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Abstract
In this paper, we present a high-performance framework for solving partial differential equations
using Isogeometric Analysis, called PetIGA, and show how it can be used to solve phase-field
problems. We specifically chose the Cahn-Hilliard equation, and the phase-field crystal equation
as test cases. These two models allow us to highlight some of the main advantages that we have
access to while using PetIGA for scientific computing.
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1 Introduction

Increasingly and steadily, scientific progress is being made thanks to advanced computing ca-
pabilities, and an improved understanding of physical problems. If the proper model is used
for the problem under consideration, one can many times get through simulation reliable and
accurate predictions of properties that are not easily accessible or in the worst cases, not mea-
surable, in a laboratory setting. Nonetheless, coming up with these models is not a trivial task.

Procedia Computer Science

Volume 29, 2014, Pages 980–990

ICCS 2014. 14th International Conference on Computational Science

980 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

doi: 10.1016/j.procs.2014.05.088 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.088&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.088&domain=pdf


Along these lines, one of the areas that has recently garnered more attention in computational
materials science is phase-field modelling [18], with the goal of representing phase-transitions.
These models rely on the mathematical definition of a free energy functional that characterises
a system, and accounts for both the components that constitute the system, as well as the
interaction between them. A wide variety of phase transitions have been successfully modelled
with them [18, 19].

Models usually take the form of nonlinear, partial differential equations in the phase-field
framework, and they can have numerical and physical issues that need to be addressed [20].
When trying to solve problems involving phase transitions, the complications usually arise in
the interfacial area, where a correct solution might require a very high spatial and/or temporal
resolution. It is in such cases where efficient computational resources are needed, that take
advantage of efficient libraries for scientific computing using state of the art implementations
and technologies. This was the idea behind the inception of PetIGA [6, 8], an open source library
that built the Isogeometric Analysis capability on top of PETSc (Portable, Extensible Toolkit
for Scientific Computation). The choice to base it on Isogeometric Analysis, a finite element
method (FEM) with NURBS basis functions with some improved capabilities over traditional
FEM, comes from the fact that this basis is well suited to solve higher-order partial differential
equations [7], as the NURBS-based spaces can be constructed to possess an arbitrary degree
of inter-element continuity. This gives a lot of flexibility in terms of the choice made for the
spatial discretization of a particular partial differential equation when compared to classical
finite elements [15].

PetIGA was built over PETSc to make use of a wide array of tools already available for the
solution of partial differential equations, namely time-stepping algorithms and solvers (both
linear and nonlinear). Along with them, PETSc also has built-in monitors that can be used to
speed up the prototyping process when one is trying to solve a new equation, which allow to
quickly identify the real sources of error. In this work, we start by giving a brief tutorial on some
of the capabilities PetIGA has, and follow by discussing the solution of two phase-field models
that have been extensively researched the past few years: the Cahn-Hilliard equation (CH),
and the phase-field crystal equation (PFC).

2 PetIGA.

PetIGA is a software framework that implements a NURBS-based finite element method, pop-
ularly known as isogeometric analysis (IGA) [7]. By being built on top of PETSc, one gets
access to a useful collection of algorithms and data structures for the solution of partial differ-
ential equations (PDEs). PETSc was written so as to be applied to a wide range of problem
sizes. It has successfully been used in large-scale simulations and shown to have good scaling
results [2, 3]. This is why it was a sensible choice as a platform to develop PetIGA.

2.1 Isogeometric analysis basics.

IGA was proposed initially in [16]. It was motivated by the desire to find a technique for solving
PDEs which would simplify the problem of converting geometric descriptions for discretizations
in the engineering design process. After creating a computer aided design (CAD), the process
of converting the representation to a form that is suitable for analysis is considered to be the
main bottleneck of the engineering analysis process, consuming up to 80% of the time [7].
By using the NURBS basis directly, isogeometric methods avoid the time-consuming step of
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generating the intermediate geometry by using the CAD representations, as NURBS are capable
of representing complex geometries more precisely.

Added to this, IGA introduced a new level of refinement, on top of the common h-refinement
(i.e. increasing the number of elements in a mesh) and p-refinement (i.e. increasing the polyno-
mial order of the basis function), known as k-refinement, which allows to arbitrarily increase the
continuity across elements and can thus be used in discretizations that require Cp−1-continuity,
where p represents the polynomial order. Work has been done on these higher-order continuous
basis functions and it has been observed, both numerically and theoretically [1, 11], that they
possess better accuracy per degree of freedom than standard C0 basis functions. The devel-
opment of efficient, scalable solvers is also important though, as the weak form discretizations
with the higher-order continuous basis functions result in linear systems that are expensive to
solve [4, 5].

2.2 The philosophy behind PetIGA

By extending PETSc, that had the idea of parallelism embedded in its implementation, we
got direct access to different modular components available for the solution of PDEs, such as
direct and iterative solvers, different types of preconditioners and explicit and implicit time-
stepping schemes. PetIGA was implemented with the idea in mind that a user, willing to solve
a nonlinear and time-dependent partial differential equation in a finite element setting, should
only need to know how to get the variational formulation of the equation he was trying to solve.
Once this was achieved, he would have access to a framework that allowed him to transfer his
code to a supercomputer without any additional work, allowing him to speed up his solution
process through the use of more processors. We did not want a user to have to deal with MPI, or
have to link codes to well known routines that are already implemented and highly optimized,
but instead focus time on actually solving equations, and gaining a better understanding of
them through simulation. The goal was achieved with PetIGA, a library where the job of the
user is that of assembling the vectors and matrices stemming from the discretization.

The software takes care of assembling the local contributions to a globally distributed data
structure in distributed memory architectures, many times a complicated task to complete.
This was achieved in big part thanks to PETSc, which provides the support to do so. It also
provides data structures called distributed arrays (DAs) for managing data, for methods whose
discretization is based on a structured grid topology. This particular component optimises the
partition of the computational domain among the different processors used, and is the main
reason why we developed the IGA object. This object leads to a nearly optimal partition of
the degrees of freedom of the domain for a single patch of NURBS-based isogeometric finite
elements by trying to minimise the load imbalance among processors. More information on
how the actual assembly of the different matrices and vectors is done can be found in [6], and
tutorials for the software are being developed. The object-oriented setting of PetIGA hides the
details of parallelism and problem assembly, such that the actual application codes are short
and easy to read. The user only needs to provide the integrand of the weak form.

3 High-order phase-field models: the Cahn-Hilliard (CH)
and the phase-field crystal (PFC) equations.

Phase-field models have received a lot of attention from many different fields, being a truly
interdisciplinary area with problems related to numerical analysis, physics and thermodynam-
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ics [18]. In this section we give a brief review on the basic structure of phase-field frameworks,
as well as some background on the Cahn-Hilliard (CH) and phase-field crystal equations (PFC).

3.1 Phase-field modelling

In these models, a phase-field parameter φ, continuous over the whole space, is used to represent
the different phases. The physical behaviour of this phase-field is then usually defined through
the minimisation of a free energy functional F [φ(r)] that characterises the system, defined as

F [φ(r)] =
∫
Ω

{
g(φ) + α |∇φ|2 + β (Δφ)

2
}
dV, (1)

where g(φ) is used to represent the bulk free energy and can take either the form of a logarithmic
function (as in CH in this work) or a polynomial (as in PFC), the parameters α and β are
constants that take values between −1 and 1, and the gradient and Laplacian terms model the
physics of the interfacial effects. This framework allows for an implicit tracking of the interface,
compared to sharp-interface models, and leads to less stiff systems where arbitrary rules do
not have to be used to track the interface [18]. To set the PDE, a variational derivative of the

selected free energy is taken,
δF [φ(r)]

δφ
, which is then coupled to the evolution of φ in time,

such that

∂φ

∂t
= −∇a ·

(
−M(φ)∇a δF [φ(r)]

δφ

)
(2)

where M(φ) represents a mobility for the component(s) being considered, a takes a value of one
if the phase-field represents a conserved quantity (i.e. density) or zero otherwise, and t stands
for time. We now proceed to define the partial differential equations considered in this work.

3.2 The Cahn-Hilliard equation.

The CH equation is a fourth-order, nonlinear and time-dependent, partial differential equation.
In this work, we consider the dimensionless version, adapted from [12], where the free energy
FCH is defined as

FCH =

∫
Ω

(
(c)log(c) + (1− c)log(1− c) + 2θc(1− c) +

θ

3γ
|∇c|2

)
dV, (3)

where the phase-field parameter c represents concentration, γ is a dimensionless number re-
lated to the thickness of the interfaces and is given a value of 3000, and θ, equal to 3/2, is a
dimensionless number that represents a critical transition ratio. The CH equation has success-
fully been used to model spinodal decomposition, a physical mechanism in which a mixture
phase-separates when θ takes a value greater than one. Considering that the concentration is
a conserved quantity, the PDE becomes

∂c

∂t
= ∇ ·

(
Mc∇δFCH

δc

)
= ∇ · (Mc∇ (μc −Δc)) (4)

where μc represents a chemical potential defined as

μc =
1

2θ
log

c

1− c
+ 1− 2c.
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Finally, the strong form of this equation can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂t
−∇ · (Mc∇ (μc −Δc)) = 0 on Ω×]0, T ]

c = c0 on Ω× {t = 0}
Mc∇ (μc −Δc) · n = s on Γs×]0, T ]
Mcλ∇c · n = 0 on Γ×]0, T ]
c = g on ΓD×]0, T ]

(5)

To get the weak form for this equation and be able to implement the residual in PetIGA, we let
V denote the trial and weighting function spaces, and consider periodic boundary conditions in
all directions. The variational formulation, obtained by multiplying the strong form by a test
function w and integrating by parts, is stated as: find c ∈ V such that ∀w ∈ V,

(w, ċ)Ω + (∇w,Mc∇μc +∇McΔc)Ω + (Δw,McΔc)Ω = 0, (6)

where ċ =
∂c

∂t
, (., .)Ω represents the L2 inner product over the domain Ω and V needs to be

H2-conforming. We use the Galerkin method (although collocation is also available in PetIGA)
to discretize the infinite dimensional problem and derive the semidiscrete formulation which is
then stated as: find ch ∈ Vh ⊂ V such that ∀wh ∈ Vh ⊂ V such that(

wh, ċh
)
Ω
+
(∇wh,Mh

c ∇μh
c +∇Mh

c Δch
)
Ω
+
(
Δwh,Mh

c Δch
)
Ω
= 0. (7)

We suppose that the discrete space Vh is spanned by the linear combination of basis functions
NA, which are C1-continuous B-spline basis functions that are associated to the global degree
of freedom A, that runs from 1 to nd, where nd represents the dimension of the discrete space.
With regards to PetIGA, if one is able to get equation (7) and an initial condition, testing of
the residual can already be done to check if the system converges to a solution, or compare the
results to a benchmark problem. This can save time while prototyping a code or model. Being
a nonlinear time-dependent problem, the CH model requires the use of a Jacobian if one sets
the problem up with a Newton-type scheme. Another advantage of PETSc is that it is able to
approximate the Jacobian through finite-differencing. The user does not even need to code it to
start getting results. With regards to the time-discretization, we employ the adaptive scheme
from [12], which uses the generalised-α method.

3.3 The phase-field crystal equation

The PFC equation is a sixth-order, nonlinear time-dependent partial differential equation. Even
though it was initially developed to study problems related to solidification [9] at atomic length
scales and diffusive time scales, it has since then been used to tackle issues in crack propagation,
dislocation dynamics, and formation of foams [10].

In the equation, the order parameter φ represents an atomistic density field, which is periodic
in the solid state and uniform in the liquid one. The free energy functional for the phase-field
crystal equation in its dimensionless form is given by [9, 17]

FPFC =

∫
Ω

[
Ψ(φ) +

1

2

(
φ2 − 2|∇φ|2 + (Δφ)2

)]
dV, (8)

where Ψ(φ) = 1
4φ

4 − ε
2φ

2. Notice that the sign in front of the gradient term |∇φ| is negative
in this case, whereas it is positive in the case of CH. This has physical implications in the
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behaviour of the equations, as in CH, interfaces (i.e. where the gradients are present) will be
energetically penalised and so the equation will tend to minimise them, whereas in PFC they
will be energetically favoured because of their negative contribution to the free energy. To get
the PDE, we apply the same procedure as before (again with a = 1 as density is a conserved
quantity) and get

∂φ

∂t
= ∇ ·

(
Mφ∇δFPFC

δφ

)
= Δ

(
(1 + Δ)2φ+Ψ′(φ))

)
(9)

where the mobility Mφ is taken to be equal to one, and Ψ′(φ) = φ3 − εφ. By considering the
boundary conditions, the strong form of the problem can then be stated as follows: over the
spatial domain Ω and the time interval ]0, T [, given φ0 : Ω̄ �−→ R, find φ : Ω̄× [0, T ] �−→ R such
that ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂t
= Δ

[
(1 + Δ)

2
φ− εφ+ φ3

]
on Ω×]0, T ]

∇
(
(1 + Δ)

2
φ− εφ+ φ3

)
· n = 0 on Ω×]0, T ]

∇(2φ+Δφ) · n = 0 on Ω×]0, T ]
∇φ · n = 0 on Ω×]0, T ]
φ(x, 0) = φ0(x) on Ω̄

(10)

The following splitting of the equation is proposed

∂φ

∂t
= Δσ, (11a)

σ = (1 +Δ)
2
φ+Ψ′(φ) (11b)

where Ψ′(φ) = −εφ + φ3. We chose this formulation to compare results with the formulation
presented in [21]. The functional space V ∈ H2 is defined, where H2 corresponds to the Sobolev
space of square integrable functions with square integrable first and second derivatives. A weak
form of equations (11a) and (11b) is derived by multiplying them by test functions q ∈ H2

and w ∈ H2, respectively, and integrating by parts. Assuming periodic boundary conditions in
every direction, one can state the problem as: find φ ∈ V and σ ∈ V such that for all q ∈ V and
w ∈ V (

q, φ̇
)
Ω
+ (∇q,∇σ)Ω = 0, (12a)

(w, σ)Ω − (w,Ψ′(φ) + φ)Ω + (∇w, 2∇φ)Ω − (Δw,Δφ)Ω = 0. (12b)

To derive a finite element approximation to the problem, we pick the finite dimensional space
Vh ⊂ V and derive a semi discrete formulation. The problem is then to find φh, σh ∈ Vh such
that for all qh, wh ∈ Vh

(
qh, φ̇h

)
Ω
+
(∇qh,∇σh

)
Ω
= 0, (13a)(

wh, σh
)
Ω
− (

wh,Ψ′(φh) + φh
)
Ω
+
(∇wh, 2∇φh

)
Ω
− (

Δwh,Δφh
)
Ω
= 0. (13b)

We again suppose that the discrete space Vh is spanned by the linear combination of basis
functions NA, which are C1-continuous B-spline basis functions that are associated to the global
degree of freedom A, that runs from 1 to nd, where nd represents the dimension of the discrete
space.
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With regards to the implementation, we let the global vectors of degrees of freedom associ-
ated to φh

n and σh
n be Φn and Σn, respectively. The residual vectors for this formulation are

then given by

Rφ(Φn,Φn+1,Σn+1); Rφ = {Rφ
A}; A = 1, ..., nb, (14)

Rσ(Φn,Φn+1,Σn+1); Rσ = {Rσ
A}; A = 1, ..., nb, (15)

where Rφ
A = 0 and Rσ

A = 0 are defined as(
qh,

[[φh
n]]

Δt

)
Ω

+
(∇qh,∇σh

)
Ω
= Rφ

A, (16)

(
wh, σh

)
Ω
−
(
wh,

1

2
Ψ′(φh

n+1 + φh
n)

)
Ω

−
(
wh, φh

n+1/2

)
Ω
+ 2

(
∇wh,∇φh

n+1/2

)
Ω
−
(
Δwh,Δφh

n+1/2

)
Ω
= Rσ

A. (17)

where [[φh
n]] = φh

n+1 − φh
n and φh

n+1/2 =
1

2

(
φh
n+1 + φh

n

)
. A system of nonlinear equations for

Φn+1 and Σn+1 is obtained by having the residual vectors be equal to zero, and solved using
Newton’s method. By having Φn+1,(i) and Σn+1,(i) be the ith iteration of Newton’s algorithm,
the iterative procedure was defined as in [13]: taking Φn+1,(0) = Φn and Σn+1,(0) = Σn. Then,
for i = 1, .., imax,
(1) Compute residuals using Φn+1,(i), Σn+1,(i), denoted as Rφ

(i) and Rσ
(i), respectively.

(2) Compute the tangent matrix Ki using the ith iterates. This matrix is given by

K(i) =

(
Kφφ

(i) Kφσ
(i)

Kσφ
(i) Kσσ

(i)

)
.

(3) Solve the linear system(
Kφφ

(i) Kφσ
(i)

Kσφ
(i) Kσσ

(i)

)(
δΦn+1,(i)

δΣn+1,(i)

)
= −

(
Rφ

(i)

Rσ
(i)

)

(4) Update the solution such that(
Φn+1,(i+1)

Σn+1,(i+1)

)
=

(
Φn+1,(i)

Σn+1,(i)

)
+

(
δΦ(i+1)

δΣ(i+1)

)

This algorithm needs to be repeated until the norm of both residual vectors is reduced to a
given tolerance of their initial value.

We found it interesting to analyze the behavior of the free energy with different implicit
time marching schemes. And herein lies one of the other advantages of PETSc: the code to
solve the equation using Backward Euler, the theta method, or generalized-α is exactly the
same, and does not need to be recompiled if one wishes to switch between schemes. An added
advantage, is the fact that options can be directly specified as command line arguments.

4 Numerical Results.

In this section we present some numerical results for both equations, showing how PetIGA can
be used to visualise the solution in real time, as well as some of the features that make it a
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(a) t = 0 (b) t = 7.78 ∗ 10−4 (c) t = 0.1

Figure 1: Spinodal decomposition. Snapshots of the numerical approximation to the concentra-
tion at different time steps. The computational mesh is composed of 642C1 quadratic elements.

Figure 2: Output for the -snes check jacobian argument. The hand-coded jacobian is com-
pared to PETSc’s finite difference approximation.

useful tool in solving high-order, partial differential equations. The examples that are dealt
with are taken from [12] for CH, and from [20] for PFC.

4.1 Spinodal decomposition using the Cahn-Hilliard equation.

The initial condition was set to be

c(t = 0,x) = 0.63 + ĉ, (18)

over the whole domain (the unit square), with ĉ a uniform random variable with values con-
tained in the interval [−0.05, 0.05]. As the value of θ lies above one, we can see the occurrence
of a phase separation during the evolution of the concentration in Figure 1, where the command
to execute the program looks like this:
mpiexec -n 4 ./CahnHilliard2D -N 64 -p 2 -C 1 -ts monitor draw solution
where mpiexec -n 4 specifies the number of processors one is using (in this case four),
CahnHilliard2D is the name of the executable being used, and N, p and C control the number
of elements, the polynomial order and the degree of continuity of the basis functions used to
solve the problem, respectively. The snapshots shown are taken at different times during the
phase separation, and the solution presented in [12] is recovered, which confirms the correct im-
plementation of the algorithm proposed. These snapshots are generated in real-time, as PETSc
has 2D visualisation capabilities to make the debugging process easier, and all one needs to
do is add −ts−monitor−draw−solution as an argument in the command line when execut-
ing the program. By adding −snes−mf, one can use the finite-difference calculated jacobian
for the residual that was established, or check the explicitly coded jacobian using the option
−snes−check−jacobian and get an output as shown in Figure 2. Tolerances can also be set
as command line arguments, both for the linear (ksp) and nonlinear (snes) solvers. By being
connected to PETSc, one really gets a large number of very useful tools to monitor and iden-
tify problems while trying to solve complicated partial differential equations. All the options
available can be shown by adding -help as an argument.
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(a) t = 0 (b) t = 20 (c) t = 150

Figure 3: Crystal growth in a supercooled liquid. Snapshots of the numerical approximation
to the atomistic density field of the phase field crystal equation using Crank-Nicolson. The
computational mesh is composed of 1902C1 quadratic elements. The time step is 1.0.

4.2 Crystal growth using the phase-field crystal equation.

For the following example, we simulate crystal growth in a supercooled liquid. The initial
condition is given by

φ0(x) = φ̄+A

(
cos

(
qy√
3

)
cos(qx)− 0.5cos

(
2q√
3
y

))
(19)

where φ̄ represents the average value of φ(x), A is the amplitude of the fluctuations in density,
and q represents a wavelength related to the lattice constant [18]. These parameters take the
values

ε = 0.325; φ̄ =

√
ε

2
; q =

√
3

2
; A =

4

5

(
φ̄+

√
15ε− 36φ̄2

3

)
.

φ̄ can be seen as the value given to the density of the liquid, whereas the second term of
equation (19) really sets the structure for the solid. In this case, an initial solid nucleus is
placed in the center of a square domain, and is surrounded by liquid of the same material that
is below its critical temperature of fusion. This leads to an evolution which sees the solid phase

grow as the liquid crystallizes around it. The domain size chosen is Ω̄ =

[
20π

q

]
×

[
12
√
3π

q

]
.

The initial condition was chosen so as to only have one hexagon of atoms lying in the center
of the domain. The evolution of the single crystal is shown in figure 3. The growth of the
crystalline phase can be observed, with features being similar to the ones presented in [13, 14].
We also observed the free energy to be non-increasing at each time step.

5 Conclusions.

In this paper, a high-performance implementation of isogeometric analysisis is presented. The
software is built in such a way that the user only has to worry about coding the integrand of the
weak form and the initial condition. PetIGA is a useful tool for the solution of high-order partial
differential equations that arise in phase-field models. The prototyping stage is simplified as
compared to other frameworks, as the monitors we get access to through PETSc speed up the
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debugging process. The framework allows the user to focus on how to solve a problem instead
of how to implement it.

6 Future Work

Given the possibility of generating higher-order continuous spaces, different formulations are
possible when solving these equations with IGA. Even though the number of degrees of free-
dom increases with each split of the equation, that doesn’t necessarily translate to longer
computational times. Properties such as energy-stability and mass conservation also need to
be guaranteed for the numerical scheme used to be valid. Our future work will tackle theses
problems. We will analyse the numerical complexity of the splits, as well as develop numerical
schemes that possess the aforementioned properties.
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