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Abstract

We propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to
maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) dis-
cretization, we introduce C°-separators to reduce the interconnection between degrees of freedom in the mesh. By
doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting
method “refined Isogeometric Analysis (rIGA)”. To illustrate the impact of the continuity reduction, we analyze the
number of Floating Point Operations (FLOPSs), computational times, and memory required to solve the linear system
obtained by discretizing the Laplace problem with structured meshes and uniform polynomial orders. Theoretical
estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor be-
tween p? and p?, with p being the polynomial order of the discretization. Numerical results indicate that our proposed
rIGA method delivers a speed-up factor proportional to p?. In a 2D mesh with four million elements and p = 5, the
linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh
with one million elements and p = 3, the linear rIGA system is solved 15 times faster than the IGA one.

Keywords: Isogeometric Analysis (IGA), Finite Element Analysis (FEA), refined Isogeometric Analysis (rIGA),
Direct solvers, Multi-frontal solvers, k-refinement.

1. Introduction

In order to solve numerically a problem governed by partial differential equations (PDEs) and specific boundary
conditions (BCs), we often resolve a system of algebraic equations which conforms the discrete representation of
the problem. Discretization approaches such as finite element analysis (FEA) or isogeometric analysis (IGA) are
frequently employed to generate this algebraic system. These methods discretize the governing PDEs by using a
variational formulation and trial and test functions defined by their respective basis functions [1, 2].

In traditional FEA, the basis functions are defined on a reference element, and a mapping to the physical element is
employed [1]. Isogeometric Analysis (IGA) seeks to eliminate the need for an interface lying between the geometrical
representation built with Computed-Aided Design (CAD) and the analysis performed with FEA, since basis functions
themselves are defined using conventional CAD functions. Although many obstacles still remain in the present-day
CAD software, this feature avoids the need to define a secondary set of functions (and the corresponding transfer
operators) for the numerical analysis [2].
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Several solvers can be used to compute the solution of the algebraic systems resulting from the aforementioned
methods. We focus here on direct solvers, which are often used to solve stiff linear problems where iterative solvers do
not converge or are unreliable. Other scenarios in which direct solvers are convenient include problems with multiple
right-hand sides (e.g., when solving inverse problems). Moreover, direct solvers are the main building blocks of many
iterative solvers [3]. In this work, we use a multifrontal solver, which is the state-of-the-art direct solver and was
originally proposed in [4].

Direct solvers based on graph partitioning, as the multifrontal direct solver, recursively split the system’s connec-
tivity graph into pairs of subdomains interconnected by small subsets of degrees of freedom called separators. The
order of elimination of degrees of freedom is set by the recursive structure of the partitioned graph, eliminating first
the degrees of freedom associated with the subdomains, and then those associated to the separators that connect the
subdomains. A detailed explanation is provided in section 3.

The cost to solve an algebraic system of equations, specifically the cost to perform the LU factorization of the
matrix, is determined by the discretization method. Previous works presented in [5, 6] show that in IGA, the conti-
nuity plays a significant part in the degradation of the direct solvers performance on a per degree of freedom basis.
Table 1 illustrates the increment in computational cost resulting from using highly continuous basis functions in the
discretization. A maximal continuity IGA discretization is O(p?) times more expensive than traditional FEA per un-
known, with p being the polynomial order. This analysis assumes uniform continuity and a fixed total number of
degrees of freedom (dof) in the system.

FLOPS
System continuity - -
Skeleton Static condensation
.. 3
Traditional FEA (C°) o ((N(d‘l)/d) ) o (NpZd)
Maximal continuity IGA (CP™!) | O ((N (d=-1/d p)3 ) o)

N = dof, p = polynomial order, d = dimension (2 or 3)

Table 1: Summary of FLOPs estimates derived in [5, 6].

According to Table 1, the performance of direct solvers per unknown improves when reducing the inter-element
continuity for a given C”~! problem (see Table 1). However, if the number of element is kept fixed and the global
continuity is turned to be C?, then the total solution cost of the system may become larger than that of the original
CP~! system. This larger cost is due to the increased number of degrees of freedom (N) that the reduction of continuity
carries (see Figure 1c).

In this work, we analyze the impact of various continuity patterns in the computational cost of the direct solver for
a fixed mesh topology and polynomial order p. The strategy we propose reduces the continuity along some separators
used in graph partitioning. As the continuity is reduced, the interconnection among the subdomains weakens, and the
number of degrees of freedom in the system grows. This is equivalent to discretizing the system using a variation
of traditional FEA that employs CP~! subsystems (subdomains) as elements (macro-elements). In the limiting case
of reducing continuity along all the separators, the resulting system becomes a traditional C® FEA. Alternatively, the
method can also be interpreted as a high continuity IGA with certain refinements over specific hyperplanes (separators)
that locally reduce the continuity. Figure 1 illustrates the cases with no reduction of continuity (C”~! system) and full
reduction of continuity (C° system), in addition to a third case with partial reduction of continuity that consists of a
C? skeleton and four macro-elements (C”~! subsystems). The resulting class of discretizations which have minimal
solution cost are the ones defined by the rIGA method we propose. The corresponding spaces are finer than standard
maximal continuity IGA spaces and are faster to solve for than both traditional FEA and IGA for meshes with fixed
number of elements.

The optimal discretization provided by rIGA solves the problems approximately p® times faster than those dis-
cretized using highly continuous IGA (CP~'). To understand this boost in performance, we describe the impact of
continuity reduction in the solution cost. To simplify the analysis, we assume that the inter-element continuity is
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Highly continuous IGA (CP™") Traditional FEA (C°) with C?~! Traditional FEA (C°)

macro-elements

Figure 1: Illustration of FEA discretizations of a 2D system composed of 6 X 6 elements with polynomial basis functions of order p = 3. Red
circles represent the nodal degrees of freedom in the system, while black lines denote the mesh skeleton. Bold lines represent lower continuity.

either C° or C”~!. The continuity reduction increases the accuracy of the best approximation error (with respect to
the CP~! discretization) due to the resulting enrichment of the discrete space while at the same time improves the
performance of the solver. The increment in the accuracy of the best approximation error does not always imply an
improvement of the result. For example, stability problems in the solution may lead to a worse result even if the best
approximation error is reduced.

This paper is organized as follows: Isogeometric analysis is briefly described in Section 2. Section 3 details a
state-of-the-art direct solver. The proposed refined isogeometric analysis (rIGA) is presented in Section 4. Section 5
derives computational cost estimates. Sections 6 and 7 describe the model problem and detail the implementation,
respectively. Numerical experiments are presented in Section 8. The work concludes in Section 9 summarizing the
main features of the proposed refined isogeometric method.

2. Isogeometric Analysis

Isogeometric analysis is a well-established computational approach to solve problems governed by PDEs [2, 7—
20]. Since the main ideas of IGA were established in 2005 [2], this approach has been employed in many engineering
fields, including phase transition phenomena [7-9, 21, 22], fluid structure interaction (FSI) [10-12], solid mechan-
ics [23-27], fluid dynamics [13-18, 28-33], medical applications [33—-36] and electromagnetics [37].

This computational method tries to unify CAD with FEA, seeking to create a single discretization that represents
the problems geometry and it is at the same time usable for numerical analysis. Thus, IGA in the future may eliminate
the requirement of an interface between the geometrical representation built with CAD and the analysis performed

with FEA.
RO

(a) C° Basis functions (b) CP~! Basis functions
(traditional FEA) (highly continuous IGA)

Figure 2: Sets of B-spline basis functions associated to a polynomial order p = 3 on a fixed mesh of ten elements.

IGA creates discrete representations with high inter-element continuity. It employs smooth basis functions with
larger supports than those used in traditional FEA. Figure 2 illustrates a set of cubic basis functions for both traditional
C° FEA and maximal continuity C?~! IGA for a fixed mesh size. The use of high continuity basis functions provides
additional robustness in linear elasticity, structural vibration and wave propagation calculations [2, 24-26], as well as
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in fluid mechanics problems [18-20, 28, 30]. Moreover, IGA often provides discretizations with a lower number of
degrees of freedom than those delivered by traditional FEA in order to achieve the same error level [2, 23, 38].

3. Direct solvers for sparse systems

There exist several types of direct solvers, such as those based on LU and QR factorizations. The idea behind these
solvers is to perform a suitable decomposition of the original matrix in terms of the multiplication of two auxiliary
matrices leading to two linear systems of equations that can be easily solved. The fastest direct solvers are based on LU
factorization (Cholesky factorization in the case of symmetric positive definite systems). These solvers decompose the
matrix into a lower-triangular matrix (L) and an upper-triangular one (U), and solve the respective triangular systems
sequentially in order to obtain the solution of the original problem.

For sparse systems (which arise in FEA due to the local support of the basis functions), a reordering of rows and
columns of the matrix is performed before proceeding with the factorization in order to minimize the subsequent fill-in
in the L and U factors, thus improving the performance of the solver (Figure 3). The matrix is commonly reordered
according to a nested-dissection technique [39], since this ordering algorithm is optimal for minimizing the fill-in of
the L and U factors for the case of structured grids with an equal number of elements in each spatial direction, and it

is quasi-optimal for many other cases.

Matrix system Reordered matrix Factors L U

Figure 3: LU decomposition of a sparse matrix.

The state-of-the-art implementation is based on the multifrontal solver, a method of solution of sparse linear
systems proposed in [4]. This solver is a generalization of the frontal direct solver presented in [40]. The multifrontal
solver performs a recursive partitioning of the mesh into pairs of disconnected pieces (subdomains) that are inter-
connected by small subsets of degrees of freedom called separators (Figure 4). Figure 5 illustrates an example where
a 2D mesh is recursively partitioned four times.

(— Subdomains j
A

\J
Mesh L» Separator

Figure 4: Subdomains resulting from the first recursive partition of a 2D problem. For simplicity, we sketch a finite element
discretization using a polynomial order p = 2 and C 0 continuity. Red circles represent the nodal degrees of freedom in the
system, while black lines denote the mesh skeleton (lower continuity lines).



Mesh First Second
partition partition

Third Fourth
partition partition

Figure 5: First four recursive partitions of a 2D mesh.

In the factorization process, the elimination of the degrees of freedom follows the recursive structure of the mesh
partition. The unknowns associated to the subdomains are eliminated first. Then, the remaining unknowns are elim-
inated at every separator once they can be fully expressed in terms of the separator degrees of freedom. Once all
separators are processed, a single subset of fully assembled degrees of freedom (first separator) is solved, and a back-
ward substitution is executed following the structure of the system partition in order to recover the eliminated degrees
of freedom and solve the problem. An illustration of the factorization procedure and solution of a 2D problem recur-
sively partitioned into two subdomains is presented in Figure 6. For additional details on the factorization process, we
refer to [4, 6, 40, 41].

The selected discretization heavily influences the performance of the recursive elimination of the system. For tradi-
tional FEA, the interconnection between subdomains is weak due to the minimal inter-element continuity. Subdomains
are connected by narrow separators. In C”~! IGA, the high inter-element continuity strengthens the interconnection
between subdomains, since the growth of the basis function support increments the number of degrees of freedom
shared between elements. Therefore, wider separators are required to interconnect the subdomains (Figure 7).

Highly continuous discretizations degrade the performance of the direct solver per unknown, increasing time and
memory requirements. Indeed, highly continuous IGA is p* times more expensive than traditional FEA per unknown,
as indicated in Table 1 and Equations 2 and 3. This cost increment occurs because the size of the separators increases
and results in more expensive matrix factorizations [3].

4. Refined Isogeometric Analysis

We propose a discretization strategy that we call refined isogeometric analysis (rIGA). This approach seeks the
discretization that delivers the fastest solution time for a given mesh with a fixed polynomial order. rIGA decreases the
overall cost to solve the system of equations when using direct solvers by reducing the inter-element continuity while
controlling the total number of degrees of freedom added to the system. More precisely, we reduce the continuity along
the inter-subdomains boundaries of the system that result from the recursive partitioning of the mesh. The continuity
reduction is performed in such a way that it becomes zero in between the subdomains, so the interconnection is
weakened (Figure 8). The reduction of continuity narrows the separators that interconnect the subdomains in order to
make the partial matrix factorizations inexpensive. Unfortunately, the reduction of continuity increases the number of
degrees of freedom (Figure 9) that needs to be controlled.

In order to control the overhead paid due to the higher number of degrees of freedom, we perform localized
reductions of continuity. The optimal continuity reduction decreases the total cost of performing LU factorization
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Figure 6: Factorization procedure for a 2D system recursively partitioned into two subdomains. dof stands for
degrees of freedom.

(a) Traditional FEA (C°): weak (b) Highly continuous IGA (CP!):
connection strengthened connection

Figure 7: Illustration of a separator that interconnects two 1D subdomains (using p = 3 basis functions).
Higher continuous discretizations (CP~! system) involve wider separators and more dof to connect the
subdomains. Traditional FEA (C° system) benefits from narrow separators.

while keeping the total number of degrees of freedom under control, since a larger increment in the number of de-
grees of freedom would involve a higher factorization cost. To make the problem tractable, we reduce the search of
optimal discretizations (in terms of minimizing the number of FLOPs needed to perform the factorization) to CP~!
discretizations enriched by an arbitrary number of C°-separators.

Since the tensor product structure used in NURBS-based IGA limits the continuity reduction over local mesh
zones, we adopt a simple implementation that consists of reducing the continuity over hyperplanes that cross the entire
mesh in a single direction. The hyperplanes correspond to certain subdomains boundaries (separators). Figure 10
illustrates the structure of this implementation for a 2D problem.



(a) Highly continuous IGA (CP™'): () TIGA (CP™" + Clseparator): Weaker
strengthened connection connection

Figure 8: Illustration of a separator that interconnects two 1D subdomains (using p = 3 basis functions). rIGA
discretization involves narrower separators than IGA but it increases the number of the total system dof.
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Figure 9: Illustration of the width reduction and the increment in the number of unknowns of a separator used to interconnect two subdomains that
result from partitioning a 2D system with 6 X 6 elements and polynomial order p = 3. In this example, rIGA introduces two C°-separators.

W st partition step

B st partition level

B 2nd partition step

B 3rd partition step

® 2nd partition level

[ 4th partition step

Figure 10: Tensor product based rIGA in a 2D system.



5. Theoretical estimation of the direct solver computational cost

This section provides theoretical estimates of the number of Floating Points Operations (FLOPs) required to solve
an rIGA system using a direct solver. In particular, we explain why rIGA can be several times faster than both IGA
and FEA when applied to a fixed mesh size with p > 1. For simplicity, we assume that the discretization has the same
number of elements in each spatial dimension. Moreover, for deriving the theoretical estimates, we assume that the
system is solved with a multi-frontal direct solver using a nested-dissection ordering.

5.1. Cost estimates for finite element and isogeometric analyses

The cost to solve a system of linear equations using the multifrontal solver was analyzed in [3, 5, 6]. This cost
consists of three parts. The first part considers the matrix reordering cost. The remaining parts are the costs to
perform the matrix factorization and backward substitution. We derive the theoretical estimates assuming that the
matrix reordering and backward substitution costs are negligible, which is always the case for moderate to large size
systems of equations.

In the multifrontal direct solver, the matrix decomposition procedure consists of the partial elimination of the sub-
sets of degrees of freedom, either subdomains or separators. The cost to perform a partial LU (Cholesky) factorization
of a dense matrix is O(g*), with g being the size of the subsets of degrees of freedom. The total cost of the matrix
decomposition is obtained by adding the contribution of all partial factorizations (Figure 11).

I‘I 3

(a) Subsets of unknowns into the 2D

1

system (b) Partial matrix decomposition order (c) Factorization cost

Figure 11: Illustration of the elimination of unknowns of a 2D system with one level of partition (two steps of partition). The cost of factorization
is the sum of all partial decompositions.

The size of the separators (number of unknowns) is
qsep - O(N(d—])/d(k + 1)) ,

where N is the total number of degrees of freedom, d is the dimension, and k is the inter-elemental continuity. We
denote the separator continuity k. Thus, (k + 1) stands for the separator width, which is 1 in traditional FEA and p for
IGA. The size of the minimal subdomains (leaves of the tree, see [41]) is equal to the number of bubble basis functions
that every subdomain contains. For traditional FEA, the subsystem size is gq, = (p — 1)¢, since each subdomain
corresponds to one element. In highly continuous IGA, the minimal subdomain size is g,,, =~ 1 since for collections
of p + 1 elements in each dimension, one basis function can be eliminated. See [3] for a detailed description of the
process.
The cost of matrix factorization is then given by

D 0((aen)’) + - O((@s?®) = Y 0((NEV 4tk + 1))+ s - O (@10s))

sep Tsep )
3
= O ((N(dil)/d(k + 1)) ) + Qsub - O ((‘hub)3) 5 [FLOPS]
~——
Skeleton Interior dof



where 7., is the number of separators used to partition the system, and 7, is the number of subdomains. The

first term corresponds to the skeleton cost, that is, the cost to eliminate the degrees of freedom of the separators while

the last term is the cost of static condensation, i.e., the cost of eliminating the interior subdomain degrees of freedom.
The cost estimates for traditional FEA and highly continuous IGA become:

FEA: O((N(‘H)/df) + Ne(p - 1)* ~ O(N*@D/d) + O(Np*),  [FLOPs] 2)

IGA: o ((N<d—1>/d p)3) + apO(1) ~ O (N2@DIdp3) [FLOPs] 3)

where N, is the number of elements, and the number of degrees of freedom in FEA is N = O(N, pd). These cost
estimates match with those derived in [5] and presented here in Table 1. Defining n, = Ne1 /4 as the number of
elements in each spatial direction, the number of degrees of freedom is given by

FEA: N = (n.p+ )¢
IGA: N= . +p)?

and the cost estimates to solve a problem with a mesh with a fixed number of elements and a given polynomial order
are

FEA: ~O((nep+ 1)) +0(ndp*®), [FLOPs]

IGA: ~ O ((ne + p“V pd). [FLOPs]

In 2D, the solution cost of both C° FEA and CP~! IGA is similar to each other (up to lower order terms), while in
3D, C° FEA is O(p*) more expensive than CP~! IGA. Indeed, the elimination of the skeleton degrees of freedom in 3D
requires a large number of FLOPs, specifically, O(p?) times the number of FLOPs required to solve the corresponding
CP~!' IGA system.

5.2. Cost estimate for rIGA

To compute the cost to solve a refined isogeometric system we assume that the factorization is performed in two
steps (Figure 12). First, we eliminate the degrees of freedom contained in the C”~' subsystems (macro-elements).
Then, we eliminate the remaining degrees of freedom associated to the C%-separators.

CP~! subsystems CP-separators
(macro-elements) (skeleton)

.. + ‘

Figure 12: Tllustration of CP~! subsystems (macro-elements) and C°-separators (skeleton) that result from partitioning a 2D system.

The total cost to factorize an rIGA system is given by (1) and can be expressed as

FIGA : e O((qm_e )3) + 0((N<d—1>/d(k + 1))3) :
9

CP~! macro-elements CO skeleton



where the coefficient k£ in the skeleton term is zero due to the reduction of continuity. At the ¢-th partition level,
rIGA splits the original system into 7,,_, = 2% macro-elements of size N/2%. The cost of the macro-elements is the
same as for the C?~! IGA systems we derived in (3). Then, g,,_. = (N/2%)“=D/4p_and the total cost becomes

3(d-1)/d
2(1[ O((%) (. )/ p3)+0(N3(d—l)/d) .
2 ———

Cr-1 macro-elements €O skeleton
The continuity reduction enriches the resulting rIGA system. Every cut that splits the original system adds (p — 1)
degrees of freedom in the spatial direction perpendicular to the cut. For instance, in Figure 12, the vertical cut (that
corresponds to the C%-separator) adds (p — 1) degrees of freedom in the horizontal direction, increasing the system
size to (n, + p + (p — 1))(n, + p). The horizontal cut adds (p — 1) new unknowns in the vertical direction, which
increases the total number of degrees of freedom in the system to (1, + p + (p — 1))?. Thus, the number of degrees of
freedom for a given mesh (1, = 2° : s € N*) partitioned into 2% macro-elements is

N=n'=@m+p+Q -(p-1)
N——

Enrichment

=2'+p+ Q2 - Dp- D),

where (2¢ — 1) is the number of cuts performed in each spatial dimension, and the total cost to factorize an rIGA
system is given by

0 = Omacro-clement + 9C°-separalos

_ O((%)B(d—l) p3) N 0(n3(d—1))

( 262 | (n3(d—1) p3) +0 (n3(d—1>)) . [FLOPs]

—_——
CP~! macro-elements CV-separators
contribution contribution

6. Model Problem
We use the Laplace equation in (4) as a model problem to exemplify the performance of rIGA.

Find u such that :
V-(Vu)=0 in Q
u=1 on 0Q; @)
u=0 on 0Q
Vu-n=0 on 0Q),,,

where Q = [0, 119, with d being the dimension, 0Q,, U 0Qy U 0Q; = 9Q, dQ,, N 0Qy = & and 9Q,, N Q| = &. The
problem domains for 2D and 3D are illustrated in Figure 13.
7. Implementation details

We use unmapped B-splines to build the model problem assuming a unitary domain. The tensor product of
the unmapped B-splines defines the domain of the problem, obtaining a regular and structured mesh. The meshes
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Figure 13: Model problem domain.

Dimension
d=2 d=3

5122(s=9)  323%(s=5)
20 1024%(s = 10)  643(s = 6)
2048%(s = 11)  128%(s = 7)

Table 2: Mesh sizes used to solve the model problem.

incorporate the same number of elements in each spatial dimension, n, = 2°, in order to obtain a uniform structure
when partitioning the system. Table 2 presents the implemented mesh sizes.

Four polynomial orders p ranging from 2 to 5 are used to perform the discretization. These polynomial orders are
kept constant in each problem.

For every mesh size, we consider a range of cases with particular number of partition levels using C°-separators.
The first case assumes no reduction of continuity (no level of partition uses C-separators, which corresponds to the
conventional tensor-product IGA), while the last one involves a reduction of the continuity along all the inter-elements
boundaries (all levels of partition employ C°-separators, which correspond to the conventional FEA). This allows us to
analyze the impact of the local reduction of continuity in the computational cost, besides finding the optimal continuity
reduction for rIGA.

Our implementation is based on library PetIGA, which is a high-performance software platform for IGA [42]
based on PETSc [43, 44]. PetIGA has been used to model many engineering applications since its inception [3, 5, 8,
9, 42, 45-49].

The sequential version of the multifrontal solver MUMPS [50, 51] is used to solve the algebraic system resulting
from the discretization. The automatic choice of partitioning technique made by MUMPS is used, resulting in a
METIS implementation for all the cases.

All computational tests are solved sequentially on TACC Stampede system. Each node is outfitted with turbo
boost 2.7 GHz cores (up to peak 3.5 GHz in turbo mode) and 1TB of memory (URL: http://www.tacc.utexas.edu).

8. Numerical Results

In this section, we present the numerical results. We report the FLOPs, computational times (in seconds) and
memory requirements (that correspond to the non-zero entries in factors L and U expressed in Mbytes) for all the
analyzed variations in mesh size and polynomial order.

11



8.1. Fit of estimates

In order to fit the theoretical estimates with the computed number of FLOPS required to factor the systems, we
introduce two constants, namely, A and B, as follows:

g = A 20G-24)¢ (n3(d—1)p3) +B (n3(d—l))
2D: = (A27p* +B) (2 +p+ (2 - D)(p- 1))3 +L.O.T., [FLOPs]
3D: 0=(A2p* +B) (2 +p+ (2 - D)(p- 1))6 +L.0.T., [FLOPs]

where L.O.T. stands for lower order terms. For each p, we estimate A and B by solving a least square fitting problem
for a large mesh size. Specific values of A and B are presented in Table 3. Constants A and B are almost independent of

Polynomial order p

2 3 4 5

Constants

2D A 245 215 215 200
B 265 245 225 200
D A 66 63 60 57
B 78 72 72 72

Table 3: Fitting constants computed for every polynomial order in 2D and 3D.

the polynomial order, but depend on the problem dimension. Both the contribution of forming the Schur complements
and the total number of FLOPs performed by LAPACK to factorize the system [52] are included in these constants.

8.2. Number of FLOPs

Figures 14 and 15 show the number of FLOPs required to factor the algebraic system for 2D and 3D, respectively.
The number of FLOPs is plotted with respect to the macro-element size (n¢,_,). The macro-element size diminishes

as we add C?-separators. Thus, the C° FEA case corresponds to a macro-element size equal to 1, while the C?~! IGA
case corresponds to the largest macro-element size. These numerical results confirm the following:

a The theoretical estimates approximate well the numerical results.

b The optimal discretization (in terms of minimizing the number of FLOPs of the direct solver) is in an intermedi-
ate stage between uniformly global continuity C® and C?~!. Neither of the two extreme cases provides optimal
discretizations.

¢ The reduction factor in the number of FLOPs by using an optimal discretization is approx. (p + 1) for 2D and
2
p- for 3D.

In Figure 14, rIGA shows a maximum reduction factor of the number of FLOPs of 40 with respect to C”~! IGA.
This reduction factor is obtained when the model problem is solved with N, = 2048 and a polynomial order p = 5.
Further numerical results showed that when we solve the problem with N, = 20482 and a polynomial order p = 9,
rIGA reduces the number of FLOPs by a factor of 70 with respect to C?~! IGA, and 90 with respect to C° FEA.

In 3D, the maximum reduction factor of the number of FLOPs observed when using rIGA is about 26 with respect
to CP~! IGA, and even larger with respect to C° FEA. This reduction factor was analytically obtained because the
CP~! IGA case cannot be computed due to memory limitations.
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Figure 14: Number of FLOPs required to eliminate the degrees of freedom in the 2D model problem. The solid lines (—) correspond to the
theoretical estimates and the dashed lines with rounded markers (-o-) represent the numerical results.
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Figure 15: Number of FLOPs required to eliminate the degrees of freedom in the 3D model problem. The solid lines (—) correspond to the
theoretical estimates and the dashed lines with rounded markers (-0-) represent the numerical results.
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8.3. Computational times

Figures 16 and 17 provide computational times for 2D and 3D. The plots present the solution time with respect
to the macro-element size. Table 4 quantifies the computational times for C° FEA, C?~! IGA and the optimal case
(rIGA) for every polynomial order in a fine mesh.

Mesh size N, = 20482 N, = 1283
p cr! c? Optimal case | Gain | CP~! C° | Optimal case Gain
2 1.1e+02 1.7e+02 3.2e+01 3.44 | 1.4e+04  *** 3.4e+03 4.28
3 3.2e+02 4.2e+02 3.7e+01 8.65 | 5.4e+04  F¥* 3.9e+03 13.69
4 6.9e+02 ok 4.6e+01 15 2.1e+03  *** 1.9e+02 11.32
5 1.3e+03 HHE 5.9e+01 22.03 | 4.2e+03  *** 3.2e+02 13.08
9 6.7e+03 HHE 1.8e+02 37.2 - - - -

Note: * * * The computation exceeds the maximum available physical memory, thus the solution failed (out of memory).
Blue stands for a mesh size N, = 64°.

Table 4: Computational time (in seconds) for the model problem discretized with the asymptotic mesh and maximum gain of the optimal case
with respect to the CP~! IGA discretization.

The system that results from discretizing the model problem with N, = 20482 and a polynomial order p = 9
reports the maximum gain in solution time for 2D (corresponding to a time factor of 37.2). The rIGA optimal system
requires almost 3 minutes to be solved, while the system obtained from C”~! IGA is solved in approximately 2 hours.
In 3D, the system discretized with N, = 1283 and polynomial order p = 3 reports a time reduction factor of 13.69,
Thus, the problem is solved in 1 hour with rIGA instead of the 15 hours required when using C?~' IGA. This is
the maximum reproducible gain we obtained in 3D, since the C”~! cases solved with a mesh size N, = 128* and
polynomial orders p = 4 and p = 5 could not be resolved (due to memory limitations). Nonetheless, theoretical
estimates clearly indicate that gains associated to rIGA vastly increase as we increment p.
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Figure 16: Computational time (in seconds) to factorize the 2D model problem.
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8.4. Memory requirements

Figures 18 and 19 show the memory requirements (in Mbytes) for 2D and 3D, respectively. We display the
memory usage reported by the multifrontal solver MUMPS along with the theoretical estimation computed with
equations 5 and 6, which are derived in Appendix A.
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Figure 18: Memory requirements for the factorization of the 2D model problem. The solid lines (—) correspond to the theoretical estimates and

the dashed lines with rounded markers (-o-) represent the numerical results.

In 2D, the maximum reduction in memory usage among those considered in Figure 18 corresponds to the case
with N, = 20482 and polynomial order p = 5. The factor of memory reduction is 4. In 3D, the system discretized
using N, = 1283 and polynomial orders p = 5 reports the maximum reduction in memory requirements. In this case,
the theoretical factor is 2.9. Systems discretized with higher polynomial orders involve larger reduction of memory

usage.
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Figure 19: Memory requirements for the factorization of the 3D model problem. The solid lines (—) correspond to the theoretical estimates and
the dashed lines with rounded markers (-o-) represent the numerical results.

In 3D, the discrepancies observed for high p and low n between the theoretical estimates and the recorded data for
memory usage are due to the exclusion of lower order terms from the theoretical estimates. Such lower order terms
(in the 3D memory estimates) are only one power of n smaller than the dominant cost, but they are multiplied by a
larger power of p. Thus, they become dominant on the pre-asymptotic regime (low n and large p). This situation does
not occur in the FLOPs estimates, because for that case, the dominant cost is n° times larger than lower order terms,
and thus, estimates rapidly arrive to the asymptotic regime.

9. Conclusions

In this paper, we propose a refined isogeometric analysis (tIGA) method to solve problems governed by linear
partial differential equations. Starting from a highly continuous isogeometric analysis discretization, our strategy re-
duces the continuity over certain hyperplanes that act as separators during the elimination of degrees of freedom. To
illustrate the impact of the continuity reduction on a direct solver, we report the floating point operations (FLOPs),
computational times, and memory requirements to solve linear systems resulting from the refined isogeometric dis-
cretization with structured meshes and uniform polynomial orders. Neither traditional finite elements nor isogeometric
analysis provides the optimal number of FLOPs for a fixed mesh size. The optimal is achieved by the rIGA method
we introduce herein.

The refined isogeometric discretization (rfIGA) solves problems (with large mesh sizes and high polynomial orders)
approximately p? times faster than problems discretized using C”~! isogeometric analysis (IGA), and the gains with
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respect to finite element analysis (FEA) are even larger, especially in 3D. The memory requirements also decrease.

In 2D, the cases solved using macro-elements (subdomains) with a size of 167 elements report the lowest compu-
tational times in most of the configurations tested. In 3D, a wider range of macro-element size options is observed.
For small mesh sizes (N, = 32%), optimal macro-elements consist of 83 elements, while as the mesh size increases to
N, = 1283, the optimal macro-element size tends to 163 elements.

The maximum polynomial order that we use to solve the model problem is p = 9. The optimal results, in this
case, report a gain factor with respect to IGA (CP~!) of almost 70 times in terms of FLOPS and more than 35 times in
terms of time. The theoretical gain factor of rIGA with respect to FEA (C?) is almost 90 times in FLOPS. In 2D, the
problem that we solve in 3 minutes with rIGA, requires approximately 2 hours to be solved with IGA.

In 3D, the maximum reproducible gain with respect to C”~! is 13.69, which corresponds to N, = 128° and
polynomial order p = 3. In this case, the problem that we solve in one hour with rIGA requires approximately 15
hours to be solved with rIGA, and more than 100 hours if one employs FEA.

Since the optimal refined isogeometric discretization consists of an enriched/nested space with respect to CP~!
IGA, the best approximation error is improved by definition. Similarly, the best approximation error of the cor-
responding FEA discretization is smaller than that of rIGA. The total numerical error for stable elliptic problems
improves when going from IGA to rIGA discretizations. For the case of hyperbolic and parabolic problems, stability
may play a crucial role on the total approximation error. A detailed error analysis in hyperbolic and parabolic systems
will be performed in a future work.

Possible lines of future research include the study of non-tensor product refined isogeometric analysis discretiza-
tions, including those incorporating T-splines. The savings for this strategy may vary depending upon the particular
discretization. The main idea is to employ C° T-splines on the top level of a given macro-element in order to separate
the interior of the possibly locally-refined macro-element from the rest of the computational domain.

We are also working on a parallel implementation of the refined isogeometric analysis that will be analyzed in a
forthcoming publication. The use of refined isogeometric analysis is expected to be beneficial in terms of distributed
memory parallel computations, since separators diminish the amount of information that needs to be shared among
neighbouring processors, thus, minimizing the communication cost and increasing its parallel scalability.

A third line of future research consists of expanding the refined isogeometric analysis strategy to the case of
iterative solvers by using an static-condensation technique at the macro-element level.
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Appendix A: Derivation of memory estimation

We compute the number of non-zero entries in factors L and U based on the matrix decomposition procedure
performed by the multifrontal direct solver. The matrix decomposition eliminates the dof in sets (either subsystems or
separators). Each set consists of ¢ fully assembled dof and its elimination results in O (qz) non-zero entries. The total
number of non-zero entries on the factors L and U is given by

o (\P|C0 (qxep|C°)2) + Nm—e (O (\PICF’l (Qm—e)z))

, @-n/d \?
0(\{%0 (N(d—l)/d)2> + 210 (l}qc,u ((%) p) )

O (Pleon™ V) + O (Plern*“™Vp?) + LOT.

22i(d-1)

where 2/ and N/2 are the number and size of the macro-elements. ¥|co and ¥|c»-1 include the contribution of all the
separators to the total number of non-zero entries. We compute ¥|co as
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where j refers to the level of partition, and j + m is the number of steps of partition. Moreover, we assume that ¥|cp-1

behaves as

(log, 29)* 2D
Wi =
3D

[(STES I S [8)

where ¢ is the number of levels of the macro-elements partitioning. The total number of non-zero entries for 2D and
3D are

3 N3
2D: §=0 ((5 log, (277) + 3 log, (24 p* ) n2) +L.O.T.,

CV-separators CP~! macro-elements
contribution contribution

3D: 9:0((;(1—2—% zz"'p2 )n4)+L.0.T.

~——— [u—
CO-separators CP~! macro-elements
contribution contribution

Note that these equations are multiplied by 8 - 107 in order to express the memory estimation in Mbytes. We use
8 - 1079 since the computations are performed with double precision.
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