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Abstract

This paper derives theoretical estimates of the computational cost for isoge-
ometric multi-frontal direct solver executed on parallel distributed memory
machines. We show theoretically that for the Cp−1 global continuity of the
isogeometric solution, both the computational cost and the communication
cost of a direct solver is of order O(log(N)p2) for the one dimensional (1D)
case, O(Np2) for the two dimensional (2D) case, and O(N4/3p2) for the
three dimensional (3D) case, where N is the number of degrees of freedom
and p is the polynomial order of the B-spline basis functions. The theoretical
estimates are verified by numerical experiments performed with three par-
allel multi-frontal direct solvers: MUMPS, PaStiX and SuperLU, available
through PETIGA toolkit built on top of PETSc. Numerical results confirm
these theoretical estimates both in terms of p and N . For a given problem
size, the strong efficiency rapidly decreases as the number of processors in-
creases, becoming about 20 percent for 256 processors for a 3D example with

Preprint submitted to Computer Methods in Applied Mechanics and EngineeringNovember 23, 2014



1283 unknowns and linear B-splines with C0 global continuity, and 15 percent
for a 3D example with 643 unknowns and quartic B-splines with C3 global
continuity. At the same time, one cannot arbitrarily increase the problem
size, since the memory required by higher order continuity spaces is large,
quickly consuming all the available memory resources even in the parallel
distributed memory version. Numerical results also suggest that the use of
distributed parallel machines is highly beneficial when solving higher order
continuity spaces, although the number of processors that one can efficiently
employ is somehow limited.

Keywords: multi-frontal direct solver, isogeometric analysis, parallel
distributed memory machine, computational cost, communication cost

1. Introduction

In this paper, we focus on the distributed memory parallel solution of
linear systems arising from the use of Isogeometric Analysis (IGA) [15] using
direct solvers. IGA makes use of basis functions with high regularity (Ck

with k ≥ 0).
There exist two classes of methods for solving a linear system of equations:

(a) direct methods, which deliver the exact solution in one step (up to round
off error), and (b) iterative methods, which provide an approximate solution
of prescribed quality by following an iterative process.

While the use of iterative solvers typically requires less computational
resources (time and memory) than direct solvers, they suffer from a number
of problems. First, iterative solvers often present severe convergence prob-
lems. Thus, different solvers are needed for each application (elasticity [18],
electromagnetism [24], fluid dynamics [5]) and numerical methods. For IGA,
various iterative solvers have been proposed in [9, 12, 36, 37, 19]. Sec-
ond, in addition to the convergence problems, iterative solvers may be slower
than direct solvers when a problem with multiple right-hand-side needs to
be solved, as it occurs in the case of gradient-based inverse methods in order
to compute the Jacobian and Hessian matrices. Iterative solvers may also be
slower than direct solvers when several matrices with a common set of rows
and columns need to be solved, as it occurs in mesh-based methods when
local grid-refinements are performed [30, 21, 1]. Moreover, direct solvers are
a main building block of most iterative solvers. Thus, direct solvers become
essential in many applications.
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There exist several direct methods for the solution of a linear system of
equations, including LU factorization, QR factorization, and singular value
decomposition [22]. The fastest method is LU factorization, also known
as Gaussian elimination, which is by far the most used algorithm for the
direct solution of a system of linear equations. While other methods such as
QR factorization may offer added stability minimizing the effect of round-off
error, they are simply non-competitive in terms of computational efficiency.
The main principle of the LU factorization algorithm is to decompose the
original matrix A into the product of a lower triangular matrix L with an
upper triangular matrix U .

For the case of sparse matrices, it is important to avoid operations with
the zeros of the matrix, and to produce L and U factors that are as sparse
as possible. State-of-the-art implementations of the LU factorization al-
gorithm for sparse matrices include the frontal [25, 16] and multi-frontal
solvers [20, 17]. The latest trends on this area include efficient paralleliza-
tion techniques (see e.g., [4, 26]) and application-specific implementations
that take advantage of the data-structures of the Galerkin method, such as
the works of [10, 35, 29, 28, 31].

This paper derives theoretical estimates of the computational cost for
isogeometric (IGA) multi-frontal direct solver executed on distributed mem-
ory parallel machines, for 1D, 2D and 3D problems. We show that for the
Cp−1 global continuity of the solution, the computational cost of the parallel
solver executed on a distributed memory cluster is of order O(log(N)p2) for
the 1D case, O(Np2) for the 2D case, and O(N3/4p2) for the 3D case. These
theoretical estimates are compared with the ones obtained for the sequential
multi-frontal direct solver described in [14] as well as for the shared memory
parallel solver for GPU described in [35]. Namely, the sequential estimates
show that the computational cost of Cp−1 global continuity of the isogeomet-
ric solution is of orderO(Np3) for the 1D case, O(N1.5p3) for the 2D case, and
O(N2p3) for the 3D case. In particular, the computational cost of sequential
IGA direct solvers grows as p3 when we increase the global continuity. In [35],
we already showed that we can reduce this p3 factor down to p2 when using
a parallel shared memory machine. Our parallel distributed memory direct
solver delivers the same computational complexity as the shared memory par-
allel solver [35], for a sufficiently large number of cores. Its communication
complexity is of the same order as the computational complexity.

We confirm our theoretical estimates with numerical experiments, quan-
tifying the weak and strong scalability of the direct solver for IGA. The
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theoretical estimates concerning the computational costs are compared with
numerical experiments performed on the STAMPEDE Linux cluster from
the Texas Advanced Computing Center [34]. The experiments are performed
with the PETIGA toolkit [13] built on the PETSc library [6, 7, 8], and utilize
the parallel MUMPS solver [2, 3, 4] with parallel Scalapack dense solver [11],
the parallel SuperLU solver [32, 33], and parallel PaStiX solver [23].

2. Model problem

In this section, we describe our model problem. We focus on the conduc-
tive media equation

−∇ · σ∇u = ∇ · Jimp, (1)

where σ is the conductivity of the media, u is the electric potential, and Jimp

is the impressed electric current (the source). The above partial differential
equation (PDE) is imposed on a computational domain Ω = [0, 1]d, where
d is the spatial dimension. We impose homogeneous Dirichlet boundary
conditions

u = 0 on ΓD = ∂Ω. (2)

The weak variational formulation is obtained by taking the L2-scalar product
with functions v ∈ H1

0 (Ω) = {v ∈ H1 (Ω) : v|ΓD
= 0}, integrating by parts,

and imposing the Dirichlet boundary conditions:

Find u ∈ V = H1
0 (Ω) such that (3)

b (v, u) = l (v) , ∀v ∈ V, (4)

where

b (v, u) =

∫
Ω

σ∇v · ∇udx, and (5)

l (v) =

∫
Ω

v · ∇ · Jimpdx (6)

In order to make the estimation of the computational complexity of the
multi-frontal solver tractable,

• we assume that the grid is regular, and it has the same number of
degrees of freedom in each coordinate direction;

4



• we assume that the polynomial order of approximation is constant
throughout the entire grid;

• we assume that the number of elements is sufficiently large;

• we ignore possible orthogonality relationships between basis functions,
treating as zero only those matrix contributions coming from basis
functions with disjoint supports (the so called ,,logical” zeros);

• we only consider the limiting case of Cp−1 continuity; and

• we restrict our attention to the Laplace problem in the unit tensor
product domain.

The computational cost of the solver is independent of the considered
PDE as long as it is given by a single scalar equation in H1 (Ω). A different
equation would modify the values in the frontal matrices, but the location of
the logical zeros would remain unaffected.

The computational cost of the solver is also independent of geometrical
variations. The geometry may affect the value of the Jacobian in the in-
tegrals, but not the location of the nonzero entries. Our study, however is
limited to a single patch of elements. In a case of multiple clusters, the solver
should return the Schur complements with respect to the boundary of each
patch being used, and the Schur complements must be processed on a higher
level by some external solver.

3. Theoretical Complexity Estimates for Direct Solvers in Arbi-
trary Dimension

In this section, we derive estimates for the number of FLOPs required
to solve a system of linear equations using a direct multi-frontal solver on
a distributed memory parallel machine for one, two, and three dimensional
problems.

3.1. Schur Complement

We first analyze the FLOPs required to perform the Schur complement
operation, which is the main building block for construction of a multi-frontal
solver. The number of floating point operations can be estimated by noticing
that computing the Schur complement is equivalent to the execution of a
partial forward elimination.
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Figure 1: Visual explanation of q and r

In order to estimate the number of FLOPs, we define variable q as the
number of fully assembled degrees of freedom that can be eliminated from
an arbitrary frontal matrix M , and r as the number of not-fully assembled
degrees of freedom that form a Schur complement sub-matrix (see Figure
1). Thus, the total number of operations needed for the partial elimination
S(q, r) is equal to:

S(q, r) =

q∑
m=1

3(m+ r)2 (7)

The above identity is obtained by eliminating q rows from a matrix with size
(q + r). The elimination of the first row involves (q + r)2 subtractions, the
elimination of the second row involves (q + r − 1)2 subtractions, and so on,
up to the last row to be eliminated, which involves (r+1)2 subtractions. The
exact number of operations involves 3(m+ r)2 operations instead of (m+ r)2

operations, since for each entry we perform a multiplication, a division and
a subtraction.

In this paper we focus on parallel distributed memory machines, and we
assume that we use one core per processor, with each processor having its
own local memory. Under such assumption, we can use the term ”cores” as
equivalent to the term ”processors”. We also assume that we have enough
cores available to perform all the row subtractions concurrently, thus we can
reduce the sequential cost S(q, r) to concurrent cost C(q, r) like

C(q, r) =

q∑
m=1

3(m+ r) = 3
((r + 1) + (r + q))q

2
= O

(
q2 + qr

)
. (8)
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3.2. The multi-frontal solver

We divide our computational domain in Np clusters of elements. For IGA,
each patch is a set of p consecutive elements in each dimension. For simplicity,
we assume that the number of clusters of our computational domain is (2s)d,
where s is an integer, and d is the spatial dimension of the problem. Even
when this assumption is not satisfied, the final limiting result still holds true.

The idea of the multi-frontal solver is to eliminate interior unknowns
of each patch, then join each 2d clusters into one to produce (2s−1)d new
clusters, eliminate interior unknowns of each new patch, and continue with
the iterative procedure until the last 2d clusters are joint into one. The
sequential iterative algorithm can be expressed as follows:

1 for i = 0, s− 1 :
2 Np = Np(i) = (2s−i)d

3 if i = 0, define Np(0) clusters.

4 else join old Np(i− 1) clusters to define Np(i) new clusters.

5 endif
6 Eliminate interior unknowns of each patch.

7 end for
8 Solve dense boundary problem.

The algorithm is illustrated in Figure 2 for the 2D case, with C1 quadratic
B-splines. In this example, we consider (2s)d with s = 3 and d = 2, that is
(23)2 = 64 clusters, each one with pd = 22 = 4 elements.

• In the first step presented on top-left panel in Figure 2, we define
Np(0) = (23)2 = 64 clusters, and nothing is eliminated in this step.

• In the second step depicted on the top-right panel in Figure 2, we
merge sets of four clusters from the previous step to create Np(1) =
(22)2 = 16 clusters, and we eliminate four basis functions from the
interior (denoted in Figure 2 with gray color).

• In the third step described in the bottom-left panel in Figure 2, we join
sets of four clusters from the previous step to create Np(2) = (21)2 = 4
clusters, and we eliminate 20 basis functions from the interior of each
patch, forming a cross inside each patch (denoted in Figure 2 by dark
gray color).
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(a)
White and light gray colors denote
different clusters of four elements.

(b)
Merging of four clusters, two denoted
by white and two denoted by light gray
color into new clusters of 16 elements.
Dark gray colors denote elements whose
central B-splines are eliminated.

(c)
Merging of four clusters, into new clus-
ters of 64 elements. Middle-gray color
denotes elements whose B-splines have
been already eliminated. Dark gray
color denotes elements whose B-splines
are eliminated at this step.

(d)
Merging of four clusters into new
clusters of 256 elements. Central light
gray color denotes elements whose
B-splines are eliminated at this step.

Figure 2: The scheme of the multi-frontal solver algorithm execution over a 2D grid for
quadratic B-splines. Each element contains the entire support of one B-spline with its
maximum value attained at its center.
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• In the fourth step displayed on the bottom-right panel of Figure 2, we
merge sets of four clusters from the previous step to create Np(2) =
(20)2 = 1 patch, we eliminate 13*4 basis functions from the interior of

(a)
White and light gray
colors denote different
clusters of eight ele-
ments.

(b)
Merging of eight clus-
ters, four denoted by
white and four denoted
by light gray color
into new clusters of 64
elements. Dark gray
colors denote elements
whose central B-splines
are eliminated.

(c)
Merging of eight clus-
ters into new clusters
of 512 elements. Dark
gray color denotes ele-
ments whose B-splines
have been already elim-
inated. Light gray
color denotes a 3D cross
with elements whose B-
splines are eliminated at
this step.

Figure 3: The scheme of the multi-frontal solver algorithm execution over a 3D grid for
quadratic B-splines. Each element contains the entire support of one B-spline with its
maximum value attained at its center.
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the patch (forming a 2D cross, denoted in Figure 2 by light gray color),
and we are left with an interface problem.

• To conclude, we solve the dense interface problem.

The algorithm is also illustrated in Figure 3 for the 3D case, also with
quadratic B-splines. In this example, we have (2s)d = (22)3 = 64 clusters,
each one with pd = 23 = 8 elements.

As derived in [14], the number of FLOPs required by the above algorithm
in the sequential version can be expressed as:

s−1∑
i=0

Np(i) · S(i), (9)

where S(i) is the cost (FLOPs) of performing each Schur complement at
the i-th step, and s = log2(N1/d). Following the notation of the previous
subsection on the Schur complement, we define q = q(i) as the number of
interior unknowns of each path at the i-th step, and r = r(i) as the number
of interacting unknowns at the i-th step.

In order to estimate the computational and communication costs for the
parallel distributed memory multi-frontal solver, we further assume that:

• there is a sufficiently large number of processors available,

• a sufficiently large amount of memory is available for each core

• the amount of data exchanged during the communication in the parallel
multi-frontal solver is dominated by the size of the Schur complement
matrices to be exchanged between processors.

Under the above assumptions, the computational cost for the parallel
solver can be estimated as

s−1∑
i=0

C(i)tcomp, (10)

where tcomp denotes the time of performing a single FLOP operation, C(i) is
the cost (FLOPs) required to perform concurrent Schur complement compu-
tations at the i-th step, with concurrent row subtractions executed simulta-
neously for all the matrices from the current i-th step.
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Moreover, the communication cost can be estimated as

s−1∑
i=0

(tinit + C(i)tcomm) , (11)

where tinit denotes the initialization time of a single message, and tcomm
denotes the time of communicating single floating point data, and the amount
of exchanged data is proportional to the number of entries in the matrix,
which in turn is equal to C(i).

We can estimate now the computational and communication complexities
for both sequential and parallel version in the following way

q(0) r(0) q(i) , i 6= 0 r(i) , i 6= 0 Np(i) S(i) C(i)

IGA Cp−1 O(1) O(pd) O(2(d−1)ipd) O(2(d−1)ipd) O((2s−i)d) r(i)3 r(i)2

Table 1: Number of interior and interacting unknowns at each step of the multi-frontal
solver.

• 1D IGA:

FLOPs =2sp2 +
s−1∑
i=1

2s−ip3 = O(2sp3) = O(Np3),

Parallel cost =p2tcomp +
s−1∑
i=1

p2tcomp +
s−1∑
i=1

(
tinit + p2tcomm

)
= O(sp2tcomp + stinit + sp2tcomm)
= O(log(N)p2tcomp + log(N)tinit + log(N)p2tcomm)

(12)

• 2D IGA:

FLOPs =22sp4 +
s−1∑
i=1

22(s−i)23ip6 = O(22sp4 + 23sp6) =

O(N3
pp

6) = O(N1.5p3)

Parallel cost =p4tcomp +
s−1∑
i=1

22ip4tcomp +
s−1∑
i=1

(
tinit + 22ip4tcomm

)
= O(p4tcomp + 22sp4tcomp + stinit + 22sp4tcomm)
= O(Np2tcomp + log(N0.5)tinit +Np2tcomm)

(13)
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• 3D IGA:

FLOPs = 23sp6 +
s−1∑
i=1

23(s−i)26ip9 = O(23sp6 + 26sp9) =

O(N3
pp

6 +N6
pp

9) = O(N2p3)

Parallel cost = p6tcomp +
s−1∑
i=1

24ip6tcomp +
s−1∑
i=1

(
tinit + 24ip6tcomm

)
= O(p6tcomp + 24sp6tcomp + stinit2

4sp6tcomm)

−O(N4/3p2tcomp + log(N1/3)tinit +N4/3p2tcomm)
(14)

4. Numerical results

In this section, we present numerical experiments to verify the theoreti-
cal estimates presented in the previous section. The numerical experiments
are performed on STAMPEDE [34], a linux cluster hosted by the Texas Ad-
vanced Computing Center. The simulations are performed with PETIGA
[13], and utilize parallel MUMPS solver [2, 3, 4] with parallel Scalapack [11]
dense solver, parallel SuperLU solver [32, 33], and parallel PaStiX solver [23]
available from PETSc library [6, 7, 8]. In the experiments, we utilized one
core per Linux cluster node in order to maximize the amount of available
memory per node. The only exception are the two experiments with 512
cores for linear B-splines in 3D, where we utilize 2 cores per node.

4.1. 2D case

The experiments have been performed for different mesh sizes, namely
1282, 2562, 5122, 10242 and 20482 elements, and for a variable number of
processors up to 256. Basically, it is not possible to solve any larger problem
for 2D IGA on STAMPEDE with direct solvers, since all the solvers run
out of memory. We could increase the problem size by employing out of
core capabilities. However, in such case the computational cost estimates
would not be representative of the process, since the cost is limited by the
performance of the parallel file system [27].

4.1.1. Weak scaling efficiency

We start illustrating the weak scaling efficiency for the three different
direct solvers executed for 2D IGA problem. The weak efficiency is computed
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using the formula Eweak =
Tweak
1

Tweak
c
∗ 100, where Tweak1 denotes the execution

time of a single core processing a single workload, and Tweakc is the execution
time of c cores processing c workloads, one workload per core. The weak
scaling efficiency results are presented in Figures 4-6, for MUMPS, PasTiX
and SuperLU, for linear, quartic and octic B-splines, with C0, C3 and C7

global continuity, respectively.
We can draw the following conclusions:

• From Figure 4, MUMPS solver for linear B-splines and C0 continuity
attains 70 percent weak efficiency up to 64 cores.

• Efficiency of PasTiX and SuperLU for linear B-splines and C0 continu-
ity decreases down to approx. 10 percent for 64 cores.

• MUMPS solver for quartic B-splines and C3 continuity attains XX
percent weak efficiency up to 32 cores. For 64 cores, it runs out of
memory.

• Efficiency of PasTiX and SuperLU for linear B-splines and C3 continu-
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Figure 4: Weak scaling efficiency of the direct solvers for 2D IGA with linear B-splines,
C0 global continuity.
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ity decreases down to approx. XX percent for 32 cores. For 64 cores,
they run out of memory.

• MUMPS solver for octic B-splines and C7 continuity attains 40 percent
weak efficiency up to 64 cores.

• Efficiency of PasTiX and SuperLU for octic B-splines and C7 continuity
decreases down to 15-25 percent for 64 cores.

4.1.2. Strong scaling efficiency

Let us focus now on strong scaling efficiency of the MUMPS solver exe-
cuted for 2D IGA problem. The strong scaling efficiency is computed based

on formula Estrong =
T strong
1

c∗T strong
c

∗ 100 where T strong1 denotes the execution time

of a single core processing workload of size N , and T strongc is the execution
time of c cores still processing the workload of size N , now distributed into
c processors.

The strong scaling efficiency results are presented in Figure 7, for linear,
quartic and octic B-splines, with C0, C3 and C7 global continuity, respec-
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Figure 5: Weak scaling efficiency of the direct solvers for 2D IGA with quartic B-splines,
C3 global continuity.
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tively. The experiments have been performed for different mesh sizes, namely
1282, 2562, 5122, 10242 and 20482 elements.

From the presented results, we conclude the following:

• The larger the problem, the better the scalability.

• The larger the problem, the more difficult is to fit it in memory.

• Quite rapidly (128-256 cores), the scalability is limited by the combi-
nation of both factors. If the problem is too large, then it does not fit
in memory. Otherwise, the number of processors for which it properly
scales is also limited.

• We observe better strong scalability for C7 global continuity with octic
B-splines than for C0 global continuity with linear B-splines.

4.2. O (Np2) cost

Figures 8 and 9 illustrate the parallel scalability of MUMPS, PaStiX and
SuperLU solvers executed on 8 and 32 nodes, one core per node. They display
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the execution time divided by a p2 factor. Thus, a horizontal line represents
the ideal p2 growth of the solver, a descending line denotes a growth better
than p2, and an ascending line denotes a growth worse than p2. As predicted
by our model, the solvers scale like p2, especially when we increase the number
of processors to 32.

Finally, we display the execution times of the parallel MUMPS solver for
the 2D IGA model problem, for increasing problem size N and for fixed p,
and execute the curve fitting algorithm to estimate the exponent factor in
formula const ∗ Nα . The execution times as a function of N are presented
in Figure 10 for linear B-splines and C0 global continuity; in Figure 11 for
quartic B-splines and C3 global continuity; in Figure 12 for octic B-splines
and C7 global continuity.

The curve fitting algorithm estimated the α exponent factor as summa-
rized in Table 2 for linear B-splines, in Table 3 for quartic B-splines and in
Table 4 for octic B-splines, all with Cp−1 global continuity. In all cases, the
exponent factor converges to 1, which results in linear O(N) computational
cost for fixed p, as predicted by the theory.

Nrcores 1 2 4 8 16 32 64 128 256
α 1,2847 1,3057 1,3066 1,266 1,3071 1,1922 1,1712 0,9771 0,9562

Table 2: Exponent factors α from fitting the curve const ∗Nα based on execution times
of MUMPS solver for 2D IGA with linear B-splines, C0 continuity.

Nrcores 1 2 4 8 16 32 64 128 256
α 1,4256 1,4373 1,4404 1,4361 1,4503 1,3574 1,323 1,2286 1,0049

Table 3: Exponent factors α from fitting the curve const ∗Nα based on execution times
of MUMPS solver for 2D IGA with quartic B-splines, C3 continuity.

Nrcores 1 2 4 8 16 32 64 128 256
α 1,5232 1,4925 1,4692 1,4385 1,4477 1,3693 1,3519 1,3498 1,0937

Table 4: Exponent factors α from fitting the curve const ∗Nα based on execution times
of MUMPS solver for 2D IGA with octic B-splines, C7 continuity.
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Figure 7: Parallel efficiency of the MUMPS direct solver for 2D IGA with linear (top
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Figure 10: Execution times for the MUMPS direct solver for 2D IGA with linear B-splines,
C0 global continuity.
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Figure 11: Execution times for the MUMPS direct solver for 2D IGA with quartic B-
splines, C3 global continuity.
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Figure 12: Execution times for the MUMPS direct solver for 2D IGA with octic B-splines,
C7 global continuity.
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4.3. 3D case

4.3.1. Weak scaling efficiency

We start illustrating the weak scaling efficiency of MUMPS solver exe-
cuted for 3D IGA problem. The weak scaling efficiency results are presented
in Figures 13 and 14 for linear and quartic B-splines, with C0 and C3 global
continuity, respectively. The experiments have been performed for different
mesh sizes, namely 163, 323, 643 and 1283 elements.

For large workloads (323 elements per core), the weak scaling efficiency is
around 35 percent for 8 processors and less than 10 percent for 64 processors
for linear B-splines with C0 continuity; around 10 percent for 8 processors for
quartic B-splines with C3 continuity. For octic B-splines with C7 continuity
we cannot present weak scalability since we run out of memory.

4.3.2. Strong scaling efficiency

Let us focus now on strong scaling efficiency of the MUMPS solver exe-
cuted for 3D IGA problem. The efficiency results are presented in Figures 15
and 16, for linear and quartic B-splines, with C0 and C3 global continuity,
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Figure 13: Weak scalability of the MUMPS direct solver for 3D IGA with linear B-splines,
C0 global continuity. Different lines correspond to various problems sizes.
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respectively. The experiments have been performed for different mesh sizes,
namely 163, 323, 643 and 1283 elements.

From the presented results we conclude the following:

• The larger the problem, the better the scalability.

• The larger the problem, the more difficult is to fit it in memory.

• Quite rapidly (128-256 cores), the scalability is limited by the combi-
nation of both factors. If the problem is too large, then it does not fit
in memory. Otherwise, the number of processors for which it properly
scales is also limited.

• We observe better scalability for C3 global continuity with quartic B-
splines than for C0 global continuity with linear B-splines.

4.4. O
(
N4/3p2

)
cost

We display the execution times of the parallel MUMPS solver for the 3D
IGA model problem, as we increase problem size N for fixed p, and execute
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Figure 14: Weak scalability of the MUMPS direct solver for 3D IGA with quartic B-splines,
C3 global continuity. Different lines correspond to various problems sizes.
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the curve fitting algorithm to estimate the exponent factor in const ∗ Nα

. The execution times as a function of N1/3 are presented in Figure 17 for
linear B-splines with C0 global continuity; in Figure 18 for quartic B-splines
with C3 global continuity.

The curve fitting algorithm estimated the α exponent factor as summa-
rized in Table 5 for linear B-splines, and in Table 6 for quartic B-splines, all
with Cp−1 global continuity. We do not display the curve fitting on the octic
B-splines case, because we do not have enough data. In these two cases, the
exponent factor converges to 4/3, which results in O(N4/3) computational
cost for fixed p, as predicted by theory.

Nrcores 1 2 4 8 16 32 64 128 256
α 1,8596 1,7234 1,6501 1,8237 1,7273 1,7573 1,6738

Table 5: Exponent factors α from fitting the curve const ∗Nα based on execution times
of MUMPS solver for 3D IGA with linear B-splines, C0 continuity.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

16 3

32 3 64 3

128 3

Figure 15: Parallel efficiency of the MUMPS direct solver for 3D IGA with linear B-splines,
C0 global continuity. Different lines represents different sizes of the mesh.
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Nrcores 1 2 4 8 16 32 64 128 256
α 2,1818 2,1309 2,0827 1,9195 1,7393 1,7002 1,5704 1,364

Table 6: Exponent factors α from fitting the curve const ∗Nα based on execution times
of MUMPS solver for 3D IGA with quartic B-splines, C3 continuity.

Finally, we display the execution times of the parallel MUMPS solver
for the 3D IGA model problem, for increasing continuity p and fixed N ,
divide the execution time by N4/3, and execute the curve fitting algorithm
to estimate the exponent factor in formula O

(
const ∗ pβ

)
. The execution

times as a function of p are presented in Figure 19 for quartic B-splines, C3

global continuity.
The curve fitting algorithm estimated the β exponent factor as summa-

rized in Table 7 for quartic B-splines with C3 global continuity. The exponent
factor converges to 2, which results in O(p2) growth for fixed N , as predicted
by the theory.
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Figure 16: Parallel efficiency of the MUMPS direct solver for 3D IGA with quartic B-
splines, C3 global continuity. Different plots represents different sizes of the mesh.
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Nrcores 1 2 4 8 16 32 64 128 256
β 2,905 2,849 2,8429 2,7434 2,7818 2,6344 2,3794 2,0905 1,8205

Table 7: Exponent factors β from const ∗ pβ curve fitting based on execution times of
MUMPS solver for 3D IGA with quartic B-splines, C3 continuity, for fixed N , divided
byN4/3.

5. Conclusions

In this paper, we analyzed theoretically and experimentally the perfor-
mance of multi-frontal direct solvers on distributed memory parallel ma-
chines. The theoretical estimates assume sufficiently large number of proces-
sors to perform concurrent row subtractions during the local factorizations.
We show that the computational cost of the parallel direct solvers grows as p2

when increasing the global continuity and N is fixed. Additionally, for fixed
p, we show that the 2D parallel direct solver delivers linear computational
and communication costs. In 3D, the computational and communication
costs of the parallel solvers grows in terms of the problem size N as O(N4/3)
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Figure 17: Execution times for the MUMPS direct solver for 3D IGA with linear B-splines,
C0 global continuity.
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when executed on distributed memory parallel machines. The obtained com-
putational cost estimates for the distributed memory parallel direct solver
are similar to those obtained for shared memory parallel machines [35]. The
difference in the derivation is that here it appears an additional term re-
lated to the communication cost. The theoretical estimates are verified with
numerical experiments.
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[28] M. Paszyński, D. Pardo, C. Torres-Verdin, L. Demkowicz, V. Calo A
Parallel Direct Solver for Self-Adaptive hp Finite Element Method. Jour-
nal of Parall and Distributed Computing 70 (2010) 270–281.
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