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Abstract

In this paper we present a twin adaptive strategy hp-HGS for solving inverse problems related to 3D DC borehole
resistivity measurement simulations. The term ”simulation of measurements” is widely used by the geophysical
community. A quantity of interest, voltage, is measured at a receiver electrode located in the logging instrument.
We use the self-adaptive goal-oriented hp-Finite Element Method (hp-FEM) computer simulations of the process
of measurements in deviated wells (when the angle between the borehole and formation layers are < 90 deg). We
also employ the hierarchical genetic search (HGS) algorithm to solve the inverse problem. Each individual in the
population represents a single configuration of the formation layers. The evaluation of the individual is performed by
solving the direct problem by means of the hp-FEM algorithm and by comparison with measured logging curve. We
conclude the paper with some discussion on the parallelization of the algorithm.

Keywords: inverse problems, 3D DC borehole resistivity measurements, hp adaptive finite element method,
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1. Introduction

Resistivity measurements have been used during the last eighty years to quantify the spatial distribution of elec-
trical conductivity in a reservoir. Conductivity of the rock formation is utilized to assess the material properties of the
subsurface, and is routinely used by oil-companies to estimate the volume of hydrocarbons (oil and gas) existing in a
reservoir. In this paper, we focus on borehole logging devices operating at low frequencies that are typically modeled
numerically as zero-frequency (direct current) resistivity devices.

To improve the interpretation of results obtained with resistivity measurements, and thus, to better quantify and
determine existing subsurface materials and increase hydrocarbon recovery, diverse methods have been developed
to perform numerical simulations (for instance, [26, 10, 12, 7, 24, 25, 3, 19]) as well as to invert well-log measure-
ments [2, 1, 11].

In [13, 18], we described a numerical method based on a Fourier series expansion in a non-orthogonal system
of coordinates combined with a 2D self-adaptive hp goal-oriented Finite Element (FE) method [14, 16, 17, 15].
This Fourier-Finite-Element method was formulated and applied to direct-current (DC) and alternating-current (AC)
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resistivity logging problems, and it enabled fast and accurate simulations of previously unsolved EM simulation
problems in deviated wells.

In this article, we extend the above methodology to automatically solve the inverse problem using hierarchical ge-
netic search (HGS) algorithm coupled with the self-adaptive goal oriented hp-FEM (hp-HGS). The inverse algorithm
has been recently used to solve inverse problems for identification of the material data for the heat transfer problem
[5] as well as linear elasticity with thermal expansion coefficient [4].

2. Forward Problem

At DC (i.e., zero frequency), the electromagnetic phenomena (governed by Maxwell’s equations) reduces to the
so called conductive media equation, i.e.,

∇ · (σ∇u) = −∇ · Jimp , (1)

where σ > 0 is the conductivity tensor, Jimp represents the prescribed impressed electric current sources, and u is the
scalar electric potential. We note that the electric field is given by E = −∇u in the case of simply connected domains.

To truncate the computational domain, in borehole logging simulations it is customary to impose zero Dirichlet
boundary conditions in a large enough domain, since the solution rapidly decays as we move away from the source.
In here we follow the same approach

By multiplying test function v ∈ H1
D(Ω) = {u ∈ H1(Ω) : u|ΓD = 0} by equation (1), and by integrating by parts over

the domain Ω, we obtain the following variational formulation after incorporating the essential (Dirichlet) boundary
condition (BC): ⎧⎪⎪⎨⎪⎪⎩

Find u ∈ uD + H1
D(Ω) such that:

〈∇v , σ∇u〉L2(Ω) =
〈
v , ∇ · Jimp

〉
L2(Ω)

+ 〈v , h〉L2(ΓN ) ∀v ∈ H1
D(Ω) ,

(2)

where uD ∈ H1(Ω) is a lift (typically uD = 0) of the essential BC data uD (denoted with the same symbol), h = σ∇u ·n
is a prescribed flux on ΓN , n is the unit normal outward (with respect to Ω) vector, and u|ΓD = 0 is understood in sense
of traces. Ω ⊂ R3 is assumed to be a simple connected, bounded domain with the Lipshitz boundary (see [9, 8] for
necessary math details).

In our case Ω is a 3D skewed cylinder surrounding the borehole (see Figures 1, 2) crossing four geological forma-
tion layers. The direct problem can be summarized as follows: Find the electric potential u in Ω assuming the zero
Dirichlet condition on the whole ∂Ω (ΓN = ∅) and by given resistivities of all five layers and the borehole subdomain.
The influence of probe is expressed by the assumed displacement of ∇ · Jimp in the borehole subdomain. Solving the
forward problem (2) for the consecutive positions of the probe we can obtain the logging curve corresponding to the
assumed resistivities.

For solving the forward problem, and following the approach described in [13], we first consider the union of three
(possibly rotated) cylindrical systems of coordinates defined over subdomains I, II, and III, respectively, as illustrated
in Fig. 1. The change of coordinates ζ = (ζ1, ζ2, ζ3) = ψ(x) is globally continuous and with positive Jacobian J, thus,
suitable for Finite Element computations. In addition, we observe that J, as a function of ζ2, can be represented as a
linear combination of functions 1, sin ζ2, and cos ζ2, since the change of coordinates is composed of rotations of the
cylindrical system of coordinates. It is easy to see that the corresponding metric G = JT J (as a function of ζ2) can be
represented in terms of the following five Fourier basis functions: 1, cos ζ2, sin ζ2, cos2 ζ2, and sin2 ζ2. Since material
properties for the geometry described in Fig. 1 (deviated wells) are constant with respect to the new quasi-azimuthal
direction ζ2, and the metric can be represented exactly with only five Fourier modes, we conclude that, when using
a 1D Fourier series expansion in terms of ζ2, the corresponding stiffness matrix becomes penta-diagonal (as opposed
to a dense matrix) with respect to ζ2, leading to a dramatic reduction on the computational complexity. For details,
see [13].

3. Inverse Problem

For a given reference logging curve, geometry of the formation layers and resistivities of the borehole and top
and bottom formations, we seek for resistivities of the three formation layers ω = (ω0, ω1, ω2) (see Figure 3). The
inverse problem will be formalized as the global optimization one. We are looking for each global minimizer ω̂ ∈
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Figure 1: Cross section showing the 3D geometry of a logging instrument in a vertical well penetrating dipping layers. x = (x1, x2, x3) represents
the Cartesian system of coordinates, and ζ = (ζ1, ζ2, ζ3) represents the new non-orthogonal system of coordinates. The new system of coordinates
is different in each of the three sub-domains. Subdomain I corresponds to the logging instrument, subdomain II to the borehole, and subdomain III
to the formation. The new system of coordinates is globally continuous, as indicated by the parameterization. Symbol ‘O’ indicates the origin of
both systems of coordinates.

Figure 2: The direct problem consists in computations of the logging curves with assumed resistivities of the borehole and the five formation layers.
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D ⊂ R3 such that the corresponding, computed logging curve is closest to the reference one among all logging curves
associated with ω ∈ D, where D stands for the set of admissible conductivities.

The reference logging curve is usually obtained from the field measurements. For testing purposes we compute
this curve for the 60 degrees deviated well by using self-adaptive goal oriented hp-FEM algorithm with high accuracy
10−5. There is a borehole with resistivity 0.1Ω ·m and five formation layers, namely the sand with resistivity 100Ω ·m,
the shale with resistivity 5Ω · m, the oil with resistivity 20Ω · m, the water with resistivity 1Ω · m and the rock with
resistivity 1000Ω · m as in Figure 3.

Figure 3: The inverse problem consist in finding the resistivities of the three formation layers from a given logging curve.

4. The strategy of solving inverse problem

4.1. HGS and hp–HGS
Hierarchic Genetic Strategy (HGS) introduced by Kołodziej and Schaefer [21] produces a tree-structured set of

concurrent evolutionary processes (see Figure 4). The structure changes dynamically and the depth of the HGS tree
is bounded by m < +∞. We restrict to the case in which each evolutionary process is governed by the Simple Genetic
Algorithm [23].

HGS starts with a single root deme (first order process) performing chaotic search with low accuracy. After
a constant number of genetic epochs K called the metaepoch the root deme sprouts child-demes in the promising
regions of the evolutionary landscape surrounding the best fitted individuals distinguished from the parental deme
(see left panel in Figure 5). The second order demes (branches) perform more local search with higher accuracy.
Third order demes (leaves) are created at the results of the second level search (see middle panel in Figure 5), and they
perform local and most accurate search (see right panel in Figure 5). The evolution in existing demes continues in the
second metaepoch, after which new demes are sprouted. The algorithm continues until the global stop condition is
reached.
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Figure 4: HGS tree and corresponding two-dimensional meshes.

Figure 5: Left panel: root population (red) sprouting second level deme (green). Middle panel: second level population (green) sprouting leaf
population (pink). Right panel: leaf population (pink) performing local search.

HGS implements two mechanisms that prevent redundancy of the search. The first one, called conditional sprout-
ing, allows new demes to be sprouted only in regions which are not explored by sibling-demes (demes sprouted by the
same parent). The second mechanism, called branch reduction, reduces demes of the same order that perform search
in the common landscape region or in the regions already explored.

Different search accuracies are obtained by various encoding precisions and by manipulating the length of binary
genotypes in demes at different levels. The root utilizes the shortest genotypes, while the leaves utilize the longest
ones. To obtain search coherency for demes of different orders, a special kind of hierarchical nested encoding is used.
Firstly, the densest mesh of phenotypes in D for the demes of the m-th order is defined. Afterwards, the meshes for
lower order demes are recursively defined by selecting some nodes from the previous ones. The maximum diameter
of the mesh δ j associated with the demes of the order j determines the search accuracy at this level of the HGS tree
(see Figure 4). The mesh parameters satisfy δm < . . . < δ1.

HGS can be coupled with the hp–adaptive goal–oriented FEM algorithm in order to solve the particular class of
inverse, parametric problems [5]. In this strategy called hp-HGS the fitness of each individual is estimated with the
required accuracy depending on the level of the HGS tree. Root level direct problems are solved with lowest accuracy,
while leaf level direct problems are solved with highest accuracy.

4.2. Solving 3D DC resistivity logging measurement problem by hp–HGS

We performed the simulation of the 3D DC borehole resistivity measurements problem using hp-HGS method
with m = 3. The parameters of the simulation are presented in Table 1. Populations sizes were selected to balance the
time of evaluating a solution without losing the property of searching globally. Code length for a single parameter was
15 on the first level and was increased by 6 on the second level and by 12 in leaves. Fitness value of each candidate
solution ω (resistivity vector) was evaluated as the Euclidean norm of the difference between discrete representations
of the reference logging curve and the logging curve computed by the self-adaptive goal-oriented hp–FEM algorithm
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for ω with accuracy depending on the level in HGS tree. The accuracy (see last row in Table 1) is the maximum
relative error decrement in the single hp-FEM step (see e.g. [20]) applied for solving direct problem at the particular
HGS level.

Table 1: Parameters of the simulation.

level 1 level 2 level 3

Population size 12 6 4
Code length 45 63 81
Mutation rate 0.1 0.01 0.001
Crossing rate 0.5 0.5 0.5
Accuracy 0.1 0.01 0.001

After the first metaepoch performed at three levels HGS tree consists of three demes - one at each level (see
Figure 6). Total execution times for the entire populations are presented in the middle panel of the Figure 6 and
average execution times for a single individuals are presented in the right panel. All execution times are rounded due
to clarity reasons. It is clear that the number of high-level individuals should be kept as small as possible because of
their time-consuming evaluation.

Figure 6: Metaepoch 1. Left panel: evolution of the HGS tree in the first metaepoch. Middle panel: total execution time for entire population.
Right panel: average execution time for a single individual.

HGS tree after the second metaepoch is presented in Figure 7. In order to reduce the number of fitness evaluations,
all calculated values are stored. If an individual remains unchanged in the next epoch or its genotype is changed into
one that was already evaluated on the same level, a previously stored value is used. This approach allows a significant
reduction of execution time (see i.e. first leaf population in Figure 7).

Figure 7: Metaepoch 2. Left panel: tree of populations after the second metaepoch. Middle panel: total execution time for entire population. Right
panel: average execution time for a single individual.
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Table 2: Computation results.

ω1 ω2 ω3 error fitness

0.995 3.605 44.166 24.20 0.10
0.760 6.289 33.791 13.85 0.14
0.750 6.345 27.674 7.79 0.16
0.789 3.578 19.166 1.66 0.20

5. Numerical results and scalability evaluation

We have implemented hp-HGS algorithm in Linux cluster environment. The problems was solved in 6 metae-
pochs. The computation was stopped when the best leaf individual fitness was less or equal 0.10. Simulation results
are illustrated in Figure 8. Table 2 gathers selected four well-fitted leaf individuals. They show the potential power of
hp-HGS in resistivity identification (the smallest error was about 1.66) and the fitness irregularity in the neighbour-
hood of the global minimum.

The complicated scheduling of parallel computation (strongly varying number of available processors) makes the
wall time of computation hardly reliable. However it was possible to measure the serial execution time of particular
tasks which can be used in further scalability analysis. First, the serial execution time can be evaluated as 929827
seconds (about 258 hours or 10 days and 18 hours).
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Figure 8: Scatter plots of ω0 vs. ω1 (top–left), ω0 vs. ω2 (top–right) and ω1 vs. ω2 (bottom–left). Different colors correspond to different fitness
values.

In Figure 9 we list the total number of populations in particular epochs during the entire simulation. We can
parallelize the code on the level of populations for up to 11 processors. The total execution time defined as a sum
of calls of the self-adaptive goal-oriented hp-FEM for all individuals from all populations from particular epochs is
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summarized in Figure 10. We conclude that the parallel inverse code with 11 processors will run for about 183,000
second = 51 hours (2 days and 3 hours). Obtained speedup equals 5.08 and efficiency is 45%.

To speedup the code further we can perform the computations for all individuals from all populations from a given
epoch at the same time. In Figure 11 we list the total number of individuals from all populations in particular epochs.
Taking into consideration the real number of fitness evaluations, we can parallelize the code on the level of individuals
by using up to 30 processors. For each individual we need to call the self-adaptive goal-oriented hp-FEM algorithm.
In Figure 12 we list execution time for the heaviest individual from all population for a given epoch. We conclude
that the parallel inverse code with 30 processors will run for about 57,400 second = 16 hours. In this case we obtain
speedup of 16.2 and efficiency of 54%.

To speedup the code further we can switch to the parallel version of the self-adaptive goal-oriented hp-FEM
[6, 20]. The parallel code delivers 60% efficiency up to 128 cores (namely the computations of a single individual are
80 times faster on 128 cores). We conclude that the parallel inverse code with 30 × 128 = 3, 840 cores will run for
about 57, 400/80 = 717.5 second = 0.2 hour (12 minutes). The final speedup equals 1295.9 with efficiency of 34%.
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Figure 9: Number of populations in particular epochs (each metaepoch consists in several epochs).
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Figure 10: Total execution time for largest populations in particular epochs.

6. Conclusions

The hp-HGS strategy was applied and tested for the 3D DC borehole resistivity measurement simulations problem,
that is of the great interest to the oil industry. The algorithm utilizes the Hierarchical Genetic Strategy interfaced with
self-adaptive hp Finite Element Method. The inverse problem was successfully solved with the acceptable final
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Figure 11: Number of individuals in particular epochs.
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Figure 12: Total execution time for largest individual in particular epochs.

fitness 0.10 within 6 metaepochs. The simple derivation of the parallel computation time for this example show
the advantage of the high level fine-grained strategy coupled with the parallel execution of the special instance of
hp-FEM. The simple population-level coarse-grained parallel execution of hp-HGS would result in 51 hours while
fine-grained individual-level one consumes the 16 hours. The fine-grained hp-HGS execution coupled with parallel
hp-FEM reduces the computation time up to 0.2 hour. If maximum speedup is required, it can be obtained by assigning
a huge number of processors that work with moderate efficiency 34 - 54% (i.e. they are partially idle). It is a result
of a complicated, stochastic character of the computational tasks appearing during the hp-HGS run. The proper
dynamic scheduling can significantly increase the efficiency by a slight loss of speedup (see e.g.[22]). Moreover, the
fitness needs to be locally regularized in order to omit the non-monotonic behavior in the neighborhood of the global
extremum.
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