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Abstract
This paper describes a telescopic solver for two dimensional h adaptive grids with point singularities. The input 
for the telescopic solver is an h refined two dimensional computational mesh with rectangular finite elements. The 
candidates for point singularities are first localized over the mesh by using a greedy algorithm. Having the 
candidates for point singularities, we execute either a direct solver, that performs multiple refinements towards 
selected point singularities and executes a parallel direct solver algorithm which has logarithmic  cost with respect 
to refinement level. The direct solvers executed over each candidate for point singularity return local Schur  
complement matrices that can be merged together and submitted to iterative solver. In this paper we utilize a 
parallel multi-thread GALOIS solver as a direct solver. We use Incomplete LU Preconditioned Conjugated 
Gradients (ILUPCG) as an iterative solver. We also show that elimination of point singularities from the refined 
mesh reduces significantly the number of iterations to be performed by the ILUPCG iterative solver. 
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1 Introduction 
We use the Finite Element Method (FEM) to solve elliptic problems on arbitrary domain. The 

classical adaptive algorithm for mesh refinement has been proposed by Demkowicz and co-workers, 
see [6]. These methods are based on the theoretical observations made by Babuska [1], that careful 
selection of both h and p refinements results in the exponential convergence of the numerical error 
with respect to the number of degrees of freedom, and single h or p refinements result in algebraic 
convergence. The theoretical results have been confirmed by the automatic algorithms constructed by 
Demkowicz [6].  These algorithms construct a sequence of coarse and fine grids. Each fine grid is 
obtained by performing global hp refinement over the corresponding coarse mesh (all elements are 
broken into four and the polynomial order is increased by one in each element). The fine mesh 
solution is utilized as the reference solution in order to estimate the numerical error over coarse mesh 
elements, as well as to select the optimal refinements over the coarse mesh elements where the 
numerical error is high. The generated sequence of hp refined grids indeed delivers exponential 
convergence of the numerical error with respect to the mesh size. Many authors followed the approach 
originated by Demkowicz and implemented their own variations of the adaptive algorithms. First, 
there is a possibility of utilizing different error estimators defined for elliptic [1], parabolic [8,3] or 
multi-physics problems [13]. In [12], the authors employ modern h and hp adaptation algorithms for 
the Girkmann problem. The general problem with adaptive algorithms is need to perform a sequence 
of global problem solutions over the sequence of grids generated by adaptive algorithms. In general 
these solutions must be performed by direct solvers [4], since the generated linear systems are not well 
conditioned, due to presence of elongated elements and the varying polynomial orders of 
approximation [15]. For the direct solution, the state-of-the-art multi-frontal solver algorithms are 
usually used [7, 8], and it is more computationally expensive than generation of element frontal 
matrices [5, 11, 17]. Recently, it has been shown that for the point singularities, it is possible to solve 
the problem in a linear cost [10]. Straight forward conclusion is that it is also possible to compute the 
Schur complemet of the part of the mesh with point singularity with linear computational cost. This is 
the main idea of this paper: to compute Schur complements of local point singularities and later to 
collect them and submit together to an iterative ILUPCG solver. This idea follows the generalization 
of the static condensation proposed in [2] to point singularities. A hybrid direct / iterative solver 
algorithm has been also used in [9]. The elimination is cut at some level, and the remaining Schur 
complements are submitted to an iterative solver.  

2 Algorithm 
In this paper we propose a hybrid telescopic solver, performing fast local refinements towards all 

possible candidates for point singularities, eliminating these singularities using GALOIS solver [16], 
and submitting the resulting Schur complement matrices to the ILUPCG iterative solver from the 
SLATEC library [14]. We show that local elimination of point singularities improves the conditioning 
of the linear system, and the number of iterations performed by the iterative solver remains constant, 
independently of the number of refinement levels performed. The example of computational grids with 
point singularities are presented in Figure 1. They result either from point heat sources or from three 
different material data meeting at the singular points. After having all the candidates for point 
singularities selected, we execute a hybrid algorithm that can be summarized in the following way: (1) 
execute multi-frontal solver parallel algorithm that for each point singularity, (2) perform static 
condensation for other initial mesh elements, and (3) collect resulting Schur complements and call 
ILUPCG solver. 
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Figure 1. Left panel: Three different material data meeting at the point Middle panel: Three dimensional 

mesh with point singularities enforced by heat sources. Right panel: Two dimensional cross-section with heat 
sources. 

3 Numerical results 
In this section we report the execution time of the parallel multi-thread GALOIS solver, for 

elimination of point singularities, for three dimensional problems and the number of iterations of the 
ILUPCG algorithm.  

All the experiments concerns the heat transfer problem, either with different material data or with 
uniform material but with many point heat sources. We utilize our graph-grammar based multi-frontal 
solver implemented in GALOIS environment [16]. The GALOIS solver execution is followed by 
running the ILUPCG algorithm from the SLATEC library [14]. We start by comparing the number of 
iterations of the ILUPCG solver executed using the hybrid and standard algorithm, where the static 
condensation is followed by execution of the ILUPCG solver for the entire mesh. The iterations for 
three dimensional grids with 4x4x4=64 singularities, for quadratic and cubic polynomials are 
presented on two panels in Figure 2. We can read from these experiments, that for the hybrid 
algorithm the number of iterations is constant, and it does not depend on the number of refinement 
levels. 

 
Figure 2. Left panel: Comparison on the number of iterations of ILUPCG solver for three dimensional mesh 

with quadratic polynomials and 4x4x4 singularities, for hybrid and standard algorithm. Right panel: Comparison 
on the number of iterations of ILUPCG solver for three dimensional mesh with cubic  polynomials and 4x4x4 
singularities, for hybrid and standard algorithm 
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Figure 3. Comparison with serial MUMPS. Left panel: Execution time of the GALOIS solver executed 

over one 3D point singularity with quadratic  polynomials, for different number of threads. Right panel:  
Execution time of the GALOIS solver over one 3D point singularity with cubics, for different number of threads.  

In Figure 3 we present the execution times for the multi-thread CPU GALOIS solver [16,21] used 
for elimination of one point singularity over 3D grid with quadratic polynomials, for increasing 
number of refinement level resulting in increasing number of degrees of freedom, executed in either 
single core or multi-core mode. We also present the comparison with 1 core MUMPS. We can see that 
our 1 core GALOIS has similar execution time than 1 core MUMPS solver. We repeat the GALOIS 
experiments for cubic polynomials, and comparison with MUMPS for one point singularity over 3D 
grid. This time we need 4 cores of GALOIS solver to be as fast as 1 core MUMPS solver over 3D 
point singularity with cubic polynomials. All the GALOIS experiments executed on GILBERT a 
shared memory machine from the Institute for Computational Engineering and Sciences (ICES). The 
machine has four Intel(R) Xeon(R) CPU E7-4860 with 2.27GHz, each one with 10 cores and 
additional 10 hyperthreading cores. The total available memory was 128 GB.  

Conclusions 
In this paper we proposed an algorithm for identification of areas with point singularities over the 

refined computational mesh. We proposed a telescopic hybrid solver. We perform a selected number 
of h refinements in these areas, and executed multi-thread GALOIS solver for fast elimination of point 
singularities. The resulting Schur complement matrices are submitted to iterative ILUPCG solver. We 
show that processing of local point singularities with fast direct solvers allows to improve the 
conditioning of the linear system and keeps the number of iterations of ILUPCG solver constant, 
independent on the number of performed local refinements. 
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