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This paper presents a case study on comparison of Design of Experiments (DOE) via traditional 
and Taguchi methods in terms of efficiency. First, a three-level, four-parameter, full factorial DOE 
was conducted for finding the effects of machining parameters on the surface roughness 
(arithmetic average) of parts produced by turning operation. The results were analyzed applying 
average response, Taguchi’s S/N ratio, and Pareto ANOVA. Subsequently, the same data was 
analyzed applying Taguchi’s L9 orthogonal array. The comparison of two results revealed that 
despite an 88.9% savings of experimental runs with the Taguchi method, both methods produced 
similar results. 
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1.   Introduction 

Design of experiments (DOE) is a powerful tool for experimentation widely used by 
researchers and engineers in all fields of study for finding the effects of input parameters 
on output parameters. It is the process of planning experiments for appropriate data 
collection through the least number of experiments. Essentially, DEO is the scientific 
management of information acquisition by experiment.1 

DOE methodology was first proposed by R. A. Fisher in England in the 1920’s.2 His 
original work dealt with agricultural applications of statistical methods. He sought to find 
out how much rain, water, fertilizer, sunshine, etc. are needed to produce the best crop 
and pioneered the DOE methodology also known as factorial DOE. Factorial DOE can be 
full or partial. A full factorial DOE considers all possible combinations for a given set of 
factors and their levels. In general, full factorial DOE requires nk number of experimental 
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runs, where n is the number of factor levels and k is the number of factors considered. 
The main advantage of this method is that it takes into account all the main and 
interaction effects, providing a full picture. However, the method requires a large number 
of experimental runs which are cumbersome, time consuming and expensive. The 
alternative is fractional factorial DOE in which only a small set of experimental runs are 
selected from a full factorial design. As a result, the interaction effects are often 
disregarded. While the fractional factorial method is well known, it is problematic as 
there are no guidelines for its application and subsequent analysis.3 

Taguchi formalized the fractional factorial DOE method and published a library of 
orthogonal arrays, which reduced the number of required experiments significantly. The 
method is simple and easy to apply. Orthogonality of the DOE permits the separation of 
the individual effects of each of several variables. Details of Taguchi’s orthogonal arrays 
can be found in the literature.4 Taguchi’s orthogonal array is represented in a symbolic 
format as La(bc), where the letter ‘L’ indicates that the experimental designs are 
associated with Latin square designs, a is the number of runs, b is the number of levels 
considered, and c is the number of columns (number of factors).5 Thus, L9(34) represents 
that a total of 9 experimental runs will be conducted for a three-level, four-parameter 
experiment. A full factorial DOE conducted by the traditional method for the same study 
will need 34 = 81 experiments. Hence, for an industrial application, the Taguchi method 
provides a significant savings of experimental runs.  

Another difference between DOE via traditional and the Taguchi method is how the 
collected data are analyzed. In the traditional analysis, the average values of the response 
data are used, whereas the Taguchi method utilizes both average and variation of data. 
Therefore, the Taguchi method is expected to produce better results because it guarantees 
the highest quality with minimum variance. Taguchi proposed the S/N ratio as a 
quantitative analysis tool for optimizing the outcome of a process. Taguchi classifies 
quality characteristics into three categories: (i) the smaller the better, (ii) the larger the 
better, and (iii) the nominal the better. The formula for calculating the S/N ratio depends 
on the type of quality characteristics investigated. For example, Equation 1 calculates the 
S/N ratio of a quality characteristic in which the adage “the smaller the better” holds 
true.6 
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where n is the number of observations and y is the observed data. 
It is worth pointing out the main emphasis of the Taguchi method is on robust design, 

i.e. making a product’s quality of performance insensitive to variations in manufacture, 
in-service wear, and in-service environmental variations. It is a tool for quality 
improvement and cost reduction rather than determining the casual relationships of how 
things happen. Therefore, the major difference between the traditional DOE and the 
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Taguchi method is at a philosophical level. The Taguchi approach is more engineering-
oriented than science-oriented.1 

Design of Experiments via both traditional7-10 and Taguchi methods11-14 are widely 
used in manufacturing. However, there are ongoing debates15,16 on the statistical 
techniques used by Taguchi to implement his robust design philosophy. The practitioners 
of the Taguchi method clamor for its simplicity and effectiveness in solving real 
engineering problems. It is worth testing these claims. Therefore, in this paper, we 
present a case study that compares the performance of the traditional as well as Taguchi 
DEO for an engineering application. This will help professionals optimize relevant 
engineering processes at a low cost and in less time.  

2.   Research Strategy 

To achieve the above stated goal, we have selected a typical process optimization 
example from manufacturing. A full factorial DOE was planned to determine the 
influences of four major cutting parameters on a key machinability characteristic—the 
surface roughness (arithmetic average). The selected input parameters are cutting speed, 
feed rate, depth of cut and amount of cutting fluid. Each input parameter has three levels 
as shown in Table 1.  

Table 1.  Input parameters and their level. 

Input Parameters Unit Symbol  Levels  
   Level 0 Level 1 Level 2 
Cutting speed m/min A 64 128 256 
Feed arte mm/rev B 0.11 0.22 0.33 
Depth of cut mm C 0.5 1.0 1.5 
Amount of cutting fluid lit/min D 0 1.3 2.6 

 
The results were analyzed applying average response, Taguchi’s S/N ratio, and Pareto 

ANOVA. Pareto ANOVA is an excellent tool for determining the contribution of each 
input parameter and its interactions with the output parameters. It is a simplified ANOVA 
analysis method that does not require an ANOVA table and does not use F-tests. 
Consequently, it does not require detailed knowledge about the ANOVA method. A 
detailed treatment of Pareto ANOVA in the literature.1  

Taguchi’s L9 orthogonal array is a partial DEO of a full factorial run. A set of 
experimental runs, as per Taguchi’s orthogonal array, was selected from the full factorial 
DEO. Two results were compared in terms of their efficiency. 

3.   Experimental Work 

This study was performed on a turning of mild steel AISI 1030 which is readily available 
and widely used in the industry. A total of 81 experimental runs were conducted; they 
were carried out on 9 parts, each of which was divided into 9 segments. Each segment 
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was turned with the cutting conditions determined by traditional DOE. The positions of 
the segments were allocated randomly. The nominal size of each part was 270 mm length 
and 40 mm diameter. The experiment was carried out on a Harrison conventional lathe 
with 330 mm swing. For holding the workpiece, a three-jaw chuck supported at dead 
center was employed. Square-shaped inserts with enriched cobalt coating (CVD TiN–
TiCN–Al2O3–TiN) manufactured by Stellram, USA, were used as cutting tools. A new 
cutting tip was used for machining each part to avoid any tool wear effect. Where 
applicable, Castrol Clearedge EP690, a semi-synthetic soluble cutting fluid, was applied. 
The surface roughness parameter arithmetic average (Ra) for each turned surface was 
measured by a surface-measuring instrument, the Surftest SJ-201P, manufactured by 
Mitutoyo, Japan. 

4.   Results and Discussion 

The experimental results of traditional DEO are summarized in Table 2. Both average 
response and S/N ratio are included in Table 2. The experimental data then are analyzed 
by Pareto ANOVA, S/N ratio, and average response. 

The Pareto ANOVA using data from traditional DEO is illustrated in Table 3. It 
demonstrates that cutting speed (A) has the most significant effect on surface roughness 
with a contribution ratio (P ≅ 48%), followed by feed rate (B) (P ≅ 27%). Contributions 
of depth of cut (C) and amount of cutting fluid (D) are negligible. The interaction 
between cutting speed and feed rate (A×B) also played a role (P ≅ 12%). It is worth 
noting that the total contribution of the main effects is about 74%, compared to the 26% 
total contribution of the interaction effects, thus making it moderately difficult to 
optimize the surface roughness by selection of input parameters. 

The response graphs of the S/N ratio using data from traditional DOE are presented in 
Fig. 1. As the slopes represent the strength of contribution, the response graphs confirm 
the findings of the Pareto ANOVA given in Table 3, i.e. parameters A and B have 
significant effects whereas parameters C and D have negligible effects on surface 
roughness. Fig. 1 also shows that the best combination of input variables for minimizing 
surface roughness is A2B0C2D2; i.e. high level cutting speed (256 m/min), low level of 
feed rate (0.11 mm/rev), high level of depth of cut (1.5 mm), and high level of amount of 
cutting fluid (2.6 lit/min). 

Taguchi’s L9 orthogonal array is a partial DEO of full factorial run presented in Table 
2. The experimental results using data from the L9 orthogonal array are summarized in 
Table 4. Both average response S/N ratios are included in Table 4. The experimental data 
are then analyzed by Pareto ANOVA, S/N ratio, and average response. 

The response graphs of S/N ratio using data from the L9 orthogonal array are 
presented in Fig. 2. From this figure, it can be seen that the best combination of input 
variables for minimizing surface roughness is A2B0C2D1; i.e. high level cutting speed 
(256 m/min), low level of feed rate (0.11 mm/rev), high level of depth of cut (1.5 mm), 
and medium level of amount of cutting fluid (1.3 lit/min). 
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Table 2.  Experimental results of traditional DOE. 
Trial No A B C D Average S/N Ratio Trial No A B C D Average S/N Ratio 

1 0 0 0 0 4.024 -12.098 42 1 1 1 2 1.651 -4.357 
2 0 0 0 1 5.102 -14.160 43 1 1 2 0 1.914 -5.640 
3 0 0 0 2 4.860 -13.784 44 1 1 2 1 1.943 -5.776 
4 0 0 1 0 5.605 -14.972 45 1 1 2 2 1.624 -4.211 
5 0 0 1 1 4.507 -13.107 46 1 2 0 0 3.725 -11.422 
6 0 0 1 2 5.153 -14.285 47 1 2 0 1 3.806 -11.621 
7 0 0 2 0 4.264 -12.625 48 1 2 0 2 2.984 -10.363 
8 0 0 2 1 4.374 -12.824 49 1 2 1 0 4.120 -12.298 
9 0 0 2 2 3.914 -11.860 50 1 2 1 1 3.891 -11.802 

10 0 1 0 0 4.933 -13.909 51 1 2 1 2 4.081 -12.216 
11 0 1 0 1 6.228 -15.916 52 1 2 2 0 3.987 -12.013 
12 0 1 0 2 5.390 -14.648 53 1 2 2 1 4.058 -12.167 
13 0 1 1 0 4.003 -12.048 54 1 2 2 2 3.487 -10.850 
14 0 1 1 1 4.499 -13.086 55 2 0 0 0 1.313 -2.391 
15 0 1 1 2 4.667 -13.424 56 2 0 0 1 0.879 1.038 
16 0 1 2 0 3.311 -10.401 57 2 0 0 2 0.987 0.071 
17 0 1 2 1 4.500 -13.071 58 2 0 1 0 1.217 -1.709 
18 0 1 2 2 4.410 -12.907 59 2 0 1 1 0.987 0.101 
19 0 2 0 0 6.894 -16.777 60 2 0 1 2 1.145 -1.177 
20 0 2 0 1 6.315 -16.009 61 2 0 2 0 1.176 -1.413 
21 0 2 0 2 5.915 -15.481 62 2 0 2 1 1.002 -0.024 
22 0 2 1 0 6.045 -15.651 63 2 0 2 2 1.148 -1.231 
23 0 2 1 1 5.300 -14.485 64 2 1 0 0 2.003 -6.039 
24 0 2 1 2 4.361 -12.799 65 2 1 0 1 1.893 -5.543 
25 0 2 2 0 4.508 -13.103 66 2 1 0 2 2.133 -6.581 
26 0 2 2 1 4.755 -13.552 67 2 1 1 0 1.955 -5.823 
27 0 2 2 2 5.462 -14.761 68 2 1 1 1 2.343 -7.394 
28 1 0 0 0 2.490 -7.939 69 2 1 1 2 1.950 -5.808 
29 1 0 0 1 2.961 -9.437 70 2 1 2 0 1.812 -5.174 
30 1 0 0 2 2.744 -8.774 71 2 1 2 1 2.301 -7.240 
31 1 0 1 0 1.885 -5.519 72 2 1 2 2 1.561 -3.871 
32 1 0 1 1 2.352 -7.448 73 2 2 0 0 3.822 -11.645 
33 1 0 1 2 2.365 -7.542 74 2 2 0 1 3.986 -12.012 
34 1 0 2 0 1.500 -3.635 75 2 2 0 2 3.181 -10.173 
35 1 0 2 1 2.088 -6.396 76 2 2 1 0 3.827 -11.657 
36 1 0 2 2 1.982 -6.010 77 2 2 1 1 3.962 -11.959 
37 1 1 0 0 1.592 -4.481 78 2 2 1 2 3.820 -11.643 
38 1 1 0 1 1.498 -3.531 79 2 2 2 0 4.288 -12.644 
39 1 1 0 2 1.832 -5.273 80 2 2 2 1 3.823 -11.649 
40 1 1 1 0 2.420 -7.675 81 2 2 2 2 3.780 -11.550 
41 1 1 1 1 1.564 -3.916        
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Table 4. Experimental results using L9 orthogonal array. 

Trial No A B C D Average S/N Ratio Trial No A B C D Average S/N Ratio 

1 0 0 0 0 4.024 -12.098 47 1 2 0 1 3.806 -11.621 
14 0 1 1 1 4.499 -13.086 62 2 0 2 1 1.002 -0.024 
27 0 2 2 2 5.462 -14.761 66 2 1 0 2 2.133 -6.581 
33 1 0 1 2 2.365 -7.542 76 2 2 1 0 3.827 -11.657 
43 1 1 2 0 1.914 -5.640        

 

 

Fig. 1.  Response graphs of S/N ratio using traditional DOE. 

 

Fig. 2.  Response graphs of S/N ratio using L9 orthogonal array. 

Figures 1 and 2 show the effects of input parameters at different levels are very 
similar for both cases with some minor differences for depth of cut (C) and amount of 
cutting fluid (D). However, this is not a significant factor as the contributions of these 
two parameters on surface roughness are negligible (see Table 3). The best combination 
for traditional DEO is A2B0C2D2 whereas the best combination for traditional DEO is 
A2B0C2D1. The only difference is for parameter D whose response is flat (see Fig. 1). 

-16.0

-12.0

-8.0

-4.0

0.0

A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2

S/
N

 R
at

io
 (d

B)

Input Parameter Level

Average = -9.249

-16.0

-12.0

-8.0

-4.0

0.0

A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2

S/
N

 R
at

io
 (d

B)

Input Parameter Level

Average = -9.223



8     M. N. Islam & A. Pramanik 
 
 

A comparison of the S/N ratios of the two methods is presented in Table 5. This 
comparison shows that the absolute differences in S/N ratios of the two methods are 
small for all the considered parameters and levels. The relative differences are also small 
for the main contributing parameters A and B; however the relative differences for minor 
contributing parameters C and D are a bit high.  

The effect of different input parameters and their levels on average response is 
presented in Fig. 3. It shows that the variation of surface roughness analyzed by 
traditional DOE and Taguchi’s L9 orthogonal array are small. 

Table 5 Comparison of S/N ratios 

Parameter Level S/N Ratio 
  

Absolute Relative 
  DOE L9 Difference Difference (%) 

A0 -13.768 -13.315 0.453 -3.291 
A1 -7.863 -8.268 -0.404 5.140 
A2 -6.116 -6.087 0.029 -0.475 
B0 -7.006 -6.555 0.451 -6.435 
B1 -8.065 -8.436 -0.371 4.604 
B2 -12.678 -12.679 -0.002 0.012 
C0 -9.589 -10.100 -0.511 5.332 
C1 -9.396 -10.762 -1.365 14.532 
C2 -8.763 -6.808 1.955 -22.306 
D0 -9.285 -9.798 -0.513 5.526 
D1 -9.370 -8.244 1.126 -12.020 
D2 -9.093 -9.628 -0.535 5.887 

Overall Average -9.249 -9.223 0.026 -0.281 

 

Table 6. Comparison of average responses. 

Parameter Level Average Response 
 

Absolute Relative 
 DOE L9 Difference Difference (%) 

A0 -0.275 -5.570 -0.275 -5.570 
A1 0.082 3.138 0.082 3.138 
A2 0.014 0.607 0.014 0.607 
B0 -0.204 -7.646 -0.204 -7.646 
B1 0.037 1.316 0.037 1.316 
B2 -0.012 -0.274 -0.012 -0.274 
C0 -0.142 -4.100 -0.142 -4.100 
C1 0.243 7.317 0.243 7.317 
C2 -0.280 -9.112 -0.280 -9.112 
D0 -0.028 -0.853 -0.028 -0.853 
D1 -0.265 -7.871 -0.265 -7.871 
D2 0.644 24.066 0.644 24.066 

Overall Average 3.241 3.226 -0.016 -0.478 
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A comparison of the average responses of the two methods is presented in Table 6 
This comparison shows that the absolute differences in S/N ratios of the two methods are 
small for all the considered parameters and levels. The relative differences are also small 
for the main contributing parameters A and B, whereas the relative differences are a bit 
high for minor contributing parameters C and D. 

for traditional DEO is A2B0C2D2 whereas the best combination for traditional DEO is 
A2B0C2D1. The only difference is for parameter D whose response is flat (see Fig. 1). 
A comparison of the S/N ratios of the two methods is presented in Table 5. This 
comparison shows that the absolute differences in S/N ratios of the two methods are 
small for all the considered parameters and levels. The relative differences are also small 
for the main contributing parameters A and B; however the relative differences for minor 
contributing parameters C and D are a bit high. 
The effect of different input parameters and their levels on average response is presented 
in Fig. 3. It shows that the variation of surface roughness analyzed by traditional DOE 
and Taguchi’s L9 orthogonal array are small. 

A comparison of the average responses of the two methods is presented in Table 6 
Fig. 3.  Comparison of average responses. 

5. Concluding Remarks

Design of Experiments via the Taguchi and traditional methods have been compared. 
From the results obtained, the following can be concluded: 
• Despite an 88.9% savings of experimental runs with the Taguchi method, both

methods produced similar results.
• The best combination of input variables from traditional DEO (A2B0C2D2) and

Taguchi’s orthogonal array (A2B0C2D1) produced similar results; the only difference
was for parameter D whose contribution is negligible (P ≅ 0.08%).

• The Taguchi method is easy to implement and no advanced knowledge of statistics is
required.

• The Taguchi method is an excellent tool for optimising an intermediate number of
variables (3 to 50) where only a few variables contribute significantly and interaction
effects are relatively low.
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