
Available online at www.sciencedirect.com

1877–0509 © 2011 Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of Prof. Mitsuhisa Sato and Prof. Satoshi Matsuoka
doi:10.1016/j.procs.2011.04.201

Procedia Computer Science 4 (2011) 1854–1861

International Conference on Computational Science, ICCS 2011

Computational complexity and memory usage
for multi-frontal direct solvers used in p finite element analysis

Victor M. Caloa, Nathaniel O. Colliera, David Pardob, Maciej R. Paszyńskic
aDepartment of Applied Mathematics, Computational Science, Earth Engineering,

King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudii Arabia
 bDepartment of Applied Mathematics, Statistics, and Operational Research,

Univsersity of the Basque Country and Ikerbasque, Bilbao, Spain
 cDepartment of Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

The multi-frontal direct solver is the state of the art for the direct solution of linear systems. This paper provides
computational complexity and memory usage estimates for the application of the multi-frontal direct solver
algorithm on linear systems resulting from p finite elements. Specifically we provide the estimates for systems
resulting from C0 polynomial spaces spanned by B-splines. The structured grid and uniform polynomial order used
in isogeometric meshes simplifies the analysis.

Keywords: Multi-frontal direct solver; computational complexity, memory usage

1. Introduction

Isogeometric analysis [4] is a relatively new method that has been the subject of much work in recent years. While
at its core it is spline-based isoparametric finite element analysis, the spaces used possess unique refinement
strategies that form spaces that are supersets of conventional finite elements. The mesh in B-spline based
isogeometric analysis is always a structured grid of uniform polynomial order. This simplification allows for
specialized complexity and memory usage estimates to be developed for spaces that are C0 when the direct solver is
the multi-frontal solver.

The rest of this paper is organized as follows. In section 2 we present an explanation of the multi-frontal direct
solver algorithm. In sections 3 and 4 we present the computational complexity of the algorithm on a single element,
and a structure grid mesh consisting of identical elements respectively. In sections 5 and 6 we present the
accompanying memory usage. In section 7 we show numeric results that verify the estimates.

2. Multi-frontal direct solver algorithm

The state of the art direct solver is the multi-frontal solver proposed by [1, 2]. It is the generalization of the frontal
solver algorithm proposed by [3] The multi-frontal solver constructs the elimination tree based on the connectivity
for the degrees of freedom, browses the elimination tree from leaves up to the root node, eliminates fully assembled

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Victor M. Calo et al. / Procedia Computer Science 4 (2011) 1854–1861 1855

degrees of freedom and merges resulting Schur complement contributions. The procedure for two finite element
mesh can be summarized as follows. It consists in creation of the two frontal matrices, each one associated with one
element followed by elimination of interior and boundary degrees of freedom from each frontal matrix, leaving the
not-fully assembled common edge degrees of freedom not eliminated yet. These steps are illustrated below,

 (1)

 (2)

Here, stands for this part of element local matrices which is related to the interactions of the element interior and
boundary edges shape functions, and stand for these parts of element local matrices which are related to the

interactions between the element interior shape functions and the common edge shape function, and stands for
this part of element local matrices which is related to the interactions between the common edge shape functions.
Moreover, and stand for the degrees of freedom and the right-hand-side terms related to the element interior

and boundary edges, while and stand for the degrees of freedom and the right-hand-side terms related to the
common edge. Finally we proceed to the merging of the resulting Schur complement matrices and performing full
forward elimination. The procedure is illustrated below

 (3)

 (4)

 (5)

Here, stand for the permutation matrices transforming an element local ordering of the degrees of freedom
located on the interface (the common edge in this example) into the global ordering on the interface.

 (6)

Note that the system of equations (3-5) corresponds to the so-called Schur complement

 (7)

 (8)

of the global system

 (9)

which can be expressed in a concise form

 (10)

In other words, the Schur complement matrix (7) and the corresponding right-hand-side vector (8) can be easily

obtained by executing partial forward eliminations on sub-domains and summing up renumbered sub-matrices

and sub-vectors , which is expressed in (4) and (5).

1856 Victor M. Calo et al. / Procedia Computer Science 4 (2011) 1854–1861

The next step is to solve the global interface problem (3), and we obtain the interface problem solution .
Finally, we proceed to the global problem can be solved by executing partial backward substitutions, based on the
solutions propagating from the previous level systems. These partial backward substitutions may be achieved by the

replacement of the Schur complement contributions in (1) and (2) by the identity matrices, replacing the right-

hand-side parts by the obtained solution (remapped into the element local ordering of the interface degrees of
freedom), and executing backward substitution on both systems.

 (11)

The procedure can be recursively generalized into a multiple level elimination tree for the case with many finite
elements (many subdomains).

Fig. 1. The four levels of the elimination tree for a cube-shaped mesh with eight finite elements

Constructing so-called elimination tree, presented in Figure 1 for a cube-shaped finite element mesh with eight
elements in it, generalizes the elimination tree to a multiple elements problem. The leaves of refinement tree act as
the active finite elements. The multi-frontal direct solver algorithm browses the elimination trees, starting from the
level of active elements, through the level of parent nodes, up to the root. There are basis functions associated with
element vertices, edges, faces and interiors. The frontal solver creates the frontal matrices at leaf nodes. The
unknowns (i.e., degrees of freedom) correspond to coefficient of basis functions related to each element. At each
level of the elimination tree the fully assembled rows (and fully assembled degrees of freedom) can be eliminated
from the frontal matrices. Each row has a corresponding basis function assigned. A degree of freedom from a frontal
matrix is fully assembled, if the corresponding vertex, edge, or face, respectively, has been fully assembled. For
example, on the level of leaves, only degrees of freedom (and their rows in the matrix) that correspond to basis
functions related with element interior and boundary can be eliminated. At the parent level, only the degrees of

Victor M. Calo et al. / Procedia Computer Science 4 (2011) 1854–1861 1857

freedom corresponding to basis functions related the just fully aggregated common face, can be eliminated. These
faces are denoted by the red color on the parent level. The procedure is recursively repeated until we reach the root
of the elimination tree. At the root of the tree we can perform the full forward elimination since the top interface
problem matrix corresponds to the just fully assembled cross-section of the mesh, denoted by the red color at the
root node. Finally, the backward substitutions are recursively executed from the root node down to the leaves.

Fig. 2. The general case considered in the computational complexity and memory usage estimations (a) an interior
of an element is eliminated (b) a common face shared between to adjacent elements is eliminated (interiors have
been already eliminated in previous step) (c) two common faces and one common edge shared between two sets of
two elements are eliminated (the remaining two interior faces have been already eliminated in step b) (d) four
common faces and four common internal edges shared between two sets of four elements are eliminated (the
remaining internal faces and internal edges have been already eliminated in steps b and c) (e) four faces and four
internal edges shared between two small cubes are eliminated (the internal faces of the cubes have been already
eliminated in previous steps) (f) eight common faces and ten common edges are eliminated (the two parts of the
domain are joined, having all internal faces, edges and interiors eliminated in previous steps) (f) sixteen common
faces as well as twenty four common edges are eliminated (the two parts of the domain are joined, having all
internal faces, edges and interiors eliminated in previous steps)

1858 Victor M. Calo et al. / Procedia Computer Science 4 (2011) 1854–1861

3. Computational complexity of the sequential solver executed over a single hp finite element

Let us first estimate the number of operations performed by a sequential multi-frontal solver during forward
elimination over one p finite element. This corresponds to the leaves of the elimination tree presented in Fig. 1 or to
the panel a) at Fig. 2. In this estimation we assume that degrees of freedom located on the boundary have not been
eliminated yet. In other words we consider a general element located inside some large domain, not the simple eight
finite elements mesh like the one presented in Fig. 1. The order of approximation in the interior of the element is
assumed to be equal to (p1, p2, p3). Orders of approximation on element faces and edges are assumed to be equal to
the corresponding orders in the interior. From this assumption it follows that there are two faces with orders (p1, p2),
two faces with orders (p1, p3) and two faces with orders (p2, p3), as well as four edges with order p1, four edges with
order p2 and four edges with order p3.

The total number of degrees of freedom (d.o.f.) in such an element is equal to

nrdof = (p1 + 1) (p2 + 1) (p3 + 1) = O (p1p2p3)

To estimate the efficiency of the sequential solver, we assume that p1=p2=p3=p or we can take p = max p1, p2, p3 .
Thus, the number of d.o.f. is given by

nrdof = (p+1)3 = O(p3)

the number of interior d.o.f. is given by

interior nrdof = (p 1) 3 = O(p3)

and the number of interface d.o.f. is given by

interface nrdof = 6p2 + p + 1 = O(p2)

Since the element stiffness matrix is dense, it follows that

computational complexity over 1 element = (number of d.o.f.) 3

Thus, the computational complexity of the sequential multi-frontal solver executed on a single p element is given by

computational complexity over 1 element = nrdof3 = O(p9).

4. Computational complexity of the sequential multi-frontal solver executed over a cube formed by Ne
identical p finite elements

The computational domain is now assumed to be a cube with Ne=n n n identical hp finite elements, where n is the
number of elements along a single axis. Orders of approximation are assumed to be equal to p on all elements edges,
faces, and interior. In other words the number of degrees of freedom is N=n3p3. For simplicity, the number of
elements n in a single direction is assumed to be equal to a power of 2.

The multi-frontal direct solver algorithm starts with leaves, Figure 2(a). It constructs the element matrices with
O(p3) degrees of freedom, and eliminates internal degrees of freedom, with computational cost O(p9) (as shown in
section 3). The computational complexity of elimination of the internal d.o.f. is n3p6(p3-p2) = O(n3p9), since there are
n3 such elements.

In the next step, two elements with interiors already eliminated are joined and the degrees of freedom associated
with the common face are eliminated. This corresponds to Figure 2(b). The number of degrees of freedom in the
system is (4*2+2+1)p2 since there are 4*2 external faces, one top and one bottom faces, as well as one internal face.
The number of degrees of freedom to be eliminated is just p2, since only the common face is eliminated. Thus the
computational complexity is O((n3/2)(((4*2+2+1)p2)2)p2).

In the next step, Figure 2(c), two sets of two elements are joined and the two common faces are eliminated. The total
number of degrees of freedom is equal to (4*2+4*2+2)p2 since there are 4*2 external faces, front and the rear with 4

Victor M. Calo et al. / Procedia Computer Science 4 (2011) 1854–1861 1859

faces, as well as two internal faces. The number of degrees of freedom to be eliminated is just 2p2, since only the
two common faces are eliminated. Thus, the computational complexity is O((n3/22)(((4*2+4*2+2)p2)2)2p2).

In the next step illustrated in Figure 2(d), two sets of four elements are joint, and the four common faces are
eliminated. The total number of degrees of freedom is equal to (4*4+4*4+4)p2 since there are 4*4 external faces,
front and the rear with 4 faces, as well as 4 internal faces. The number of degrees of freedom to be eliminated is just
4p2, since only the four common faces are eliminated. The computational complexity of elimination of common
d.o.f. over such a set of 2*2*2 elements is (n3/23)(((6*4+4)p2)24p2)= O((n3/23)(26p6)), since (6 4+4)p2 is the number
of d.o.f. on external faces on a box of 2*2*2 elements, plus 2*2=4 common faces, and common faces are eliminated.
There are n3/23 such sets of elements.

The procedure continues in steps corresponding to panels e), f) and g) in Figure 2. Notice that the computational
complexity of steps (b) and (c) is not larger than the computational complexity of step (d). The same applies for all
the following of steps, that is, the computational complexity of steps (e) and (f) is not larger than the computational
complexity of step (g). Thus, without loss of generality, to estimate the computational complexity, we can focus on a
sequence of cube-shaped meshes with 2k*2k*2k elements, with a cross-section of internal faces to be eliminated.
Thus, in our estimates we will sum up computational complexities of step (a), (d) then g) and the following cube-
shape domain based steps.

Now we focus on the next step, corresponding to a set of 4*4*4 elements. The computational complexity of
elimination of d.o.f. corresponding to the internal faces denoted in panel (g) by the red color is

(n3/ 26)((6*16+16)p2) 216p2)=O((n3/26)(212+212)p6),

since (6*16)p2 is the number of d.o.f. on faces of a box of 4*4*4 elements, plus 4*4=16 common faces, and the
common faces are eliminated. There are n3/26 such sets of elements. Thus, total computational complexity can be
estimated by the following sum

comp. complexity for n3 elements=n3p9+ n3 / 23k() p6 26k
k=1

log2 n

∑ = O(n3p9+n6p6) = O(Ne p9+Ne
2p6) = O(N p6+N2)

5. Memory usage of the sequential solver executed over a single p finite element

The memory usage of the solver is equal to the square of the number of degrees of freedom over a single p finite
element. Since nrdof = O(p3) we get

memory usage over 1 element = nrdof2 = O(p6).

6. Memory usage of the sequential multi-frontal solver executed over a cube formed by Ne identical p finite
elements

The memory usage of the sequential in-core solver is equal to the sum of sizes of all the frontal matrices constructed
by the algorithm. We perform our estimations of memory usage following the template presented for the
computational complexity estimates. In other words, we consider here a sequence of cube shaped meshes with
2k*2k*2k elements, with a cross-section of internal faces to be eliminated.

It is assumed that the frontal solve algorithm is eliminating internal d.o.f. of elements, then it is joining elements into
sets of 2*2*2=8 elements, eliminating common fully assembled d.o.f. located on a single cross-section, then it is
joining elements into sets of 4*4*4=64 elements, eliminating common fully assembled d.o.f. from the cross-section,
and the process is repeated until to the entire mesh is reduced to one global cross-section problem.

The in-core multi-frontal solver stores frontal matrices for backward substitution, so we need to multiply the
memory usage by the number of elements. The front size associated with a single element is equal to the number of
element d.o.f. squared, which is O(p6). Thus, the size of the all frontal matrices for all n3 elements is O(n3p6)

1860 Victor M. Calo et al. / Procedia Computer Science 4 (2011) 1854–1861

When we join elements into sets of 2*2*2=8 elements, the size of the 8 elements wire-frame problem is (6*4+4)p2,
since 6*4p2 is the number of d.o.f. on external faces on a box of 2*2*2 elements, plus 2*2 p2=4 p2 degrees of
freedom over the cross-section common faces. Thus the size of the all frontal matrices for all n3/23 sets of 8 elements
is n3 /23 ((6*4+4)p2) 2 = O((n3/23)24*p4).

When we join elements into sets of 4*4*4=64 elements, the size of the 64 elements wire-frame problem is
(6*16+16)p2 since 6*16p2 is the number of d.o.f. on faces of a box of 4*4*4 elements, plus 4*4 p2=16 p2 degrees of
freedom located on the cross-section common faces. Thus the size of the all frontal matrices for all n3 /26 sets of 64
elements is n3/26((6*16+16)p2)2 = O((n3/2)28p4)
Thus,

memory usage over n3 elements = n3p6 + n3 / 23k() p4 24 k
k=1

log2 n

∑ = O(n3p6+n4p4)=O(Ne p6+ Ne
4/3 p4) = O(Np3+ N4/3)

Figure 3. Plots of numerical tests run which verify the computational complexity and memory usage estimates given
proposed herein. Each subplot shows the time and memory utilized as well as the statistical best fit of the data to this
estimate. Each subplot represents a different level of degrees of freedom: (left top) 10,000 (right top) 30,000 (left
bottom) 100,000, and (right bottom) 500,000.

7. Numerical results

In order to verify the validity of the estimates presented in sections 3-6, we setup the solution of the canonical
Laplace problem on the unit cube, subject to a zero Dirichlet condition on the bottom surface and a unit Dirichlet
condition on the top. While a simple, scalar problem, the idea is compare the time and memory needed to solve the
resulting linear system while varying the polynomial order, number of elements, and number of degrees of freedom.

Victor M. Calo et al. / Procedia Computer Science 4 (2011) 1854–1861 1861

We develop a series of meshes that contain 10,000, 30,000, 100,000, and 500,000 degrees of freedom. Within each
level we develop another series of meshes by varying the polynomial order from 1 to 8. The overall degrees of
freedom are kept constant by generating the meshes with varying numbers of elements. The resulting linear systems
were solved in core using MUMPS 4.9.2 [6,7] on a workstation with 2 quad-core Xeon X5550 processors and 24 Gb
of memory.

Figure 3 presents the results of these numerical experiments. In each subfigure the time required to solve is shown in
a blue solid line and the memory shown in a green dotted line. The actual data is plotted using markers and
connected with a lighter line width. The important trend to note is how as the polynomial order grows in each case,
the time to solve does not grow until a threshold is reached. In the 500,000 degree of freedom case p=6 is as
expensive (or even slightly less expensive) to solve in terms of time as p=1. The darker line widths represent a
statistical fitting of the data to the estimates. In each case, the correlation constant was between 0.8 and 0.99
indicating excellent statistical agreement.

8. Conclusions

We have presented computational complexity and memory usage estimates for the multi-frontal solver algorithm
applied to the solution of linear systems resulting for structured grids with uniform polynomial order for spaces that
are C0, this kind of meshes correspond to C0 tensor-product B-spline meshes, such as those used in isogeometric
analysis. While the estimates were developed with this in mind, they apply to p-finite elements where the mesh is a
structured grid. The results explain the interesting effect of systems resulting from higher order polynomial not
costing more time to solve, reinforcing the power of the multi-frontal algorithm. Future work will expand the
estimates to more appropriate Ck spaces that are of interest in isogeometric analysis, in particular, we will focus on
Cp-1 spaces, which are the maximum continuity spaces used in what is dubbed as k-refinement in isogeometric
analysis literature.

Acknowledgements

DP has been partially supported by the Spanish Ministry of Sciences and Innovation Grant MTM2010-16511. MRP
has been partially supported by the Polish MNiSW grant no. NN 519 405737 and NN519 447 739.

References

1. Duff I. S., Reid J. K., 1983: The multifrontal solution of indefinite sparse symmetric linear systems. ACM Transactions on Mathematical
Software, 9, 302-325
2. Duff I. S., Reid J. K., 1984: The multifrontal solution of unsymmetric sets of linear systems. SIAM Journal on Scientific and Statistical
Computing, 5, 633-641
3. Irons B., 1970: A frontal solution program for finite-element analysis. International Journal of Numerical Methods in Engineering, 2, 5-32
4. T. J. R. Hughes, J. Cottrell, Y. Basilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,
Computer Methods in Applied Mechanics and Engineering. 194 (2005) 4135-4195.
5. J. Cottrell, T. J. R. Hughes, Y. Basilevs, Isogeometric analysis: Toward Unification of CAD and FEA, John Wiley and Sons, 2009.
6. P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM
Journal of Matrix Analysis and Applications. 23 (2001) 15-41.
7. P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Computing.
32 (2006) 136-156.

