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11 ABSTRACT 
 

12 Carbonaceous material (CM) is commonly associated with gold and sulfides in 
 

13 metasediment-hosted orogenic gold deposits. The role of CM in Au deposition is 
 

14 controversial; CM has been proposed to contribute to gold deposition by reducing Au 
 

15 bisulfide complexes, or by facilitating sulfidation, which destabilizes Au in bisulfide 
 

16 complexes with resultant Au deposition. Integration of petrographic observations, 
 

17 thermodynamic models, and geochemical data from metasediment-hosted orogenic gold 
 

18 deposits in New Zealand, Australia, Canada, and West Africa reveals genetic links 
 

19 between sulfides, CM, and mineralization. The results are consistent with the coexistence 
 

20 of CM and pyrite as a consequence of their codeposition from ore fluids, with a minor 
 

21 proportion of CM originally in situ in the host rocks. Au is deposited when pyrite and 
 

22 CM deposition decreases H2S concentration in ore fluids, destabilizing Au(HS)2
–
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(aq) 2    (l) (s) 2(aq) 2   (aq) 

23 complexes. Most CM in gold deposits is deposited from CO2  and CH4 in ore fluids. 
 

24 These findings are applicable to similar deposits worldwide. 
 

25 INTRODUCTION 
 

26 Metasediment-hosted orogenic gold deposits such as the Victorian goldfields of 
 

27 Australia (Bierlein et al., 2001), the Macraes gold deposit of New Zealand (Craw, 2002), 
 

28 and the Paleoproterozoic gold deposits of West Africa (Kříbek et al., 2015) are some of 
 

29 the world’s largest. As with most orogenic gold deposits, ore fluids are low salinity, CO2 

 

30 rich, often CH4 bearing, with pH near-neutral, and are proposed to have been generated 
 

31 during the lower greenschist to amphibolite facies transition (Berge, 2011; De Ronde et 
 

32 al., 2000; Goldfarb and Groves, 2015; Tomkins, 2010). Gold in metasediment-hosted 
 

33 orogenic gold deposits is proposed to be sourced from organic, pyrite-rich sediments (Hu 
 

34 et al., 2016; Large et al., 2011; Pitcairn et al., 2006; Thomas et al., 2011). Mineralization 
 

35 commonly occurs in shear zones at pressures of 1–3 kbar and temperatures of 200–400 
 

36 °C. In auriferous zones, carbonaceous material (CM) is widespread and spatially 
 

37 associated with gold and sulfides (Berge, 2011; Bierlein et al., 2001; Craw et al., 2015; 
 

38 Hu et al., 2015; Kříbek et al., 2015). CM may be in situ, derived from organic matter that 
 

39 was deposited with the sediments and matured during metamorphism (Berge, 2011; 
 

40 Bierlein et al., 2001). Alternatively, CM may be deposited from hydrothermal fluids 
 

41 (Kříbek et al., 2015; Pitcairn et al., 2005). CM has long been thought to contribute to gold 
 

42 deposition, but the role of CM is not well understood. Possible roles for CM were 
 

43 summarized in Hu et al. (2015). 
 

44 1. In situ CM reduces Au in solution to cause gold precipitation via Reaction 1: 45

 4Au(HS)2
–

(aq) + C(s) + 4H
+ 

+ 2H O = 4Au + CO + 8H S , (1) 
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46 where aq is aqueous (e.g., Cox et al., 1995). 
 

47 2. Hydrothermal CM deposited prior to mineralization acts as a reductant via 
 

48 Reaction 1. 
 

49 3. Hydrothermal CM precipitates from fluids with sulfides via Reaction 2; loss of 
 

50 sulfur from solution drives Au deposition via destabilization of aqueous Au-sulfide 
 

51 complexes: 
 

52 2FeO(in silicates) + 4H2S(aq) + CO2(aq) = 2FeS2(s) + C(s)   + 4H2O(l) (2) 
 

53 (modified from Craw et al., 2015). 
 

54 4. CM plays a physical role in Au precipitation by facilitating the formation of 
 

55 shear zones that focus fluid flow (e.g., Upton and Craw, 2008). 
 

56 In this study we combine thermodynamic modeling using the HCh software 
 

57 package (Shvarov and Bastrakov, 1999) with new petrographic observations and 
 

58 geochemical analyses of samples from the Macraes gold deposit, New Zealand, and with 
 

59 published geochemical data from similar gold deposits to test these hypotheses. We use 
 

60 Macraes as the primary example because of the availability of an extensive data set and 
 

61 abundant CM in mineralized rocks (Craw, 2002). However, the results are relevant to 
 

62 other similar gold deposits where CM is ubiquitous (e.g., Kříbek et al., 2015). 
 

63 PETROGRAPHIC OBSERVATIONS 
 

64 In the Macraes deposit, CM, sulfides, and Au are spatially associated in 
 

65 mineralized rocks. CM is dominantly hydrothermal, introduced during mineralization, 
 

66 exhibiting flat spectra of typical graphite in Fourier transform infrared spectroscopy 
 

67 (FTIR) analysis, although some matured in situ CM showing kerogen FTIR spectra also 
 

68 occurs in the host rocks (Craw, 2002; Henne and Craw, 2012; Hu et al., 2015; Pitcairn et 
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69 al., 2005). Gold occurs primarily as microscale inclusions in sulfides (Petrie et al., 2005). 
 

70 Textural analysis suggests that auriferous sulfides are texturally synchronous with, or 
 

71 after the formation of, graphitic microshears that include fine-grained CM and sulfides 
 

72 (Fig. 1; Craw, 2002; Upton and Craw, 2008). 
 

73 SAMPLES AND METHODS 
 

74 Mineralized rocks from the Golden Bar pit in the Macraes deposit were analyzed 
 

75 for sulfur (S) and noncarbonate carbon (NCC). Methods were described in Hu et al. 
 

76 (2015, 2016). Additional S and NCC data for mineralized and unmineralized rocks in the 
 

77 Macraes deposit were collected using X-ray fluorescence at the University of Otago, New 
 

78 Zealand (Craw, 2002). Previously unpublished data are listed in Table DR2 in the GSA 
 

79 Data Repository
1
. Extant S and NCC data were obtained from the Victorian goldfield 

 

80 (Australia; Bierlein et al., 2001), the Touquoy Zone deposit (Meguma terrane, Canada; 
 

81 Bierlein and Smith, 2003), several Paleoproterozoic deposits (West Africa; Kříbek et al., 
 

82 2015), and other Macraes mine pits (Craw, 2002; Petrie et al., 2005). These published 
 

83 data are listed in Table DR3. 
 

84 The HCh program coupled with the Unitherm database was used for 
 

85 thermodynamic modeling (Shvarov and Bastrakov, 1999). Bulk-rock compositions used 
 

86 in the modeling were derived from Otago Schist and Golden Bar pit samples (Hu et al., 
 

87 2015). The chemical components of the systems investigated are Al2O3-CaO-CuO-K2O- 
 

88 FeO-MgO-Na2O-SiO2-ZnO-Au-As-C-CO2-S-H2O. The conceptual model was designed 
 

89 to simulate infiltration of ore fluids generated by underlying metasediments into lower 
 

90 greenschist facies rocks, a process proposed to apply to the Macraes deposit and other 
 

91 similar CM-rich gold deposits (Pitcairn et al., 2006; Large et al., 2011). 
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92 Production of the ore fluid by equilibration of metamorphic fluids with a 
 

93 sedimentary host rock at depth was simulated in an initial model cell in which an H2O- 
 

94 rich fluid (fluid 1) was equilibrated with a graphite- and Au-bearing rock at 500 °C and 5 
 

95 kbar. The rock composition was that of a CM-rich sample (FF-13) from the prehnite- 
 

96 pumpellyite facies and is thought to be typical of the source rocks (Hu et al., 2016). 
 

97 Magnetite, pyrrhotite, and pyrite were set in excess in this initial cell to simulate fluid 
 

98 production under fO2 – fS2 (oxygen and sulfur fugacity, respectively) conditions 
 

99 representative of the greenschist-amphibolite transition. Details of fluid 1 and FF-13 rock 
 

100 compositions are provided in Table DR1. 
 

101 Subsequent model cells were designed to simulate spatial variation in fluid-rock 
 

102 interaction during ore fluid infiltration into lower greenschist metasediments. The 
 

103 composition of these rocks was based on that of a Golden Bar pit sample (GB-01; Table 
 

104 DR1). In the model, the ore fluid infiltrates a notional cell containing GB-01 at 3 kbar 
 

105 and a specified mineralization temperature (Tmin). After equilibration of the ore fluid with 

the 
 

106 rock in that cell at Tmin, the fluid was passed to the next cell at the same pressure and at 
 

107 Tmin, where it was equilibrated and passed on again. The first cell of this model, where the 
 

108 ore fluids are added to the host rock at Tmin, simulates the addition of channelized fluid to 
 

109 a host rock with which the fluid is not in thermal or chemical equilibrium. Subsequent 
 

110 cells simulate slower pervasive isothermal and isobaric infiltration of the fluid into the 
 

111 surrounding country rock. Infiltration at 160–400 °C was investigated to assess the 
 

112 effects of fluid infiltration at different levels in the crust (Table DR4). 
 

113 The integrated fluid:rock ratio for each simulation was 1:1 by mass. Simulations 
 

114 were run to assess the effects of adding this fluid in different numbers of increments, 
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115 from 1 to 20, i.e., with instantaneous fluid:rock ratios between 0.05 and 1. Changes in the 
 

116 instantaneous fluid:rock ratio did not affect the conclusions (Table DR5). Phase 
 

117 separation was neglected because there is no evidence of phase separation reported from 
 

118 Macraes (De Ronde et al., 2000). The dependence of our conclusions on the assumption 
 

119 that the fluid did not reequilibrate between the source and the host rock was also tested by 
 

120 running a model in which the fluid was reequilibrated at Tmin (e.g., 220 °C) and 3 kbar 
 

121 prior to infiltration into the host rock. The results from this alternative model are 
 

122 consistent with those presented here (Table DR6). 
 

123 The results for 14 cells are presented here because this number was sufficient to 
 

124 reproduce the mineralogical zoning observed in the field. Note that the bulk composition 
 

125 of GB-01 was set such that fluid was present in the host rock (fluid:rock = 0.025 by 
 

126 mass) prior to ore fluid infiltration. Equilibration between the ore fluid and the country 
 

127 rock thus involves mixing between the country-rock fluid and the infiltrating fluid, as 
 

128 well as reaction between the infiltrating fluid and the host rock. It was therefore 
 

129 necessary to include the host-rock fluid in calculations of species concentration changes 
 

130 during reaction. Changes in species concentrations were calculated for each cell by 
 

131 comparing the concentrations of the species of interest in the unreacted mixture with 
 

132 those in the equilibrated products. 
 

133 CM abundance is reported as NCC for natural samples and Cmodel for modeled 
 

134 graphite. In reality, CM in natural samples is not pure graphite, but a complex mixture of 
 

135 C-O-H compounds that are difficult to characterize and currently impossible to model. 
 

136 Representation of CM by graphite in the model introduces uncertainty, but primary  
 

137  trends are considered robust because CM will respond 
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138 to external changes in pressure, temperature, and redox in a way similar to graphite. 
 

139 Whole-rock sulfur concentration is referred to as S for natural samples and Smodel for 
 

140 modeling results. 
 

141 RESULTS 
 

142 Geochemical Analyses 
 

143 In unmineralized rocks, the S and NCC contents are generally <1 wt% (Fig. 2). 
 

144 The data in mineralized rocks show considerable scatter, but the S and NCC contents 
 

145 range to values ~10 times higher than those in unmineralized rocks (Fig. 2). 
 

146 Thermodynamic Modeling 
 

147 Calculated mineral assemblages in the mineralized rock are consistent with those 
 

148 observed in the field, comprising graphite, quartz, pyrite, arsenopyrite, calcite, siderite, 
 

149 muscovite, epidote, chlorite, and albite. Infiltration at different temperatures produced 
 

150 assemblages compatible with known phase stability fields (Table DR4). Pyrite and 
 

151 arsenopyrite are predicted to coexist at temperatures <310 °C. 
 

152 Typical model results for 220 °C, 3 kbar are shown in Figure 3. Deposition of Au, 
 

153 sulfides, and graphite occurs in all cells, but primarily in the first infiltration cell (Fig. 3). 
 

154 Pyrrhotite is stable in the unaltered model host rock, consistent with Pitcairn et al. (2006), 
 

155 but pyrite is the dominant sulfide in infiltrated rocks (Fig. 3A). In unaltered rocks at 
 

156 Macraes, As is present as arsenian pyrite, which cannot be accommodated by the model. 
 

157 Therefore, calculated arsenopyrite is reasonable. Additional arsenopyrite is predicted in 
 

158 the outer margins of the pyrite-rich zone (Fig. 3B). Au precipitation is accompanied by a 
 

159 decrease in the concentration of Au bisulfide complexes (Fig. 3C). 
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160 The H2 concentration in equilibrated model fluids decreases in cell 1 and 
 

161 increases slightly in the following cells; however, the concentration in each cell is always 
 

162 less than that in unreacted mixtures (Fig. 3D). This means that small amounts of H2 are 
 

163 consumed during pyrite deposition. 
 

164 The modeled concentration of graphite (Cmodel) is the sum of graphite in the 
 

165 unreacted rock plus precipitated graphite (Fig. 3E). Precipitated graphite dominates 
 

166 Cmodel, particularly in the first infiltration cell. Infiltrating CO2 is reduced and precipitates 
 

167 as graphite. Inspection of the mineral modes allows deduction of the amount of CO2 that 
 

168 is reduced (RE) to form graphite (CO2,RE) via 
 

169 CO2,RE(aq) = CO2,lost – CO2,carbonates, (3) 
 

170 where CO2,lost is the CO2 lost from solution and CO2,carbonates is the CO2 deposited as 
 

171 carbonate. 
 

172 Graphite precipitation is also accompanied by a decrease in the CH4 concentration 
 

173 in the fluid (CH4,RE) (Fig. 3E). CO2,RE and CH4,RE account for 51%–53% and 47%–49% 
 

174 of precipitated graphite, respectively. Model results at higher and lower temperatures 
 

175 show the same features (Table DR4). 
 

176 DISCUSSION AND CONCLUSIONS 
 

177 Consistency of Rocks with Model Results 
 

178 Primary trends in mineralized natural rocks are replicated by the model. These 
 

179 include the increase in S and NCC contents (Fig. 2), syndepositional pyrite and graphite 
 

180 (Figs. 1C and 1D), and arsenopyrite peripheral to pyrite (Fig. 1). Features not replicated 
 

181 by the model, such as the late pyrite and arsenopyrite that overprints graphitic 
 

182 microshears (Figs. 1A and 1B), are texturally late and attributed to later fluid flow events, 
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183 and the fact that mineralization is caused by infiltration of multiple fluids with different 
 

184 compositions rather than a monotonous single fluid infiltration event (Large et al., 2012). 
 

185 Precipitation of Sulfides 
 

186 The modeled coprecipitation of Au, sulfides, and graphite is most consistent with 
 

187 hypothesis 3 herein. Further information can be gained by an exploration of the electron 
 

188 transfer processes that form pyrite, graphite, and Au from aqueous Au
+ 

in Au bisulfide, 

189 C
4+ 

in CO2,RE, C
4– 

in CH4,RE, and from S
2– 

in bisulfide and H2S. 
 

190 The most obvious change in fluid composition during fluid infiltration is a drop in 
 

191 CO2,RE and CH4,RE concentrations that coincides with graphite deposition. Transfer of 
 

192 electrons between CO2,RE and CH4,RE forms water and graphite via Reaction 4 (e.g., 
 

193 Ohmoto and Kerrick, 1977): 
 

194 CO2,RE(aq) + CH4,RE(aq) = 2C(s)  + 2H2O(l). (4) 
 

195 Calculated changes in modeled species abundances indicate that this reaction 
 

196 accounts for 94%–98% of precipitated graphite, with >90% of the CO2 and CH4 carried 
 

197 into the host rock by the ore fluids. However, the drop in CO2,RE concentration is larger 
 

198 than that of CH4,RE, indicating that more CO2,RE than CH4,RE is involved in fluid:rock 
 

199 reaction. Of the graphite that formed by CO2,RE consumption, 2%–6% is not balanced by 
 

200 CH4,RE consumption and requires additional electrons. To investigate the electron transfer 
 

201 processes that formed this additional graphite, the precipitated graphite was split into two 
 

202 components: Cmodel1, graphite that can be accounted for by Reaction 4, and Cmodel2, 
 

203 graphite that cannot be accounted for by Reaction 4. 
 

204 Formation of pyrite from H2S in solution requires an electron acceptor because 
 

205 divalent S
2– 

loses electrons to become monovalent S
– 

in pyrite. In light of the CO2,RE- 
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206 CH4,RE imbalance discussed here, CO2,RE is a possible electron acceptor in the modeled 
 

207 system. The Smodel:Cmodel2 ratio was calculated, because if CO2,RE provides the electron 
 

208 acceptor for H2S-hosted sulfur, then pyrite and Cmodel2 should be correlated. The 
 

209 Smodel:Cmodel2 mass ratio is ~10 in all cells, which corresponds to a molar ratio of 4, as 
 

210 predicted by Reaction 2. Additional S deposition could be driven by transfer of electron 
 

211 to iron, e.g., via 
 

212 Fe2O3(in silicates or oxides) + 2H2S(aq) = FeO(in silicates) + FeS2(s) + 2H2O(l). (5) 
 

213 Other electron transfer reactions can be written that involve H2 and O2. However, 
 

214 the concentrations of these species in the model fluids are sufficiently low that such 
 

215 reactions could not contribute significantly to the redox budget of the mineralization 
 

216 process. 
 

217 In natural systems, a combination of reactions such as Reactions 2, 4, and 5 
 

218 operate during time-integrated fluid flow to produce the observed S and NCC 
 

219 concentrations and petrography. The extent of progress of each reaction would depend on 
 

220 the microenvironment of mineralization in each rock, so the scattered natural data could 
 

221 be produced by a continuum between rocks in which reactions such as Reaction 2 
 

222 dominated sulfide deposition and those in which reactions such as Reaction 4 dominated 
 

223 graphite deposition (Fig. 2). Fluid infiltration prior to and post-Au mineralization, as well 
 

224 as progress of Reaction 5 and premetamorphic sulfide and CM in the natural rocks, 
 

225 would further alter S and NCC concentrations, so scattered natural data are expected. 
 

226 Gold Precipitation 
 

227 The model results suggest that the coexistence of CM and pyrite, often observed 
 

228 in natural samples, may be a consequence of their codeposition from sediment-derived 
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229 fluids, with a minor proportion of CM originally in situ in the host rocks. Deposition of 
 

230 pyrite and CM in the model is accompanied by gold precipitation (Fig. 3C). Au in the 
 

231 model is transported by the gold bisulfide complexes Au(HS)
0 
and Au(HS)2

–
. Decrease of 

 

232 H2S in the ore fluid drives destabilization of Au bisulfide complexes and causes gold 
 

233 precipitation (e.g., Seward, 1973). This model uses a sediment-derived ore fluid, as 
 

234 suggested by Large et al. (2011), and produces results consistent with observations. 
 

235 However, alternative sources of fluid, such as magmatic fluids, are not excluded by the 
 

236 model. 
 

237 Implications for Other Gold Deposits 
 

238 To summarize, most CM is proposed to be hydrothermal, and the primary role of 
 

239 carbon is as CO2, to accept electrons from aqueous H2S via Reaction 2. Consequent 
 

240 deposition of CM and pyrite decreases dissolved H2S concentrations and destabilizes 
 

241 aqueous gold bisulfide complexes. At deposits such as Telfer in Australia, and Carlin in 
 

242 the United States, where host rocks are carbonate rich, decarbonation may provide an 
 

243 additional source of CO2 (Cline et al., 2005; Goellnicht et al., 1989), so the concepts 
 

244 presented here are only partially applicable to such deposits. However, the results 
 

245 presented here are broadly applicable to sediment-hosted orogenic gold deposits globally, 
 

246 although details, such as the spatial relationships and relative modes of arsenopyrite and 
 

247 the inferred importance of fluid immiscibility, may vary. 
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347 FIGURE CAPTIONS 
 

348 Figure 1. Photomicrographs of gold-bearing sulfides from the Macraes deposit (New 
 

349 Zealand). A: Transmitted light image of pyrite (circled by dashed lines) surrounded by 
 

350 graphitic shears (dotted lines) that contain fine-grained carbonaceous material (CM) and 
 

351 sulfides, especially arsenopyrite. B: Backscattered electron (BSE) image of pyrite 
 

352 surrounded by graphitic shears. Pyrite is light gray and arsenopyrite is white. C: 
 

353 Transmitted light image of pyrite overprinting graphitic shears. D: BSE image of pyrite 
 

354 overprinting graphitic shears.  

355 
 

356 Figure 2. Sulfur (S) versus noncarbonate carbon (NCC) by mass from four goldfields 
 

357 compared to model results. A vector from unmineralized rock to cell 1 is used to indicate 
 

358 the modeled trajectory in S versus NCC space. This vector can be considered as the sum 
 

359 of a vector that represents graphite deposition via Reaction 4 (R 4), and a vector toward 
 

360 high Smodel:Cmodel ratios via sulfide deposition (Reaction 2, R 2).  
 

361   

362 
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363 Figure 3. Results of fluid infiltration at 220 °C, 3 kbar. In cell 0, the concentration of 
 

364 solid components represents the amount in unreacted GB-01 and that of aqueous 
 

365 components represents the total amount in unreacted country-rock fluid or ore fluid. 
 

366 Results of the fluid infiltration are presented in cells 1–14. A: Pyrite and pyrrhotite. B: 
 

367 Arsenopyrite. C: Au and Au bisulfide species. D: H2 in equilibrated fluids and unreacted 
 

368 mixtures. E: Total graphite (Cmodel), precipitated graphite, CH4,RE, and CO2,RE (see text). 
 

369  

370 
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