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Abstract
In this paper we develop various new fixed point theorems for a class of operator
equations with three general mixed monotone operators,namely
A(x, x) + B(x, x) + C(x, x) = x on ordered Banach spaces, where A, B, C are the mixed
monotone operators. A is such that for any t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that
for all x, y ∈ P, A(tx, t–1y) ≥ ϕ(t)A(x, y); B is hypo-homogeneous, i.e. B satisfies that for
any t ∈ (0, 1), x, y ∈ P, B(tx, t–1y) ≥ tB(x, y); C is concave-convex, i.e. C satisfies that for
fixed y, C(·, y) : P → P is concave; for fixed x, C(x, ·): P → P is convex. Also we study the
solution of the nonlinear eigenvalue equation A(x, x) + B(x, x) + C(x, x) = λx and discuss
its dependency to the parameter. Our work extends many existing results in the field
of study. As an application, we utilize the results obtained in this paper for the
operator equation to study the existence and uniqueness of positive solutions for a
class of nonlinear fractional differential equations with integral boundary conditions.
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1 Introduction
Mixed monotone operators are an important class of operators which are used intensively
in engineering, nuclear physics, biology, chemistry, technology, etc. They were first intro-
duced by Guo and Lakshmikantham in []. Thereafter, many authors have investigated
this kind of operators in Banach spaces and obtained a lot of interesting and important
results (see [–]).

In [], Chen discussed the conditions which guarantee the existence of an asymptoti-
cally attractive fixed point for T = A + H : P → P, where P is a cone of a Banach space E.
A, H : P → P are two monotone operators in E and there exist η >  and α ∈ (, ) such that

H(tx) ≥ tHx, ∀t ∈ (η, ), x ∈ P,

and

A(tx) ≥ tαAx, ∀t ∈ (η, ), x ∈ P,
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where α ∈ (η, ). If there is an x ∈ P such that Ax ∈ Cx and Hx ∈ Cx , then there exists
λ : (η, ) × Cx → (α, ) such that T(tx) ≥ tλ(t,x)Tx, t ∈ (η, ), x ∈ P. Furthermore, if λm(t) =
supx∈Cx

λ(t, x) < , then there exists x∗ ∈ Cx such that limn→∞ Tnx = x∗ and Tx∗ = x∗.
In [], Zhang used the partial order theory to study mixed monotone operators which

have different types of concave-convex properties (for example: A(x, y) is concave in x,
and (-α)-convex in y). The author also assumes that there exist u, v ∈ ◦

P, ε > , ε ≥ α

such that  	 u ≤ v, u ≤ A(u, v), A(v, u) ≤ v; and A(θ , v) ≥ εA(v, u)), and he
establishes the existence and uniqueness of a fixed point without assuming the operator
to be compact or continuous.

In [], Zhai and Hao considered the existence and uniqueness of positive solutions to
the operator equation A(x, x)+Bx = x on ordered Banach spaces, where A is a mixed mono-
tone operator, B is an increasing sub-homogeneous operator or α-concave operator, and
assume that:

() there is h ∈ Ph such that A(h, h) ∈ Ph, Bh ∈ Ph;
() there exists a constant δ > , such that A(x, y) ≥ δB(x, y), ∀x, y ∈ P.
In [], Zhai and Anderson studied an operator equation Ax + Bx + Cx = x on ordered

Banach spaces, where A is an increasing α-concave operator, B is an increasing sub-
homogeneous operator and C is a homogeneous operator and satisfy:

() there is h > θ such that Ah ∈ Ph, Bh ∈ Ph, Ch ∈ Ph;
() there exist constants δ, δ > , such that Ax ≥ δBx + δCx, ∀x ∈ P.
The existence and uniqueness of positive solutions of the operator equation is obtained

by using the properties of cones and a fixed point theorem for increasing general β-
concave operators.

Motivated by the above work, this paper studies the existence and uniqueness of positive
solutions to the following operator equation on ordered Banach spaces:

A(x, x) + B(x, x) + C(x, x) = x, (.)

where A, B, C : P × P → P are mixed monotone operators and satisfy the following condi-
tions, respectively:

() for any t ∈ (, ), there exists ϕ(t) ∈ (t, ] such that

A
(
tx, t–y

) ≥ ϕ(t)A(x, y), ∀x, y ∈ P;

() for any t ∈ (, ),

B
(
tx, t–y

) ≥ tB(x, y), ∀x, y ∈ P;

() for any fixed y, C(·, y) : P → P is concave; for any fixed x, C(x, ·) : P → P is convex.
Also we study the solution of the nonlinear eigenvalue equation A(x, x) + B(x, x) +

C(x, x) = λx and discuss its properties. As an application, we utilize the results obtained
for the operator equations to study the existence and uniqueness of positive solutions for
a class of nonlinear fractional differential equations with integral boundary conditions.

To our knowledge, so far no fixed point results have been achieved for the operator of
equation (.) with the operators A, B, C satisfying the above listed conditions (), (), and
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(). Our work presented in this paper has various new features. First,by using the proper-
ties of cones, we obtain some existence and uniqueness results of positive solutions for the
operator of equation (.) without the need of assuming the operators to be continuous
or compact, which extends the corresponding results in [–]. Most importantly our
work is about the sum of three classes of mixed monotone operators. We also discusses
the solution of the nonlinear eigenvalue equation A(x, x) + B(x, x) + C(x, x) = λx and inves-
tigate its dependency to the parameter. To demonstrate the applicability of our abstract
results, we give, in the last section of the paper, some applications to nonlinear fractional
differential equations with integral boundary conditions, and also, we give some specific
examples.

2 Preliminaries and lemmas
For convenience in the discussion of the following sections, we briefly present here some
definitions, notations and known results. For more details, we refer the reader to [, , ,
–] and the references therein.

Suppose that (E,‖ · ‖) is a Banach space and θ is the zero element of E. Recall that a non-
empty closed convex set P ⊂ E is a cone if it satisfies () x ∈ P, λ ≥  ⇒ λx ∈ P; () x ∈ P,
–x ∈ P ⇒ x = θ . The Banach space E can be partially ordered by a cone P ⊂ E, i.e., x ≤ y if
and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x.

A cone P is said to be solid if its interior
◦
P is non-empty. If x – y ∈ ◦

P, then we denote
x � y. Moreover, P is called normal if there exists a constant N >  such that for all x, y ∈ E,
θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where the smallest N is called the normality constant of P.
If x, x ∈ E, the set [x, x] = {x ∈ E | x ≤ x ≤ x} is called the order interval between
x and x. We say that an operator A : E → E is increasing (decreasing) if x ≤ y implies
Ax ≤ Ay (Ay ≤ Ax). An operator A : P → P is said to be α-concave if there exists α ∈ (, )
such that for all t ∈ (, ), x ∈ P, A(tx) ≥ tαAx.

For x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such that λx ≤ y ≤
μx. Clearly, ∼ is an equivalence relation. Given h > , we denote by Ph the set Ph = {x ∈
P | x ∼ h}. It is easy to see that Ph ⊂ P. If P is a solid cone, take any h ∈ ◦

P, then Ph =
◦
P. For

x, y ∈ Ph, we can define

M(x/y) = inf{λ ∈ R : x ≤ λy}. (.)

Definition . [, ] A : P × P → P is said to be a mixed monotone operator if A(x, y) is
increasing in x, and decreasing in y, i.e., ui, vi (i = , ) ∈ P, u ≤ u, v ≥ v imply A(u, v) ≤
A(u, v). An element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition . [] A : D(A) ⊂ E → E is said to be convex if for any x, y ∈ D(A) with x ≤ y
and every t ∈ (, ), we have A(tx + ( – t)y) ≤ tAx + ( – t)Ay. A is said to be concave if –A
is convex.

3 Main results
In this section we consider the existence and uniqueness of positive solutions for the op-
erator of equation (.). Throughout the paper, we assume that E is a real Banach space
with a partial order introduced by a normal cone P of E. Take h ∈ E, h > θ , Ph is given as
in the introduction.
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Theorem . Let P be a normal cone in E. Assume that A, B, C : P×P → P are three mixed
monotone operators and satisfy the following conditions:

() for any t ∈ (, ), there exists ϕ(t) ∈ (t, ] such that

A
(
tx, t–y

) ≥ ϕ(t)A(x, y), ∀x, y ∈ P; (.)

() for any t ∈ (, ), x, y ∈ P,

B
(
tx, t–y

) ≥ tB(x, y); (.)

() for any fixed y ∈ P, C(·, y) : P → P is concave; for any fixed x ∈ P, C(x, ·) : P → P is
convex;

() there is h ∈ P, h > θ such that A(h, h) ∈ Ph, B(h, h) ∈ Ph, and C(h, h) ∈ Ph;
() there exists 

 ≤ c ≤ , such that C(θ , lh) ≥ cC(lh, θ ), for any l ≥ ;
() there exists a constant δ > , such that B(x, y) + C(x, y) ≤ δA(x, y), ∀x, y ∈ Ph.
Then the operator of equation (.) has a unique positive solution x∗ in P, which satisfies

μh ≤ x∗ ≤ λh, where λ > , μ >  are two real numbers. And for any initial values x, y ∈
Ph, by constructing successively the sequences as follows:

xn = A(xn–, yn–) + B(xn–, yn–) + C(xn–, yn–),

yn = A(yn–, xn–) + B(yn–, xn–) + C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ in E, as n → ∞.

Proof From (.) and (.), for any t ∈ (, ), we have

A
(
t–x, ty

) ≤ 
ϕ(t)

A(x, y), ∀x, y ∈ P

and

B
(
t–x, ty

) ≤ t–B(x, y), ∀x, y ∈ P. (.)

Since A(h, h) ∈ Ph, B(h, h) ∈ Ph, C(h, h) ∈ Ph, there exist constants ai > , bi >  (i = , , )
such that

ah ≤ A(h, h) ≤ bh, ah ≤ B(h, h) ≤ bh, ah ≤ C(h, h) ≤ bh. (.)

First of all, we show A : Ph × Ph → Ph. For any x, y ∈ Ph, we can choose two sufficiently
small numbers α,α ∈ (, ) such that

αh ≤ x ≤ 
α

h, αh ≤ y ≤ 
α

h.

Let α = min{α,α}, then α ∈ (, ), by (.), (.), and (.), we have

A(x, y) ≤ A
(


α

h,αh
)

≤ 
ϕ(α)

A(h, h) ≤ 
ϕ(α)

bh,
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A(x, y) ≥ A
(

αh,

α

h
)

≥ ϕ(α)A(h, h) ≥ ϕ(α)ah.

Evidently, 
ϕ(α) b,ϕ(α)a > . Thus A(x, y) ∈ Ph; that is, A : Ph × Ph → Ph.

Second, we show B : Ph ×Ph → Ph. For any x, y ∈ Ph, we can choose two sufficiently small
numbers β,β ∈ (, ) such that

βh ≤ x ≤ 
β

h, βh ≤ y ≤ 
β

h.

Let β = min{β,β}, then β ∈ (, ), by (.), (.), and (.), we have

B(x, y) ≤ B
(


β

h,βh
)

≤ 
β

B(h, h) ≤ 
β

bh,

B(x, y) ≥ B
(

βh,

β

h
)

≥ βB(h, h) ≥ βah.

Evidently, 
β

b,βa > . Thus B(x, y) ∈ Ph; that is, B : Ph × Ph → Ph.
Thirdly, we show C : Ph × Ph → Ph. For any t ∈ (, ), x, y ∈ Ph, we have

C(x, y) = C
(
x, tt–y + ( – t)θ

) ≤ tC
(
x, t–y

)
+ ( – t)C(x, θ ),

thus

tC
(
x, t–y

) ≥ C(x, y) – ( – t)C(x, θ ). (.)

Also, we can find a sufficiently large l such that x, y, t–y ≤ lh and satisfies (), so from (),
(.), and the concavity and convexity as well as the monotone property of operator C, we
have

C
(
tx, t–y

) ≥ tC
(
x, t–y

)
+ ( – t)C

(
θ , t–y

)

≥ C(x, y) – ( – t)C(x, θ ) + ( – t)C(θ , lh)

≥ C(x, y) + ( – t)
[
C(θ , lh) – C(lh, θ )

]

≥ C(x, y) + ( – t)
[

C(θ , lh) –

c

C(θ , lh)
]

= C(x, y) + ( – t)
(

 –

c

)
C(θ , lh)

≥
[

 + ( – t)
(

 –

c

)]
C(x, y)

=
[(

 –

c

)
+

(

c

– 
)

t
]

C(x, y)

≥ tC(x, y).

That is,

C
(
tx, t–y

) ≥ tC(x, y), ∀t ∈ (, ),∀x, y ∈ Ph. (.)
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And then it is obvious that

C
(
t–x, ty

) ≤ 
t

C(x, y), ∀t ∈ (, ),∀x, y ∈ Ph. (.)

Since x, y ∈ Ph, we can choose two sufficiently small numbers γ,γ ∈ (, ) such that

γh ≤ x ≤ 
γ

h, γh ≤ y ≤ 
γ

h.

Let γ = min{γ,γ}, then γ ∈ (, ), by (.), (.), and (.), we have

C(x, y) ≤ C
(


γ

h,γ h
)

≤ 
γ

C(h, h) ≤ 
γ

bh,

C(x, y) ≥ C
(

γ h,

γ

h
)

≥ γ C(h, h) ≥ γ ah.

Evidently, 
γ

b,γ a > . Thus C(x, y) ∈ Ph; that is, C : Ph × Ph → Ph.
Now we define an operator T = A + B + C : Ph × Ph → Ph by

T(x, y) = A(x, y) + B(x, y) + C(x, y), x, y ∈ Ph.

Then T : Ph × Ph → Ph is a mixed monotone operator and T(h, h) ∈ Ph.
In the following, we show that for any x, y ∈ Ph, t ∈ (, ), there exists ψ(t, x, y) ∈ (t, ]

such that T(tx, t–y) ≥ ψ(t, x, y)T(x, y). From (.), (.), and (.), for any t ∈ (, ) and
x, y ∈ Ph, we have

T
(
tx, t–y

)
= A

(
tx, t–y

)
+ B

(
tx, t–y

)
+ C

(
tx, t–y

)

≥ ϕ(t)A(x, y) + tB(x, y) + tC(x, y)

≥ ϕ(t)A(x, y) + t
[
B(x, y) + C(x, y)

]
.

For any x, y ∈ Ph, since A, B, C : Ph ×Ph → Ph, we have A(x, y) ∈ Ph, B(x, y) ∈ Ph, C(x, y) ∈ Ph,
and thus we get B(x, y) + C(x, y) ∼ A(x, y). Denote

F(x, y) = M
(

B(x, y) + C(x, y)
A(x, y)

)
.

Then from () we have F(x, y) ≤ δ. For any t ∈ (, ), x, y ∈ Ph, consider

g(s) =
ϕ(t) + F(x, y)t
(F(x, y) + )s

, s ∈ [
t,ϕ(t)

]
.

It is clear that g is continuous and strictly decreasing with respect to s. Since

g
(

δt + ϕ(t)
δ + 

)
=

ϕ(t) + F(x, y)t
(F(x, y) + ) δt+ϕ(t)

δ+

> 

and

g
(
ϕ(t)

)
=

ϕ(t) + F(x, y)t
(F(x, y) + )ϕ(t)

< ,
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there exists a unique ψ(t, x, y) ∈ ( δt+ϕ(t)
δ+ ,ϕ(t)) such that

g
(
ψ(t, x, y)

)
=

ϕ(t) + F(x, y)t
(F(x, y) + )ψ(t, x, y)

= .

Solving for F(x, y) in the above inequality leads to

F(x, y) =
ϕ(t) – ψ(t, x, y)
ψ(t, x, y) – t

.

From (.) we get M(x/y) = inf{λ ∈ R : x ≤ λy}. So from the definitions of F(x, y) and M(x/y),
we can get

B(x, y) + C(x, y) ≤ ϕ(t) – ψ(t, x, y)
ψ(t, x, y) – t

A(x, y).

This inequality can be rewritten as

ϕ(t)A(x, y) + t
[
B(x, y) + C(x, y)

] ≥ ψ(t, x, y)
[
A(x, y) + B(x, y) + C(x, y)

]
.

Hence

T
(
tx, t–y

)
= A

(
tx, t–y

)
+ B

(
tx, t–y

)
+ C

(
tx, t–y

)

≥ ϕ(t)A(x, y) + tB(x, y) + tC(x, y)

= ϕ(t)A(x, y) + t
[
B(x, y) + C(x, y)

]

≥ ψ(t, x, y)
[
A(x, y) + B(x, y) + C(x, y)

]

= ψ(t, x, y)T(x, y).

That is, for any x, y ∈ Ph and t ∈ (, ), there exists ψ(t, x, y) ∈ ( δt+ϕ(t)
δ+ ,ϕ(t)) ⊆ (t, ] such

that

T
(
tx, t–y

) ≥ ψ(t, x, y)T(x, y). (.)

Since T(h, h) ∈ Ph, we can choose a sufficiently small number s ∈ (, ) such that

sh ≤ T(h, h) ≤ 
s

h. (.)

Noting that s < ψ(s, x, y) ≤ , we can get  < ψ(s,x,y)
s

≤ 
s

. By the Archimedes principle,
we can take a positive integer k such that

(
ψ(s, x, y)

s

)k

≥ 
s

,

that is,

ψ(s, x, y)
s

≥
(


s

) 
k

. (.)
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Put u = sk
h, v = s–k

 h. Evidently, u, v ∈ Ph and u = sk
 v < v. Take any r ∈ (, sk

 ],
then r ∈ (, ) and u ≥ rv. By the mixed monotone properties of T , we have T(u, v) ≤
T(v, u). Further, by combining condition (.) with (.) and (.), we have

T(u, v) = T
(

sk
h,


sk


h
)

= T
(

ssk–
 h,


s


sk–


h
)

≥ ψ

(
s, sk–

 h,


sk–


h
)

T
(

sk–
 h,


sk–


h
)

= ψ

(
s, sk–

 h,


sk–


h
)

T
(

ssk–
 h,


s


sk–


h
)

= ψ

(
s, sk–

 h,


sk–


h
)

ψ

(
s, sk–

 h,


sk–


h
)

T
(

sk–
 h,


sk–


h
)

≥ · · ·

≥
((


s

) 
k

s

)k

T(h, h)

≥ 
s

sk
sh

≥ sk
h

= u.

From (.), we can get, for all t ∈ (, ), x, y ∈ P, T(t–x, ty) ≤ 
ψ(t,x,y) T(x, y). So

T(v, u) = T
(


sk


h, sk

h
)

= T
(


s


sk–


h, ssk–

 h
)

≤ 
ψ(s, 

sk–


h, sk–
 h)

T
(


sk–


h, sk–

 h
)

=


ψ(s, 
sk–


h, sk–
 h)

T
(


s


sk–


h, ssk–

 h
)

=


ψ(s, 
sk–


h, sk–
 h)


ψ(s, 

sk–


h, sk–
 h)

T
(


sk–


h, sk–

 h
)

≤ · · ·

≤
(


s

s

k


)k

T(h, h)

≤ 
sk


s


s

h

≤ 
sk


h

= v.
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Thus we have

u ≤ T(u, v) ≤ T(v, u) ≤ v.

For u, v, construct successively the sequences as follows:

un = T(un–, vn–), vn = T(vn–, un–), n = , , . . . .

Evidently, u ≤ v. By the mixed monotone properties of T , we obtain un ≤ vn (n = , , . . .)
and

u ≤ u ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v. (.)

Noting that u ≥ rv, we can get un ≥ u ≥ rv ≥ rvn (n = , , . . .). Let

tn = sup{t >  | un ≥ tvn, n = , , . . .}.

Then we have

un ≥ tnvn, n = , , . . . , (.)

and then by (.) we have

un+ ≥ un ≥ tnvn ≥ tnvn+, n = , , . . . .

Therefore, tn+ ≥ tn, i.e., {tn} is increasing with {tn} ⊂ (, ]. Suppose tn → t∗ as n → ∞,
then t∗ = . Otherwise,  < t∗ < . Since tn ≤ t∗ and ψ(t, x, y) > t, by the mixed monotone
properties of T and (.) as well as (.), we have

un+ = T(un, vn)

≥ T
(

tnvn,

tn

un

)

= T
(

tn

t∗ t∗vn,
t∗

tn


t∗ un

)

≥ tn

t∗ T
(

t∗vn,

t∗ un

)

≥ tn

t∗ ψ
(
t∗, vn, un

)
T(vn, un)

=
tn

t∗ ψ
(
t∗, vn, un

)
vn+.

By the definition of tn, we have tn+ ≥ tn
t∗ ψ(t∗, vn, un), that is, ψ(t∗, vn, un) ≤ t∗

tn
tn+. So we

get

t∗ <
δt∗ + ϕ(t∗)

δ + 
< ψ

(
t∗, vn, un

) ≤ t∗

tn
tn+, n = , , . . . .
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Since limn→∞ t∗
tn

tn+ = t∗, we get t∗ < δt∗+ϕ(t∗)
δ+ ≤ t∗, which is a contradiction. Thus,

limn→∞ tn = . For any natural number p we have

θ ≤ un+p – un ≤ vn – un ≤ vn – tnvn = ( – tn)vn ≤ ( – tn)v,

θ ≤ vn – vn+p ≤ vn – un ≤ ( – tn)v, n = , , . . . .

Since the cone P is normal, we have

‖un+p – un‖ ≤ N( – tn)‖v‖, ‖vn – vn+p‖ ≤ N( – tn)‖v‖, n, p = , , . . . ,

where N is the normality constant of P. So we can claim that {un} and {vn} are Cauchy
sequences. Because E is complete, there exist u∗, v∗ such that un → u∗, vn → v∗ as n → ∞.
By (.), we know that un ≤ u∗ ≤ v∗ ≤ vn with u∗, v∗ ∈ Ph, and

θ ≤ v∗ – u∗ ≤ vn – un ≤ ( – tn)v.

Further, by the normality of cone P, we have

∥
∥v∗ – u∗∥∥ ≤ N( – tn)‖v‖ → , n → ∞,

and thus u∗ = v∗. Let x∗ := u∗ = v∗ and then by the mixed monotone properties of T , we
obtain

un+ = T(un, vn) ≤ T
(
x∗, x∗) ≤ T(vn, un) = vn+, n = , , , . . . .

Let n → ∞, then we get x∗ = T(x∗, x∗). That is, x∗ is a fixed point of T in Ph.
In the following, we prove that x∗ is the unique fixed point of T in Ph. In fact, suppose x

is another fixed point of T in Ph and x �= x∗. Since x∗, x ∈ Ph, there exist positive numbers
μ,μ,λ,λ >  such that

μh ≤ x∗ ≤ λh, μh ≤ x ≤ λh.

Then we obtain

x ≤ λh =
λ

μ
μh ≤ λ

μ
x∗, x ≥ μh =

μ

λ
λh ≥ μ

λ
x∗.

Let

e = sup
{

t >  | tx∗ ≤ x ≤ t–x∗}.

Evidently,  < e ≤ , ex∗ ≤ x ≤ 
e

x∗. Next we prove e = . If  < e < , then by the mixed
monotone properties of T and (.), we would get

x = T(x, x) ≥ T
(

ex∗,

e

x∗
)

≥ ψ
(
e, x∗, x∗)T

(
x∗, x∗) = ψ

(
e, x∗, x∗)x∗.

Since ψ(e, x∗, x∗) > e, this contradicts the definition of e, so we get e = . Thus x = x∗.
Therefore, A has a unique fixed point x∗ in Ph.
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Now we construct successively the sequences

xn = T(xn–, yn–), yn = T(yn–, xn–), n = , , . . . ,

for any initial points x, y ∈ Ph. Since x, y ∈ Ph, we can choose small numbers e, e ∈
(, ) such that

eh ≤ x ≤ 
e

h, eh ≤ y ≤ 
e

h.

Let e∗ = min{e, e}. Then e∗ ∈ (, ) and

e∗h ≤ x, y ≤ 
e∗

h.

Since e∗ < ψ(e∗, x, y) ≤ , we can get  < ψ(e∗ ,x,y)
e∗ ≤ 

e∗ . By the Archimedes principle, we
can choose a sufficiently large positive integer m such that

ψ(e∗, x, y)
e∗

≥
(


e∗

) 
m

.

Put u = em∗ h, v = 
em∗ h. It is easy to see that u, v ∈ Ph, and u < x, y < v. Let

un = T(un–, vn–), vn = T(vn–, un–), n = , , . . . .

Similarly, it follows that there exists y∗ ∈ Ph such that

T
(
y∗, y∗) = y∗, lim

n→∞ un = lim
n→∞ vn = y∗.

By the uniqueness of the fixed points of the operator T in Ph, we get x∗ = y∗. And by
induction, un ≤ xn, yn ≤ vn (n = , , . . .). Since the cone P is normal, we have limn→∞ xn =
limn→∞ yn = x∗. �

Remark . Theorem . is a fixed point theorem for the sum of three classes of mixed
monotone operators, which extends the results in [–].

Taking B, C = θ in Theorem ., we get the following corollary.

Corollary . Let P be a normal cone in E. Assume that T : P×P → P is a mixed monotone
operator and satisfies the following conditions:

(A) There exists h ∈ P with h > θ such that T(h, h) ∈ Ph.
(A) For any t ∈ (, ), there exists ϕ(t) ∈ (t, ] such that

T
(
tx, t–y

) ≥ ϕ(t)T(x, y), ∀x, y ∈ P.

Then the operator T(x, x) = x has a unique solution x∗ in P, which satisfies μh ≤ x∗ ≤ λh,
where λ > , μ >  are two real numbers. Moreover, for any initial values x, y ∈ Ph, by
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constructing successively the sequences as follows:

xn = T(xn–, yn–), yn = T(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ in E, as n → ∞.

Proof Since X is a uniformly convex Banach space and A is bounded, we see that A is
non-empty and {(PT)n(x)} is bounded for any x ∈ A. By Theorem ., T has at least one
best proximity point. �

Remark . Under the conditions (A), (A), this corollary not only guarantees the exis-
tence of upper-lower solutions for the operator T and the existence of a unique fixed point,
but also it constructs successively some sequences for approximating the fixed point.

Taking A, B = θ and 
 < c ≤  in Theorem ., from the proof of Theorem . we get the

following corollary.

Corollary . Let P be a normal cone in E. Assume that C : P×P → P is a mixed monotone
operator and satisfies the following conditions:

() for any fixed y ∈ P, C(·, y) : P → P is concave; for any fixed x ∈ P, C(x, ·) : P → P is
convex;

() there is h ∈ P, h > θ such that C(h, h) ∈ Ph;
() there exists 

 < c ≤ , such that C(θ , lh) ≥ cC(lh, θ ), l ≥ .
Then the operator C(x, x) = x has a unique solution x∗ in P, which satisfies μh ≤ x∗ ≤ λh,

where λ > , μ >  are two real numbers. Furthermore, for any initial values x, y ∈ Ph, by
constructing successively the sequences as follows:

xn = C(xn–, yn–), yn = C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ in E, as n → ∞.

Remark . In the above corollary we do not need to require the operator C to satisfy
 < C(θ , v) ≤ v, which extends the result in [].

Taking ϕ(t) = tα , α ∈ (, ), we get the following corollary, which generalizes and im-
proves Theorem . in [].

Corollary . Let P be a normal cone in E, α ∈ (, ). Assume that A, B, C : P × P → P are
three mixed monotone operators and satisfy the following conditions:

() for any t ∈ (, ), x, y ∈ P, we have A(tx, t–y) ≥ tαA(x, y);
() for any t ∈ (, ), x, y ∈ P, we have B(tx, t–y) ≥ tB(x, y);
() for any fixed y ∈ P, C(·, y) : P → P is concave; for any fixed x ∈ P, C(x, ·) : P → P is

convex;
() there is h ∈ P, h > θ such that A(h, h) ∈ Ph, B(h, h) ∈ Ph, and C(h, h) ∈ Ph;
() there exists 

 ≤ c ≤ , such that C(θ , lh) ≥ cC(lh, θ ), for any l ≥ ;
() there exists a constant δ > , such that B(x, y) + C(x, y) ≤ δA(x, y), ∀x, y ∈ Ph.
Then the operator equation (.) has a unique solution x∗ in P, which satisfies μh ≤ x∗ ≤

λh, where λ > , μ >  are two real numbers. Furthermore, for any initial values x, y ∈ Ph,
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by constructing successively the sequences as follows:

xn = A(xn–, yn–) + B(xn–, yn–) + C(xn–, yn–),

yn = A(yn–, xn–) + B(yn–, xn–) + C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Corollary . Let P be a normal cone in E. Let h >  and A, B, C : Ph × Ph → Ph are three
mixed monotone operators and satisfy the following conditions:

() for any t ∈ (, ), there exists ϕ(t) ∈ (t, ] such that

A
(
tx, t–y

) ≥ ϕ(t)A(x, y), ∀x, y ∈ Ph;

() for any t ∈ (, ), x, y ∈ Ph, B(tx, t–y) ≥ tB(x, y);
() for any fixed y ∈ Ph, C(·, y) : Ph → Ph is concave; for any fixed x ∈ Ph,

C(x, ·) : Ph → Ph is convex;
() there exists 

 ≤ c ≤ , such that C(θ , lh) ≥ cC(lh, θ ), l ≥ ;
() there exists a constant δ > , such that B(x, y) + C(x, y) ≤ δA(x, y), ∀x, y ∈ Ph.
Then the operator of equation (.) has a unique solution x∗ in P, which satisfies μh ≤

x∗ ≤ λh, where λ > , μ >  are two real numbers. And for any initial values x, y ∈ Ph, by
constructing successively the sequences as follows:

xn = A(xn–, yn–) + B(xn–, yn–) + C(xn–, yn–),

yn = A(yn–, xn–) + B(yn–, xn–) + C(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Remark . If P is a solid cone, h ∈ ◦
P. If we suppose that the operators A, B, C : Ph ×Ph →

Ph or A, B, C :
◦
P × ◦

P → ◦
P, then A(h, h) ∈ Ph, B(h, h) ∈ Ph, and C(h, h) ∈ Ph are automatically

satisfied in Corollary ..

Theorem . Let P be a normal cone in E. A, B, C : P × P → P are three mixed monotone
operators and satisfy the following conditions:

() for any t ∈ (, ), there exists ϕ(t) ∈ (t, ] such that

A
(
tx, t–y

) ≥ ϕ(t)A(x, y), ∀x, y ∈ P;

() for any t ∈ (, ), x, y ∈ P, B(tx, t–y) ≥ tB(x, y);
() for any fixed y ∈ P, A(·, y) : P → P is concave; for any fixed x ∈ P, A(x, ·) : P → P is

convex;
() there is h ∈ P, h > θ such that A(h, h) ∈ Ph, B(h, h) ∈ Ph, and C(h, h) ∈ Ph;
() there exists 

 ≤ c ≤ , such that C(θ , lh) ≥ cC(lh, θ ), l ≥ ;
() there exists a constant δ > , such that B(x, y) + C(x, y) ≤ δA(x, y), ∀x, y ∈ Ph.
Then for any given λ > , the operator equation

A(x, x) + B(x, x) + C(x, x) = λx
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has a unique solution xλ in P, which satisfies μh ≤ xλ ≤ λh, where λ > , μ >  are two real
numbers. Furthermore, we have the following conclusions:

(R) if ϕ(t) > t 
 (δ + ) – δt for t ∈ (, ), then xλ is strictly decreasing in λ, that is,

 < λ < λ implies xλ > xλ ;
(R) if there exists β ∈ (, ) such that ϕ(t) ≥ tβ (δ + ) – δt for t ∈ (, ), then xλ is

continuous in λ, that is, λ → λ (λ > ) implies ‖xλ – xλ‖ → ;
(R) if there exists β ∈ (, 

 ) such that ϕ(t) ≥ tβ (δ + ) – δt for t ∈ (, ), then
limλ→∞ ‖xλ‖ = , limλ→+ ‖xλ‖ = ∞.

Proof For fixed λ > , by Theorem ., 
λ

T : Ph × Ph → Ph is mixed monotone and satisfies

(

λ

T
)(

tx, t–y
)

=

λ

T
(
tx, t–y

) ≥ 
λ

ψ(t, x, y)T(x, y) = ψ(t, x, y)
(


λ

T
)

(x, y),

for any x, y ∈ Ph, t ∈ (, ). So it follows from Theorem . that 
λ

T has a unique fixed point
xλ in Ph. That is, T(xλ, xλ) = λxλ. For convenience of proof, we let

α(t, x, y) =
lnψ(t, x, y)

ln t
, ∀t ∈ (, ).

Then α(t, x, y) ∈ [, ) and ψ(t, x, y) = tα(t,x,y). Thus T(tx, t–y) ≥ tα(t,x,y)T(x, y), for any x, y ∈
Ph, t ∈ (, ).

() Proof of (R). Suppose  < λ < λ and let

t = sup{t >  | xλ ≥ txλ , xλ ≥ txλ},

then we have  < t <  and

xλ ≥ txλ , xλ ≥ txλ . (.)

By the mixed monotone properties of T ,

λxλ = T(xλ , xλ ) ≥ T
(
txλ , t–

 xλ

) ≥ t
α(t,xλ ,xλ )
 T(xλ , xλ ) = t

α(t,xλ ,xλ )
 λxλ ,

λxλ = T(xλ , xλ ) ≥ T
(
txλ , t–

 xλ

) ≥ t
α(t,xλ ,xλ )
 T(xλ , xλ ) = t

α(t,xλ ,xλ )
 λxλ .

Further

xλ ≥ λ–
 λt

α(t,xλ ,xλ )
 xλ , xλ ≥ λ–

 λt
α(t,xλ ,xλ )
 xλ . (.)

Noting that λ–
 λt

α(t,xλ ,xλ )
 > t, from the definition of t and (.), we get

λ–
 λt

α(t,xλ ,xλ )
 ≤ t,

which in turn yields

t ≥
(

λ

λ

) 
–α(t,xλ ,xλ )

. (.)
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Hence

xλ ≥ λ–
 λ

(
λ

λ

) α(t,xλ ,xλ )
–α(t,xλ ,xλ )

xλ =
(

λ

λ

) –α(t,xλ ,xλ )
–α(t,xλ ,xλ )

xλ . (.)

Noting that ϕ(t) > t


 (δ + ) – δt, we have ψ(t, x, y) > ϕ(t)+δt

δ+ > t


 , and thus we have

α(t, x, y) < 
 and consequently,

(
λ

λ

) –α(t,xλ ,xλ )
–α(t,xλ ,xλ )

> .

Thus, xλ > xλ .
() Proof of (R). Since ϕ(t) ≥ tβ (δ + ) – δt for t ∈ (, ), we have ψ(t, x, y) > ϕ(t)+δt

δ+ ≥
tβ for t ∈ (, ), and thus we get α(t, x, y) ≤ β for t ∈ (, ). By (.) and (.), we have

(
λ

λ

) 
–β

xλ ≤
(

λ

λ

) 
–α(t,xλ ,xλ )

xλ ≤ xλ

≤ 
t

xλ ≤
(

λ

λ

) 
–α(t,xλ ,xλ )

xλ ≤
(

λ

λ

) 
–β

xλ , (.)

(
λ

λ

) 
–β

xλ ≤
(

λ

λ

) 
–α(t,xλ ,xλ )

xλ ≤ xλ ≤ 
t

xλ

≤
(

λ

λ

) 
–α(t,xλ ,xλ )

xλ ≤
(

λ

λ

) 
–β

xλ . (.)

Further

θ ≤ xλ –
(

λ

λ

) 
–β

xλ ≤
[(

λ

λ

) 
–β

–
(

λ

λ

) 
–β

]
xλ .

Consequently, from the normality of cone P and (.), we get

‖xλ – xλ‖ ≤
∥∥
∥∥xλ –

(
λ

λ

) 
–β

xλ

∥∥
∥∥ +

∥∥
∥∥

(
λ

λ

) 
–β

xλ – xλ

∥∥
∥∥

≤ N
[(

λ

λ

) 
–β

–
(

λ

λ

) 
–β

]
‖xλ‖ +

∣
∣∣
∣

(
λ

λ

) 
–β

– 
∣
∣∣
∣‖xλ‖,

where N is the normality constant. Let λ → λ–
 , we have ‖xλ – xλ‖ → . Similarly, let

λ → λ+
 , from (.) we can also prove ‖xλ – xλ‖ → . So the conclusion (R) holds.

() Proof of (R). Since ϕ(t) ≥ tβ (δ + ) – δt for t ∈ (, ), we have ψ(t, x, y) > ϕ(t)+δt
δ+ ≥

tβ for t ∈ (, ), and thus we have α(t, x, y) ≤ β < 
 for t ∈ (, ). Let λ = , λ = λ in (.),

then we have

x ≥ λ
–α(t,x,x)
–α(t,xλ ,xλ) xλ ≥ λ

–β
–β xλ, ∀λ > .
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Thus we can easily obtain

‖xλ‖ ≤ N

λ
–β
–β

‖x‖, ∀λ > ,

where N is the normality constant. Let λ → ∞, then ‖xλ‖ → . Similarly, let λ = λ, λ = 
in (.), then

xλ ≥ λ
– –α(t,xλ ,xλ)

–α(t,x,x) x ≥ λ
– –β

–β x, ∀ < λ < .

Thus

‖xλ‖ ≥ N–λ
– –β

–β ‖x‖, ∀ < λ < ,

where N is the normality constant. Let λ → +, then we have ‖xλ‖ → ∞. �

4 Applications
Many problems in various areas, such as differential equations, integral equations, bound-
ary value problems and nonlinear matrix equations, can be converted to the operator
equation (.). We refer the reader to [–] and the references therein. In this section, we
apply the results in Section  to study a class of nonlinear fractional differential equations
with integral boundary conditions. We focus on the existence and uniqueness of positive
solutions for the following nonlinear fractional differential equations with integral bound-
ary conditions:

⎧
⎪⎨

⎪⎩

Dα
+u(t) = f (t, u(t), u(t)) + g(t, u(t), u(t)) + k(t, u(t), u(t)),  < t < ,

u() = u′() = u′′() = ,
u() =

∫ η

 u(s) ds,
(.)

where  < α ≤ ,  < η < , and Dα
+ is the Riemann-Liouville fractional derivative of order

α > , defined by

Dα
+u(t) =


�(n – α)

(
d
dt

)n ∫ t


(t – τ )n–α–u(τ ) dτ .

In the following, for the sake of convenience, set E = C[, ], the Banach space of continu-
ous functions on [, ] with the norm ‖y‖ = max{|y(t)| : t ∈ [, ]}. P = {y ∈ C[, ] | y(t) ≥
, t ∈ [, ]}. It is clear that P is a normal cone of which the normality constant is . The
Green function of problem (.) is as follows:

G(t, s) =


p()�(α)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tα–( – s)α– – (η–s)α
α

tα– – ( – ηα

α
)(t – s)α–,

 ≤ s ≤ t ≤ , s ≤ η;
tα–( – s)α– – ( – ηα

α
)(t – s)α–,  ≤ η ≤ s ≤ t ≤ ;

tα–( – s)α– – (η–s)α
α

tα–,  ≤ t ≤ s ≤ η ≤ ;
tα–( – s)α–,  ≤ t ≤ s ≤ ,η ≤ s,

(.)

where p(s) =  – ηα

α
( – s). Obviously, G(t, s) is continuous on [, ] × [, ].
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Lemma . [] Let  < α ≤ . Then the Green function G(t, s) defined by (.) has the
following properties:

() G(t, s) ≥ , (t, s) ∈ [, ] × [, ];
() ηα

�(α)(α–ηα ) s( – s)α–h(t) ≤ G(t, s) ≤ (α–)(α–ηα )+ηα–

�(α)(α–ηα ) ( – s)α–h(t), t, s ∈ [, ], where
h(t) = tα–.

Theorem . Assume that the following conditions (H)-(H) hold:

(H) f , g, k : [, ] × [, +∞) × [, +∞) → [, +∞) are continuous, with f (t, , ) �≡ ,
g(t, , ) �≡ , k(t, , ) �≡ , t ∈ [, ];

(H) for any fixed t ∈ [, ] and v ∈ [, +∞), f (t, u, v), g(t, u, v), k(t, u, v) are increasing in
u ∈ [, +∞); for any fixed t ∈ [, ] and u ∈ [, +∞), f (t, u, v), g(t, u, v), k(t, u, v) are
decreasing in v ∈ [, +∞);

(H) for λ ∈ (, ), t ∈ [, ], u, v ∈ [, +∞), g(t,λu,λ–v) ≥ λg(t, u, v); for any λ ∈ (, ), t ∈
[, ], u, v ∈ [, +∞), there exists ϕ(λ) ∈ (λ, ] such that f (t,λu,λ–v) ≥ ϕ(λ)f (t, u, v);
and for fixed t ∈ [, ], v ∈ [, +∞), k(t, ·, v) is concave; for fixed t ∈ [, ], u ∈ [, +∞),
k(t, u, ·) is convex;

(H) there exists 
 ≤ c ≤  such that k(s, θ , lh(t)) ≥ ck(s, lh(t), θ ), l ≥ ;

(H) there exists a constant δ > , such that g(t, u, v) + k(t, u, v) ≤ δf (t, u, v), ∀t ∈ [, ],
u, v ∈ [, +∞).

Then the problem (.) has a unique positive solution u∗ in P, which satisfies μtα– ≤
u∗(t) ≤ λtα–, where λ > , μ >  are two real numbers, t ∈ [, ]. Furthermore for any
x, y ∈ Ph, by constructing successively the sequences

xn+(t) =
∫ 


G(t, s)f

(
s, xn(s), yn(s)

)
ds +

∫ 


G(t, s)g

(
s, xn(s), yn(s)

)
ds

+
∫ 


G(t, s)k

(
s, xn(s), yn(s)

)
ds, n = , , , . . . ,

yn+(t) =
∫ 


G(t, s)f

(
s, yn(s), xn(s)

)
ds +

∫ 


G(t, s)g

(
s, yn(s), xn(s)

)
ds

+
∫ 


G(t, s)k

(
s, yn(s), xn(s)

)
ds, n = , , , . . . ,

we have xn(t) ⇒ u∗, t ∈ [, ] and yn(t) ⇒ u∗(t), t ∈ [, ].

Proof From [], the problem (.) has an integral formulation given by

u(t) =
∫

G(t, s)
[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s), u(s)

)
+ k

(
s, u(s), u(s)

)]
ds,

where G(t,s) is given as in (.).
Define three operators A, B, C : P × P → E by

A(u, v)(t) =
∫ 


G(t, s)f

(
s, u(s), v(s)

)
ds,

B(u, v)(t) =
∫ 


G(t, s)g

(
s, u(s), v(s)

)
ds,
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C(u, v)(t) =
∫ 


G(t, s)k

(
s, u(s), v(s)

)
ds.

It is easy to prove that u is the solution of the problem (.) if and only if u = A(u, u) +
B(u, u) + C(u, u). From (H), we know that A, B, C : P × P → P. Further, it follows from
(H) that A, B, C are mixed monotone. For any λ ∈ (, ) and u, v ∈ P, by (H) we obtain

A
(
λu,λ–v

)
=

∫ 


G(t, s)f

(
s,λu(s),λ–v(s)

)
ds

≥ ϕ(λ)
∫ 


G(t, s)f

(
s, u(s), v(s)

)
ds

= ϕ(λ)A(u, v)(t).

That is, A(λu,λ–v) ≥ ϕ(λ)A(u, v) for λ ∈ (, ), u, v ∈ P. So the operator A satisfies (.).
Also, for any λ ∈ (, ) and u, v ∈ P, from (H) we know that

B
(
λu,λ–v

)
=

∫ 


G(t, s)g

(
s,λu(s),λ–v(s)

)
ds

≥ λ

∫ 


G(t, s)g

(
s, u(s), v(s)

)
ds

= λB(u, v)(t).

That is, B(λu,λ–v) ≥ λB(u, v) for λ ∈ (, ), u, v ∈ P. So the operator A satisfies (.).
Now we prove that for fixed v ∈ [, +∞), C(t, ·, v) : P → P is concave; for fixed u ∈

[, +∞), C(t, u, ·) : P → P is convex. For fixed t ∈ (, ), v ∈ [, +∞), for any a ∈ (, ),
u, u ∈ P,

C
(
au + ( – a)u, v

)
=

∫ 


G(t, s)k

(
s, au(s) + ( – a)u(s), v(s)

)
ds

≥
∫ 


G(t, s)

(
ak

(
s, u(s), v(s)

)
+ ( – a)k

(
s, u(s), v(s)

))
ds

= a
∫ 


G(t, s)k

(
s, u(s), v(s)

)
ds

+ ( – a)
∫ 


G(t, s)k

(
s, u(s), v(s)

)
ds

= aC
(
u(s), v(s)

)
+ ( – a)C

(
u(s), v(s)

)
,

so for fixed v ∈ [, +∞), C(t, ·, v) : P → P is concave; for fixed t ∈ (, ), u ∈ [, +∞), for any
a ∈ (, ), v, v ∈ P,

C
(
u, av + ( – a)v

)
=

∫ 


G(t, s)k

(
s, u(s), av(s) + ( – a)v(s)

)
ds

≤
∫ 


G(t, s)

(
ak

(
s, u(s), v(s)

)
+ ( – a)k

(
s, u(s), v(s)

))
ds

= a
∫ 


G(t, s)k

(
s, u(s), v(s)

)
ds
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+ ( – a)
∫ 


G(t, s)k

(
s, u(s), v(s)

)
ds

= aC
(
u(s), v(s)

)
+ ( – a)C

(
u(s), v(s)

)
,

so for fixed u ∈ [, +∞), C(t, u, ·) : P → P is convex.
Then we show that A(h, h) ∈ Ph, B(h, h) ∈ Ph, and C(h, h) ∈ Ph. In fact, from (.) and

Lemma .

A(h, h)(t) =
∫ 


G(t, s)k

(
s, f (s), f (s)

)
ds

≤ (α – )(α – ηα) + ηα–

�(α)(α – ηα)
h(t)

∫ 


( – s)α–f (s, , ) ds,

A(h, h)(t) =
∫ 


G(t, s)f

(
s, h(s), h(s)

)
ds ≥ ηα

�(α)(α – ηα)
h(t)

∫ 


s( – s)α–f (s, , ) ds.

From (H), we have

f (s, , ) ≥ f (s, , ) �≡ , ∀s ∈ [, ],

so

∫ 


f (s, , ) ds ≥

∫ 


f (s, , ) ds > ,

and consequently A(h, h) ∈ Ph. Similarly,

ηα

�(α)(α – ηα)
h(t)

∫ 


s( – s)α–g(s, , ) ds

≤ B
(
h(t), h(t)

) ≤ (α – )(α – ηα) + ηα–

�(α)(α – ηα)
h(t)

∫ 


g(s, , )( – s)α– ds,

from g(t, , ) �≡ , we have B(h, h) ∈ Ph.

ηα

�(α)(α – ηα)
h(t)

∫ 


s( – s)α–k(s, , ) ds

≤ C
(
h(t), h(t)

) ≤ (α – )(α – ηα) + ηα–

�(α)(α – ηα)
h(t)

∫ 


( – s)α–k(s, , ) ds,

from k(t, , ) �≡ , we have C(h, h) ∈ Ph. Hence the condition () of Theorem . is satisfied.
In the following we show that the condition () of Theorem . is satisfied. From (H),

there exists 
 ≤ c ≤  such that

C
(
θ , lh(t)

)
=

∫ 


G(t, s)k

(
s, θ , lh(s)

)
ds ≥ c

∫ 


G(t, s)k

(
s, lh(s), θ

)
ds

= cC
(
lh(t), θ

)
, l ≥ .



Zhang et al. Fixed Point Theory and Applications  (2016) 2016:49 Page 20 of 22

For u, v ∈ P, from (H),

B(u, v)(t) + C(u, v)(t) =
∫ 


G(t, s)

[
g
(
s, u(s), v(s)

)
+ k

(
s, u(s), v(s)

)]
ds

≤ δ

∫ 


G(t, s)f

(
s, u(s), v(s)

)
ds = δA(u, v)(t).

Then we get B(u, v)+C(u, v) ≤ δA(u, v), u, v ∈ P. So the conclusions of Theorem . follow
from Theorem .. �

Example . Consider the boundary value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D


+u(t) = t + (u + ) 

 + (u + ) 
 + (v + )– + (v + )– 

 – 
 e–u + 

 e–v + ,
 < t < ,

u() = u′() = u′′() = ,

u() =
∫ 


 u(s) ds.

(.)

Consider the functions f , g, k : [, ] × [, +∞) × [, +∞) → [, +∞), defined by

f (t, x, y) = t +  + (x + )

 + (y + )– 

 , t ∈ [, ], x, y ≥ ,

g(t, x, y) = t + (x + )

 + (y + )–, t ∈ [, ], x, y ≥ ,

k(t, x, y) = –t +  –



e–x +



e–y, t ∈ [, ], x, y ≥ .

Then (.) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

D


+u(t) = f (t, u, u) + g(t, u, u) + k(t, u, u),  < t < ,

u() = u′() = u′′() = ,

u() =
∫ 


 u(s) ds.

(.)

Let us check that all the required conditions of Theorem . are satisfied.
() Clearly, the functions f , g, k : [, ] × [, +∞) × [, +∞) → [, +∞) are continuous

with f (t, , ) �≡ , g(t, , ) �≡ , k(t, , ) �≡ .
() We observe easily that for fixed t ∈ [, ] and y ∈ [, +∞), f (t, x, y), g(t, x, y), k(t, x, y)

are increasing in x ∈ [, +∞); for fixed t ∈ [, ] and x ∈ [, +∞), f (t, x, y), g(t, x, y), k(t, x, y)
are decreasing in y ∈ [, +∞).

() For all λ ∈ (, ), t ∈ [, ], and x ≥ , y ≥ , taking ϕ(λ) = λ

 ∈ (λ, ), we have

f
(
t,λx,λ–y

)
= t +  + (λx + )


 +

(
λ–y + 

)– 


≥ t +  + (λx + λ)

 +

(
λ–y + λ–)– 



= t +  + λ

 (x + )


 + λ


 (y + )– 



≥ ϕ(λ)
[
t +  + (x + )


 + (y + )– 


]

= ϕ(λ)f (t, x, y).
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For all λ ∈ (, ), t ∈ [, ], and x ≥ , y ≥ , we have

g
(
t,λx,λ–y

)
= t + (λx + )


 +

(
λ–y + 

)–

≥ t + (λx + λ)

 +

(
λ–y + λ–)–

≥ λt + λ

 (x + )


 + λ(y + )–

≥ λ
[
t + (x + )


 + (y + )–]

= λg(t, x, y).

It is easy to prove that

k′′
uu(t, x, y) = –




e–x < , k′′
vv(t, x, y) =




e–y > .

So for fixed t ∈ (, ), y ∈ [, +∞), k(t, ·, y) is concave; for fixed t ∈ (, ), x ∈ [, +∞),
k(t, x, ·) is convex.

() For all s ∈ (, ), y ∈ [, +∞), taking c = 
 , it is easy to prove

k(s, θ , y) =
(
 – s) +

(



+



e–y
)

≥ c
[(

 – s) +
(




–



e–y
)]

= ck(s, y, θ ).

() Taking δ = , then

g(t, x, y) + k(t, x, y) =
[
t + (x + )


 + (y + )–] +

[
–t +  –




e–x +



e–y
]

= (x + )

 + (y + )– 

 +  –



e–x +



e–y

≤ 
[
t +  + (x + )


 + (y + )– 


]

= f (t, x, y)

= δf (t, x, y).

Thus we proved that all the hypotheses of Theorem . are satisfied. Then we deduce that
(.) has one and only one positive solution x∗ ∈ Ph, where h(t) = t 

 , t ∈ [, ].
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