Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G38462.1

- 1 Resolving the role of carbonaceous material in gold
- 2 precipitation in metasediment-hosted orogenic gold
- 3 deposits
- 4 Si-Yu Hu^{1, 2}, Katy Evans¹, Dave Craw³, Kirsten Rempel¹, and Kliti Grice²
- ¹Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845,
- 6 Australia
- ²Western Australia Organic and Isotope Geochemistry Centre, Department of Chemistry,
- 8 Institute for Geoscience Research, Curtin University, GPO Box U1987, Perth, WA 6845,
- 9 Australia
- 10 ³Geology Department, University of Otago, GPO Box 56, Dunedin 9054, New Zealand

11 ABSTRACT

- 12 Carbonaceous material (CM) is commonly associated with gold and sulfides in
- metasediment-hosted orogenic gold deposits. The role of CM in Au deposition is
- 14 controversial; CM has been proposed to contribute to gold deposition by reducing Au
- bisulfide complexes, or by facilitating sulfidation, which destabilizes Au in bisulfide
- 16 complexes with resultant Au deposition. Integration of petrographic observations,
- 17 thermodynamic models, and geochemical data from metasediment-hosted orogenic gold
- deposits in New Zealand, Australia, Canada, and West Africa reveals genetic links
- between sulfides, CM, and mineralization. The results are consistent with the coexistence
- 20 of CM and pyrite as a consequence of their codeposition from ore fluids, with a minor
- 21 proportion of CM originally in situ in the host rocks. Au is deposited when pyrite and
- 22 CM deposition decreases H₂S concentration in ore fluids, destabilizing Au(HS)₂⁻

- complexes. Most CM in gold deposits is deposited from CO₂ and CH₄ in ore fluids.
- 24 These findings are applicable to similar deposits worldwide.

INTRODUCTION

25

26 Metasediment-hosted orogenic gold deposits such as the Victorian goldfields of 27 Australia (Bierlein et al., 2001), the Macraes gold deposit of New Zealand (Craw, 2002), 28 and the Paleoproterozoic gold deposits of West Africa (Kříbek et al., 2015) are some of 29 the world's largest. As with most orogenic gold deposits, ore fluids are low salinity, CO₂ 30 rich, often CH₄ bearing, with pH near-neutral, and are proposed to have been generated 31 during the lower greenschist to amphibolite facies transition (Berge, 2011; De Ronde et 32 al., 2000; Goldfarb and Groves, 2015; Tomkins, 2010). Gold in metasediment-hosted 33 orogenic gold deposits is proposed to be sourced from organic, pyrite-rich sediments (Hu 34 et al., 2016; Large et al., 2011; Pitcairn et al., 2006; Thomas et al., 2011). Mineralization 35 commonly occurs in shear zones at pressures of 1–3 kbar and temperatures of 200–400 36 °C. In auriferous zones, carbonaceous material (CM) is widespread and spatially 37 associated with gold and sulfides (Berge, 2011; Bierlein et al., 2001; Craw et al., 2015; Hu et al., 2015; Kříbek et al., 2015). CM may be in situ, derived from organic matter that 38 39 was deposited with the sediments and matured during metamorphism (Berge, 2011; 40 Bierlein et al., 2001). Alternatively, CM may be deposited from hydrothermal fluids 41 (Kříbek et al., 2015; Pitcairn et al., 2005). CM has long been thought to contribute to gold 42 deposition, but the role of CM is not well understood. Possible roles for CM were 43 summarized in Hu et al. (2015). 44 1. In situ CM reduces Au in solution to cause gold precipitation via Reaction 1: 45 $4Au(HS)_{2(aq)}^{-} + C_{(s)} + 4H_{(aq)}^{+} + 2H_{2}O_{(l)} = 4Au_{(s)} + CO_{2(aq)} + 8H_{2}S_{(aq)},$ (1)

Journal: GEOL: Geology DOI:10.1130/G38462.1

- where ag is aqueous (e.g., Cox et al., 1995).
- 47 2. Hydrothermal CM deposited prior to mineralization acts as a reductant via
- 48 Reaction 1.
- 49 3. Hydrothermal CM precipitates from fluids with sulfides via Reaction 2; loss of
- sulfur from solution drives Au deposition via destabilization of aqueous Au-sulfide
- 51 complexes:

$$2FeO_{\text{(in silicates)}} + 4H_2S_{\text{(aq)}} + CO_{2\text{(aq)}} = 2FeS_{2\text{(s)}} + C_{\text{(s)}} + 4H_2O_{\text{(l)}}$$
 (2)

- 53 (modified from Craw et al., 2015).
- 4. CM plays a physical role in Au precipitation by facilitating the formation of
- shear zones that focus fluid flow (e.g., Upton and Craw, 2008).
- In this study we combine thermodynamic modeling using the HCh software
- 57 package (Shvarov and Bastrakov, 1999) with new petrographic observations and
- 58 geochemical analyses of samples from the Macraes gold deposit, New Zealand, and with
- 59 published geochemical data from similar gold deposits to test these hypotheses. We use
- Macraes as the primary example because of the availability of an extensive data set and
- abundant CM in mineralized rocks (Craw, 2002). However, the results are relevant to
- other similar gold deposits where CM is ubiquitous (e.g., Kříbek et al., 2015).

63 PETROGRAPHIC OBSERVATIONS

- In the Macraes deposit, CM, sulfides, and Au are spatially associated in
- 65 mineralized rocks. CM is dominantly hydrothermal, introduced during mineralization,
- exhibiting flat spectra of typical graphite in Fourier transform infrared spectroscopy
- 67 (FTIR) analysis, although some matured in situ CM showing kerogen FTIR spectra also
- occurs in the host rocks (Craw, 2002; Henne and Craw, 2012; Hu et al., 2015; Pitcairn et

Journal: GEOL: Geology DOI:10.1130/G38462.1

- 69 al., 2005). Gold occurs primarily as microscale inclusions in sulfides (Petrie et al., 2005).
- 70 Textural analysis suggests that auriferous sulfides are texturally synchronous with, or
- after the formation of, graphitic microshears that include fine-grained CM and sulfides
- 72 (Fig. 1; Craw, 2002; Upton and Craw, 2008).

SAMPLES AND METHODS

73

74 Mineralized rocks from the Golden Bar pit in the Macraes deposit were analyzed 75 for sulfur (S) and noncarbonate carbon (NCC). Methods were described in Hu et al. 76 (2015, 2016). Additional S and NCC data for mineralized and unmineralized rocks in the 77 Macraes deposit were collected using X-ray fluorescence at the University of Otago, New 78 Zealand (Craw, 2002). Previously unpublished data are listed in Table DR2 in the GSA Data Repository¹. Extant S and NCC data were obtained from the Victorian goldfield 79 80 (Australia; Bierlein et al., 2001), the Touquoy Zone deposit (Meguma terrane, Canada; 81 Bierlein and Smith, 2003), several Paleoproterozoic deposits (West Africa: Kříbek et al., 82 2015), and other Macraes mine pits (Craw, 2002; Petrie et al., 2005). These published 83 data are listed in Table DR3. 84 The HCh program coupled with the Unitherm database was used for 85 thermodynamic modeling (Shvarov and Bastrakov, 1999). Bulk-rock compositions used 86 in the modeling were derived from Otago Schist and Golden Bar pit samples (Hu et al., 87 2015). The chemical components of the systems investigated are Al₂O₃-CaO-CuO-K₂O-88 FeO-MgO-Na₂O-SiO₂-ZnO-Au-As-C-CO₂-S-H₂O. The conceptual model was designed 89 to simulate infiltration of ore fluids generated by underlying metasediments into lower 90 greenschist facies rocks, a process proposed to apply to the Macraes deposit and other 91 similar CM-rich gold deposits (Pitcairn et al., 2006; Large et al., 2011).

Journal: GEOL: Geology DOI:10.1130/G38462.1 Production of the ore fluid by equilibration of metamorphic fluids with a

92	Production of the ore fluid by equilibration of metamorphic fluids with a
93	sedimentary host rock at depth was simulated in an initial model cell in which an H ₂ O-
94	rich fluid (fluid 1) was equilibrated with a graphite- and Au-bearing rock at 500 °C and 5
95	kbar. The rock composition was that of a CM-rich sample (FF-13) from the prehnite-
96	pumpellyite facies and is thought to be typical of the source rocks (Hu et al., 2016).
97	Magnetite, pyrrhotite, and pyrite were set in excess in this initial cell to simulate fluid
98	production under $f_{\rm O_2} - f_{\rm S_2}$ (oxygen and sulfur fugacity, respectively) conditions
99	representative of the greenschist-amphibolite transition. Details of fluid 1 and FF-13 rock
100	compositions are provided in Table DR1.
101	Subsequent model cells were designed to simulate spatial variation in fluid-rock
102	interaction during ore fluid infiltration into lower greenschist metasediments. The
103	composition of these rocks was based on that of a Golden Bar pit sample (GB-01; Table
104	DR1). In the model, the ore fluid infiltrates a notional cell containing GB-01 at 3 kbar
105	and a specified mineralization temperature (T_{\min}) . After equilibration of the ore fluid with the
106	rock in that cell at T_{\min} , the fluid was passed to the next cell at the same pressure and at
107	T_{\min} , where it was equilibrated and passed on again. The first cell of this model, where the
108	ore fluids are added to the host rock at T_{\min} , simulates the addition of channelized fluid to
109	a host rock with which the fluid is not in thermal or chemical equilibrium. Subsequent
110	cells simulate slower pervasive isothermal and isobaric infiltration of the fluid into the
111	surrounding country rock. Infiltration at 160-400 °C was investigated to assess the
112	effects of fluid infiltration at different levels in the crust (Table DR4).
113	The integrated fluid:rock ratio for each simulation was 1:1 by mass. Simulations
114	were run to assess the effects of adding this fluid in different numbers of increments,

Journal: GEOL: Geology DOI:10.1130/G38462.1

115 from 1 to 20, i.e., with instantaneous fluid:rock ratios between 0.05 and 1. Changes in the 116 instantaneous fluid:rock ratio did not affect the conclusions (Table DR5). Phase 117 separation was neglected because there is no evidence of phase separation reported from 118 Macraes (De Ronde et al., 2000). The dependence of our conclusions on the assumption 119 that the fluid did not reequilibrate between the source and the host rock was also tested by 120 running a model in which the fluid was reequilibrated at T_{min} (e.g., 220 °C) and 3 kbar 121 prior to infiltration into the host rock. The results from this alternative model are 122 consistent with those presented here (Table DR6). 123 The results for 14 cells are presented here because this number was sufficient to 124 reproduce the mineralogical zoning observed in the field. Note that the bulk composition 125 of GB-01 was set such that fluid was present in the host rock (fluid:rock = 0.025 by 126 mass) prior to ore fluid infiltration. Equilibration between the ore fluid and the country 127 rock thus involves mixing between the country-rock fluid and the infiltrating fluid, as 128 well as reaction between the infiltrating fluid and the host rock. It was therefore 129 necessary to include the host-rock fluid in calculations of species concentration changes 130 during reaction. Changes in species concentrations were calculated for each cell by 131 comparing the concentrations of the species of interest in the unreacted mixture with 132 those in the equilibrated products. 133 CM abundance is reported as NCC for natural samples and C_{model} for modeled 134 graphite. In reality, CM in natural samples is not pure graphite, but a complex mixture of 135 C-O-H compounds that are difficult to characterize and currently impossible to model. 136 Representation of CM by graphite in the model introduces uncertainty, but primary 137 trends are considered robust because CM will respond

Journal: GEOL: Geology DOI:10.1130/G38462.1

138 to external changes in pressure, temperature, and redox in a way similar to graphite. 139 Whole-rock sulfur concentration is referred to as S for natural samples and S_{model} for 140 modeling results. 141 RESULTS 142 **Geochemical Analyses** 143 In unmineralized rocks, the S and NCC contents are generally <1 wt% (Fig. 2). 144 The data in mineralized rocks show considerable scatter, but the S and NCC contents 145 range to values ~10 times higher than those in unmineralized rocks (Fig. 2). 146 Thermodynamic Modeling 147 Calculated mineral assemblages in the mineralized rock are consistent with those 148 observed in the field, comprising graphite, quartz, pyrite, arsenopyrite, calcite, siderite, 149 muscovite, epidote, chlorite, and albite. Infiltration at different temperatures produced 150 assemblages compatible with known phase stability fields (Table DR4). Pyrite and 151 arsenopyrite are predicted to coexist at temperatures <310 °C. 152 Typical model results for 220 °C, 3 kbar are shown in Figure 3. Deposition of Au, 153 sulfides, and graphite occurs in all cells, but primarily in the first infiltration cell (Fig. 3). 154 Pyrrhotite is stable in the unaltered model host rock, consistent with Pitcairn et al. (2006), 155 but pyrite is the dominant sulfide in infiltrated rocks (Fig. 3A). In unaltered rocks at 156 Macraes, As is present as arsenian pyrite, which cannot be accommodated by the model. 157 Therefore, calculated arsenopyrite is reasonable. Additional arsenopyrite is predicted in 158 the outer margins of the pyrite-rich zone (Fig. 3B). Au precipitation is accompanied by a

decrease in the concentration of Au bisulfide complexes (Fig. 3C).

159

Journal: GEOL: Geology DOI:10.1130/G38462.1

160	The H ₂ concentration in equilibrated model fluids decreases in cell 1 and
161	increases slightly in the following cells; however, the concentration in each cell is always
162	less than that in unreacted mixtures (Fig. 3D). This means that small amounts of H ₂ are
163	consumed during pyrite deposition.
164	The modeled concentration of graphite (C_{model}) is the sum of graphite in the
165	unreacted rock plus precipitated graphite (Fig. 3E). Precipitated graphite dominates
166	C_{model} , particularly in the first infiltration cell. Infiltrating CO_2 is reduced and precipitates
167	as graphite. Inspection of the mineral modes allows deduction of the amount of CO ₂ that
168	is reduced (RE) to form graphite (CO _{2,RE}) via
169	$CO_{2,RE(aq)} = CO_{2,lost} - CO_{2,carbonates},$ (3)
170	where $CO_{2,lost}$ is the CO_2 lost from solution and $CO_{2,carbonates}$ is the CO_2 deposited as
171	carbonate.
172	Graphite precipitation is also accompanied by a decrease in the CH ₄ concentration
173	in the fluid (CH _{4,RE}) (Fig. 3E). $CO_{2,RE}$ and $CH_{4,RE}$ account for 51%–53% and 47%–49%
174	of precipitated graphite, respectively. Model results at higher and lower temperatures
175	show the same features (Table DR4).
176	DISCUSSION AND CONCLUSIONS
177	Consistency of Rocks with Model Results
178	Primary trends in mineralized natural rocks are replicated by the model. These
179	include the increase in S and NCC contents (Fig. 2), syndepositional pyrite and graphite

(Figs. 1C and 1D), and arsenopyrite peripheral to pyrite (Fig. 1). Features not replicated

microshears (Figs. 1A and 1B), are texturally late and attributed to later fluid flow events,

by the model, such as the late pyrite and arsenopyrite that overprints graphitic

180

181

182

Journal: GEOL: Geology DOI:10.1130/G38462.1

183 and the fact that mineralization is caused by infiltration of multiple fluids with different 184 compositions rather than a monotonous single fluid infiltration event (Large et al., 2012).

Precipitation of Sulfides

185

186

187

188

189

190

191

192

195

196

197

198

199

200

201

202

203

204

205

- The modeled coprecipitation of Au, sulfides, and graphite is most consistent with hypothesis 3 herein. Further information can be gained by an exploration of the electron transfer processes that form pyrite, graphite, and Au from aqueous Au⁺ in Au bisulfide. C⁴⁺ in CO_{2 RE}, C⁴⁻ in CH_{4 RE}, and from S²⁻ in bisulfide and H₂S.
- The most obvious change in fluid composition during fluid infiltration is a drop in CO_{2 RE} and CH_{4 RE} concentrations that coincides with graphite deposition. Transfer of electrons between CO_{2,RE} and CH_{4,RE} forms water and graphite via Reaction 4 (e.g., 193 Ohmoto and Kerrick, 1977):

194
$$CO_{2,RE(aq)} + CH_{4,RE(aq)} = 2C_{(s)} + 2H_2O_{(l)}.$$
 (4)

Calculated changes in modeled species abundances indicate that this reaction accounts for 94%–98% of precipitated graphite, with >90% of the CO₂ and CH₄ carried into the host rock by the ore fluids. However, the drop in CO_{2,RE} concentration is larger than that of CH_{4,RE}, indicating that more CO_{2,RE} than CH_{4,RE} is involved in fluid:rock reaction. Of the graphite that formed by CO_{2,RE} consumption, 2%–6% is not balanced by CH_{4.RE} consumption and requires additional electrons. To investigate the electron transfer processes that formed this additional graphite, the precipitated graphite was split into two components: C_{modell}, graphite that can be accounted for by Reaction 4, and C_{modell}, graphite that cannot be accounted for by Reaction 4.

Formation of pyrite from H₂S in solution requires an electron acceptor because divalent S²-loses electrons to become monovalent S⁻ in pyrite. In light of the CO_{2,RE}-

Journal: GEOL: Geology DOI:10.1130/G38462.1

206	CH _{4,RE} imbalance discussed here, CO _{2,RE} is a possible electron acceptor in the modeled
207	system. The S_{model} : C_{model2} ratio was calculated, because if $CO_{2,RE}$ provides the electron
208	acceptor for H_2S -hosted sulfur, then pyrite and C_{model2} should be correlated. The
209	S_{model} : C_{model2} mass ratio is ~10 in all cells, which corresponds to a molar ratio of 4, as
210	predicted by Reaction 2. Additional S deposition could be driven by transfer of electron
211	to iron, e.g., via
212	$Fe_2O_{3(in_{\underbrace{silicates\ or\ oxides}})} + 2H_2S_{(aq)} = FeO_{(in\ silicates)} + FeS_2(s) + 2H_2O_{(l)}. \tag{5}$
213	Other electron transfer reactions can be written that involve H ₂ and O ₂ . However,
214	the concentrations of these species in the model fluids are sufficiently low that such
215	reactions could not contribute significantly to the redox budget of the mineralization
216	process.
217	In natural systems, a combination of reactions such as Reactions 2, 4, and 5
218	operate during time-integrated fluid flow to produce the observed S and NCC
219	concentrations and petrography. The extent of progress of each reaction would depend on
220	the microenvironment of mineralization in each rock, so the scattered natural data could
221	be produced by a continuum between rocks in which reactions such as Reaction 2
222	dominated sulfide deposition and those in which reactions such as Reaction 4 dominated
223	graphite deposition (Fig. 2). Fluid infiltration prior to and post-Au mineralization, as well
224	as progress of Reaction 5 and premetamorphic sulfide and CM in the natural rocks,
225	would further alter S and NCC concentrations, so scattered natural data are expected.
226	Gold Precipitation
227	The model results suggest that the coexistence of CM and pyrite, often observed
228	in natural samples, may be a consequence of their codeposition from sediment-derived

Journal: GEOL: Geology DOI:10.1130/G38462.1

fluids, with a minor proportion of CM originally in situ in the host rocks. Deposition of pyrite and CM in the model is accompanied by gold precipitation (Fig. 3C). Au in the model is transported by the gold bisulfide complexes Au(HS)⁰ and Au(HS)₂⁻. Decrease of H₂S in the ore fluid drives destabilization of Au bisulfide complexes and causes gold precipitation (e.g., Seward, 1973). This model uses a sediment-derived ore fluid, as suggested by Large et al. (2011), and produces results consistent with observations. However, alternative sources of fluid, such as magmatic fluids, are not excluded by the model.

Implications for Other Gold Deposits

To summarize, most CM is proposed to be hydrothermal, and the primary role of carbon is as CO₂, to accept electrons from aqueous H₂S via Reaction 2. Consequent deposition of CM and pyrite decreases dissolved H₂S concentrations and destabilizes aqueous gold bisulfide complexes. At deposits such as Telfer in Australia, and Carlin in the United States, where host rocks are carbonate rich, decarbonation may provide an additional source of CO₂ (Cline et al., 2005; Goellnicht et al., 1989), so the concepts presented here are only partially applicable to such deposits. However, the results presented here are broadly applicable to sediment-hosted orogenic gold deposits globally, although details, such as the spatial relationships and relative modes of arsenopyrite and the inferred importance of fluid immiscibility, may vary.

ACKNOWLEDGMENTS

We acknowledge the Commonwealth Scientific and Industrial Research
Organisation (CSIRO) Flagship Collaboration Fund Cluster for Organic Geochemistry of
Mineral Systems led by Curtin University (Australia), and the Western Australia Organic

Journal: GEOL: Geology DOI:10.1130/G38462.1

252	and Isotope Geochemistry Centre, the Institute of Geoscience Research, Oceanagold
253	Corporation, and the Ministry of Business, Innovation and Employment, New Zealand,
254	for additional support. Hu acknowledges the receipt of Chinese Scholarship Council-
255	Curtin International Postgraduate Research Scholarship, CSIRO Top-up Scholarship. We
256	thank Andrew Tomkins, Iain Pitcairn, Jamie Wilkinson, Ross Large, and two anonymous
257	reviewers for constructive reviews that greatly improved the manuscript.
258	REFERENCES CITED
259	Berge, J., 2011, Paleoproterozoic, turbidite-hosted, gold deposits of the Ashanti gold belt
260	(Ghana, West Africa): Comparative analysis of turbidite-hosted gold deposits and an
261	updated genetic model: Ore Geology Reviews, v. 39, p. 91-100,
262	doi:10.1016/j.oregeorev.2010.12.001.
263	Bierlein, F.P., and Smith, P.K., 2003, The Touquoy Zone deposit: An example of
264	"unusual" orogenic gold mineralisation in the Meguma terrane, Nova Scotia,
265	Canada: Canadian Journal of Earth Sciences, v. 40, p. 447–466, doi:10.1139/e03-
266	002.
267	Bierlein, F.P., Cartwright, I., and McKnight, S., 2001, The role of carbonaceous
268	"indicator" slates in the genesis of lode gold mineralization in the Western Lachlan
269	Orogen, Victoria, Southeastern Australia: Economic Geology, v. 96, p. 431–451,
270	doi:10.2113/gsecongeo.96.3.431.
271	Cline, J.S., Hofstra, A.H., Muntean, J.L., Tosdal, R.M., and Hickey, K.A., 2005, Carlin-
272	type gold deposits in Nevada: Critical geologic characteristics and viable models:
273	Economic Geology, v. 100, p. 451–484, doi:10.5382/AV100.15.

Journal: GEOL: Geology DOI:10.1130/G38462.1

274	Cox, S., Sun, S., Etheridge, M., Wall, V., and Potter, T., 1995, Structural and
275	geochemical controls on the development of turbidite-hosted gold quartz vein
276	deposits, Wattle Gully mine, central Victoria, Australia: Economic Geology, v. 90,
277	p. 1722–1746, doi:10.2113/gsecongeo.90.6.1722.
278	Craw, D., 2002, Geochemistry of late metamorphic hydrothermal alteration and
279	graphitisation of host rock, Macraes gold mine, Otago Schist, New Zealand:
280	Chemical Geology, v. 191, p. 257–275, doi:10.1016/S0009-2541(02)00139-0.
281	Craw, D., Mortensen, J., MacKenzie, D., and Pitcairn, I., 2015, Contrasting geochemistry
282	of orogenic gold deposits in Yukon, Canada and Otago, New Zealand: Geochemistry
283	Exploration Environment Analysis, v. 15, p. 150–166, doi:10.1144/geochem2013-
284	262.
285	De Ronde, C.E., Faure, K., Bray, C.J., and Whitford, D.J., 2000, Round Hill shear zone-
286	hosted gold deposit, Macraes Flat, Otago, New Zealand: Evidence of a magmatic ore
287	fluid: Economic Geology, v. 95, p. 1025–1048, doi:10.2113/gsecongeo.95.5.1025.
288	Goellnicht, N., Groves, D., McNaughton, N., and Dimo, G., 1989, An epigenetic origin
289	for the Telfer gold deposit, Western Australia, in Keays, R.R., et al., eds., The
290	geology of gold deposits: The perspective in 1988: Economic Geology
291	Monograph 6, p. 151–167, doi:10.5382/Mono.06.11.
292	Goldfarb, R.J., and Groves, D.I., 2015, Orogenic gold: Common or evolving fluid and
293	metal sources through time: Lithos, v. 233, p. 2–26,
294	doi:10.1016/j.lithos.2015.07.011.
295	Henne, A., and Craw, D., 2012, Synmetamorphic carbon mobility and graphite
296	enrichment in metaturbidites as a precursor to orogenic gold mineralization, Otago

Journal: GEOL: Geology DOI:10.1130/G38462.1 ralium Deposita, v. 47, p. 7

297	Schist, New Zealand: Mineralium Deposita, v. 47, p. 781–797, doi:10.1007/s00126-
298	012-0399-2.
299	Hu, S., Evans, K., Craw, D., Rempel, K., Bourdet, J., Dick, J., and Grice, K., 2015,
300	Raman characterization of carbonaceous material in the Macraes orogenic gold
301	deposit and metasedimentary host rocks, New Zealand: Ore Geology Reviews, v. 70,
302	p. 80–95, doi:10.1016/j.oregeorev.2015.03.021.
303	Hu, SY., Evans, K., Fisher, L., Rempel, K., Craw, D., Evans, N.J., Cumberland, S.,
304	Robert, A., and Grice, K., 2016, Associations between sulfides, carbonaceous
305	material, gold and other trace elements in polyframboids: Implications for the source
306	of orogenic gold deposits, Otago Schist, New Zealand: Geochimica et
307	Cosmochimica Acta, v. 180, p. 197–213, doi:10.1016/j.gca.2016.02.021.
308	Kříbek, B., Sýkorová, I., Machovič, V., Knésl, I., Laufek, F., and Zachariáš, J., 2015, The
309	origin and hydrothermal mobilization of carbonaceous matter associated with
310	Paleoproterozoic orogenic-type gold deposits of West Africa: Precambrian Research,
311	v. 270, p. 300–317, doi:10.1016/j.precamres.2015.09.017.
312	Large, R.R., Bull, S.W., and Maslennikov, V.V., 2011, A carbonaceous sedimentary
313	source-rock model for Carlin-type and orogenic gold deposits: Economic Geology,
314	v. 106, p. 331-358, doi:10.2113/econgeo.106.3.331.
315	Large, R., Thomas, H., Craw, D., Henne, A., and Henderson, S., 2012, Diagenetic pyrite
316	as a source for metals in orogenic gold deposits, Otago Schist, New Zealand: New
317	Zealand Journal of Geology and Geophysics, v. 55, p. 137–149,
318	doi:10.1080/00288306.2012.682282.

Journal: GEOL: Geology DOI:10.1130/G38462.1 977, Devolatilization equilibria in graphitic

319	Ohmoto, H., and Kerrick, D., 1977, Devolatilization equilibria in graphitic systems:
320	American Journal of Science, v. 277, p. 1013-1044, doi:10.2475/ajs.277.8.1013.
321	Petrie, B., Craw, D., and Ryan, C., 2005, Geological controls on refractory ore in an
322	orogenic gold deposit, Macraes mine, New Zealand: Mineralium Deposita, v. 40,
323	p. 45–58, doi:10.1007/s00126-005-0467-y.
324	Pitcairn, I.K., Roberts, S., Teagle, D.A., and Craw, D., 2005, Detecting hydrothermal
325	graphite deposition during metamorphism and gold mineralization: Journal of the
326	Geological Society [London], v. 162, p. 429–432, doi:10.1144/0016-764904-139.
327	Pitcairn, I.K., Teagle, D.A., Craw, D., Olivo, G.R., Kerrich, R., and Brewer, T.S., 2006,
328	Sources of metals and fluids in orogenic gold deposits: Insights from the Otago and
329	Alpine Schists, New Zealand: Economic Geology, v. 101, p. 1525–1546,
330	doi:10.2113/gsecongeo.101.8.1525.
331	Seward, T.M., 1973, Thio complexes of gold and the transport of gold in hydrothermal
332	ore solutions: Geochimica et Cosmochimica Acta, v. 37, p. 379–399,
333	doi:10.1016/0016-7037(73)90207-X.
334	Shvarov, Y.V., and Bastrakov, E., 1999, HCh: A software package for geochemical
335	equilibrium modelling: User's guide: Australian Geological Survey Organisation,
336	Science and Resources Record, v. 25, p. 61.
337	Thomas, H.V., Large, R.R., Bull, S.W., Maslennikov, V., Berry, R.F., Fraser, R., Froud,
338	S., and Moye, R., 2011, Pyrite and pyrrhotite textures and composition in sediments,
339	laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore
340	genesis: Economic Geology, v. 106, p. 1–31, doi:10.2113/econgeo.106.1.1.

Journal: GEOL: Geology DOI:10.1130/G38462.1 of metamorphic sulfur liberation in the crust:

341	Tomkins, A.G., 2010, Windows of metamorphic sulfur liberation in the crust:
342	Implications for gold deposit genesis: Geochimica et Cosmochimica Acta, v. 74,
343	p. 3246–3259, doi:10.1016/j.gca.2010.03.003.
344	Upton, P., and Craw, D., 2008, Modelling the role of graphite in development of a
345	mineralized mid-crustal shear zone, Macraes mine, New Zealand: Earth and
346	Planetary Science Letters, v. 266, p. 245–255, doi:10.1016/j.epsl.2007.10.048.
347	FIGURE CAPTIONS
348	Figure 1. Photomicrographs of gold-bearing sulfides from the Macraes deposit (New
349	Zealand). A: Transmitted light image of pyrite (circled by dashed lines) surrounded by
350	graphitic shears (dotted lines) that contain fine-grained carbonaceous material (CM) and
351	sulfides, especially arsenopyrite. B: Backscattered electron (BSE) image of pyrite
352	surrounded by graphitic shears. Pyrite is light gray and arsenopyrite is white. C:
353	Transmitted light image of pyrite overprinting graphitic shears. D: BSE image of pyrite
354	overprinting graphitic shears.
355	
356	Figure 2. Sulfur (S) versus noncarbonate carbon (NCC) by mass from four goldfields
357	compared to model results. A vector from unmineralized rock to cell 1 is used to indicate
358	the modeled trajectory in S versus NCC space. This vector can be considered as the sum
359	of a vector that represents graphite deposition via Reaction 4 (R 4), and a vector toward
360	high S_{model} : C_{model} ratios via sulfide deposition (Reaction 2, R 2).
361	
362	

Journal: GEOL: Geology DOI:10.1130/G38462.1

363	DOI:10.1130/G38462.1 Figure 3. Results of fluid infiltration at 220 °C, 3 kbar. In cell 0, the concentration of
364	solid components represents the amount in unreacted GB-01 and that of aqueous
365	components represents the total amount in unreacted country-rock fluid or ore fluid.
366	Results of the fluid infiltration are presented in cells 1–14. A: Pyrite and pyrrhotite. B:
367	Arsenopyrite. C: Au and Au bisulfide species. D: H ₂ in equilibrated fluids and unreacted
368	mixtures. E: Total graphite (C_{model}), precipitated graphite, $CH_{4,RE}$, and $CO_{2,RE}$ (see text).
369	
370	
371	¹ GSA Data Repository item 2017xxx, xxxxxxxx, is available online at
372	$http://www.geosociety.org/pubs/ft2017.htm\ or\ on\ request\ from\ editing @geosociety.org.$