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Abstract 

The multi-frontal direct solver is the state of the art for the direct solution of linear systems. This paper provides 
computational complexity and memory usage estimates for the application of the multi-frontal direct solver 
algorithm on linear systems resulting from p finite elements. Specifically we provide the estimates for systems 
resulting from C0 polynomial spaces spanned by B-splines. The structured grid and uniform polynomial order used 
in isogeometric meshes simplifies the analysis. 
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1. Introduction

Isogeometric analysis [4] is a relatively new method that has been the subject of much work in recent years. While 
at its core it is spline-based isoparametric finite element analysis, the spaces used possess unique refinement 
strategies that form spaces that are supersets of conventional finite elements. The mesh in B-spline based 
isogeometric analysis is always a structured grid of uniform polynomial order. This simplification allows for 
specialized complexity and memory usage estimates to be developed for spaces that are C0 when the direct solver is 
the multi-frontal solver. 

The rest of this paper is organized as follows. In section 2 we present an explanation of the multi-frontal direct 
solver algorithm. In sections 3 and 4 we present the computational complexity of the algorithm on a single element, 
and a structure grid mesh consisting of identical elements respectively. In sections 5 and 6 we present the 
accompanying memory usage. In section 7 we show numeric results that verify the estimates. 

2. Multi-frontal direct solver algorithm

The state of the art direct solver is the multi-frontal solver proposed by [1, 2]. It is the generalization of the frontal 
solver algorithm proposed by [3] The multi-frontal solver constructs the elimination tree based on the connectivity 
for the degrees of freedom, browses the elimination tree from leaves up to the root node, eliminates fully assembled 
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degrees of freedom and merges resulting Schur complement contributions. The procedure for two finite element 
mesh can be summarized as follows. It consists in creation of the two frontal matrices, each one associated with one 
element followed by elimination of interior and boundary degrees of freedom from each frontal matrix, leaving the 
not-fully assembled common edge degrees of freedom not eliminated yet. These steps are illustrated below,  

 (1) 

 (2) 

Here,  stands for this part of element local matrices which is related to the interactions of the element interior and 
boundary edges shape functions,  and  stand for these parts of element local matrices which are related to the 

interactions between the element interior shape functions and the common edge shape function, and  stands for 
this part of element local matrices which is related to the interactions between the common edge shape functions. 
Moreover,  and  stand for the degrees of freedom and the right-hand-side terms related to the element interior 

and boundary edges, while  and  stand for the degrees of freedom and the right-hand-side terms related to the 
common edge. Finally we proceed to the merging of the resulting Schur complement matrices and performing full 
forward elimination. The procedure is illustrated below 

  (3) 

  (4) 

   (5) 

Here,  stand for the permutation matrices transforming an element local ordering of the degrees of freedom 
located on the interface (the common edge in this example) into the global ordering on the interface. 

 (6) 

Note that the system of equations (3-5) corresponds to the so-called Schur complement  

  (7) 

  (8) 

of the global system 

  (9) 

which can be expressed in a concise form 

  (10) 

In other words, the Schur complement matrix (7) and the corresponding right-hand-side vector (8) can be easily 

obtained by executing partial forward eliminations on sub-domains and summing up renumbered sub-matrices  

and sub-vectors , which is expressed in (4) and (5). 
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The next step is to solve the global interface problem (3), and we obtain the interface problem solution . 
Finally, we proceed to the global problem can be solved by executing partial backward substitutions, based on the 
solutions propagating from the previous level systems. These partial backward substitutions may be achieved by the 

replacement of the Schur complement contributions in (1) and (2) by the identity matrices, replacing the right-

hand-side parts  by the obtained solution (remapped into the element local ordering of the interface degrees of 
freedom), and executing backward substitution on both systems. 

 (11) 

The procedure can be recursively generalized into a multiple level elimination tree for the case with many finite 
elements (many subdomains).  
 

 
Fig. 1. The four levels of the elimination tree for a cube-shaped mesh with eight finite elements 

 
Constructing so-called elimination tree, presented in Figure 1 for a cube-shaped finite element mesh with eight 
elements in it, generalizes the elimination tree to a multiple elements problem. The leaves of refinement tree act as 
the active finite elements. The multi-frontal direct solver algorithm browses the elimination trees, starting from the 
level of active elements, through the level of parent nodes, up to the root. There are basis functions associated with 
element vertices, edges, faces and interiors. The frontal solver creates the frontal matrices at leaf nodes. The 
unknowns (i.e., degrees of freedom) correspond to coefficient of basis functions related to each element. At each 
level of the elimination tree the fully assembled rows (and fully assembled degrees of freedom) can be eliminated 
from the frontal matrices. Each row has a corresponding basis function assigned. A degree of freedom from a frontal 
matrix is fully assembled, if the corresponding vertex, edge, or face, respectively, has been fully assembled. For 
example, on the level of leaves, only degrees of freedom (and their rows in the matrix) that correspond to basis 
functions related with element interior and boundary can be eliminated. At the parent level, only the degrees of 
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freedom corresponding to basis functions related the just fully aggregated common face, can be eliminated. These 
faces are denoted by the red color on the parent level. The procedure is recursively repeated until we reach the root 
of the elimination tree. At the root of the tree we can perform the full forward elimination since the top interface 
problem matrix corresponds to the just fully assembled cross-section of the mesh, denoted by the red color at the 
root node. Finally, the backward substitutions are recursively executed from the root node down to the leaves. 

 
Fig. 2. The general case considered in the computational complexity and memory usage estimations (a) an interior 
of an element is eliminated (b) a common face shared between to adjacent elements is eliminated (interiors have 
been already eliminated in previous step) (c) two common faces and one common edge shared between two sets of 
two elements are eliminated (the remaining two interior faces have been already eliminated in step b) (d) four 
common faces and four common internal edges shared between two sets of four elements are eliminated (the 
remaining internal faces and internal edges have been already eliminated in steps b and c) (e) four faces and four 
internal edges shared between two small cubes are eliminated (the internal faces of the cubes have been already 
eliminated in previous steps) (f) eight common faces and ten common edges are eliminated (the two parts of the 
domain are joined, having all internal faces, edges and interiors eliminated in previous steps) (f) sixteen common 
faces as well as twenty four common edges are eliminated (the two parts of the domain are joined, having all 
internal faces, edges and interiors eliminated in previous steps) 
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3. Computational complexity of the sequential solver executed over a single hp finite element 

Let us first estimate the number of operations performed by a sequential multi-frontal solver during forward 
elimination over one p finite element. This corresponds to the leaves of the elimination tree presented in Fig. 1 or to 
the panel a) at Fig. 2. In this estimation we assume that degrees of freedom located on the boundary have not been 
eliminated yet. In other words we consider a general element located inside some large domain, not the simple eight 
finite elements mesh like the one presented in Fig. 1. The order of approximation in the interior of the element is 
assumed to be equal to  (p1, p2, p3). Orders of approximation on element faces and edges are assumed to be equal to 
the corresponding orders in the interior. From this assumption it follows that there are two faces with orders (p1, p2), 
two faces with orders (p1, p3) and two faces with orders (p2, p3), as well as four edges with order p1, four edges with 
order p2 and four edges with order p3.  
 
The total number of degrees of freedom (d.o.f.) in such an element is equal to 

nrdof = (p1 + 1) (p2 + 1) (p3 + 1) = O (p1p2p3) 

To estimate the efficiency of the sequential solver, we assume that p1=p2=p3=p or we can take p = max  p1, p2, p3 . 
Thus, the number of d.o.f. is given by 

nrdof = (p+1)3 = O(p3) 

the number of interior d.o.f. is given by 

interior nrdof = (p 1) 3 = O(p3) 

and the number of interface d.o.f. is given by 

interface nrdof = 6p2 + p + 1 = O(p2) 

Since the element stiffness matrix is dense, it follows that 

computational complexity over 1 element = (number of d.o.f.) 3 

Thus, the computational complexity of the sequential multi-frontal solver executed on a single p element is given by 

computational complexity over 1 element = nrdof3 = O(p9). 

4. Computational complexity of the sequential multi-frontal solver executed over a cube formed by Ne 
identical p finite elements 

The computational domain is now assumed to be a cube with Ne=n n n identical hp finite elements, where n is the 
number of elements along a single axis. Orders of approximation are assumed to be equal to p on all elements edges, 
faces, and interior. In other words the number of degrees of freedom is N=n3p3. For simplicity, the number of 
elements n in a single direction is assumed to be equal to a power of 2.  
 
The multi-frontal direct solver algorithm starts with leaves, Figure 2(a). It constructs the element matrices with 
O(p3) degrees of freedom, and eliminates internal degrees of freedom, with computational cost O(p9) (as shown in  
section 3). The computational complexity of elimination of the internal d.o.f. is n3p6(p3-p2) = O(n3p9), since there are 
n3 such elements. 
 
In the next step, two elements with interiors already eliminated are joined and the degrees of freedom associated 
with the common face are eliminated. This corresponds to Figure 2(b). The number of degrees of freedom in the 
system is (4*2+2+1)p2 since there are 4*2 external faces, one top and one bottom faces, as well as one internal face. 
The number of degrees of freedom to be eliminated is just p2, since only the common face is eliminated. Thus the 
computational complexity is O((n3/2)(((4*2+2+1)p2)2)p2). 
 
In the next step, Figure 2(c), two sets of two elements are joined and the two common faces are eliminated. The total 
number of degrees of freedom is equal to (4*2+4*2+2)p2 since there are 4*2 external faces, front and the rear with 4 
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faces, as well as two internal faces. The number of degrees of freedom to be eliminated is just 2p2, since only the 
two common faces are eliminated. Thus, the computational complexity is O((n3/22)(((4*2+4*2+2)p2)2)2p2). 
 
In the next step illustrated in Figure 2(d), two sets of four elements are joint, and the four common faces are 
eliminated. The total number of degrees of freedom is equal to (4*4+4*4+4)p2 since there are 4*4 external faces, 
front and the rear with 4 faces, as well as 4 internal faces. The number of degrees of freedom to be eliminated is just 
4p2, since only the four common faces are eliminated. The computational complexity of elimination of common 
d.o.f. over such a set of 2*2*2 elements is (n3/23)(((6*4+4)p2)24p2)= O((n3/23)(26p6)), since (6 4+4)p2 is the number 
of d.o.f. on external faces on a box of 2*2*2 elements, plus 2*2=4 common faces, and common faces are eliminated. 
There are n3/23 such sets of elements. 
 
The procedure continues in steps corresponding to panels e), f) and g) in Figure 2. Notice that the computational 
complexity of steps (b) and (c) is not larger than the computational complexity of step (d). The same applies for all 
the following of steps, that is, the computational complexity of steps (e) and (f) is not larger than the computational 
complexity of step (g). Thus, without loss of generality, to estimate the computational complexity, we can focus on a 
sequence of cube-shaped meshes with 2k*2k*2k elements, with a cross-section of internal faces to be eliminated. 
Thus, in our estimates we will sum up computational complexities of step (a), (d) then g) and the following cube-
shape domain based steps.  
 
Now we focus on the next step, corresponding to a set of 4*4*4 elements. The computational complexity of 
elimination of d.o.f. corresponding to the internal faces denoted in panel (g) by the red color is  

(n3/ 26)((6*16+16)p2) 216p2)=O((n3/26)(212+212)p6), 

since (6*16)p2 is the number of d.o.f. on faces of a box of 4*4*4 elements, plus 4*4=16 common faces, and the 
common faces are eliminated. There are n3/26 such sets of elements. Thus, total computational complexity can be 
estimated by the following sum 

comp. complexity for n3 elements=n3p9+ n3 / 23k( ) p6 26k
k=1

log2 n

∑ = O(n3p9+n6p6) = O(Ne p9+Ne
2p6) = O(N p6+N2) 

5. Memory usage of the sequential solver executed over a single p finite element 

The memory usage of the solver is equal to the square of the number of degrees of freedom over a single p finite 
element. Since nrdof = O(p3) we get 

memory usage over 1 element = nrdof2 = O(p6). 
 

6. Memory usage of the sequential multi-frontal solver executed over a cube formed by Ne identical p finite 
elements 

The memory usage of the sequential in-core solver is equal to the sum of sizes of all the frontal matrices constructed 
by the algorithm. We perform our estimations of memory usage following the template presented for the 
computational complexity estimates. In other words, we consider here a sequence of cube shaped meshes with 
2k*2k*2k elements, with a cross-section of internal faces to be eliminated. 
 
It is assumed that the frontal solve algorithm is eliminating internal d.o.f. of elements, then it is joining elements into 
sets of 2*2*2=8 elements, eliminating common fully assembled d.o.f. located on a single cross-section, then it is 
joining elements into sets of 4*4*4=64 elements, eliminating common fully assembled d.o.f. from the cross-section, 
and the process is repeated until to the entire mesh is reduced to one global cross-section problem. 
 
The in-core multi-frontal solver stores frontal matrices for backward substitution, so we need to multiply the 
memory usage by the number of elements. The front size associated with a single element is equal to the number of 
element d.o.f. squared, which is O(p6). Thus, the size of the all frontal matrices for all n3 elements is O(n3p6) 
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When we join elements into sets of 2*2*2=8 elements, the size of the 8 elements wire-frame problem is (6*4+4)p2, 
since 6*4p2 is the number of d.o.f. on external faces on a box of 2*2*2 elements, plus 2*2 p2=4 p2 degrees of 
freedom over the cross-section common faces. Thus the size of the all frontal matrices for all n3/23 sets of 8 elements 
is n3 /23 ((6*4+4)p2) 2 = O((n3/23)24*p4). 
 
When we join elements into sets of 4*4*4=64 elements, the size of the 64 elements wire-frame problem is 
(6*16+16)p2  since 6*16p2 is the number of d.o.f. on faces of a box of 4*4*4 elements, plus 4*4 p2=16 p2 degrees of 
freedom located on the cross-section common faces. Thus the size of the all frontal matrices for all n3 /26 sets of 64 
elements is n3/26((6*16+16)p2)2 = O((n3/2)28p4)   
Thus, 

memory usage over n3 elements = n3p6 + n3 / 23k( ) p4 24 k
k=1

log2 n

∑ = O(n3p6+n4p4)=O(Ne p6+ Ne
4/3 p4) = O(Np3+ N4/3) 

 
  

  
 
 
 
 
 

Figure 3. Plots of numerical tests run which verify the computational complexity and memory usage estimates given 
proposed herein. Each subplot shows the time and memory utilized as well as the statistical best fit of the data to this 
estimate. Each subplot represents a different level of degrees of freedom: (left top) 10,000 (right top) 30,000 (left 
bottom) 100,000, and (right bottom) 500,000. 

7. Numerical results  

In order to verify the validity of the estimates presented in sections 3-6, we setup the solution of the canonical 
Laplace problem on the unit cube, subject to a zero Dirichlet condition on the bottom surface and a unit Dirichlet 
condition on the top. While a simple, scalar problem, the idea is compare the time and memory needed to solve the 
resulting linear system while varying the polynomial order, number of elements, and number of degrees of freedom. 
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We develop a series of meshes that contain 10,000, 30,000, 100,000, and 500,000 degrees of freedom. Within each 
level we develop another series of meshes by varying the polynomial order from 1 to 8. The overall degrees of 
freedom are kept constant by generating the meshes with varying numbers of elements. The resulting linear systems 
were solved in core using MUMPS 4.9.2 [6,7] on a workstation with 2 quad-core Xeon X5550 processors and 24 Gb 
of memory. 
 
Figure 3 presents the results of these numerical experiments. In each subfigure the time required to solve is shown in 
a blue solid line and the memory shown in a green dotted line. The actual data is plotted using markers and 
connected with a lighter line width. The important trend to note is how as the polynomial order grows in each case, 
the time to solve does not grow until a threshold is reached. In the 500,000 degree of freedom case p=6 is as 
expensive (or even slightly less expensive) to solve in terms of time as p=1. The darker line widths represent a 
statistical fitting of the data to the estimates. In each case, the correlation constant was between 0.8 and 0.99 
indicating excellent statistical agreement. 
 

8. Conclusions  

We have presented computational complexity and memory usage estimates for the multi-frontal solver algorithm 
applied to the solution of linear systems resulting for structured grids with uniform polynomial order for spaces that 
are C0, this kind of meshes correspond to C0 tensor-product B-spline meshes, such as those used in isogeometric 
analysis. While the estimates were developed with this in mind, they apply to p-finite elements where the mesh is a 
structured grid. The results explain the interesting effect of systems resulting from higher order polynomial not 
costing more time to solve, reinforcing the power of the multi-frontal algorithm. Future work will expand the 
estimates to more appropriate Ck spaces that are of interest in isogeometric analysis, in particular, we will focus on 
Cp-1 spaces, which are the maximum continuity spaces used in what is dubbed as k-refinement in isogeometric 
analysis literature. 
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