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Abstract
We discretized the two-dimensional linear momentum, microrotation, energy and mass conservation

equations from micropolar fluids theory, with the finite element method, creating divergence conform-

ing spaces based on B-spline basis functions to obtain pointwise divergence free solutions [8]. Weak

boundary conditions were imposed using Nitsche’s method for tangential conditions, while normal con-

ditions were imposed strongly.

Once the exact mass conservation was provided by the divergence free formulation, we focused on

evaluating the differences between micropolar fluids and conventional fluids, to show the advantages of

using the micropolar fluid model to capture the features of complex fluids. A square and an arc heat

driven cavities were solved as test cases. A variation of the parameters of the model, along with the

variation of Rayleigh number were performed for a better understanding of the system.

The divergence free formulation was used to guarantee an accurate solution of the flow. This formu-

lation was implemented using the framework PetIGA as a basis, using its parallel stuctures to achieve

high scalability. The results of the square heat driven cavity test case are in good agreement with those

reported earlier.
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1 Introduction

Micropolar fluids are a subclass of simple microfluids presented by Eringen [1], that have gained at-

tention from researchers because they can succesfully model the behavior of non-Newtonian fluids like

ferro liquids, liquid polymers, and any fluid with suspended particles in it. One of many applications

is to model nanofluids, where inserting nanoparticles can change physical properties in a desired way

depending on the volume fraction of the nanoparticles. Like is the case of fluid heat transfer systems

where nanoparticles are added to increase the effective heat conductivity for numerous applications.

Nanofluids are better modeled using the micropolar fluids theory. This takes into account the conser-

vation of angular momentum of the nanoparticles that are not described by the regular Navier-Stokes

equations.

Micropolar fluids consist of randomly oriented particles submerged in a viscous fluid where the de-

formation of the particles is neglected. Here we present the results for an isotropic, incompressible mi-

cropolar fluid to represent the steady state of natural convection in the heat driven cavity, using Boussi-

nesq approximation for buoyancy effects. We modelled the system using the finite element method

with B-splines basis functions, where to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition

we used a divergence conforming space discretization, obtaining pointwise divergence free results.

2 Micropolar theory

The micropolar theory [1] adds the effects of randomly oriented particles inside the fluid to the regular

Navier-Stokes model. This at the continuum scale is modeled by introducing the microrotation conser-

vation equation. Microrotation of the particles is represented as a vector quantity that is transported and

dispersed inside the fluid. It also has influence over the fluid velocity, presenting a two-way coupled,

nonlinear system (1).

The following equations describe the mass, linear momentum, microrotation and energy conserva-

tion present in the micropolar theory, where we assume a steady state of the system. The problem in its

strong form is to find u, p,φ and θ such that:

Micropolar Fluids using B-spline Divergence . . . Adel, Daniel, Lisandro, Nathan and Victor

992



∇ · (u⊗ u)−∇ · σ(u, p)− 2κ∇× φ+ grβ(θ − θ0) = f in Ω

j∇ · (u⊗ φ)− γΔφ− λ∇(∇ · φ)− 2κ(∇× u− 2φ) = g in Ω

∇ · (uθ)− αΔθ = 0 in Ω

∇ · u = 0 in Ω

u = h on Γ

φ = l on Γ

σ(u, p) · n = i on Γ

θ = m on Γ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where σ(u, p) = −pδ + 2(μ + κ)∇su denotes the Cauchy stress tensor for incompressible flows,

having δ as Kronecker’s delta and ∇su as the symmetric tensor called the rate of deformation or strain

rate tensor. Here u is the fluid velocity , p the fluid pressure, φ the microrotation, θ the temperature,

μ the dynamic viscosity, β the thermal expansion coefficient, α the thermal diffusivity, θ0 the bulk

temperature, γ the spin gradient viscosity, λ a viscosity coefficient ,κ the vortex viscosity, j the density

of microinertia, gr the acceleration due to gravity, f are the body forces, h the Dirichlet boundary

condition for the velocity, i the traction on the surface, and m the Dirichlet boundary condition for

temperature.

In the system of equations (1), we have advective terms that represent the transport of a property

due to the fluid motion, these are present in momentum and microrotation conservation equations, the

diffusive terms that represent the transport of a property due to the differences of its concentration in

space are present on all the equations except for mass conservation, and the buoyancy term that is

taken as the Boussinesq approximation to represent the movement of the fluid due to density changes

related to temperature variations [1, 2]. The Micropolar problem written in its weak form is to find

U = {u,φ, p, θ} ∈ V such that ∀W = {w, z, q, s} ∈ V:

(W,LU) =B(W,U) = B1(W,U) +B2(W,U,U) = L(W)

where B1 is a bilinear form and B2 is a trilinear form representing the advection terms, knowing that

(w,∇× φ)Ω = (∇×w,φ)Ω + ((w × n) · φ)Γ:

B1(W,U) =(∇w, 2(ν + κ)∇su)Ω − (∇ ·w, p)Ω − (w, 2(ν + κ)∇su · n)Γ + (w, pn)Γ

−(w, 2κ∇× φ)Ω + (w,gβ(θ − θ0))Ω

+(∇z, γ∇φ)Ω − (z, γ∇φ · n)Γ + (∇ · z, λ∇ · φ)Ω − (z, λ(∇ · φ) · n)Γ
−(∇× z, 2κu)Ω − (z× n, 2κu)Γ + (z, 4κφ)Ω

+(∇s, α∇θ)Ω − (s, α∇θ · n)Γ + (q,∇ · u)Ω
B2(W,U,U) =− (∇w,u⊗ u)Ω − (∇z, ju⊗ φ)Ω − (∇s,uθ)Ω

+(w,u⊗ u · n)Γ + (z, ju⊗ φ · n)Γ + (s,uθ · n)Γ
L(W) =(w, f)Ω

2.1 Discretization of Velocity-Pressure fields

For the discretization of our variables, we will use divergence conforming spaces to overcome the LBB

condition present due to the incompressibility cons. According to the discrete differential form theory,

one can build conforming spaces for operators like divergence and curl. Using these spaces, the diver-

gence free and/or curl free conditions can be guaranteed by construction [6, 9], then using the discrete
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version of these spaces leads to pointwise zero divergence or curl respectively.

Using the concept of isogeometric discrete differential forms [5] we define divergence conforming

spaces using B-spline basis functions as:

Dimension Velocity Spaces Pressure Space

2D Vh = Sp+1,p
α+1,α + Sp,p+1

α,α+1 Qh = Sp,p
α,α

3D Vh = Sp+1,p,p
α+1,α,α + Sp,p+1,p

α,α+1,α + Sp,p,p+1
α,α,α+1 Qh = Sp,p,p

α,α,α

where S is the B-splines function space, p denotes the polynomial order, and α denotes the inter-element

continuity. This choice of spaces can be interpreted as a smooth generalization of Raviart-Thomas

elements. Assuming a polynomial order p = 1 and a continuity α = 0 the discretization can be seen as

implementing standard Raviart-Thomas elements, Figure 1.

(a) X velocity element (b) Y velocity element (c) Pressure element

Figure 1: Discretization of Velocity and Pressure fields for 2D

When solving on any geometry different than the parametric, a divergence conserving transforma-

tion has to be used to relate physical with parametric space. We retain the divergence free property by

using the Piola transformation when mapping the velocity, and a integral preserving mapping for the

other variables, this way the following operators are introduced:

u = J−1FU ◦ ϕ−1
φ = J−1FΦ ◦ ϕ−1
p = J−1P ◦ ϕ−1
θ = J−1Θ ◦ ϕ−1

where F is the Jacobian matrix of the parametric to physical mapping ϕ, Figure 2, and J is the deter-

minant of F . Variables on the parametric domain are denoted by capital letters, while physical variables

are denoted by lowercase letters. To map scalar variables like p and θ the integral-preserving trans-

formation introduces J−1 to scale the value, while for vector variables like u and φ, the deformation

gradient F is also introduced in the expression to take into account the changes in the vector directions.

2.2 Boundary condition imposition
The normal boundary conditions of the velocity were imposed strongly, but doing the same for the tan-

gential boundary conditions on the velocity, while using divergence conforming spaces can be unstable

due to over restricting velocity degrees of freedom in the corners of the domain. Nitsche’s method
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(a) Parametric domain (b) Physical domain

Figure 2: Divergence conserving mapping

for weak boundary imposition was used to avoid this problem, also alleviating the necessity for highly

refined meshes to reproduce layer effects on no-slip boundaries [10].

The weak imposition of boundary conditions introduces terms to the operator B1(w,u) and L(w)
to finally have them as in the following equations, where αP = Cpen/hf and Cpen are the penalty

term parameters, hf is the wall normal mesh size, making the bilinear operator mesh-dependent [3].

In each equation, consistency comes from the weak formulation of the problem, adjoint consistency

comes from applying the adjoint operator to the consistency term, and penalisation is the term weighing

velocity boundary condition u = h [3].

B1(w,u) = (∇w, 2(μ+ κ)∇su)Ω
− (w, 2(μ+ κ)∇su · n)Γ Consistency

+ (u, 2(μ+ κ)∇sw · n)Γ Adjoint consistency

− (w, 2(μ+ κ)αPu)Γ Penalisation

L(w) = (w, f)Ω
− (h, 2(μ+ κ)∇sw · n)Γ Adjoint consistency

− (w, 2(μ+ κ)αPh)Γ Penalisation

2.3 Implementation

The implementation of the concept of discrete spaces was built on top of the framework for high perfor-

mance isogeometric analysis PetIGA, that provides high order, high continuity discretizations. Modifi-

cations to some structures were required so the framework could handle different discretization spaces

for each variable. The implementation of Piola’s transformation and integral-preserving transformation

was also requeried to get divergence free discretization in the physical space. We ran all the test cases

on a workstation (2 Hex-core Xeon X5650, 48 Gb memory).
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3 Test problems

3.1 Heat driven square cavity

Figure 3: Heat driven cavity domain

The heat driven square cavity was used as a test case for our 2D formulation. This test presents a

high temperature TH on the right side wall, and a low temperature TC on the left side wall. The top

and bottom walls are considered to be adiabatic. No-slip and no-penetration boundary conditions are

considered on every wall for the velocity [4, 7], showing how the flow is driven only by the density

changes due to the heat transfer from the right to the left wall. When the velocity flow is low, isothermal

lines appear as parallel to the walls, but when the velocity increases isothermal lines begin to skew

towards the direction of the velocity due to the advective effects included in energy equation.

Variation of different parameters on equations (1) were computed to analize the behavior of the

results. Common fluid parameters like α, μ, γ, λ and j were kept constant, the variation of the material

parameter K = κ/μ to values of 0, 0.5 and 2, and Ra = grβ(TH − TC)/να to values of 1e4, 5e4, 1e5,

5e5 were computed and compared with results from [4]. Table 1 presents streamlines results, Table 2

isothermal lines and Table 3 vorticity contours. For this test case we used a mesh of 502 elements with

the spaces Vh = S2,11,0 + S1,20,1 and Qh = S1,10,0 .
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K Ra = 1e4 Ra = 5e4 Ra = 1e5 Ra = 5e5

0.0

0.5

2.0

Table 1: Streamlines for different parameters K and different Rayleigh numbers (Pr = 0.71)

Results presented for the heat driven square cavity correspond to the ones registered by Zadravecet

et al. [4], showing same behavior for Rayleigh numbers up to 1e5. Higher Rayleigh numbers could not

be acheived with the same mesh due to the lack of implementation of an advection stabilization method.

All of the results obtained a maximum divergence value of order 1e−9 according to the formulation used

and the relative tolerance used in the nonlinear solver.

3.2 Heat driven arc cavity

The heat driven arc cavity was used as a test case for our divergence conserving mapping formulation.

This test case presents a high temperature TH on the bottom curved wall, and a low temperature TC on

the upper curved wall. The straight walls are considered to be adiabatic. No-slip and no-penetration

boundary conditions are considered on every wall for the velocity as used in the heat driven square

cavity.
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K Ra = 1e4 Ra = 5e4 Ra = 1e5 Ra = 5e5

0.0

0.5

2.0

Table 2: Isothermal lines for different parameters K and different Rayleigh numbers (Pr = 0.71)

K Ra = 1e4 Ra = 5e4 Ra = 1e5 Ra = 5e5

0.0

0.5

2.0

Table 3: Vorticity contours for different parameters K and different Rayleigh numbers (Pr = 0.71)
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Figure 4: Heat driven cavity domain

K Streamlines Isothermal Vorticity
lines contours

0.0

0.5

2.0

Table 4: Results for different parameters K (Pr = 0.71, Ra = 5e3)

Only a variation of parameter K = κ/μ to values of 0, 0.5 and 2 were computed with a Rayleigh

number equal to 5e3. Parameters like α, μ, γ, λ and j were kept constant. Table 4 presents streamlines,
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isothermal lines and vorticity contours results, for a mesh of 502 elements with the spaces Vh = S3,22,1 +

S2,31,2 and Qh = S2,21,1 .

Results for the heat driver arc cavity were not compared with any reported results. Streamlines show

how fluid flows from the hot to the cold wall creating a big vortex around the cold wall and a small

one around the upper part of the hot wall, this generates a higher temperature area close to the straight

left wall created by the advective effects of hot fluid coming from both vortex, flowing into that specific

area. Isothermal lines appear more skewed towards the cold wall due to the advection presented by the

big vortex.

4 Conclusions
From the linear momentum equation we can see that in the absence of any other external force, as in

the heat driven cavity problems, buoyancy is the only factor that drives the movement of the fluid. This

is observed by noting that the temperature gradient between hot and cold walls is the only driving force

for the fluid in both test cases.

Among the results from varying the physical parameters of the equations we found that with higher

Rayleigh number, as expected, velocity increases which leads to higher effects from advective terms

in the model, as seen in isothermal lines. Lack of stabilization for advection kept us from going to

higher Rayleigh numbers with the same mesh. As the parameter of K is increased, velocity magnitude

decreases rendering straighter isothermal lines due to smaller advection effects.

Divergence-free solutions were achieved point-wise due to the selection of our basis functions to

create a divergence conformal space. This guarantees the mass conservation along the domain and an

accurate solution of the flow, allowing the analysis to focus on the effect of introducing the microrotation

conservation equation and how its coupling with the Navier-Stokes equations affects the results. Weak

imposition of boundary conditions presents accurate results when focusing on flow near boundaries,

while avoiding instabilites due to over restricting velocity degrees of freedom.

5 Future Work
Future work is to include advection stabilization with the VMS method [10], allowing us to go to higher

Rayleigh and Reynolds numbers depending on boundary conditions. Going to 3D and the use of dif-

ferent geometries will be part of coming works, looking also for benchmarks to validate thoroughly

our implementation. We will also look into including the effect over the fluid properties of adding

nanoparticles, and also the addition of a transport equation for the nanoparticles in the transient case.
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