence of SOO problems.

4.1.1. Convex weighted sum

To generate Pareto set of a MOO problem, the most common scalarization
approach is CWS. In this method, the individual objective functions are assigned
different weights and then added together to form a single objective function.
In essence, the objective weights provide additional degrees of freedom in the
optimization problem. For (EMP), the corresponding SOO problem after the
use of CWS is given by

(EMPw) min J̃w(tf , ξ, θ) := ω1J̃1(tf , ξ, θ) + ω2J̃2(tf , ξ, θ) (12)

s.t. x̃(s|tf , ξ, θ) ∈W, s ∈ [0, 1],

(tf , ξ, θ) ∈ T × Ξ×Θ,

where ω := (ω1, ω2)
⊤ is a vector of weights such that ω1+ω2 = 1 with ω1, ω2 ≥ 0.
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4.1.2. Normal boundary intersection

NBI is a new scalarization scheme for generating Pareto set. It tackles MOO
problem from a geometrically intuitive viewpoint. It first builds a plane in the
objective space which contains all convex combinations of the individual minima,
i.e., the convex hull of individual minima (CHIM), and then constructs quasi-
normal lines to this plane. Thus, MOO problem is reformulated as to maximize
the distance from a point on the CHIM along the quasi-normal through this
point. Technically, this requirement of lying on the quasi-normal introduces
additional equality constraints. By selecting the points on the CHIM, Pareto
set in the objective space is obtained. As a result, (EMP) can be reformulated
by using the NBI as

(EMPNBI) max ν (13)

s.t. Φω − νΦe = J̃(tf , ξ, θ)− J̃∗, (14)

x̃(s|tf , ξ, θ) ∈W, s ∈ [0, 1],

(tf , ξ, θ) ∈ T × Ξ×Θ,

where Φ is the pay-off matrix defined as

Φ :=

[

0 J̃1(t
2∗
f , ξ

2∗, θ2∗)− J̃1(t
1∗
f , ξ

1∗, θ1∗)

J̃2(t
1∗
f , ξ

1∗, θ1∗)− J̃2(t
2∗
f , ξ

2∗, θ2∗) 0

]

,

with (t1∗f , ξ
1∗, θ1∗) and (t2∗f , ξ

2∗, θ2∗) being the minimizers of objectives J̃1 and

J̃2, respectively; ω is a vector of weights as used in (EMPw); e = (1, 1)⊤; and
J̃∗ := (J̃1(t

1∗
f , ξ

1∗, θ1∗), J̃2(t
2∗
f , ξ

2∗, θ2∗))⊤. Here, Φω describes a point in the

CHIM and −Φe defines the quasi-normal to the CHIM towards J̃∗.

4.2. Single-objective solver

A sequence of resulting SOO problems must be solved when applying the
CWS and the NBI strategies. In this subsection, we shall develop a gradient-
based single-objective solver incorporating the constraint transcription tech-
nique [37] to solve these SOO problems.

4.2.1. Constraint transcription

As stated in Section 3, constraint (10) is a continuous state inequality con-
straint and this type of constraints is difficult to deal with in terms of numerical
computation [17, 37]. We will apply a constraint transcription technique to
transcribe constraint (10) into a canonical constraint.

To begin with, let

hℓ(x̃(s|tf , ξ, θ)) := x∗ℓ − x̃ℓ(s|tf , ξ, θ),

h6+ℓ(x̃(s|tf , ξ, θ)) := x̃ℓ(s|tf , ξ, θ)− x∗ℓ, ℓ = 1, . . . , 6.

Then, constraint (10) is equivalent to the following equality constraint:

12
∑

l=1

∫ 1

0

min{0, hl(x̃(s|tf , ξ, θ))}ds = 0. (15)
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However, since min{0, ·} is non-differentiable, constraint (15) is not suitable for
gradient-based optimization techniques (which we will exploit later to design a
solution algorithm). We therefore consider the following smooth approximation
of the min{0, ·} function:

min{0, η} ≈ πǫ(η),

where

πǫ(η) =















η, if η < −ǫ,

−
(η − ǫ)2

4ǫ
, if − ǫ ≤ η ≤ ǫ,

0, otherwise,

and ǫ > 0 is an adjustable parameter. It is easy to verify that πǫ is continuously
differentiable and non-positive. Using πǫ, constraint (15) is approximated by

G̃ǫ,γ(tf , ξ, θ) := γ +
12
∑

l=1

∫ 1

0

πǫ(hl(x̃(s|tf , ξ, θ)))ds ≥ 0, (16)

where γ > 0 is an adjustable parameter. Hence, with this approximation
scheme, constraint (10) is approximated by canonical constraint (16). This con-
straint is a standard constraint and can be readily handled using the gradient-
based technique. In particular, by similar arguments as those given for Lem-
ma 8.3.3 [37], it can be shown that for any ǫ > 0, if γ > 0 is chosen sufficiently
small, the solutions of the corresponding SOO problems with constraint (16)
will also satisfy constraint (10).

4.2.2. Gradient formulas

To solve each of the resulting SOO problems by using gradient-based opti-
mization techniques, the gradients of objective functions (12) and (13) as well
as the gradients of constraint functions (8), (14) and (16) are needed. For the
gradients of objective function (13) and constraint function (14) with respect to
the decision variable ν, they can be easily calculated. The gradient of constraint
function (8) with respect to θ is also obvious. Now, we note that objective (12)
and constraint (14) are functions of J̃ . Therefore, we only need to provide the
gradients of J̃ and constraint function G̃ǫ,γ with respect to tf , ξ and θ.

First, define

f̂ i(s|tf , ξ, θ) := f̃ i(x̃(s|tf , ξ, θ), x̃(s− t−1
f α|tf , ξ, θ), ξ, tf ),

ψ(s|tf , ξ, θ) :=

{

tf φ̇(tfs), s ≤ 0,

f̂ i(s|tf , ξ, θ), s ∈ (θi−1, θi], i = 1, . . . , 2N + 1,

and

χI(s) :=

{

1, s ∈ I,

0, otherwise.

Then, the following theorem gives the gradient formulas of J̃1(tf , ξ, θ) with
respect to tf , ξ and θ.
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Theorem 1. Let (tf , ξ, θ) ∈ T × Ξ×Θ. Then

∂J̃1(tf , ξ, θ)

∂tf
= x̃3(1)x̃6(1)t

−2
f +

2N+1
∑

i=1

∫ θi

θi−1

λ⊤(s)t−1
f f̂ i(s|tf , ξ, θ)ds

+

2N+1
∑

i=1

∫ θi

θi−1

λ⊤(s)t−2
f α

∂f̂ i(s|tf , ξ, θ)

∂x̃(s− t−1
f α)

ψ(s− t−1
f α|tf , ξ, θ)ds

+
2N+1
∑

i=1

∫ θi−t
−1

f
α

θi−1−t
−1

f
α

{

λ⊤(s+ t−1
f α)s

∂f̂(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)

× φ̇(tfs)χ(−∞,0)(s)

}

ds, (17)

∂J̃1(tf , ξ, θ)

∂θi
= λ⊤(θi)f̂

i(θi|tf , ξ, θ)− λ⊤(θi)f̂
i+1(θi|tf , ξ, θ),

i = 1, . . . , 2N, (18)

and

∂J̃1(tf , ξ, θ)

∂ξj
=

∫ θ2j

θ2j−1

λ⊤(s)
∂f̂2j(s|tf , ξ, θ)

∂ξj
ds, j = 1, . . . , N, (19)

where x̃(1) := x̃(1|tf , ξ, θ); and λ(·) := λ(·|tf , ξ, θ) is the solution of the following

costate system:

λ̇(s) = −
2N+1
∑

i=1

(

∂f̂ i(s|tf , ξ, θ)

∂x̃(s)

)⊤

λ(s)χ(θi−1,θi](s)

−

2N+1
∑

i=1

(

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)

)⊤

λ(s+ t−1
f α)χ(θi−1−t

−1

f
α,θi−t

−1

f
α](s),

s ∈ [0, 1], (20)

with the terminal conditions

λ(1) = (0, 0,−x̃6(1)t
−1
f , 0, 0,−x̃3(1)t

−1
f )⊤, (21)

λ(s) = (0, 0, 0, 0, 0, 0)⊤, s > 1. (22)

Proof. The derivations of the gradients of J̃1(tf , ξ, θ) with respect to θi,
i ∈ {1, . . . , 2N} and ξj , j ∈ {1, . . . , N} are similar to that of the gradient

of J̃1(tf , ξ, θ) with respect to tf . Thus, only the derivation of the gradient of

J̃1(tf , ξ, θ) with respect tf is given below.
Let w : [0,∞) → R6 be an arbitrary function that is continuous and differ-
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entiable almost everywhere. Then we may express J̃1(tf , ξ, θ) as follows:

J̃1(tf , ξ, θ)

= −t−1
f x̃3(1)x̃6(1) +

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤
(

f̂ i(s|tf , ξ, θ)− ˙̃x(s)
)

ds

= −t−1
f x̃3(1)x̃6(1) +

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤f̂ i(s|tf , ξ, θ)ds−

∫ 1

0

w(s)⊤ ˙̃x(s)ds,

where we have omitted the arguments tf , ξ and θ in x̃(·|tf , ξ, θ) for brevity.
Applying integration by parts to the last integral term gives

J̃1(tf , ξ, θ) = −t−1
f x̃3(1)x̃6(1) +

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤f̂ i(s|tf , ξ, θ)ds− w(1)⊤x̃(1)

+ w(0)⊤φ̃(0) +

∫ 1

0

ẇ(s)⊤x̃(s)ds. (23)

Differentiating (23) with respect to tf gives

∂J̃1(tf , ξ, θ)

∂tf

= t−2
f x̃3(1)x̃6(1)− t−1

f x̃6(1)
∂x̃3(1)

∂tf
− t−1

f x̃3(1)
∂x̃6(1)

∂tf
− w(1)⊤

∂x̃(1)

∂tf

+

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤t−1
f f̂ i(s|tf , ξ, θ)ds+

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤
∂f̂ i(s|tf , ξ, θ)

∂x̃(s)

∂x̃(s)

∂tf
ds

+

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤t−2
f α

∂f̂ i(s|tf , ξ, θ)

∂x̃(s− t−1
f α)

ψ(s− t−1
f α|tf , ξ, θ)ds+

∫ 1

0

ẇ(s)⊤
∂x̃(s)

∂tf
ds

+
2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤
∂f̂ i(s|tf , ξ, θ)

∂x̃(s− t−1
f α)

∂x̃(s− t−1
f α)

∂tf
ds. (24)

Performing a change of variable in the last term on the right-hand side of (24)
yields

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤
∂f̂ i(s|tf , ξ, θ)

∂x̃(s− t−1
f α)

∂x̃(s− t−1
f α)

∂tf
ds

=
2N+1
∑

i=1

∫ θi−t
−1

f
α

θi−1−t
−1

f
α

w(s + t−1
f α)⊤

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)

∂x̃(s)

∂tf
ds. (25)

12



Since x̃(s) = φ̃(s) for all s ≤ 0, (25) can be rewritten as follows:

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤
∂f̂ i(s|tf , ξ, θ)

∂x̃(s− t−1
f α)

∂x̃(s− t−1
f α)

∂tf
ds

=

2N+1
∑

i=1

∫ θi−t
−1

f
α

θi−1−t
−1

f
α

w(s+ t−1
f α)⊤

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)
χ[0,+∞)(s)

∂x̃(s)

∂tf
ds

+
2N+1
∑

i=1

∫ θi−t
−1

f
α

θi−1−t
−1

f
α

w(s+ t−1
f α)⊤s

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)
χ(−∞,0)(s)φ̇(tfs)ds.

(26)

Substituting (26) into (24) yields

∂J̃1(tf , ξ, θ)

∂tf

= t−2
f x̃3(1)x̃6(1)− t−1

f x̃6(1)
∂x̃3(1)

∂tf
− t−1

f x̃3(1)
∂x̃6(1)

∂tf
− w(1)⊤

∂x̃(1)

∂tf

+

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤t−1
f f̂ i(s|tf , ξ, θ)ds+

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤
∂f̂ i(s|tf , ξ, θ)

∂x̃(s)

∂x̃(s)

∂tf
ds

+

2N+1
∑

i=1

∫ θi

θi−1

w(s)⊤t−2
f α

∂f̂ i(s|tf , ξ, θ)

∂x̃(s− t−1
f α)

ψ(s− t−1
f α|tf , ξ, θ)ds+

∫ 1

0

ẇ(s)⊤
∂x̃(s)

∂tf
ds

+
2N+1
∑

i=1

∫ θi−t
−1

f
α

θi−1−t
−1

f
α

w(s+ t−1
f α)⊤

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)
χ[0,+∞)(s)

∂x̃(s)

∂tf
ds

+

2N+1
∑

i=1

∫ θi−t
−1

f
α

θi−1−t
−1

f
α

w(s+ t−1
f α)⊤s

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)
χ(−∞,0)(s)φ̇(tfs)ds.

Choosing w(·) = λ(·|tf , ξ, θ) and substituting (20)-(22) into the above equation
gives the gradient formula (17). The gradient formulas (18) and (19) can be
derived similarly. The proof is completed. �

The next theorem gives the gradient formulas of J̃2(tf , ξ, θ) with respect to
tf , ξ and θ.

13



Theorem 2. Let (tf , ξ, θ) ∈ T × Ξ×Θ. Then

∂J̃2(tf , ξ, θ)

∂tf
= −(x̃6(1)− φ̃(0))cs0t

−2
f +

2N+1
∑

i=1

∫ θi

θi−1

λ̄⊤(s)t−1
f f̂ i(s|tf , ξ, θ)ds

+

2N+1
∑

i=1

∫ θi

θi−1

λ̄⊤(s)t−2
f α

∂f̂ i(s|tf , ξ, θ)

∂x̃(s− t−1
f α)

ψ(s− t−1
f α|tf , ξ, θ)ds

+
2N+1
∑

i=1

∫ θi−t
−1

f
α

θi−1−t
−1

f
α

{

λ̄⊤(s+ t−1
f α)s

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)

× φ̇(tfs)χ(−∞,0](s)

}

ds, (27)

∂J̃2(tf , ξ, θ)

∂θi
= λ̄⊤(θi)f̂

i(θi|tf , ξ, θ)− λ̄⊤(θi)f̂
i+1(θi|tf , ξ, θ),

i = 1, . . . , 2N, (28)

and

∂J̃2(tf , ξ, θ)

∂ξj
=

∫ θ2j

θ2j−1

λ̄⊤(s)
∂f̂2j(s|tf , ξ, θ)

∂ξj
ds, j = 1, . . . , N, (29)

where x̃(1) := x̃(1|tf , ξ, θ); and λ̄(·) := λ̄(·|tf , ξ, θ) is the solution of the following

costate system:

˙̄λ(s) = −

2N+1
∑

i=1

(

∂f̂ i(s|tf , ξ, θ)

∂x̃(s)

)⊤

λ̄(s)χ(θi−1,θi](s)

−

2N+1
∑

i=1

(

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)

)⊤

λ̄(s+ t−1
f α)χ(θi−1−t

−1

f
α,θi−t

−1

f
α](s),

s ∈ [0, 1], (30)

with the terminal conditions

λ̄(1) = (0, 0, 0, 0, 0, cs0t
−1
f )⊤, (31)

λ̄(s) = (0, 0, 0, 0, 0, 0)⊤, s > 1. (32)

Proof. The proof is similar to that given for Theorem 1 �.
The last theorem gives the gradient formulas of the constraint function

G̃ǫ,γ(tf , ξ, θ) with respect to tf , ξ and θ.
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Theorem 3. Let (tf , ξ, θ) ∈ T × Ξ×Θ. Then for each ǫ > 0 and γ > 0,

∂G̃ǫ,γ(tf , ξ, θ)

∂tf
=

2N+1
∑

i=1

∫ θi

θi−1

λ̃⊤(s)t−1
f f̂ i(s|tf , ξ, θ)ds

+

2N+1
∑

i=1

∫ θi

θi−1

λ̃⊤(s)t−2
f α

∂f̂ i(s|tf , ξ, θ)

∂x̃(s− t−1
f α)

ψ(s− t−1
f α|tf , ξ, θ)ds

+

2N+1
∑

i=1

∫ θi−t
−1

f
α

θi−1−t
−1

f
α

{

λ̃⊤(s+ t−1
f α)s

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)

× φ̇(tfs)χ(−∞,0](s)

}

ds, (33)

∂G̃ǫ,γ(tf , ξ, θ)

∂θi
= λ̃⊤(θi)f̂

i(θi|tf , ξ, θ)− λ̃⊤(θi)f̂
i+1(θi|tf , ξ, θ),

i = 1, . . . , 2N, (34)

and

∂G̃ǫ,γ(tf , ξ, θ)

∂ξj
=

∫ θ2j

θ2j−1

λ̃⊤(s)
∂f̂2j(s|tf , ξ, θ)

∂ξj
ds, j = 1, . . . , N, (35)

where λ̃(·) := λ̃(·|tf , ξ, θ) is the solution of the following costate system:

˙̃λ(s) = −
12
∑

l=1

∂πǫ(hl(x̃(s|tf , ξ, θ)))

∂x̃(s)
−

2N+1
∑

i=1

(

∂f̂ i(s|tf , ξ, θ)

∂x̃(s)

)⊤

λ̃(s)χ(θi−1,θi](s)

−

2N+1
∑

i=1

(

∂f̂ i(s+ t−1
f α|tf , ξ, θ)

∂x̃(s)

)⊤

λ̃(s+ t−1
f α)χ(θi−1−t

−1

f
α,θi−t

−1

f
α](s),

s ∈ [0, 1], (36)

with the terminal condition

λ̃(s) = (0, 0, 0, 0, 0, 0)⊤, s ≥ 1. (37)

Proof. The proof is similar to that given for Theorem 1 �.
On the basis of Theorems 1-3, the gradients of objective function (12) and

constraint functions (14) and (16) with respect to tf , ξ and θ can be easily
computed.

5. Numerical Example

Consider a 1,3-PD fed-batch production process by Klebsiella pneumoniae

reported in [39]. This fed-batch process consists of an initial batch mode followed
by some phases, where each phase involves an equal number of feeding and
batch modes in succession. Within each phase, all feeding modes have the same
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Table 1: Kinetic parameters, and maximal and minimal residual concentrations in sys-
tem (1) [17].

ℓ mℓ Yℓ ∆ℓ kℓ cℓ x∗ℓ x∗ℓ

1 - - 0.8 0.28 0.025 0.01 6
2 1.927 158.73 6.8489 17.7296 0.06 15 2039
3 -3.2819 80.6096 10.3687 15.50 2.81 0 1036
4 -0.97 33.07 5.74 85.71 65.5226 0 1026
5 - - - - - 0 360.9
6 - - - - - 4 6.55

duration and the same feeding rate of glycerol, and all batch modes, except the
final one, have the duration of 100 seconds minus the feeding mode duration.
Hence, the terminal time, the end moment of the first batch mode, the feeding
rate of glycerol in each phase and the end moment of the first feeding mode in
each phase are to be optimized.

To solve the corresponding SOO problems, we write a Fortran single-objective
solver, where the gradients obtained in the previous section are incorporated in
the optimization software NLPQLP – a Fortran implementation of sequential
quadratic programming [40]. This single-objective solver invokes the differential
equation software DLSODA [41] to solve the state and costate systems. Here,
Lagrange interpolation [42] is used whenever DLSODA requires the value of the
state or costate at an intermediate time between two adjacent knot points. The
time-delay, the concentration of the initial feed of glycerol, the velocity ratio
of adding alkali to glycerol, and the history function are α = 0.4652h, cs0 =
10672mmolL−1, r = 0.75, and φ(t) = (0.1115gL−1, 495mmolL−1, 0, 0, 0, 5L)⊤,
respectively. The kinetic parameters and the maximal and minimal residual
concentrations are listed in Table 1. Note that there are total 9 phases and
1335 switchings in the maximal duration of the fed-batch process. In this sit-
uation, we denote the end moment of the first batch mode by τ1, and the end
moment of the first feeding mode in each phase by τi, i = 2, . . . , 10. The initial
values and bounds of the switching instants and the terminal time are listed in
Table 2, and the initial values and bounds of glycerol feeding rates are listed
in Table 3. Moreover, the approximation parameters ǫ and γ are adjusted ac-
cording to the ǫ–γ process as detailed in [21]. The process is terminated when
ǫ ≤ 1.0× 10−8 and γ ≤ 1.0× 10−7.

Both the CWS and the NBI methods are implemented with the single-
objective solver described above using an even spread set of weights, in which
the uniform spacing between two consecutive ω1 is 1/19 and ω2 = 1−ω1 (result-
ing in 20 SOO problems), to solve (EMP). The obtained Pareto sets for these
two methods are depicted in Figure 1. Note that a Pareto filter is designed to
remove all non-global Pareto solutions whose definitions are given in [43]. This
filter works by comparing a point in the Pareto set with every other generated
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Table 2: Optimal values, initial values and lower and upper bounds for the switching instants
and terminal time.

Initial Lower Upper Weight Weight Weight Weight
value bound bound [1, 0] [0.684, 0.316] [0.316, 0.684] [0, 1]

τ1 5.3300 5.3000 5.4000 5.3020 5.3000 5.3000 5.3000
τ2 6.1092 6.0783 6.1800 6.0804 6.0787 6.0792 6.0783
τ3 7.1375 7.1067 7.2083 7.1087 7.1070 7.1076 7.1067
τ4 8.8322 8.8011 8.9028 8.8040 8.8020 8.8026 8.8011
τ5 12.137 - 12.208 12.110 12.108 12.107 12.098
τ6 - - 15.903 - 15.801 15.801 15.081
τ7 - - 18.152 - - 18.050 18.042
τ8 - - 19.902 - - 19.800 19.750
τ9 - - 23.902 - - 23.800 23.780
τ10 - - 24.106 - - 24.105 24.095
tf 14.160 11.000 24.160 14.090 16.160 24.160 24.149

Table 3: Bounds of glycerol feeding rates in phases 1-9 [18].

Phases 1-2 3 4-5 6 7 8-9

Initial value (mLs−1) 0.2103 0.1992 0.2103 0.2214 0.2437 0.2548
Lower bound (mLs−1) 0.1682 0.1594 0.1682 0.1771 0.1949 0.2038
Upper bound (mLs−1) 0.2524 0.2390 0.2524 0.2657 0.2924 0.3058

points. If a point is not a global Pareto solution, then it is eliminated. From
Figure 1, we can see that minimizing the minus productivity of 1,3-PD and
minimizing the consumption rate of substrate are conflicting objectives because
lowering one results in an increase of the other. Although both the CWS and
the NBI methods capture this feature, there are large differences in the accuracy
of the resulting Pareto sets. Although an even spread is used to vary the weight-
s in the CWS and the NBI methods, the result obtained by the NBI method
clearly exhibits a more even spread in the Pareto set than the one obtained
by the CWS method. Thus, the result obtained by the NBI method provides
a more accurate representation of Pareto set. In addition, it is observed that
the computation time taken to generate one point by the NBI method is about
31.3s. However, it takes 50.8s by the CWS method. These computations are
carried out on a computer equipped with an Intel Core i5-2300 CPU (2.80GHz)
and 4.00GB RAM. Thus, it is clear that the NBI method not only generates a
more accurate Pareto set than the CWS method, but also gives rise to faster
computation time.
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Figure 1: Pareto sets generated by CWS and NNC methods.

It should also be noted that the Pareto set obtained by the NBI method con-
sists of three regions (see Figure 1). Region I is characterized by the limited abil-
ity of the consumption rate of substrate to 1,3-PD productivity, that is, a large
increase in the consumption rate of substrate results in an insignificant increase
in 1,3-PD productivity. For example, an increase in the consumption rate of sub-
strate from 328.746mmolh−1 to 468.641mmolh−1 only gives rise to an increase
of 1,3-PD productivity from 236.349mmolh−1 to 237.018mmolh−1. Region III is
characterized by the sensitivity of 1,3-PD productivity to the consumption rate
of substrate, i.e., a small increase in the consumption rate of substrate produces
a substantial increase in 1,3-PD productivity. For example, an increase in the
consumption rate of substrate from 133.851mmolh−1 to 252.163mmolh−1 pro-
duces an increase in the 1,3-PD productivity from 54.412mmolh−1 to 220.547
mmolh−1. Region II represents a transition zone between regions I and III.
Furthermore, four points A, B, C, and D are taken from the Pareto set obtained
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Figure 2: Optimal feeding rates of glycerol in phases 1-9 for points A, B, C and D.

by the NBI method (see Figure 1). For these four points, the corresponding
weights, the optimal switching instants and terminal times are also listed in
Table 2, and the optimal feeding rates of glycerol and the corresponding feeding
durations in phases 1-9 are depicted in Figure 2. Note that the feeding dura-
tions of glycerol are in seconds and the batch durations are 100 seconds minus
the corresponding feeding duration. Under these optimal profiles, the changes
of 1,3-PD productivity and the consumption rate of substrate are depicted in
Figure 3. From Figure 3, we can see that there is a trade-off between 1,3-PD
productivity and the consumption rate of substrate.

6. Conclusions

This paper has studied MOO problems arising in 1,3-PD fed-batch process.
Taking 1,3-PD productivity and the consumption rate of substrate as the objec-
tive functions, we presented a MOO optimization problem involving a switched
time-delay system. To solve the MOO problem, we converted the problem in-
to a sequence of SOO problems by using the CWS and the NBI methods. A
single-objective solver was designed to solve the resulting SOO problems. A
numerical example was used to test the developed numerical solution approach.
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Figure 3: Changes of productivity of 1,3-PD and consumption rate of substrate with respect
to fermentation time for points A, B, C and D.

Numerical results show that the NBI method provides a more accurate Pareto
set than the CWS method.
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