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Beans, peas, and lentils are all types of pulses that are extensively used as foods around the 

world due to their beneficial effects on human health including their low glycemic index, 

cholesterol lowering effects, ability to decrease the risk of heart diseases and their protective 

effects against some cancers. These health benefits are a result of their components such as 

bioactive proteins, dietary fibers, slowly digested starches, minerals and vitamins, and bioactive 

compounds. Among these bioactive compounds, γ-aminobutyric acid (GABA), a non-

proteinogenic amino acid with numerous reported health benefits (e.g. anti-diabetic and 

hypotensive effects, depression and anxiety reduction) is of particular interest. GABA is 

primarily synthesized in plant tissues by the decarboxylation of L-glutamic acid in the presence 

of glutamate decarboxylase (GAD). It is widely reported that during various processes including 

enzymatic treatment, gaseous treatment (e.g. with carbon dioxide), and fermentation (with lactic 

acid bacteria), GABA content increases in the plant matrix. The objective of this review paper is 

to highlight the current state of knowledge on the occurrence of GABA in pulses with special 

focus on mechanisms by which GABA levels are increased and the analytical extraction and 

estimation methods for this bioactive phytochemical. 

 

Keywords: Pulses; γ-aminobutyric acid (GABA); Glutamate decarboxylase; Health benefits; 
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This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Introduction 

For thousands of years, pulses have been considered as important dietary food products for 

human health around the world, which is mainly attributed to their high nutritional value, low 

cost and long shelf-life without cold storage.1 According to the Food and Agriculture 

Organization (FAO), pulses are defined as “Leguminosae crops harvested exclusively for their 

grain, including dry beans, peas and lentils”. Pulses are further categorized into 11 groups as 

follows: dry beans (including kidney, pinto, navy, adzuki, mung, black gram, scarlet runner, rice 

bean, moth, and tepary beans), dry broad beans (including the horse, broad, and field bean), dry 

peas, chickpeas, black-eyed peas, pigeon peas, lentils, bambara groundnut, vetch, lupins, and 

other “minor” pulses (jack, winged, velvet, and yam beans).2–4 

Numerous studies have identified many associations between the consumption of pulses and 

health benefits; including the reduction of the risk of chronic diseases (e.g. obesity, diabetes, 

coronary heart disease, stroke, hypertension, and some types of cancer). The mechanism by 

which pulses may protect against diseases could involve the action of macronutrients (including 

resistant starch) and non-nutrient bioactive compounds (e.g. phytates).5 From a nutritional 

perspective, pulses are good source of starch (including resistant starch), protein, dietary fibers, 

energy, minerals and vitamins, as well as different bioactive compounds.6 Pulses contain various 

bioactive compounds such as phenolics, phytates, and oligosaccharides, which can play 

metabolic roles in humans and animals through a wide range of mechanisms of action.7 Among 

these bioactive substances, γ-aminobutyric acid (GABA); a non-proteinogenic amino acid with 

several physiological functions and potential health benefits, will be the focus of this review.  

There are many reports of health benefits of GABA including reduction of hypertension,8 

inhibition of chronic diseases associated with alcohol,9 prevention of cancer cell proliferation,10 
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and modulation of blood cholesterol levels.11 Microorganisms including lactic acid bacteria 

(LAB) and fungi (e.g. Aspergillus nidulans) have the ability to promote GABA production. For 

example, LAB has high cellular GAD enzyme activity. In this regards, GABA-producing LAB 

can be applied to develop fermented health oriented food. 

It has been found that GABA is ubiquitous among plants and that its level in plant tissues is 

increased in response to stress conditions during plant growth, and during processing of the seeds 

such as soaking (e.g. in rice germ) and germination (e.g. in soybean).12,13 Other processes that 

have been demonstrated to increase GABA concentration in plant materials are enzymatic 

treatment of wheat, gaseous treatment (e.g. bean sprouts such as soybean, black gram, green 

gram treated with carbon dioxide), pre-germination and fermentation (e.g. brown rice).14 This 

review will focus on the composition of pulses with special emphasis on GABA as a bioactive 

compound with health benefits.    

 

Pulses as an essential part of the diet 

Composition and molecular characteristics 

Pulses constitute an important part of the diet of the world's population. They contain high levels 

of complex available carbohydrates, proteins (of good essential amino acid balance), dietary 

fibers, vitamins and minerals, and low lipid content.1 Of the legumes classified as pulses; the 

lupins stand alone with negligible available carbohydrate but very high levels of proteins and 

dietary fibers.15,16 Within each species, there are differences in the reported composition 

depending on numerous factors such as variety, production environment as well as the 

techniques applied for nutritional analysis.17 The protein content in pulses has been reported to 

range from 17% to 30%, with globulins and albumins as the major proteins, and prolamins and 
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glutelins as the minor proteins.13 In spite of valuable levels of proteins, pulses are a relatively 

poor source of sulfur-containing amino acids (e.g. methionine, and cysteine). However, their 

lysine content is high in comparison with cereal grains.18 

Pulses are rich sources of carbohydrates (50-60%) including starch, soluble sugars and dietary 

fibers. The soluble sugar fraction of pulses includes monosaccharides (ribose, glucose, galactose, 

and fructose) and disaccharides (sucrose and maltose). One of the main classes of 

oligosaccharides in pulses are the α-galactosides, where galactose is polymerized through α-D-

1,6-linkages.19  

Pulses contain many essential vitamins and minerals including substantial amounts of B-

vitamins (i.e. thiamin, niacin, riboflavin, and pyridoxine) and minerals such as iron, calcium, 

potassium and zinc.20 In general, they contain low levels of fat, varying from 0.83 g 100 g-1 for 

kidney beans to 6.6 g 100 g-1 for chickpea (Kabuli, India),21 with lupin having higher levels.16 

Pulses contain variable quantities of compounds that can act as anti-nutritional factors including 

lectins, phytohemaglutinins and hemaglutininis, protease inhibitors, and phytic acid, which may 

interfere with the bioavailability of nutrients, with lupin having relatively low levels.16 However, 

processing of these materials can help in lowering or removing these compounds prior to the 

consumption of pulses by either humans or animals.22 

 

Nutritional and health aspects  

Pulses are widely used as food and animal feed around the world due to their nutritional 

properties as well as their health benefits. Other non-nutrient bioactive substances found in 

pulses that are associated with cancer inhibition are saponins and protease inhibitors.3 High 

amounts of other non-nutrient compounds in pulses, such as polyphenols and saponins, make 
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them a good food source for cholesterol lowering.23 Moreover, the antioxidant ability of these 

compounds may lead to reducing the risk of heart diseases.6 Due to the slow digestion of 

available carbohydrate in pulses, they are categorized in the low glycemic index (GI) food group 

(55 or less compared to white bread with GI of 100).24 However, the GI of pulses is highly 

dependent on the pulse type and processing. For instance, Atkinson et al.25 found that the GI of 

raw and canned chickpeas were of 10 and 38, respectively (compared to white bread with GI of 

100). In addition, it has been reported that the in vitro rapidly available glucose levels (a 

predictor of high GI) of domestically cooked chickpeas was lower than that of commercially 

canned and commercially pre-cooked vacuum packaged chickpeas,26 presumably due to greater 

heat exposure leading to increased gelatinization and breakdown of the starch. Lupin, however 

does not contain available carbohydrate (therefore cannot have its own GI value). However lupin 

addition to starchy foods such as white bread, has been reported to lower GI, possibly through its 

dietary fibers slowing the wheat starch digestion, and insulin stimulation by its proteins.27 

The high-fiber content of pulses have been linked with lowering the risk factors of colorectal 

cancer and has been associated with an anti-proliferative activity.28 The mechanisms responsible 

for this apparently protective role may include gene-nutrient interactions and modulation of 

protein expression. For instance, lupin kernel fibers when added to the diet for 28 days was 

reported to beneficially modify bowel function and putative fecal markers of colon cancer risk in 

a placebo controlled dietary intervention study of 38 healthy men.29 Generally, high dietary fiber 

intake was also associated to decrease the blood cholesterol levels and limit the absorption of fats 

in the intestine.30 Lupin kernel fiber addition to the diet has been demonstrated to provide a 

clinically beneficially reduction in cholesterol in a human dietary intervention study.31 Due to 

their traditional use and numerous health benefits, pulses are included in various healthy diets 
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including Mediterranean diet, DASH (Dietary Approaches to Stop Hypertension) diet, and 

gluten-free diet.28 

 

GABA as a bioactive compound 

Chemistry and mechanisms of production 

GABA is a four-carbon free amino acid, present in a wide range of microorganisms, plants and 

animals.13 It is synthesized primarily by the decarboxylation of L-glutamic acid, referred as the 

GABA shunt that is catalyzed by glutamate decarboxylase (GAD, EC 4.1.1.15). In turn GABA 

can be converted to succinate semi-aldehyde by the mitochondrial enzyme GABA transaminase 

(GABA-T, EC 2.6.1.19) (Fig. 1).12 GABA is a simple chemical substance with molecular 

formula C4H9NO2, having a molecular weight of 103 Da. 

 

PLEASE INSERT FIGURE 1 HERE 

 

Biological methods of GABA production are more promising than chemical synthesis 

methods, since the former are mechanistically simple, have high reaction efficiency, and are 

environmentally “friendly”.33 There have however been many attempts to chemically or 

biologically synthesize GABA34–36 because of its beneficial health functions giving rise to an  

increasing commercial demand.37,38  

There are some suggested biosynthetic methods for efficient GABA production including 

immobilized cell technology,33 sourdough fermentation (to make a high GABA functional 

bread),39 and batch fermentation.34,36,40,41 These techniques also have the potential to be applied 

for the production of GABA in the pharmaceutical and nutraceutical industries.  
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Physiological role of GABA 

GABA has been reported to exhibit physiological roles such as the regulation of cardiovascular 

function42 and reducing the risk of cardiovascular disease through modulating 

cholesterolaemia.43 Due to such potential health effects, GABA has recently been applied in a 

wide range of functional foods, and nutraceuticals.44 GABA was found to be effective in animal 

models to reduce the risk of reverse Type 1 diabetes (T cell autoimmunity) through inhibition of 

the inflammatory T cell response,45 stimulation of insulin secretion by a positive autocrine 

feedback loop in human pancreatic β-cells via GABA-GABAA receptor system,46 and regulation 

of the replication and survival of pancreatic islet cells.47 Chen et al.44 performed research to 

evaluate the anti-diabetic effects of GABA-rich yogurt on streptozotocin-induced diabetic mice. 

They reported that this functional food rich in GABA might improve hyperglycaemia and 

impaired glucose tolerance, as well as raising serum insulin concentration. Another animal model 

study obtained similar results in which GABA led to a rise in insulin secretion from the pancreas 

of normal rats.48 Braun et al.49 also confirmed the role of GABA in the regulation of glucagon 

release. They indicated that the release of endogenous GABA from rat β-cells inhibits the release 

of glucagon and insulin by the activation of GABAA and GABAB receptors, respectively.  

The consumption of food with high GABA content was found to reduce the elevation of blood 

pressure and cholesterol in experimental animals,50,50–52 as well as in humans.35 Feeding 

spontaneously hypertensive rats with reduced-sodium soy sauce rich in GABA for 6 weeks 

resulted in lower blood pressure compared to a treatment of reduced-sodium soy sauce alone.53 

In another study, similar results confirmed the blood pressure-lowering effects of GABA by 

feeding spontaneously hypertensive rats with GABA-rich Chingshey purple sweet potato 

fermented-milk.54 In contrast, Yang et al.55 showed that the positive antihypertensive effect of 
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GABA was significant only during short-term (acute) administration, with an ongoing effect not 

observed during long-term (chronic) administration. It has however been reported by Inoue et 

al.35 that a daily intake of 10 mg GABA (from fermented milk) for 12 weeks resulted in reducing 

the blood pressure by 17.4 mm Hg in hypertensive patients.  

There are data supporting the important role of GABA intake in control of depression and 

anxiety. There is a positive relation between lower levels of GABA in cerebrospinal fluid and 

depression,56 with several research works showing reduced level of GABA in the dorsolateral 

prefrontal and occipital cortex of depressed patients.57–59 GABA-A receptors play a key role in 

modulating the different forms of anxiety, fears, phobias or depression.60,61 Moreover, according 

to available data, GABAergic drugs (e.g. lorazepam) has indicated a close relation with anxiety-

affecting properties,62 since these drugs act as allosteric modulators of GABA receptors (also 

known as GABA analogues) and increase the available amount of GABA.63 Other positive 

effects of GABA intake have been reported including diuretic and relaxation effects,64 

alcoholism treatment,9 and raising of growth hormone level in plasma through an increase in the 

rate of brain protein synthesis in ovariectomized female rats.65  

 

Extraction and identification of GABA 

To determine GABA content of different food products, high performance liquid 

chromatography (HPLC) is considered as a powerful technique. Due to the weak UV-visible 

absorption characteristics of GABA, it requires derivatization before analysis with agents such as 

o-phthalaldehyde, 2-hydroxynaphthaldehyde, dabsylchloride, or 9-fluorenylmethyl 

chloroformate.66 For example, mung beans, black beans, and soybeans were analyzed for GABA 

content using a modified method from Srisang et al.67 GABA was extracted with 3% 
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sulfosalicylic acid (0.5 g 200 mL-1). It was then analyzed by dimethyl-amino-azobenzene 

derivatization and HPLC using Supelcosil-LC-DABS column (acetonitrile was used as a mobile 

phase with a flow rate of 1 mL min-1), and detected under visible light at 465 nm.68 Other studies 

have also quantified GABA by HPLC in different materials including fermented lentils,69 tea 

leaves,42 brown rice,70 kidney beans,71 and soybeans.72 In these studies, samples were derivatized 

with materials such as phenylisothiocyanate and o-phthaldialdehyde/2-mercaptoethanol.  

Another method of GABA determination, carried out with an amino acid automatic analyzer, 

was described by Xu et al.73 The basic principle of operation is the continuous flow 

chromatography procedure in which the sample is loaded onto a column of cation-exchange 

resin. In this method, free amino acid extracts (in protein hydrolysates or in native samples) were 

obtained after filtration through a 0.45 μm nylon syringe filter, and were analyzed by injection 

into amino acid automatic analyzer during a 50 min run. Amino acids were post-column 

derivatized with ninhydrin reagent and detected by absorbance at 570 nm. Identification and 

quantitation of GABA was performed by comparison to the retention time and UV spectra of 

authentic standards. 

To detect GABA, biosensors have been developed. For instance, Niwa et al.74 modified a 

glassy carbon electrode with bovine serum albumin-gabase-glutamate oxidase/osmium-poly 

(vinylpyrridine) by incorporating horseradish peroxidase. They reported the first on-line 

electrochemical sensor for the continuous measurement of GABA. Badalyan et al.75 immobilized 

GABA-aminotransferase (GABA-T) and aldehyde oxidoreductase in a polymer containing an 

osmium complex on a graphite electrode. To fabricate the GABA-biosensor a premixed solution 

(including 2.5 µL of PaoABC (periplasmatic aldehyde oxidoreductase from Escherichia coli) (54 

µM)), 2.5 µL of GABA-T (205 µM) and 1 µL of a freshly prepared PEGDGE (Poly (ethylene 
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glycol) (400) diglycidyl ether) solution (2.5 mg mL-1 in water) was placed on the top of the 

polished end of the 3 mm (diameter) polished spectrographic graphite electrode. Zhou and 

Muthuswamy,76 fabricated an acoustic immunosensor by immobilizing a particular antibody on 

the gold surface of a quartz crystal electrode. The gold electrode surfaces were electrochemically 

characterized by using Fe(CN)6
3-/Fe(CN)6

4- as the external redox probe. Although, these 

biosensors had good detection limits for sensing GABA at micro-molar levels, the construction 

of the electrodes was complicated and the biological substances incorporated into them were 

easily denatured under ambient conditions, which seriously hindered the stability of the 

electrodes. 

 

Effect of pulse processing on GABA  

Beans 

Beans are considered as traditionally significant human foods with different types including 

broad beans (Vicia faba L.), wild beans (Phaseolus vulgaris L.), mung beans (Vigna radiata L.), 

and garbanzo beans (Cicer arietinum). Both conventional processing methods (e.g. heating) as 

well as modern processing technologies such as high pressure processing (HPP) have the 

potential to increase the bioavailability of bioactive compounds in food products. 77,78 Some of 

these technologies (e.g. fermentation) may increase the levels of GABA (Table 1).79 Legumes 

are a good potential source for GABA production due to their high amounts of proteins. L-

glutamic acid, the substrate for GABA synthesis, is one of the most abundant amino acids found 

in pulses such as faba beans,80 and mung beans.81  

 

PLEASE INSERT TABLE 1 HERE 
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Faba bean (Vicia faba L.) is a commonly consumed legume rich in proteins, carbohydrates, 

and micronutrients. Recently, Coda et al.82 investigated the effects of fermentation by 

Lactobacillus plantarum VTT E-133328 (30 °C for 48 h) of faba bean flour on GABA levels. A 

significant increase in GABA content, in all samples after fermentation, was observed.  

It has been previously demonstrated that environmental stress during plant growth (e.g. salt 

stress) can increase the level of GABA in plants.90 Yang et al.91 reported that this phenomenon 

depends on stress intensity and duration. They reported a positive correlation between the level 

of NaCl treatment and GABA production in faba beans after 3 days, but a negative relationship 

was observed when the treatment increased to 5 days. These authors suggested that the longer 

stress treatment may have destroyed the activity of the enzymes responsible for GABA 

production (e.g. GAD and DAO).91 The addition of a second stressor modified the level of 

GABA production in the faba beans. A combination of NaCl stress under hypoxia for 5 days 

resulted in a lower GABA level in the hypoxia-only control.  

There are other factors that can enhance GABA production in pulses such as the plant 

hormone abscisic acid (ABA) (a stress hormone) that was found to raise GABA accumulation in 

faba beans under hypoxia-NaCl stress.92 Other researchers have reported similar effects of ABA 

in common bean (Phaseolus vulgaris) demonstrating that ABA treatment (concentrations of 1 

and 10 µM) resulted in the acceleration of GABA metabolism through lowering the negative 

effect of high NaCl concentration.93 Other effective factors for modifying GABA production in 

pulses were reported to be Ca2+ and a chelating agent such as ethylene-diamine-tetra-acetic acid 

(EDTA). Calcium ions are required for GAD and DAO activation since these enzymes are Ca2+ 

binding proteins,94 therefore Ca2+ addition (in CaCl2 form) can lead to their activation, thus 

resulting in GABA content enhancement. In terms of GAD activity in pulses, environmental 
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conditions (e.g. pH and temperature) might also be important. For example, Wang et al.95 found 

that to obtain 80% of GAD activity in rice bran, a pH range of from 5 to 9 and a temperature 

between 30 °C and 50 °C are essential. In contrast, EDTA chelates metal ions such as Ca2+, and 

thus can through GAD and GAO inactivation lead to a reduction in GABA generation.92 In 

support of this hypothesis, Yang et al.96 reported direct correlation in fava beans between level of 

CaCl2 treatment and both DAO activity and GABA production in the cotyledon and shoot. They 

also observed an inverse relation between EDTA-Na2 level and DAO activity as EDTA inhibited 

GAD and DAO activities significantly thus inhibiting GABA accumulation. Another effective 

substrate that can influence on GABA content through GAD and DAO activity in legume seeds 

is L-glutamic acid (Glu).97 It was observed by Guo et al.97 that higher amount of Glu resulted in 

promotion of GAD and DAO activity; hence more GABA accumulation in the embryo and in the 

cotyledon of germinated soybean occurred.  

During the polyamine degradation pathway in which GABA is synthesized, aminoguanidine 

(AG) acts as DAO enzyme inhibitor.98 One study applied AG to germinating fava bean under 

hypoxia-NaCl stress to evaluate the functions of polyamine degradation pathway on growth and 

GABA accumulation.99 It was reported that addition of 5 mM AG reduced DAO activity and 

GABA production of the sprouts as well as inhibiting their growth.99 Other inhibitory factors of 

DAO are Mg2+, Cu2+, Fe3+, EGTA (ethyleneglycol-bis (2-aminoethylether)-tetraacetic acid), L-

cysteine, and β-mercaptoethanol. In addition, although Cu2+ is necessary for DAO molecular 

synthesis, an excess of Cu2+ leads to enzyme degeneration.98 

There is variation between pulse species and between cultivars with a species in GABA 

content linked to variability in GAD activity. Oh et al.100 reported different GABA content 

among several bean species including kidney, mung, wultari and adzuki, using rapid gas 
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chromatographic screening. The highest GABA level was found in adzuki bean, followed by 

wultari bean and mung bean. Li et al.79 evaluated GABA accumulation among nine germinated 

fava bean cultivars, and concluded that smaller seeds had higher germination percentage, thus 

higher GABA content, since a significant negative correlation between germination percentage 

and 1000-kernel weight was observed. Moreover, cultivars with longer sprouts had higher 

GABA levels.  

The conditions during seed germination have been demonstrated to affect GABA 

accumulation. Li et al.79 observed a positive correlation between germination pH of fava beans 

and GABA level at a fixed temperature. They reported that the optimum pH value of germination 

was of 3.19 and under these conditions the GABA content in fava beans reached the maximum 

level. In addition, as the temperature of the germination process increased, a gradual increase in 

GABA accumulation was observed with a peak at 33.6 °C. These results are similar to those of 

Yang et al.96, who reported an optimum germination temperature of 30 °C with a pH value of 3.0 

for maximizing DAO activity of fava bean.  

Mung bean (Vigna radiata) also known as green gram is commonly consumed in Asia. This 

bean has health related benefits including anti-inflammatory.101 It was found that germination 

raised levels of GABA in mung bean to higher than that observed for fermentation (using 

Rhizopus sp. strain of 5351 inoculums under solid-state condition at 30°C for 48 hours).83 The 

data of Mohd Ali et al.84 showed a similar trend in which GABA content of mung bean was 

increased by about 28 and 7 times after germination and fermentation, respectively. Research 

work conducted by Tiansawang et al.85 reported that germination of mung beans after 24 h of 

incubation lead to significant increase in GABA content to ≈0.8 g kg-1 dry matter. It should be 

noted that GABA accumulation is not distributed evenly throughout the seed. For instance, a 
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higher percent of GABA was found in the root tip than in the embryonic axis and cotyledons 

throughout the germination process.102 Soaking and incubating mung beans for 0, 6, 12, 24, 36, 

and 48 h has been reported to significantly increase their content of GABA. The highest level of 

GABA was found after 24 h of incubation. In addition, it has been demonstrated that the cooking 

processes of boiling (98-100 °C for 20 min) and steaming (95-100 °C for 40 min) decreased 

GABA content in germinated mung beans, which was not observed with microwave cooking.68 

Adzuki bean (Vigna angularis) is widely growing in Asia, and its consumption has been 

linked to several health benefits (i.e. reduced risk of heart disease and acetaminophen-induced 

liver damage).103,104 GABA content in adzuki beans is very low (1.34 mg 100 g-1), however 

soaking has been demonstrated to lead to a significant increase, with soaking temperatures of 35 

and 45 °C giving maximum GABA levels (28.58 and 43.37 mg 100 g-1, respectively).86 Another 

study found a three-fold increase in GABA level for adzuki bean sprouts after 3 days seeding 

(63.29 mg 100 g-1) in comparison with raw seeds (21.31 mg 100 g-1).87 Adzuki bean has been 

used as a medium for GABA-producing bacterial fermentation. In one report, GABA production 

using Lactococcus lactis and Lactobacillus rhamnosus fermentation of adzuki bean was 

investigated and the effects of immersion, germination, and cold shock (freezing temperature at -

10, -20 and -80 °C for 24 h) before fermentation were evaluated.86 The results demonstrated a 

150 times increase in GABA level by using the cold shock treatment on the adzuki beans 

compared to the non-treated control.86 

Kidney bean production has gained attention as a sustainable agriculture crop throughout 

Europe. Fermentation is known as a suitable method to enhance bioactive compounds of kidney 

beans. The type of microorganism applied for the fermentation plays a vital role in this process 

as recently investigated.71 Two fermentation approaches of solid state fermentation (SSF) and 
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liquid state fermentation (LSF) were compared, each for 48 and 96 h. In SSF, Bacillus subtilis 

was used, whereas for LSF, spontaneous microorganisms found on the seeds (natural 

fermentation (NF) such as those of Lactobacillus genera or L. plantarum (LPF)) provided the 

fermentation.105 The influence of different solutions (ascorbic acid, folic acid, glutamic acid, 

glutamic acid/chitosan, and lactic acid/chitosan) on the enhancement of GABA content in kidney 

beans has been also evaluated.88 The results indicated that the highest GABA level of kidney 

bean sprouts was elicited by glutamic acid treatment (for 8 days).  

 

Chickpea  

According to FAO, chickpea (Cicer arietinum L.) is considered as the third most important grain 

legume in the world after beans (Phaseolus vulgaris L.) and peas (Pisum sativum L.), being 

widely grown in many subtropical regions.2 In some Mediterranean countries, chickpea flour is 

used as a main ingredient for numerous traditional fermented foods, including sour dough 

fermented bread.106 Coda et al.39 conducted a study on twelve flours prepared from common 

wheat (Triticum aestivum), durum wheat (Triticum durum), rye (Secale cereale), spelt (Triticum 

spelta), oat (Avena sativa), buckwheat (Fagopyrum esculentum), rice (Oryza sativa), amaranth 

(Amaranthus hypocondriacus), millet (Panicum miliaceum L.), chickpea (C. arietinum L.), soy 

(Glycine max), and quinoa (Chenopodium quinoa), and then evaluated the effects of sourdough 

fermentation on GABA concentration. The highest GABA level was found in chickpea control 

dough (468±12 mg kg-1) without bacterial inoculation. This high GABA level was attributed to 

the activity of endogenous GAD in flours. Two GABA producing bacteria strains Lactococcus 

plantarum C48 and L. lactis subsp. lactis PU1 were selected for fermentation, with higher 

GABA production being obtained when using L. plantarum C48. These authors also reported 
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that GABA concentration in the sourdough bread prepared from chickpea, buckwheat, amaranth 

and quinoa using L. plantarum C48, was significantly higher (504 mg kg-1) than that for common 

wheat flour bread (made of wheat and baker's yeast) (11 mg kg-1). 

 

Lentil 

According to Kuo et al.,89 lentils (Lens culinaris, L.) after germination for 6 days showed an 

increase in the level of GABA up to 0.32 mg g-1 dry matter. Rozan et al.107 reported that the 

GABA content of lentil was about 4 mg g-1 dry matter. Torino et al.69 indicated that regardless of 

the fermentation system employed and microorganism type, GABA content of lentil increased 

during fermentation processing. They reported that the highest GABA level among different 

methods of fermentation, resulted from spontaneous liquid state fermentation (employing 

microorganisms already present on the seeds). This fermentation gave 10.42 mg g-1 GABA in the 

fermented lentil extract, compared with 7.16 mg g-1 extract for L. plantarum suspension and 6.54 

mg g-1 extract for solid state fermentation with B. subtilis.  

 

Conclusion 

GABA is an important non-nutritive molecule found in pulses that shows great potential heath 

related benefits. Many factors influence the content of GABA in pulses including the type of 

cultivar, environmental stress during plant growth, and the processing method of the seeds (e.g. 

soaking, cooking, germination or fermentation). Treatment of plants with NaCl during growth 

(salt stress) appears to increase the GABA content in beans. However, it is necessary to carefully 

control these conditions as hypoxia can result in reduced GABA levels in faba beans. 

Fermentation process can be considered as a useful method to increase the levels of GABA in 
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pulses. In terms of other methods for GABA enhancement, emerging technologies such HPP are 

of great interest. There is now potential for the development of new functional foods from pulses 

with elevated GABA levels targeted at the whole population or for particular groups at risk of 

chronic diseases. However, before this becomes a reality, more research work needs to be 

conducted to develop commercially viable methods for the large-scale production of high GABA 

pulse seeds and pulse-based food products.  
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e Table 1. Effects of different processing techniques on GABA in pulses  

Pulse type Type(s) and condition of process Main results References 
Faba bean (Vicia 
faba L.) 

Fermentation: At 30 °C for 48 h with Lactobacillus 
plantarum VTT E-133328 

There was a notable GABA content increase in all 
samples after fermentation. 

Coda et al.,82 

Soaking and germination: At 28 ± 1 °C for 6 h in 
distilled water 
 

- Higher germination percentage resulted in higher 
GABA content, and cultivars with longer sprouts had 
higher GABA levels.  
- The optimum pH value of germination for reaching 
the maximum level of GABA was of 3.19. By 
increasing the temperature of the germination 
process, a gradual increase in GABA accumulation 
was observed with a peak at 33.6 °C 

Li et al.,79 

Mung bean (Vigna 
radiata) 

- Soaking: In chilled water at room temperature for 
18 h before being steamed for 40 min 
- Fermentation: With Rhizopus sp. strain 5351 at 30 
°C for another 48 h 

Higher level of GABA was observed after 
germination compared to fermentation.  

Yeap et al.,83 

GABA content of mung bean was increased about 28 
and 7 times after germination and fermentation, 
respectively. 

Mohd Ali et 
al.,84 

Mung bean (Vigna 
radiata), soybean 
(Glycine max), 
black bean (Vigna 
mungo), and 
sesame (Sesamum 
indicum) 

- Soaking: In distilled water (1:5, w/v) for 6 h at 
room temperature 
- Germination: For 48 h 
- Boiling: At different temperatures (98‑100 ºC) for 
20 min 
- Steaming: In steaming pot for 40 min 
- Microwave cooking: 2450 MHz, 800 W for 10 min 

- Germination (after 24 h) and soaking mung beans 
(for 0, 6, 12, 24, 36, and 48 h) led to significant 
increase the content of GABA.  
- The cooking processes of boiling (98-100 °C for 20 
min) and steaming (95-100 °C for 40 min) decreased 
GABA content in germinated mung beans, which 
was not observed with microwave cooking. 

Tiansawang 
et al.,85 

Adzuki bean 
variety Kaohsiung 
No. 8 (Vigna 
angularis) 

- Soaking: In 2500 ml of 0.7% sodium hypochlorite 
solution for 30 min at room temperature (25 ºC) 
- Germination: For 6 days 
- Fermentation: Using Lactococcus lactis and 
Lactobacillus rhamnosus at 37 °C for 24 h 
- Cold shock:  At different freezing temperature 
(e.g. -10, -20 and -80 °C) for 24 h 

- Soaking temperatures of 35 and 45 °C resulted 
highest GABA contents (28.58 and 43.37 mg 100 g-1, 
respectively).  
- Application of cold shock treatment resulted in 150 
times increase in GABA level compared to the non-
treated control. 

Liao et al.,86 
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Pulse type Type(s) and condition of process Main results References 
Adzuki beans (cv. 
Hongxiaodou 1) 

Soaking: In an artificial climate incubator at 25°C and 
humidity of 80% without sunlight and sprayed with water 
at intervals of 8 h every day 

A three-fold increase in GABA contents after 3 
days seeding (63.29 mg 100 g-1) compared to the 
raw seeds (21.31 mg 100 g-1) was reported. 

Li et al.,87 

Kidney beans 
(Phaseolus 
vulgaris var. 
Pinto) 

- Soaking: In 0.07% sodium hypochlorite solution (1:6 
w/v) for 30 min at room temperature 
Germination: in the darkness for 4, 6 and 8 days at 20 ºC 
- Elicitors: In distilled water at the following 
concentrations: 500 μM ascorbic acid; 50 μM folic acid; 
5 mM glutamic acid; 50 ppm low-molecular weight 
(LMW) chitosan in 5 mM glutamic acid; 50 ppm LMW 
chitosan in 5 mM lactic acid 

The highest GABA level was elicited by glutamic 
acid treatment (for 8 days). 

Limón et 
al.,88 

Chickpea (C. 
arietinum L.) 

Fermentation: For 24 h at 30 °C with Lactobacillus 
plantarum C48 or Lactococcus lactis subsp. lactis PU1 

- The highest GABA level was found in chickpea 
control dough (468±12 mg kg-1) without bacterial 
inoculation. 
- Higher GABA production was obtained using L. 
plantarum C48. 

Coda et al.,39 

Lentils (Lens 
culinaris, L.) 

- Soaking: In 2500 ml of 0.07% sodium hypochlorite 
solution for 30 min at room temperature 
- Germination: On a pilot scale, by layering seeds over a 
moist filter paper, continuously watered by capillary in a 
seed germinator for 2, 4 and 6 days with continuous light 

Germination for 6 days resulted an increase in the 
GABA content up to 0.32 mg g-1 dry matter 
 

Kuo et al.,89 

- Liquid state fermentation: Either spontaneously with the 
only microorganisms present on the seeds or by 
inoculation of L. plantarum suspension (108 CFU ml-1) at 
1-2% (v/v) for 96 h at 37 °C 
- Solid state fermentation: Sterile cracked seeds were 
homogeneously inoculated with 5% (v/w) of B. subtilis 
(105 CFU g-1) saline suspension, then incubation for 96 h 
at 30 °C and 90% humidity 

- Regardless of the fermentation system employed 
and microorganism type, GABA content of lentil 
increased during fermentation processing.  
- Application of spontaneous liquid state 
fermentation (employing microorganisms already 
present on the seeds) provided the highest GABA 
level among other studied fermentation methods. 

Torino et 
al.,69 
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