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Abstract 

The Nuclear Magnetic Resonance (NMR) log is amongst the functional techniques in petroleum 

investigation to segregating the reservoir and non-reservoir horizons precisely; furthermore, the NMR log 

provides an improved method to determine reservoir petrophysical parameters. Unfortunately, these data 

are usually sparse since acquiring NMR logs in producing cased wells is not possible and it is one of the 

most expensive tools in the logging industry thus its associated costs are the major limitation of its usage. 

Consequently, researchers have recently studied to virtually extract the NMR parameters via other routes. 

One such route, which we propose here is the possibility of estimating the T2 distribution curve and 

magnetization decay by establishing a relationship between micro-CT images and NMR parameters by 

means of artificial neural networks (ANN) and image analysis algorithms. Specifically, two ANN 

networks were designed, which numerically image features from micro-CT images as inputs, while the 

amplitude of the magnetization and relaxation time were output parameters. We assessed the procedure 

by taking the error rate and correlation coefficient into consideration and we conclude that the ANN 

model is capable of finding logical patterns between image features and NMR responses, and is thus able 

to reliably predict NMR response behavior. Furthermore, we quantitatively compared ANN and random 

walk (RW) NMR predictions, and we demonstrate that ANN readily outperforms RW in terms of 

accuracy. 
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1. Introduction 

The quality of a reservoir system controls the economic profitability of a field. Typically this quality is 

assessed by conventional porosity and resistivity logs, however these logs have serious limitations  

(Asquith and Krygowski, 2004); for example the presence of clay leads to errors in porosity estimation, 

since porosity logs (neutron, density and sonic) strongly relies upon rock matrix than reservoir fluids 

properties (Asquith and Krygowski, 2004). Furthermore, the resistivity tools are unable to distinguish 

between clay-bound, capillary-bound and reservoir’s moveable water, which ends in an overestimation of 

the amount of water saturation and ignoring the reservoir units in some cases. These limitations were 

tackled by NMR logging (which introduced in 1978 by Schlumberger (Maute, 1992)), which played an 

important role in the specification of reservoir pore architecture and characterization and measurement of 

oil and gas in the formation. NMR logging is non-destructive, continuous and fast, which is certainly 

superior to conventional methods, providing reservoir appraisement without the environmental impacts 

possible (Coates et al., 1999). Technically the NMR measurement responds only to hydrogen nuclei (in 

water, oil and gas) in the pore space (Darling, 2005). For this reason, NMR logging provides the 

feasibility of immediate quantification of porosity and the differentiation of fluid types and other 

important petrophysical parameters being connected to the pore morphology (Darling, 2005). 

Since NMR logging is one of the most expensive tools in the logging industry (Blümich, 2005), 

researchers have recently studied to virtually extract the NMR parameters via different routes. Up to now, 

most studies focused on the exploitation of Artificial intelligence (AI) as an estimator to simulate the 

NMR parameters from conventional well log data, e.g. Mohaghegh et al. (2001) applied AI methods to 

predict the NMR-derived permeability, effective porosity and irreducible water saturation in a field 

located in East Texas; while Labani et al. (2010) struggled to estimate the NMR free fluid porosity and 

permeability from well log data using AI. Golsanami et al. (2014) used fuzzy logic, neuro-fuzzy and 

neural networks to estimate the magnetic resonance T2 distribution and the T2 logarithmic mean from well 

log data in the Zagros Basin, Iran. Furthermore, Talabi et al. (2009) simulated T2 distribution and 



3 
 

magnetization decay by establishing a relationship between micro-CT images and NMR parameters using 

a random walk (RW) method, this stochastic process consists of successive random steps (Lawler and 

Limic, 2010). Talabi et al. (2009) synthesized the NMR parameters using random walk theory in which 

the pore space voxels of sand packs were successively surveyed. The current study proposes a new 

numerical procedure for estimation of the T2 curve and magnetization decay from micro-CT images 

integrating image analysis and neural networks. The chief section of the suggested process is a voxel-

based feature extraction as a branch of image analysis techniques. The main steps of the methodology are 

shown in Fig. 1. The reliability of the technique is verified by the application of the samples displayed in 

Talabi et al. (2009). 

 

Fig. 1. Flowchart of proposed methodology. 

2. Theoretical background 

2.1 NMR data 

The NMR log uses a radio frequency (RF) transmitter, receiver, and a permanent magnet. Before the tool 

generates magnetic fields that align the spin axes of the protons in a specific route, hydrogen protons 

pertaining to formation fluids was found to have random orientation throughout the pore space. To 

generate a measurable signal, the polarized protons must be at a condition of resonance. Resonance is 

achieved by pulsing the formation with an oscillating field to force these protons out of their new 

equilibrium condition. Once the oscillatory magnetic field is taken away, the magnetic signal emitted by 
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spinning protons relaxing toward the original condition. These protons generate a series of so-called spin 

echoes by applying a sequence of repetitive pulses with the NMR tool.  To synthesize a spin-echo train 

(which constitutes the raw NMR data), an NMR tool measures the amplitude of the spin echoes as a 

function of time.   

The (transverse magnetization) amplitude of the spin-echo train at time t is given by (Kenyon, 1997) 
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Wherein the equivalent magnitude of the transverse magnetization at t = 0 is M0x, T2 is the time constant 

of the transverse magnetization decay (the transverse relaxation time). 

Determining the T2 distribution is of paramount importance in NMR data analysis. This step is a 

mathematical inversion process called echo-fit or mapping. Due to the T2 distribution of rock being a 

continuous function, a multi-exponential model is being utilized by the mapping process that assumes that 

the T2 distribution comprises of m discrete relaxation times T2i with corresponding porosity components 

ϕi. Eq. 2 displays the system of equations that present the individual echoes (Coates et al., 1999). 
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Where through t(i) is the pertaining time as the ith echo was obtained. 
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2.2 Image features extraction 

In brief, Feature extraction is a low-level image analysis operation and composed of a sequence of 

operations on the image matrix (Marmo et al., 2005). An image feature standardly is a part of an image 

that encompasses fascinating attributes or a property of the image which we are interested in, depending 

on the overall goal and what the application is trying to achieve. Correspondingly, in this study several 

tests have been performed on micro-CT images prepared in binary mode (black voxels are the grains and 

white voxels represent pore space) to acquire 21 features (f1-f21) stated in Marmo et al. (2005) as bellow: 

f1 = ratio of edge voxels to the whole voxel; 

f2 = number of white areas; 

f3 = number of voxel of white areas; 

f4 = number of white areas composed of more than 150 voxels; 

f5 = number of voxels within the white areas composed of more than 150 voxels;  

These previous five features (1-5) were extracted from the whole image, while the 16 remaining features 

were obtained out of the each four largest selected white areas. 

f6 – f9 = number of voxel in the white area; 

f10 – f13 = length in voxel of the white area; 

f14 – f21 = number of small and large convex deficiencies; 

The smallest convex polygon is called convex hull, embodying the binary object which the corresponding 

convex deficiency are computed as important features (Liu-Yu et al., 1997). A labeling algorithm detects 

and quantifies the convex deficiencies. The values 100 and 1000 are cut off criteria for a number of 
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voxels to detect convex deficiencies. Hence, the large and small convex deficiencies were determined 

with more than 1000 voxels and less than 100 voxels, respectively. 

Fig. 2 displays the disparity between the features for two samples of sandstone and carbonate rock with 

different sedimentological and petrophysical parameters. 
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Fig. 2. (a) Binary micro-CT image slice through a sandstone (white voxels show pore space), (b) Binary 

micro-CT image slice through a carbonate rock (white voxels show pore space), (c-d) Edge voxels of a 

and b, (e-f) four selected white areas with more than 150 voxels from c and d, (g-f) Convex deficiency of 

one of the selected area in e and f. 
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3. Results and discussion 

3.1. Sample preparation 

In the current investigation, previously achieved data from the samples displayed in Talabi (2008) and 

Talabi et al. (2009) was analyzed. In summary, eight samples (six sand packs (F42A, F42B, F42C, 

LV60A, LV60B and LV60C) and two sandstones (Berea and S3)) were selected for micro-CT imaging 

and NMR measurements. To determining the grain size distributions of the sands British standard meshes 

were used on an electric shaker sieving the samples for 80 min (Talabi, 2008). The sands were then 

poured into a 10 cm long thermoplastic heat shrink sleeve (diameter 3.81 cm) fitted with plastic end caps 

and pieces of circular filter paper to ensure a tight fit and so that no sand was lost. An electric vibrator 

used for tapping and vibrating to ensure compaction, then the samples were placed in an oven at 80 °C for 

20 min and then the samples were left to cool (Talabi et al., 2009). 

3.2. NMR measurements 

Brine saturated sand packs (3.81 cm in diameter by 10 cm in length) were used for the NMR 

measurement. The brine was a solution of de-ionized water with 5 wt. % Sodium Chloride (NaCl) and 1 

wt. % Potassium Chloride (KCl). The reason for adding NaCl was to increase the ionic strength of the 

water (to better approximate formation brine)  and KCl was used to prevent the sand from swelling (clay 

stabilization). NMR relaxation measurements were then performed on a MARAN2 bench top 

spectrometer at a temperature of 308 K and at 2 MHz. The magnetization decay (2 μs inter-echo spacing) 

then generated the T2 relaxation time distribution applying a curvature-smoothing regularization method 

(Chen et al., 1999; Toumelin et al., 2003).  

3.3. Micro-CT imaging 

The micro-CT images (the samples had following dimensions: 0.65 cm diameter and length of 4 cm) were 

acquired on a commercial XMT unit (Phoenix-X-ray System and Services GmbH). These greyscale 

micro-CT images were then filtered and converted to a binary format with the purpose of simulating the 
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NMR parameters. Binarized 3D micro-CT images of F42A-C and LV60A-C sand packs and Berea and S3 

sandstones are illustrated in Fig. 3 (also compare Talabi et al. 2008).  

 

Fig. 3. Binarized 3D micro-CT images of (a) LV60A, (b) LV60B, (c) LV60C, (d) F42A, (e) F42B, (f) F42C, (g) 

Berea and (h) S3. 
 

 

 

3.4. Image features extraction 

The image analysis techniques allow conversion of an object into a set of numbers, i.e., some information 

extraction; the outcome of image analysis is a number or a bunch of numbers or a graph, it is not an image 

(Heilbronner and Barrett, 2014). This methodology was utilized on the binarized images, created 

databases were prepared as input parameters into the ANN model. Accordingly, scanned images of 750 × 
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750 x 450 voxels, with resolutions ranging from 8 to 10 μm were collected and analyzed in MATLAB®. 

Table 1 illustrates the numerical values of aforementioned features of each sample.     

An essential issue that should be considered is rock heterogeneity. A significant size difference between 

samples used for NMR measurement and micro-CT images leads to uncertainty. In order to avoid its 

effect on the results, the scale of the NMR measurements and micro-CT imaging must be similar.  

 

Table 1. Numerical image features of micro-CT images. 

 F42A F42B F42C LV60A LV60B LV60C Berea S3 

f1 0.08422962 0.08889211 0.09030005 0.11858438 0.10871405 0.12689751 0.07270977 0.08815466 

f2 1054 819 610 537 515 1037 7578 5807 

f3 9144359 11002886 11381890 13668674 13549403 11775246 4388720 1780428 

f4 357 174 167 69 97 211 1071 73 

f5 8859557 10766833 11211463 13512938 13404436 11484926 1853851 97976 

f6 716090 2570125 1470676 3092727 1807632 575299 5204 2353 

f7 443154 1976595 1454209 1423447 2897759 555017 5250 1806 

f8 597560 786359 1268110 1633467 1740786 630153 6070 1826 

f9 1022169 809340 1548441 1333164 1696100 926706 5155 2009 

f10 5733.3502 15918.4959 7733.85187 15838.957 9506.22644 3768.21575 173.01441 84.914056 

f11 4016.35353 12495.616 8658.49262 7811.13648 16183.5286 3276.58616 164.976562 76.1896413 

f12 5581.02482 6369.15523 7799.50832 8543.755 9998.68019 4682.28745 208.685193 88.733396 

f13 7115.33542 5571.35117 9378.1143 7938.1651 8617.41387 5837.59785 216.723343 142.895237 

f14 43 105 49 248 98 13 2 9 

f15 17 68 60 117 180 53 5 8 

f16 30 27 60 130 144 54 5 1 

f17 17 39 53 105 119 41 5 3 

f18 95 349 209 433 267 114 5 1 

f19 92 267 223 218 401 117 4 2 

f20 101 124 198 252 243 103 4 4 

f21 166 117 215 220 267 173 5 4 

 

3.5. NMR response simulation by using ANN 

The proposed ANN approach was implemented on a PC with an Intel® Core™ i3 2.27 GHz CPU, 4 GB 

RAM, the Windows 7 operating system. Using MATLAB® software, a Feed-Forward Back-propagation 

type network was designed within three layer for NMR Response estimation from micro-CT images, 
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which is widely believed to outperform those with more layers (Balkin et al., 2000; Khan et al., 2008; 

Kadkhodaie-Ilkhchi et al., 2008; Kadkhodaie-Ilkhchi et al., 2010; Farzi, 2013; Bolandi et al., 2015). The 

network was then trained with the Levenberg Marquardt training algorithm (TrainLM), details of which is 

conveniently accessible in Bishop (1995) and Boadu (1997, 1998). Shifting from input layer to hidden 

layer is performed within Tangent logistic (TANSIG) transfer function whilst linear (PURLIN) transfer 

function preferentially connects the hidden and output layers. The input layer of the trained network 

consisted of 21 neurons, based on the 21 inputs (i.e. the number of extracted features), together with 14 

neurons in the hidden layer. This was the optimal network setup as verified by the root mean squared 

error (RMSE) analysis, Fig. 4. Note that the network succeeded in minimizing the RMSE value in 11 

epochs. Essentially, the performance of the model was measured by RMSE analysis; and this performance 

is equal to the expected value of the square of the difference between the value taken by the estimator and 

the parameter’s true values, exploited to optimizing the value of weights and default bias. Thus, if a 

network runs multiple times, the optimum value of the parameters result in steady output with low 

uncertainty range. Alongside the performance, processing time is another issue which relevant to 

computational power. The architecture of the designed networks is demonstrated in Fig. 5. 

 

Fig. 4. Finding the optimum number of neurons via root mean square error (RMSE) analysis: the RMSE is plotted 

against the number of neurons in the hidden layer. 
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Fig. 5. Schematic diagram of constructed network with transfer functions. w and b are the weight and bias, 

respectively. 

To predict the NMR parameters from image features using the ANN network, four sand packs (F42A, 

F42C, LV60A and LV60C), as well as two sandstones (Berea and S3) were selected. Two ANN models 

were constructed for estimation of T2 distribution and magnetization decay, in both models numerical 

image features were used as input values. In the final step, the  ANN models were applied to simulating 

the NMR response of two additional sand packs (F42B and LV60B). 

So far, Talabi (2008) simulated NMR responses using the RW method resulting in a good agreement 

between the simulated and the experimental measurements. This technique attempts to simulate T2 and 

magnetization decay by establishing a relationship between micro-CT images and NMR parameters. In 

this study, ANN systems were used to develop a new correlation for NMR parameter prediction based on 

micro-CT images. All the laboratory data set utilized for our analyses throughout this paper are taken 

from Talabi (2008) and Talabi et al. (2009). The comparisons between predicted and measured values 

utilizing RW and neural networks (Table 2) show both techniques were successful in generating the NMR 

parameters. Also, drawing an analogy between ANN and RW results shows that ANN has had an 

improvement on predicting the amplitude of the transverse magnetization and relaxation time. RMSE and 

correlation coefficient (R) between measured and estimated data in test samples were considered as a 

criterion to evaluate the models accuracy. According to Fig. 6, the ANN simulated T2 curve and 

magnetization decay has approximately been fitted with experimental data. The ANN model predicted T2 
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curve for F42B and LV60B sand packs with RMSE of 0.0121 and 0.0037 and correlation coefficients; R2 

= 0.9748 and 0.9980, respectively; which are the evidence of the best performance of the ANN model.  

The ANN simulated magnetization decays and T2 distributions of the F42B and LV60B are compared 

with the experimental data and RW simulated curves in Fig. 7 and 8. The results prove that ANN 

outperforms the RW method and it can be considered as a powerful tool for NMR response estimation, 

especially in cases where an accurate estimation criterion is critical. 

 

Fig. 6. Crossplots showing correlation coefficient between Experimental and predicted T2 distributions by ANN and 

RW for F42B and LV60B sand packs.  
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Fig. 7.a. Comparison of the experimental magnetization decay with RW and ANN predictions for F42B. b. 

Comparison of the experimental magnetization decay with RW and ANN predictions for LV60B. 

Fig. 8a. Comparison of the experimental T2 distribution with RW and ANN predictions for F42B. b. Stem diagram 

of the differences in the porosity values of RW and ANN predictions with experimental T2 distribution for F42B. c. 

Comparison of the experimental T2 distribution with RW and ANN predictions for LV60B. d. Stem diagram of the 

differences in the porosity values of RW and ANN predictions with experimental T2 distribution for LV60B. 
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Table 2. Comparison of RMSE for ANN and RW in predicting T2 distributions. 

  

 ANN RW 

 RMSE R2 RMSE R2 

F42B 0.0121 0.9748 0.0121 0.9747 

LV60B 0.0037 0.9980 0.0162 0.9606 

 

4. Conclusion 

The Nuclear Magnetic Resonance (NMR) response is one of the most noteworthy tools which is used to 

precisely characterize the reservoir without environmental effects. In the present study, we have predicted 

the NMR response from microCT numerical image features via an artificial intelligence algorithm with a 

good degree of accuracy. The micro-CT images of six sand packs were used for the construction of the 

neural network (ANN) model and two sand packs were taken to evaluate the satisfaction of the developed 

model. Accordingly, a Feed-Forward Back-propagation multilayered network took an input set of 21 

numerical features predicted the T2 distribution together with the magnetization decay. Quantitative 

comparisons of the results and errors from ANN and RW predictions and experimental data demonstrate 

that for the estimation problem of  NMR T2 curve ANN readily outperforms RW in terms of accuracy (R2 

 0.98 for the ANN model; while R2  0.97 for the RW method on average). One of the other advantages 

of this method is that the solid phase was only considered and fluid phase does not play a role in this 

prediction technique. The main conclusion to be drawn is that the NMR response can be reliably and 

precisely simulated by using image features based neural network models.  
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