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Abstract 

In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data 
structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user 
interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with 
respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by 
performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp 
(both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared 
between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the 
solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational 
domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional 
simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion. 
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1. Introduction

The self-adaptive hp Finite Element Method (hp-FEM) for two- and three-dimensional elliptic and Maxwell 
problems were designed and implemented by the group of Leszek Demkowicz [1, 2] at the University of Texas at 
Austin. The codes generate a sequence of hp meshes providing exponential convergence of the numerical solution 
with respect to the mesh size. The parallel version of the two- and three-dimensional algorithms have been designed 
and implemented based on the distributed domain decomposition paradigm, illustrated on the left panel of Fig. 1. [3, 
4]. The main disadvantage of the distributed-domain-decomposition-based parallel code is the huge complexity of 
the mesh transformation algorithms executed over the computational mesh stored in distributed manner. There exist 
the following mesh regularity rules: 1) the one irregularity rule, preventing a finite element from being broken two 
consecutive times without first breaking larger adjacent elements, and 2) the minimum rule, which states that the 
order of approximation over a face must be the minimum of the corresponding orders of approximation from 
adjacent element interiors, and the order of approximation over an edge must be the minimum of the corresponding 
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orders of approximation from adjacent faces. The main technical difficulty in previous implementations was to 
maintain these mesh regularity rules over the computational mesh partitioned into sub-domains, e.g.,m a refinement 
performed over one sub-domain may require a sequence of additional refinements over adjacent elements, possibly 
located at adjacent sub-domains. A partial solution to the problem was the introduction of ghost elements in order to 
simplify mesh reconciliation algorithms [2, 4]. However, ghost elements increased the communication cost, 
especially after many refinements, since a layer of initial mesh elements, possibly broken into many smaller 
elements, had to be exchanged between adjacent sub-domains. 
In this paper we propose an alternative parallelization technique, based on the shared domain decomposition 
paradigm, illustrated on the right panel in Fig. 1. The entire data structure with the computational mesh is stored on 
every processor. However, the computations performed over the mesh are shared between processors. It is done by 
assigning the so-called processor owners to particular mesh elements, and executing computations over these 
elements by assigned processors. This is usually performed by sharing the algorithm’s loops by many processors, 
followed by  mpi_allreduce call merging results.  

 
 

Figure 1. The shared-domain decomposition as opposed to the distributed-domain decomposition. 

2. Automatic hp-Adaptivity 

A general sequential algorithm for the fully automatic hp adaptation can be described is the following steps.  
(1) Algorithm starts with the coarse initial mesh with uniform order of approximation. 
(2) The computational problem is solved over the coarse mesh and the approximate solution  is obtained. 
(3) The coarse mesh is globally hp-refined in order to produce the fine mesh. It is done by breaking each finite 

element into four son elements and increasing the polynomial order of approximation by one. This will be 
the reference mesh used for calculation of the interpolation error over the coarse mesh. 

(4) The computational problem is solved on the fine mesh and the approximate solution  is obtained. 
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(5) As the relative error estimator for the coarse mesh, the difference (in H1-seminorm) between the coarse and 
the fine mesh solutions is taken. 

(6) The optimal refinements are selected based on the calculated error estimators for the subset of the coarse 
mesh elements with higher relative error estimators. For example, in 2D the selected elements are either 
broken into smaller son elements (this is so called h-refinement) isotropically (4 sons) or anisotropically (2 
sons in the same direction) or the polynomial order of approximation is increased on element edges or 
interiors (this is so called p-refinement), or both. This is illustrated in Fig. 2.  

 

 
Fig. 2. Many possible refinements of a coarse mesh element. 

 
The optimal refinements are selected independently over each coarse mesh element. It is done in a way to 
provide maximal error decrease rate given by: 

 

  (1) 

 
where  is the number of added degrees of freedom during the considered refinement, w is the 
solution for proposed refinement strategy, obtained by utilizing the projection based interpolation [5] from 

the fine mesh solution  into the considered refined element,  is the relative error 

estimation over the current coarse mesh with respect the fine mesh and  is the relative error 

estimation for the refinement strategy proposed for the coarse mesh element with respect to the fine mesh. 
Thus, we seek for a refinement that provides the best error decrease rate with a minimum increase in the 
number of degrees of freedom. 

(7) The selected refinements are executed over the coarse mesh to obtain the new optimal mesh. 
(8) The new optimal mesh becomes a coarse mesh for the next iteration, and the entire procedure is repeated as 

long as the global relative error estimation is larger than the required accuracy of the solution. 
 

The algorithm is also illustrated in Fig. 3. The selection of the optimal refinements for the coarse mesh finite 
elements is actually performed in two steps, in order to limit the number of possibilities considered in point 6). 
Using 2d as an example, first, the optimal refinements are selected for finite element edges, and then the optimal 
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refinements for element interiors are selected, with restriction to known optimal refinements for element edges. The 
relative error measurements over element edges are performed in the H½ seminorm.  
 
The above energy-norm based adaptive algorithm has been further generalized to the case of goal-oriented 
adaptivity. The necessary modifications included solving the so-called “dual” problem over the same coarse and fine 
grids, and estimate the goal-oriented errors as a combination of the solutions of both direct and dual problems. From 
the parallel data structures point-of-view, these modifications implied duplicating the number of degrees-of-freedom 
in order to accommodate solution of the dual problem. 
 

 
 

Fig. 3. The algorithm for the sequential self-adaptive hp-FEM. 

3. Parallel fully automatic hp-Finite Element Method 

In this section, we present the parallel version of the fully automatic goal-oriented hp adaptivity, implemented 
under the shared domain decomposition paradigm. The new parallel algorithm can be summarized in the following 
steps: 
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(1) The coarse initial mesh is generated on every processor. The initial mesh elements are assigned to different 
processors, by filling processor_owner attribute of the element object. It is performed either by 
interfacing with the ZOLTAN library [6], or by utilizing simple row-wise mesh partitioners for two 
dimensional meshes. The element’s processor_owner attribute is filled on every processor, in other 
words, each processor knows processor owners of all elements. The element edges and vertices are 
assigned to processor owners. It is performed by browsing all elements and filling processor_owners 
lists located at element node or vertex objects. 

(2) The additional data structure presented in Figure 4 is initialized. We utilize here the Unified Modelling 
Language notation [7]. The element_refined objects are created for each active finite element. The 
middle_node links are related with interior nodes of active finite elements, represented by node 
objects with type=’mdlq’. The edge_refined objects are created for all active finite element edges. 
The edge_node links are related with element edge nodes, represented by node objects with 
type=’medg’. Notice, that element_refined objects (related to active finite elements) do not 
correspond to element objects (related to the initial mesh elements only). 

 

 
 

Figure 4. The UML diagram presenting the data structure managing mesh refinements. 

 
(3) The computational problem is solved over the current coarse mesh, by utilizing multi-frontal parallel direct 

solver [8, 9]. Each processor stores the local solution vector at its active finite element node and vertex 
objects, in the solution_d.o.f. attribute. The coarse mesh solution d.o.f. are also recorded at 
coarse_mesh_solution arrays of elements_refined objects. 

(4) The global hp refinement is executed over the coarse mesh in order to construct the reference fine mesh. 
This is performed by every processor over the entire data structure. Each finite element from the coarse 
mesh is partitioned into four new finite elements, and the polynomial order of approximation is uniformly 
raised by one. This is done by executing isotropic h refinement over each element interior node object, as 
well as refinement over each element edge node object. Also, the order_of_approximation 
attribute is increased for each active node (for each leaf node object). 

(5) The processor_owners of newly created node and vertex objects are filled based on the 
information inherited from father node objects. 

(6) The computational problem is solved again over the fine mesh by utilizing the multi-frontal parallel direct 
solver [8, 9]. Each processor stores the local solution vector at its active finite element node and vertex 
objects, in the solution_d.o.f. attribute. Notice that the coarse mesh solution is still stored at parent 
nodes as well as at elements_refined objects. For the case of goal-oriented adaptivity, we also solve 
for the “dual” problem. 
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(7) Each processor loops through its active elements and computes the relative error estimation over the 
element 

uhp − uh
2, p+1 H1

uh
2, p+1 H1

, (2) 

 
with  being the coarse mesh solution restored from the element_refined objects, and  

being the fine mesh solution restored from the solution_d.o.f. attribute of active finite element 
node and vertex objects. The relative error is stored in the error attribute of the 
element_refined objects. For the case of goal-oriented adaptivity, the relative error estimation over 
the element also incorporates terms corresponding to the solution of the dual problem. 

(8) The maximum element relative error is computed, and elements with the relative error estimation larger 
than 33% of the maximum error are to be refined.  

(9) For elements with strong gradient of the error in one direction, the isotropy_flag attribute of the 
element_refined object is set to enforce the element refinement in one direction.  

(10) Different refinement strategies are considered for element edges, by utilizing the formula 
 

 (3) 

 
with K denoting an element,  the coarse mesh solution restored from the element_refined 
objects,  the fine mesh solution restored from active finite element node and vertex objects, 

and w being the projection based interpolant of the fine mesh solution  into the considered edge 

refinement. Tilde symbol denotes solution of the “dual” problem needed for goal-oriented adaptivity. The 
H½ seminorm is utilized to measure the relative error over an element edge. The selected refinement is 
stored in edge_refined object. If an element edge is going to be p refined, the ref_flag attribute 
for the edge is set to 1, and the proposed order of approximation is stored at order attribute. If an element 
edge is going to be h refined, the ref_flag attribute for the edge is set to -1, and the proposed orders of 
approximation for son edges are stored at orders attribute array. These estimations are performed by 
every processor over active finite elements assigned to the processor. Thus, the optimal refinement 
information is stored in distributed manner in element_refined and edge_refined objects. 
These estimations are performed only for edges of elements with relative error estimation larger than 33% 
of the maximum relative error. 

(11) The proposed refinement data (ref_flag, order and orders attributes of edge_refined object as 
well as isotropy_flag of element_refined object) are broadcasted to all processors. 

(12) The fine mesh is deallocated and the coarse mesh is restored.  
(13) The selected optimal refinements are executed for element edges. This is done by all processors over the 

entire data structure. It can be done, since we broadcasted the proposed refinement data. Some edges are h 
refined: one new vertex object and two new edge node objects are created are connected to the 
original edge node. The order of approximation for new node objects is taken from orders attribute 
array of edge_refined object. Some edges are p refined, and the new order of approximation is taken 
from order attribute of edge_refined object. Some edge refinements are modified based on the 
isotropy_flag from element_refined objects. 
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(14) Different element interior node refinements are considered for elements. This is done by utilizing the 
formula 

 

  (4) 

 
with K denoting an element  the coarse mesh solution restored from the element_refined 
objects,  the fine mesh solution restored from active finite element node and vertex objects, 

and w being the projection based interpolant of the fine mesh solution  into the considered element 

refinement. Tilde symbol denotes solution of the “dual” problem needed for goal-oriented adaptivity. The 
H1 seminorm is utilized to measure the relative error over an element interior. These estimations are 
performed by every processor over active finite elements assigned to the processor. The selected 
refinement is stored in element_refined object. The type of refinement is coded within 
refinement_flag, and new orders of approximation for son nodes are coded within orders array. 
Thus, the optimal refinements information is stored in distributed manner in element_refined and 
edge_refined objects. These estimations are performed only for edges of elements with relative 
estimated error above 33% of the maximum relative error. 

(15) The proposed interiors refinement data (refinement_flag and orders attributes of 
element_refined objects) are broadcasted to all processors. 

(16) The selected optimal refinements are executed for element interiors. This is done by all processors over the 
entire data structure. Some elements are h refined: new edge and interior node objects and vertex objects 
(for isotropic h refinement) are created and connected to the original interior node. The order of 
approximation for new node objects is taken from orders attribute array of element_refined 
object. Some elements are p refined, and the new orders of approximation are taken from orders attribute 
of element_refined object.  

(17) The minimum rule is enforced over the entire data structure: the order of approximation over element edges 
is set to be equal to the minimum of orders for adjacent element interiors. This is done by all processors 
over the entire data structure. Thus, an identical copy of the new optimal mesh is stored on every processor. 

(18) The element_refined and edge_refined objects are deallocated.  
(19) If the maximum error is still greater than the required accuracy of the solution, the new optimal mesh 

becomes a coarse mesh and the next iteration is executed. 

4. Computational problem formulation 

In this section we present exemplary parallel simulations for the 3D DC resistivity logging measurement 
simulation problem. The problem consists in solving the conductive media equation 

                                                                      (5) 

in the 3D domain with different formation layers presented in Fig. 5. There is a logging tool with one transmitter and 

two receiver electrodes in the borehole. The tool is shifted along the borehole. The reflected waves are recorded by 

the receiver electrodes in order to determine location of the oil formation in the ground. Of particular interest to the 

oil industry are 3D simulations with deviated wells, where the angle between the borehole and formation layers is 
sharp ( ). This 3D problem can be decomposed as a sequence of coupled 2D problems by considering the 
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non-orthogonal system of coordinates presented in Fig. 7. Following [10], the variational formulation in the new 
system of coordinates consists in finding  such that: 

 (6) 

`where new electrical conductivity of the media  and  with being the 
gradient of the impressed current, and  

  (7) 

stands for the Jacobian matrix of the change of variables from the Cartesian reference to non-orthogonal systems of 
coordinates, and  is its determinant. We take Fourier series expansions in the azimuthal  direction 

 

 
 

Fig. 5.  The borehole, the tool with receiver and transmitter electrodes and the deviated formation layers. The utilized non-
orthogonal system of coordinates. 

 

u ζ1,ζ2 ,ζ3( ) = ul ζ1,ζ3( )e jlζ2
l=−∞

l=+∞

∑ ;  (8) 

σ ζ1,ζ2 ,ζ3( ) = σm ζ1,ζ3( )e jmζ2
m=−∞

m=+∞

∑ ;  (9) 

f ζ1,ζ2 ,ζ3( ) = fl ζ1,ζ3( )e jlζ2
l=−∞

l=+∞

∑ ;  (10) 

where ul =
1

2Π
ue− jlζ2 dζ2

0

2Π

∫ , σm =
1

2Π
σ e− jmζ2 dζ2

0

2Π

∫ and fl =
1

2Π
f e− jlζ2 dζ2

0

2Π

∫  and j is the imaginary 

unit. We introduce symbol  such that applied to a scalar function u it produces the lth Fourier modal coefficient 
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, and when applied to a vector or matrix, it produces a vector or matrix of the components being lth Fourier modal 

coefficients of the original vector or matrix components.  

Using the Fourier series expansions we obtain the following variational formulation:  
Find  such that: 

Fl
∂u
∂ξ

⎛
⎝⎜

⎞
⎠⎟
,Fm σ̂( ) ∂v

∂ξ
e j l+m( )ζ2

L2 Ω2D( )
= v,Fl f̂( )e jlζ2

L2 Ω2D( )
∀v ∈HD

1 Ω( ) . (11) 

The Einstein’s summation convention is applied with respect to . We select a mono-modal test 

function . Thanks to the orthogonality of the Fourier modes in L2, the variational problem defined in Eq. 

(11) reduces to 
Find  such that: 

Fl
∂u
∂ξ

⎛
⎝⎜

⎞
⎠⎟
,Fk− l σ̂( )Fl ∂v

∂ξ
⎛
⎝⎜

⎞
⎠⎟

L2 Ω2D( )n= k−2

n= k+2

∑ = Fk v( ),Fk f̂( )
L2 Ω2D( )

∀Fk v( )∈HD
1 Ω2D( )  (12) 

since five Fourier modes are enough to represent exactly the new material coefficients. We refer to [10] for more 

details. 

5. Numerical results 

We conclude the presentation by describing a numerical example of parallel computations on the lonestar [11] 
linux cluster of the 3D DC borehole resistivity measurement simulations in deviated wells. Figure 6 presents the 
logging curves for the resistivity logging measurement simulations in zero, 30, 45 and 60 degrees deviated wells. 
The results are an extension of [12] and they include also the case in presence of 10 cm and 50 cm invasion. 

The problem geometry can be described by using cylindrical coordinates . 
a) Four (one current and three voltage) 2 × 5-cm ring electrodes located 8 cm from the axis of symmetry and 

moving along the vertical direction (z axis). Voltage (collector) electrodes are located 100, 125, and 150 cm 
above the current (emitter) electrode, respectively. 

b) Borehole: a cylinder  of radius 10 cm surrounding the axis of symmetry  
with resistivity . 

c) Casing: a pipe (cylindrical shell)  of thickness 1.27 cm surrounding the axis of symmetry 

, with resistivity . 
d) Formation material 1: a subdomain  defined by  with 

resistivity . 
e) Formation material 2: a subdomain  defined by  

with resistivity  
f) Formation material 3: a subdomain  defined by  with 

resistivity . 
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Notice that each point on the plot requires a solution of the 3D problem, and the point corresponds to the value of  
the solution at receiver electrode, computed with a very high accuracy thanks to the goal-oriented hp adaptive 
methodology. The logging tool has been shifted along the borehole, from the relative position of 2meters down to  
-2meters, and we perform a new simulation for each position of the logging tool. We refer to [12] for more details. 

Figure 7 presentes the scalability tests of the parallel solver algorithm. The parallel version of the solver has been 
tested on the two dimensional mesh with 576 finite elements with uniform polynomial order of approximation p=2 
and 10 Fourier modes utilized to approximate the solution in its third direction (thus, total number of d.o.f. per node 
is equal to 20). We refer to [8, 9] for more details on the solver algorithm. The total number of d.o.f. over the entire 
mesh is 210,370. The parallel solver reduces the execution time from 582 seconds on a single processor to 6.5 
seconds on 128 processors. Notice that the scalability test corresponds to a single position of a receiver antenna. 

 
Fig. 6. Logging curves for through casing resistivity logging measurement simulations in deviated wells. 

 
Fig. 7. Parallel solver execution time [s] up to 192 processors. Logarithmic scales are utilized on both axes. 

6. Conclusions 

In this paper we presented the parallel goal-oriented self-adaptive hp finite element method platform for resistivity 
logging simulations. We solved the through-casing resistivity logging simulation problem in presence of invasion. 
This is the first existing simulation of the through-casing resistivity logging simulation in the presence of invasion. 
This is due to large numerical constrast (6 orders of magnitude from 10-12 to 10-6) that can be resolved only by 
utilizing the hp adaptive goal oriented metodology. The developed parallel version of the solver algorithm with 
shared data structure allows for a fast solution, and the solver algorithm scalles well up to 128 processors. 
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