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Abstract — Smartphone applications based on object detection techniques have recently been proposed to 10 

assist visually impaired persons with navigating indoor environments. In the smartphone, digital cameras are 11 

installed to detect objects which are important for navigation. Prior to detect the interested objects from 12 

images, edges on the objects have to be identified. Object edges are difficult to be detected accurately as the 13 

image is contaminated by strong image blur which is caused by camera movement. Although deblurring 14 

algorithms can be used to filter blur noise, they are computationally expensive and not suitable for real-time 15 

implementation. Also edge detection algorithms are mostly developed for stationary images without serious 16 

blur. In this paper, a modified sigmoid function (MSF) framework based on inertial measurement unit (IMU) 17 

is proposed to mitigate these problems. The IMU estimates blur levels to adapt the MSF which is 18 

computationally simple. When the camera is moving, the topological structure of the MSF is estimated 19 

continuously in order to improve effectiveness of edge detections. The performance of the MSF framework is 20 

evaluated by detecting object edges on video sequences associated with IMU data. The MSF framework is 21 

benchmarked against existing edge detection techniques and results show that it can obtain comparably lower 22 

errors. It is further shown that the computation time is significantly decreased compared to using techniques 23 

that deploy deblurring algorithms, thus making our proposed technique a strong candidate for reliable 24 

real-time navigation. 25 

 26 
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1. INTRODUCTION 1 

Today, about 4% of the world’s population (285 million people) are visually impaired, 13% of whom are blind and the 2 

other 87% have low vision (W.H.O., 2014). Vision frameworks and mechanism have been developed for assisting 3 

visually impaired users in navigation and detecting objects (Ivanchenko, Coughlan, & Shen, 2010; Kang, Chae, Sun, 4 

Yoo, & Ko, 2015; Mascetti, Ahmetovic, Gerino, Bernareggi, Busso, & Rizzi, 2016; Pham, Le, & Vuillerme, 2016; 5 

Pradeep, Medioni, & Weiland, 2010; Solymár, Stubendek, Radványi, & Karacs, 2011; Winlock, Christiansen, & 6 

Belongie, 2010). To assist indoor navigation for visually impaired persons, a range of smartphone platforms have 7 

been developed. These smartphones provide pathway from the current position to the destination position (Moreno, 8 

Shahrabadi, Jose, Buf, & Rodrigues, 2012; Williams, 2014). Unlike fully sighted persons, visually impaired persons 9 

are not able to see pathways from visual scenes which are in front of them, although travel routes are provided by 10 

smartphones. To provide mobility assistance for visually impaired people, white canes and guide dogs have 11 

traditionally been used. However, a white cane is very intrusive and is not safe enough to navigate insecure places.  12 

Training a guide dog is expensive and also guide dogs are socially unacceptable in many indoor environments such as 13 

offices (News, 2013). In addition to the traditional mobility assistance, ultrasonic sensing can be used to scan the 14 

pathways (Antoun, & McKerrow, 2007; Peng, Peursum, Li, & Venkatesh, 2010). The echoes of ultrasonic waves are 15 

interpreted to form an auditory scene enabling the person to identify the pathway. However, ultrasonic sensing 16 

requires a very narrow scan beam, and works effectively only on a hard and flat surface by receiving ample sound 17 

echo. 18 

 Motivated by the popularity of smartphone, navigation systems have been developed by visually impaired persons 19 

(Rodriguez-Sanchez, Moreno-Alvarez, Martin, Borromeo, & Hernandez-Tamames, 2014). The navigation systems 20 

use the smartphone camera to capture the pathway scenes as images. Based on the captured images, corridors, entries, 21 

exits (Segvic, & Ribaric, 2001; Shi, & Samarabandu,  2006; Yang, & Tsai, 1999), can be used to provide semantic 22 

interpretations for the pathways, and warming signals can be generated in order to avoid collisions with walls (Asad, 23 

& Ikram, 2012; Ivanchenko, Coughlan, & Shen, 2009; Shen, Chan, Coughlan, & Brabyn, 2008). This information can 24 

be used to help visually impaired people to avoid collisions and to find doors and corridors which are necessary to take 25 

them to their destination. Prior to performing object detection or pattern recognition from captured images, it is 26 

necessary to identify edges on the objects of which the object edges are the perceivable features (Rodriguez-Sanchez, 27 

Moreno-Alvarez, Martin, Borromeo, & Hernandez-Tamames, 2014; Segvic, & Ribaric, 2001; Asad, & Ikram, 2012; 28 
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Ivanchenko, Coughlan, & Shen, 2009). This can be accomplished using edge detection algorithms (Lee, Haralick, & 1 

Shapiro, 1987).  2 

The edge detectors generally evaluate the image contrast (Peli, 1990), which represents the luminance difference 3 

between each neighboring pixel, in order to illustrate objects in the image. When the image contrast of a set of 4 

continuous pixels is above the threshold, an object edge is identified. However, while a person is walking, blur is 5 

typically introduced into the video frames due to the technical limitations of smartphone cameras. Typically, this blur 6 

decreases image activity, thereby reducing the overall image contrast. Because of the reduced contrast, object edges 7 

are less likely to be detected. Recent edge detection algorithms are mostly developed on detecting edges on stationary 8 

images without serious blur (Shi, & Samarabandu, 2006; Venkatesh, & Rosin, 1995; Guerrero, Vasquez, & Ochoa, 9 

2012; Rajakaruna, Rathnayake, Abhayasinghe, & Murray, 2014). Based on our knowledge, edge detection has not 10 

been studied on blurred images which are taken by cameras with large movements. 11 

Although the deblurring algorithm can be implemented in the smartphone platform to improve image quality 12 

degraded with blur (Joshi, Kang, & Zitnick, 2010), it can only remove the blur caused by small camera motion such as 13 

long hand-held exposure. To remove blur caused by large camera motion, approaches for video deblurring can be 14 

used (Deng, Shen, Song, Tao, Bu, & Chen, 2010; Cho, Wang, & Lee, 2012; Huang, & Fan, 2011; Lee, Jeong, Lee, & 15 

Song, 2013). These approaches first estimate the camera motion trajectory. Based on the trajectory, a deblurring 16 

kernel is computed in order to remove the blur from the original frame. However, the approaches for video deblurring 17 

are computationally expensive and are therefore not suitable for implementation in real-time navigation. Sigmoid 18 

functions are computationally inexpensive for image enhancement and can be implemented in real-time (Braun, & 19 

Fairchild, 1999). Based on the sigmoid functions, the luminance of the image pixels can be increased when they are 20 

relatively high compared with the luminance of the whole image, and the luminance of the image pixels can be 21 

reduced when they are relatively low. The sigmoid function attempts to make the dark pixels in an image darker, and 22 

the light pixels lighter. Hence, the image contrast can be boosted while maintaining the original image structure, and 23 

thus the object patterns are more likely to be detected. 24 

The sigmoid function has been applied to perform edge detection, which generates zero, half or one (Douglas, & 25 

Meng, 1989). Edges are represented by one; empty spaces are represented by zero; boundaries between edges and 26 

empty spaces are represented by half. In this approach, the original images are first passed to a Finite Impulse 27 

Response (FIR) adaptive filter before passing to the sigmoid function for performing edge detection. Although the 28 
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FIR adaptive filter is optimized with respect to a set of collected past images, the approach can only process images 1 

with similar edge and noise characteristics to the past collected images. Also the FIR adaptive filter is developed to 2 

process images with slight blur. The FIR adaptive filter may not work effectively with respect to images captured 3 

under large camera movement and also images which are different to the past collected images. Although (Mhaned, 4 

Abid, & Fnaiech, 2012) and (Braun, & Fairchild, 1999) have applied sigmoid functions to perform image 5 

enhancement for defect detection and object detection, the sigmoid function parameters are sensitive to different 6 

visibility conditions caused by blur (Kannan, Deepa, & Ramakrishnan, 2010). A single set of sigmoid function 7 

parameters can work properly only on a single blur level and cannot work effectively on a range of blur levels. This 8 

parameter set has to be specified in order to increase the effectiveness of detecting interested object rather than that of 9 

other uninterested objects in the image.  10 

In this paper, a modified sigmoid function (MSF) framework is proposed in order to improve image quality for 11 

corridor detection. The MSF framework consists of a modified sigmoid function (MSF) and an inertial measurement 12 

unit (IMU), where the MSF is used to improve the effectiveness of detecting interested objects and the IMU is used to 13 

capture the camera motion in order to determine the appropriate parameters for the MSF. Based on the determined 14 

MSF parameters, the captured image can be enhanced with respect to the corresponding camera motion. The MSF 15 

framework first uses the IMU (Lane, Miluzzo, Lu, & Peebles, 2010) to capture the camera motion, where the IMUs 16 

are usually embedded in smartphones and tablets. Based on the captured motion, the blur levels can be estimated 17 

(Joshi, Kang, & Zitnick, 2010). An optimization algorithm, namely the particle swarm optimization (PSO) 18 

(Parsopoulos, & Vrahatis, 2004) which is effective in solving difficult optimization problems, is used to determine a 19 

database for sigmoid function parameters. Each single set of sigmoid function parameters is specified with respect to 20 

a particular motion level which is captured by the IMU.  In the PSO, a cost function is formulated in order to optimize 21 

a single set of sigmoid function parameters with respect to contrast enhancement. The cost function is particularly 22 

developed to detect object edges which are interested rather than the whole scene. Based on the determined sigmoid 23 

function parameters, the object contrast can be enhanced for interested objects and also the MSF can generate more 24 

precise object edges for different motion levels. As a result, the effectiveness of edge detection can be improved by the 25 

proposed MSF. 26 

To evaluate the effectiveness of the MSF framework, we consider four scenarios involving visually impaired 27 

persons engaged in navigation. Video sequences associated with the IMU datasets are used. The sequences simulate 28 
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the blind persons using white canes and guide dogs for navigation. The white cane sequence exhibits a small 1 

movement and contains weak blur. The guide dog sequence exhibits a large movement and contains strong blur. The 2 

MSF framework is used to detect indoor corridors and entries which are importance for indoor navigation of visually 3 

impaired persons (Segvic, & Ribaric, 2001; Shi, & Samarabandu,  2006; Yang, & Tsai, 1999). Four commonly used 4 

edge detectors (Lee, Haralick, & Shapiro, 1987; Canny, 1986; Kimmel, & Bruckstein, 1984) are used within the MSF 5 

framework. The following results are considered: the one based on solely using the edge detectors; the one generated 6 

by using the proposed MSF framework; and the one generated by using two deblurring algorithms including the 7 

deconvolution filter (Horstmeyer, 2010) and Whyte et al.’s filter (Whyte, Sivic, Zisserman, & Ponce, 2012), where the 8 

deconvolution filter can be implemented on smartphones to improve blurred images (Joshi, Kang, & Zitnick, 2010) 9 

and Whyte et al.’s filter is a recently developed deblurring method. For video sequences with small blur, similar 10 

results are obtained based on the tested methods. For those with strong blur, results show that the proposed MSF 11 

framework obtains smaller corridor and entry detection errors compared with the other tested methods. Also the 12 

proposed MSF requires less computational time. Hence, it is a strong candidate for real-time navigation. 13 

The key contributions of the proposed MSF framework are summarized as follows: 14 

1. The MSF framework is developed for edge detections for images which are distorted with large blur, while 15 

traditional approaches for edge detection are only developed for stationary images with small blur. 16 

2. The MSF framework is computationally inexpensive compared with the deblurring algorithms for enhancing 17 

blurred image. Hence, it is a good candidate for real-time implementation. 18 

3. The MSF framework obtains comparably lower object detection errors compared with commonly used edge 19 

detection algorithms. It further shows that MSF framework is a strong candidate for assisting indoor 20 

navigation. 21 

The rest of this paper is organized as follows: Subsection 2.1 presents the limitation of the commonly used edge 22 

detection algorithms. Subsection 2.2 discusses the formulation of the MSF and the motivation of why we proposed the 23 

MSF. Subsection 2.3 presents the mechanism of the proposed MSF framework. Section 3 presents two case studies 24 

which are used to evaluate the effectiveness of the proposed MSF framework. One case demonstrates the small 25 

camera movement and another one demonstrates the large one. Finally, a conclusion and discussion of possible future 26 

research are given in Section 4. 27 
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2. MSF FOR IMPROVING EDGE DETECTION 1 

2.1 Limitation of the commonly used edge detection algorithms 2 

We consider an indoor navigation for a vision impaired person who is led by a guide dog. A smartphone is hung 3 

around the person’s neck to capture video for edge detection. Figure 1a shows one of the video frames. It shows the 4 

corridor view, where the head of the white guide dog appears on the bottom left of the image. The circles highlight the 5 

corridor edges bordered by the walls and the floor. We can observe that the corridor edges are not clearly bordered, as 6 

motion blur is generated by the person’s movement. Hence, the corridor edges can barely be distinguished. 7 

Based on the captured video frame, the commonly used Canny edge detector (Canny, 1986) is used to generate the 8 

edge diagram shown in Figure 1b, where the threshold for handing images with no blurs is used on the algorithm. The 9 

edge detector first evaluates the contrast between the luminance of each neighboring pixel. When the contrast of a set 10 

of neighboring pixels is above the pre-defined threshold, an edge between two different regions is identified on the 11 

image. Figure 1b shows that some of the left and right edges of the corridor are missing. As blur typically reduces the 12 

amount of image activity, the image is smoothed and values on neighboring pixels exhibit lower contrast. Hence, 13 

corridor edges are less likely to be detected by the algorithm and thus some corridor edges cannot be detected in 14 

Figure 1b. 15 

One can use a lower threshold in order to identify edges which are formed based on neighboring pixels with less 16 

contrast. The corridor edges in the blurred image are more likely to be detected. However, with a smaller threshold, 17 

the edge detectors are more sensitive to artifacts and are more likely to produce more false than true edges (Martin, 18 

Fowlkes, & Malik, 2004; Venkatesh, & Rosin 1995). It downgrades the quality of the edge diagram as more false 19 

edges are created. 20 

  21 
Figure 1a Original video frame. Figure 1b Edge diagram of the original video frame; 

Canny edge detector (Canny, 1986) was used. 
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2.2 Modified sigmoid function (MSF) 1 

To detect corridor edges more effectively, a modified sigmoid function (MSF) (Braun, & Fairchild, 1999) in equation 2 

set (1) is proposed by increasing the luminance differences between the regions of floor and walls. The image contrast 3 

between the two regions is increased with the increased luminance differences. Hence, the corridor edges for the two 4 

regions are more likely to be detected, and thus the MSF increases the effectiveness of the edge detector. The MSF is 5 

given as:  6 

   
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The derivative of the MSF is given as: 9 
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Here xij denotes the luminance of the image pixel with the coordinates i and j, where xij is between 0 to 1; 13 

1,2,...,i m ; 1,2,...,j n ; and m  and n  are the image dimensions. The value of xij corresponds to the intensity. The 14 

MSF consists of three sub-functions namely (1a), (1b) and (1c). (1a) is used to process the floor luminance in Figure 15 

1a, where the floor luminance is smaller than c. d with  0 1d  is multiplied to the original luminance, xij, at the 16 

floor, and thus the processed luminance, yij, at the floor becomes smaller. As a result, the floor shown in Figure 4a 17 

becomes darker. (1c) is used to identify the wall which has the luminance higher than  c b . Its corresponding 18 

luminance is multiplied by 1 and thus it remains unchanged. 19 

Equation (1b) is engaged with the sigmoid function, where the sigmoid slope is represented as the derivative (2b) as 20 

illustrated in Figure 3. The sigmoid slope is adjusted by a, and the parameter, e, is used to adjust the sigmoid width 21 
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which is also illustrated in Figure 3. When the image blur is strong, the border width between walls and floor would be 1 

large. The image activity of the borders between walls and floor is small, and thus corridor edges are unlikely to be 2 

identified by the edge detectors. As the edge detector generally identifies object edges based on luminance differences 3 

between image pixels, object edges are more likely to be detected when the luminance derivatives of image pixels are 4 

high. The MSF with an appropriate sigmoid slope and sigmoid width can be used particularly to multiply to the 5 

luminance on the border, in order to narrow the border width between corridors and floor. With a narrower border, the 6 

luminance derivative between corridors and floor is larger. Hence, the border can easily be identified by the edge 7 

detector. We attempt to determine an appropriate set of MSF parameters in order to increase the likelihood of 8 

identifying the object edges of interest.  9 

As an illustration, the characteristic of the MSF is given in Figure 2 and the derivative of the MSF is given in Figure 10 

3, when a=1, 2, 3, or 6; b=0.55; c=0.15; d=0.55 and e=4. This example demonstrates the effect of determining the 11 

edge when different slopes are used, as changes of pixel intensities are different with different slopes. The values are 12 

derived manually in order to see this effect. The processed luminance for each pixel namely Iij is given by multiplying 13 

ijy  by ijx , which is given as 14 

ij ij ijI x y                                                                                                             (3) 15 

 16 

 17 
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Figure 2 Illustration of the modified sigmoid function. 19 
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When comparing the original video frame shown in Figure 1a with the processed image shown in Figure 4a, we can 1 

observe that the luminance difference between the walls and the floor shown in the processed video frame is greater 2 

than that shown in the original video frame. Also, we can compare the edge diagrams, Figure 1b and Figure 4b, for the 3 

original image and the processed image respectively. Figure 4b shows that more corridor edges can be detected from 4 

the processed image; while Figure 1b shows that some corridor edges cannot be detected from the original image. 5 

Therefore, the MSF improved the effectiveness of detecting corridor edges in this particular example. A thorough 6 

validation of these observations is provided in the edge images, Figures 1b and 4b, generated based on the original and 7 

processed images respectively. 8 

 9 
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Figure 3 Derivative of the modified sigmoid function. 11 

 12 

 13 

  14 
Figure 4a Processed video frame. Figure 4b Edge diagram of the processed 

video frame. 
  15 

Apart from using the MFP for corridor detection, we consider the entry detection which is also important for 16 

navigation by visually impaired persons (Shi, & Samarabandu 2006; Tian, Yang, & Arditi 2010). The MSF 17 

parameters are set as a=1.382, b=1.123, c=0.508, d=0.417 and e=0.459. Figure 5a shows the original image with three 18 
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entries, where the image was captured under a small motion. Hence, we can observe that image blur exists. Figure 5b 1 

shows the edge image for the original image, where the Canny edge detector is used to detect object edges. The figure 2 

shows that only a few edges of the entries can be detected, as the existing blur reduces the amount of image activity 3 

and thus many entry edges cannot be detected. It is unlikely that a person would be able to perceive the door patterns.  4 

To improve the edge diagram, the MSF is used to process the original image by increasing the luminance 5 

differences between entries and walls. It attempts to increase the likelihood of identifying the entry edges. Figure 6a 6 

shows the processed image which was generated by the MSF. We can observe that the luminance difference between 7 

the walls and the doors in the processed image is greater than that shown in the original video frame. Therefore, edges 8 

are more likely to be detected in the processed image and thus Figure 6b shows that more entry edges are detected 9 

when the processed image is used. Based on the edge diagram of the processed image, the door patterns are more 10 

likely to be identified by a person than the edge diagram of original image. 11 

 12 

    13 
Figure 5a Original image. Figure 5b Edge diagram of the original image 

   14 
Figure 6a Processed image. Figure 6b Edge diagram of the processed image 

 15 

In the MSF, the appropriate parameters are necessary to be determined in order to detect edges between two regions 16 

more effectively. Figure 7a shows the segment with 6 6  pixels which is subtracted from the original image shown in 17 

Figure 1a. We can barely observe that there are two regions, where the region at the left hand side is formed by the 18 
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slightly lighter pixels and the region at the right hand side is formed by the slightly darker pixels. It is difficult to 1 

distinguish the borders between the two regions.  2 

The borders can be identified more clearly when the original segment is processed by the MSF. Figures 7b, 7c and 3 

7d show the processed images when three different sets of MSF parameters are used. We can observe that the clearest 4 

border exists in Figure 7b compared with the other two processed images in Figures 7c and 7d. It seems that the MSF 5 

parameters for Figure 7b are more appropriate than those for Figures 7c and 7d. Therefore, it is important to determine 6 

an appropriate set of MSF parameters for the blurred image to optimize edge detection. However, the amount of blur 7 

in each video frame is not a constant, as the camera movement is time-varying when recording the video. Therefore, 8 

the MSF parameters need to be adjusted with respect to camera movement against time. In Section 2.3, the MSF 9 

framework based on camera movement captured by IMU is proposed to adjust MSF parameters in order to detect 10 

corridor edges more effectively. 11 

      12 

 
a=1, b=0.55, c=0.15, d=0.55, e=4

 13 
Figure 7a The Original segment. Figure 7b Processed segment A. 

 14 

a=1, b=0.75, c=0.05, d=0.85, e=1
 

a=4, b=0.75, c=0.1, d=0.45, e=2
 15 

Figure 7c Processed segment B. Figure 7d Processed segment C. 
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2.3 A MFS FRAMEWORK FOR EDGE DETECTION 1 

Figure 8 shows the MFS framework for edge detection. First, a camera is used to capture the original image, I, from 2 

the video frame for detecting corridors. The IMU is used to detect the camera movement Ƭ, where its captured Ƭ is 3 

synchronized with the exposure duration on capturing I. Computation of Ƭ is discussed in Section 2.3.2. 4 

Synchronization of camera and IMU

Corridor scene

MSF 
parameter 

Ƙ(Ƭ) 

Camera 
movement Ƭ 

Database 
for the MSF 
parameters

Camera movement 
detection using IMU

Interpolation

Original 
image I

Processed 
image I’

Edge detector
Edged 

diagram E’

Image 
improvement 

using MSF

Camera

 5 
Figure 8 MSF framework for image improvement and edge detection. 6 

 7 

Section 2.3.1 discusses the mechanism of capturing Ƭ. Based on Ƭ, a set of MSF parameters, Ƙ(Ƭ)=[a(Ƭ), b(Ƭ), 8 

c(Ƭ), d(Ƭ), e(Ƭ)] is determined by interpolating with the whole set of MSF parameters which is stored in a database. 9 

The simple interpolation is used as its algorithmic complexity is lower than machine learning methods like neural 10 

networks, although machine learning methods may generate more accurate results. Section 2.3.1 discusses how the 11 

database for the MSF parameters can be developed. When the MSF is engaged with Ƙ(Ƭ), the processed image, I’, can 12 

be generated by the MSF with respect to I. An edge detector is used to generate an edge image E’. Hence, object edges 13 

in E’ are more likely to be detected from I’ rather than from I. 14 

 15 

2.3.1 Database for the MSF parameters 16 

To develop a database for the MSF parameters, a set of video frames namely Ii with i=1,2,…N is first captured by the 17 

camera, where Ii is the i-th video frame. During the exposure time on capturing Ii, the IMU is used to capture the 18 

camera movement namely Ƭi generated during the exposure for Ii, where each frame exposure and each movement 19 
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caption are synchronized. The synchronization mechanism can be referred to (Abhayasinghe, & Murray, 2014).  1 

Based on the collected Ii and Ƭi, a database consisting of N MSF parameters namely Ƙ(Ƭi)=[a(Ƭi), b(Ƭi), c(Ƭi), d(Ƭi), 2 

e(Ƭi)] with i=1,2,…N  is generated, where Ƙ(Ƭi) corresponds to the camera movement, Ƭi, captured by the IMU for the 3 

i-th video frame, Ii. Using Ii with i=1,2,…N, the hand-made edge image, Ei, is determined manually based on human 4 

judgment. On each Ei, the k-th edge of the interested object are denoted as ,k ie , where ,k i ie E .  5 

In Figure 9, the optimization method namely particle swarm optimization (PSO) (Parsopoulos, & Vrahatis 2004) is 6 

used to generate the database for the MSF parameters, Ƙ(Ƭi)=[a(Ƭi), b(Ƭi), c(Ƭi), d(Ƭi), e(Ƭi)] with i=1,2,…N, when 7 

,k ie and Ii, are given. The PSO is used, as it is effective in solving optimization problems with discontinuous, vastly 8 

multimodal and non-differentiable landscapes (Fu, Ding, Zhou, & Hu, 2013; Hui, & Zhang, 2015; Xu, Ma, & Xu, 9 

2015; Zeng, Liu, & Hui, 2015). In the PSO, the particle is coded with a parametrical representation of five elements, 10 

where the particle is represented as the MSF parameter, Ƙ(Ƭi), and the five elements are represented as a(Ƭi), b(Ƭi), 11 

c(Ƭi), d(Ƭi) and e(Ƭi), illustrated in (1a) to (1d).  12 

 13 
Figure 9 Development of MSF database using the PSO. 14 

Generally, edge detection performance is evaluated by comparing the detected edges and true edges which are 15 

manually determined by human judgement (Lopez-Molina, & Baets, 2013). Edge detectors are developed by targeting 16 
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the interested objects. For example, corridor and entry edges are importance for indoor navigation of visually impaired 1 

persons. Therefore, both corridor and entry edges are included on the hand-made edge images for developing the edge 2 

detector. 3 

 Each particle in the PSO is evaluated based on the error measure between the true edges (i.e. ,k ie ) from iE  and the 4 

estimated edges from the generated edge image 'iE , where 'iE  is generated by the edge detector from the processed 5 

image 'iI ; 'iI  is generated by the MSF from the original image iI , where the MSF parameter represented by the 6 

particle in the PSO is used. The error function (4a) (Lopez-Molina, & Baets, 2013) is formulated to evaluate the PSO 7 

particle. (4a) attempts to achieve the tradeoff between information and noisiness in the detection results. The 8 

parameters of the proposed MSF in (1) are determined by optimizing (4a). 9 
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                           (4a) 10 

where  1 2,d p p  refers to the Euclidean distance between two points 1p  and 2p  in the image; ,k ie  is the number of 11 

pixels of the edge ,k ie . Additionally,  ,d p E  can also represent the closest distance from a point p  to an edge in the 12 

edge image E . It is given as: 13 

    , min , ' 'd p E d p p p E  .                               (4b) 14 

Unlike the commonly used error measure in (Lopez-Molina, & Baets, 2013) which addresses all errors between all 15 

real and estimated edges, the numerator of (4a) addresses only the errors for the edges which are interested for 16 

navigation. Minimizing the numerator of (4a) attempts to increase the edge contrast for the interested objects on the 17 

collected video frame. Hence, the effectiveness of edge detection can be enhanced. Also the denominator of (4a) 18 

minimizes the total number of pixels of edges. It attempts to achieve a tradeoff between interested objects and 19 

uninterested objects (Elinabrouk, & Aggoun, 1998; Yitzhaky, & Peli, 2003). Here we can consider that the edges of 20 

entries or corridors are the necessary information and unnecessary edges are the noise.  21 

The following PSO parameters were used: the particle population is 100; the maximum and minimum inertia 22 

weights are 0.9 and 0.2 respectively; the cognitive parameter and the social parameter are both set as 2 which are 23 

defaulted in (Parsopoulos, & Vrahatis, 2004). The PSO is terminated when no improvement can be obtained regarding 24 

the error measure. 25 
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2.3.2 Camera movement detection using IMU 1 

Figure 10 shows the scene plane of the image captured by the smartphone installed with a camera and an IMU, where 2 

l is the distance between the scene plane and the smartphone. Figure 10 is redeveloped based on (Rajakaruna, 3 

Rathnayake, Chan, & Murray, 2014; Rajakaruna, Rathnayake, Abhayasinghe, & Murray, 2014) (Figure 2 in 4 

(Rajakaruna, Rathnayake, Abhayasinghe, & Murray, 2014) and Figure 1 in (Rajakaruna, Rathnayake, Chan, & 5 

Murray, 2014). 6 

 7 
Figure 10 Camera movement detection using IMU 8 

 9 

The angular velocities captured by the IMU are denoted by  x t ,  y t , and  z t , with respect to the x, y, and 10 

z axes respectively, where t is within the exposure time for capturing the image; t = 0, Ts, 2·Ts, … , Ns·Ts; Ts is the 11 

sampling period; and Ns samples are captured. The linear velocities captured by the IMU are denoted by  xV t ,  yV t , 12 

and  zV t , with respect to the x, y, and z axes respectively. The linear velocities for the corridor scene, namely  xv t , 13 

 yv t , and  zv t , are determined based on (5a), (5b) and (5c) with respect to the x, y, z axes respectively as, 14 

     x x yt tv V l t    ,                                 (5a) 15 

     y y xt tv V l t    ,                                 (5b) 16 

   z zv t tV  .                                     (5c) 17 

During the exposure, the overall movement, Ƭ, for the smartphone is determined based on  xv t ,  yv t , and 18 

 zv t . Ƭ is given as: 19 
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Ƭ
2 2 2
x y zD D D                                       (6) 1 

where Dx, Dy and Dz are the movement with respect to x, y and z. 2 
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1

1
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z z z s
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D v t v t T


    .                               (7c) 5 

The detailed formulations for Dx, Dy and Dz can be referred to (Rajakaruna, Rathnayake, Chan, & Murray, 2014; 6 

Rajakaruna, Rathnayake, Abhayasinghe, & Murray, 2014). 7 

3. EXPERIMENTAL METHODOLOGY AND RESULTS 8 

Experiments are performed to evaluate the performance of the proposed MSF framework in relation to benchmarking 9 

techniques. In this section, we provide a detailed description of the experimental methodology and results. Section 3.1 10 

presents the experimental conditions for the indoor environments, simulation platform and hardware used for 11 

collected image and IMU data. Sections 3.2 and 3.3 present the results obtained for small and large camera movements 12 

respectively.  13 

3.1 Experimental methodology 14 

We used the Sony Xperia TX smartphone equipped with a camera and an IMU to capture the video sequences and the 15 

movements associated with the camera motion respectively, with a frame rate of 14 frames per second in the camera 16 

and a sampling time of 20ms in the IMU.  17 

Two video sequences associated with two IMU datasets were collected. The first sequence, namely Whitecane, 18 

represents a blind person walking with a white cane. The second sequence, namely Guidedog, represents a blind 19 

person walking with a guide dog. For both Whitecane and Guidedog, the smartphone was hung around the person’s 20 

neck to capture the video sequences and the camera movement data. The frame size of both sequences was 240×320 21 

pixels. For each sequence, 200 video frames were captured, where the first 100 frames were used as a training set for 22 

developing the MSF database and the last 100 frames were used as a validation set to evaluate the generalization 23 

capability of the proposed MSF framework. 24 
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Figure 11 shows the amount of camera movement captured for the Whitecane and the Guidedog 1. We can see that 1 

the camera movements of Whitecane are smaller than those of Guidedog. When capturing the Whitecane, the person 2 

walked slowly and swigged with the whitecane slowly in order to seek obstacles. When capturing the Guidedog, the 3 

person was led by a fast-paced guide dog, which caused additional camera movement. As a result, more blur was 4 

generated in the Guidedog sequence than in the Whitecane sequence. Therefore, the Whitecane sequence evaluates 5 

the performance of the proposed MSF framework when the camera movement is small and the blur is little. The 6 

Guidedog sequence evaluates the performance when the camera movement is large and the blur is high. For both 7 

Whitecane and Guidedog sequences, we consider the corridor and entry detections which are both important for 8 

indoor navigation by visually impaired persons (Shi, & Samarabandu, 2006; Tian, Yang, & Arditi, 2010). Therefore 9 

four detection scenarios are considered.  10 
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 11 
Figure 11 Camera movement for Whitecane and Guidedog. 12 

 13 
To evaluate the proposed MSF framework, each of the four commonly used edge detectors, namely Canny 14 

algorithm (Canny 1986), Roberts algorithm (Lee, Haralick, & Shapiro, 1987), Sobel algorithm (Lee, Haralick, & 15 

Shapiro, 1987) and zerocross algorithm (Kimmel, & Bruckstein, 1984) is used within the framework, where the 16 

threshold for handling images with no blurs is used on the algorithms. The MSF framework is evaluated by 17 

performing edge detection for the validation sets for both Whitecane and Guidedog. In this research, all algorithms are 18 

implemented and evaluated using Matlab 7.7 on a PC which has a CPU of Intel(R) Core(TM)2 Duo 2.66GHz and a 19 

memory of 8 GB.  20 

 
1 The videos and IMU data can be collected from https://dl.dropboxusercontent.com/u/48145823/Video_2013_10_24_8_38_31_760.zip 
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3.2 Experimental Results for small camera movement 1 

We consider the Whitecane sequence, which exhibits small camera movement. The MSF framework is aimed for the 2 

both corridor and entry detections. To compare the effectiveness of the proposed MSF framework, two sets of results 3 

were considered. One set was generated by solely using the edge detectors. Another set was generated by using the 4 

MSF framework. This enabled us to evaluate the performance when solely using edge detectors and that when using 5 

the MSF framework.  6 

3.2.1 Corridor detection 7 

Figure 12a shows the 1st video frame from the validation set. We can see from the figure that no serious blur exists. 8 

Figures 12b shows the edge diagram generated by the Canny algorithm and Figure 12c shows the edge diagram which 9 

is generated based on the image processed by the MSF framework. Both edge diagrams show that the corridor edges 10 

can be correctly detected. As the blur captured on the original frame was little, both the Canny algorithm and the MSF 11 

framework work effectively. Similar results are obtained when the Roberts algorithm, Sobel algorithm and zerocross 12 

algorithm are used. Figure 13 shows the distance error formulated in (3) which evaluates the error between the true 13 

corridor edges and the estimated corridor edges. It shows the average distance errors over the 100 video frames of the 14 

validation set. Generally, similar results are produced when solely using the edge detectors and when using the MSF 15 

framework. 16 

3.2.2 Entry detection 17 

The MSF framework is used to perform entry detection for the Whitecane sequence, where the camera movement is 18 

small. The distance error in (3) is formulated by evaluating the error between the true entry edges and the estimated 19 

entry edges.  The entry detection results obtained by the MSF framework are compared with those obtained by purely 20 

using the edge detection algorithms, Canny, Roberts and Sobel algorithms. Figure 14 shows that similar errors are 21 

obtained by both using the MSF framework and purely using the detection algorithms. Therefore, these results further 22 

demonstrate that similar performance is achieved by solely using the edge detectors and using the MSF framework, 23 

when the camera movement is small. 24 
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            1 
Figure 12a Original video frame. Figure 12b Edge image generated by the 

Canny algorithm.  
Figure 12c Edge image generated by the 

MSF framework. 
 2 
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Figure 13 Corridor detection: Distance errors for Whitecane 4 
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 5 
Figure 14 Entry detection: Distance errors for Whitecane 6 

 7 

3.3 Experimental Results for Large camera movement  8 

We consider the Guidedog sequence, which exhibits large camera movement. The effectiveness of MFS framework is 9 

evaluated by both corridor and entry detections. 10 

3.3.1 Corridor detection 11 

Figure 15a shows the 1st original video frame from the validation set. Figure 15a shows the edge diagram generated by 12 

solely using the Canny algorithm. The edge diagram shows that the left corridor is missing on the edge image 13 

generated based on the original frame. Therefore, the sole use of the Canny algorithm is inadequate for generating 14 

correct corridor edges, and thus image improvement is required for large camera movement. Apart from using the 15 
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MSF framework to improve images before performing edge detections, two deblurring filters, namely the 1 

deconvolution filter (Horstmeyer 2010) and the Whyte et al.’s filter (Whyte, Sivic, Zisserman, & Ponce, 2012), are 2 

used for image enhancement. The deconvolution filter is used as it is implemented on smartphones to improve blurred 3 

images (Joshi, Kang, & Zitnick, 2010). The deconvolution filter removes the image blur before performing edge 4 

detection. The deblurred image can contribute a better edge detection as the blur is removed. Hence, the edge image 5 

developed with the deblurred image is compared with that developed by the proposed MSF framework. Also, Whyte 6 

et al.’s filter (Whyte, Sivic, Zisserman, & Ponce, 2012) is used to enhance the image quality before performing the 7 

edge detection, as Whyte et al.’s filter has recently been developed for image deblurring. 8 

 To evaluate the effectiveness of the proposed MSF framework, four sets of results are considered: 9 

a) the one based on solely using the edge detectors, Canny algorithm (Canny 1986), Roberts algorithm (Lee, 10 

Haralick, & Shapiro, 1987), Sobel algorithm (Lee, Haralick, & Shapiro, 1987) and zerocross algorithm 11 

(Kimmel, & Bruckstein, 1984);   12 

b) the one generated by the deconvolution filter (Horstmeyer 2010);  13 

c) the one generated by the Whyte et al. filter (Whyte, Sivic, Zisserman, & Ponce, 2012);  14 

d) the one generated by the proposed MSF framework. 15 

These four sets of results are represented with a, b, c and d in Figures 15 to 17, where Figure 15 show the images 16 

and Figures 16 and 17 show the edge diagrams. These edge diagrams shown in Figures 16 and 17 are developed by the 17 

Canny algorithm and Sobel algorithm respectively. We show the edge diagrams generated by the Canny algorithm and 18 

the Sobel algorithm, as the Canny algorithm is generally more effective than the other three edge detection algorithms, 19 

and  the Sobel algorithm is computationally simpler than the other three algorithms (Canny 1986).  20 

    
Figure 15a Corridor detection: 

Original image. 
Figure 15b Corridor detection: 

Processed image using the 
deconvolution filter. 

Figure 15c Corridor detection: 
Processed image using Whyte et al. 

filter. 

Figure 15d Corridor detection: 
Processed image using the 
proposed MFS framework. 
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Figure 16a Corridor detection: 
Canny algorithm for the original 

image. 

Figure 16b Corridor detection: 
Canny algorithm after the 

deconvolution filter. 

Figure 16c Corridor detection: 
Canny algorithm after Whyte et al. 

filter. 

Figure 16d Corridor detection: 
Canny algorithm within the proposed 

MFS framework. 
 

   
 

Figure 17a Corridor detection: 
Sobel algorithm for the original 

image. 

Figure 17b Corridor detection: 
Sobel algorithm after the deblurring 

algorithm. 

Figure 17c Corridor detection: Sobel 
algorithm after Whyte et al. filter. 

Figure 17d Corridor detection: Sobel 
algorithm within the proposed MFS 

framework. 
 1 

Figures 16a-16d show the edge diagrams generated by the Canny algorithm. As mentioned, some corridor edges are 2 

missing in Figure 16a which is generated based on the original video frame. Figure 16b shows the edge diagram 3 

associated with the deconvolution algorithm. Although the edge diagram shows that the right corridor exists, the left 4 

corridor cannot be seen on the edge diagram. Also, a lot of noise and artifact is generated on the edge diagram. Figures 5 

16c and 16d show the edge diagrams associated with the Whyte et al. filter and the MSF framework. The two edge 6 

diagrams show that both left and right corridors exist. Hence, clearer corridor edges are generated when the Whyte et 7 

al. filter and the MSF framework are used. 8 

Also, Figures 17a-17d show the edge diagrams generated by the Sobel algorithm. Figures 17a-17c show that both 9 

left and right corridors are missing in the edge diagrams, where they are generated with the original images and the 10 

processed images which are associated with the deconvolution and the Whyte et al. filters. Figure 17d shows that the 11 

right corridor exists and partial left corridor exists, where the edge diagram was generated based on the MSF 12 

framework. Hence, the MSF framework improves the effectiveness of detecting corridor edges. Similar results have 13 

been found for Roberts and zerocross algorithms. Due to the page limit of the paper, those results are not reported 14 

here. 15 

Figure 18 shows the distance measure formulated in (3) where the corridor edges are considered. It shows the 16 

average distance errors over the 100 video frames of the validation set. It shows that the deconvolution filter, Whyte et 17 

al.’s filter and the MSF framework can produce edge diagrams with comparably smaller errors to the edge diagrams 18 
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based on the original video frames. Also, slightly smaller errors can be obtained based on the MSF framework 1 

compared with the deconvolution filter and the Whyte et al filter. 2 
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  3 
Figure 18 Corridor detection: Distance errors for Guidedog. 4 

 5 

Figure 19 shows the average computational time used for the four approaches in performing edge detections on the 6 

validation set. It shows that the two deblurring methods, deconvolution filter and Whyte et al.’s filter, require 7 

considerably more computational time than that required by the proposed MSF framework, where the deconvolution 8 

filter required about 0.2 seconds; the Whyte et al. filter required about 15 seconds; and the proposed MSF framework 9 

required only 0.04 seconds which is much lesser than the other two methods. The computational time required by the 10 

Whyte et al. filter is much greater than the other methods. Only slightly more computational time is required by the 11 

MSF framework than that required when solely using the edge detectors. Therefore, the MSF framework is effective 12 

on corridor detection, as better edge detection can be achieved and only marginally additional computational time is 13 

required compared with solely using the edge detectors. 14 
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 15 
 Figure 19 Corridor detection: Computational time for Guidedog. 16 

 17 
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3.3.2 Entry detection 1 

The 181th original video frame from the validation set is shown in Figure 20a. We attempt to detect the entry circled on 2 

the image.  Figure 21a shows the edge diagram which is generated solely by the Canny algorithm and it shows that 3 

entry patterns can barely be identified. Therefore, the original image must be processed before performing the edge 4 

detection, as the blur is generated by large camera movement and it degrades the effectiveness of entry detection. 5 

Figures 20b, 20c and 20d show the enhanced images generated by the deconvolution filter (Horstmeyer 2010), Whyte 6 

et al.’s filter (Whyte, Sivic, Zisserman, & Ponce, 2012) and the proposed MFS framework respectively. We can see 7 

that sharper entry can be identified from the three processed images compared with the original image. Based on the 8 

three enhanced images, the Canny algorithm is used for edge detection and the three edge diagrams corresponding to 9 

the three processed images are shown in Figure 21b, 21c and 21d. We can observe from the three edge diagrams that 10 

the entry patterns are more likely to be observed from the processed images. However, noise and artifact is generated 11 

on the edge diagrams associated with the deconvolution filter (Horstmeyer 2010) and Whyte et al.’s filter (Whyte, 12 

Sivic, Zisserman, & Ponce, 2012). Clearer entry patterns with less noise and artifact can be generated on the edge 13 

diagram associated with the proposed MSF framework. 14 

 Also, Figures 22a to22d show the edge diagrams generated by the Sobel algorithm. The entry patterns can barely be 15 

identified on Figures 22a and 22b which correspond to the original image and are associated with the deconvolution 16 

filter respectively. Although the Whyte et al. filter can generate a clearer entry pattern as shown in Figure 22c, noise 17 

and artifact are generated. Figure 22d shows the edge diagram associated with the proposed MFS framework and it 18 

shows the clearer entry patterns with less noise and artifact compared with the other edge diagrams. Similar results 19 

have been found for the Roberts and zerocross algorithms. Due to space constraints, those results are not shown here. 20 

    
Figure 20a Entry detection: Original 

video frame. 
Figure 20b Entry detection: 
Processed frame using the 

deconvolution filter. 

Figure 20c Entry detection: 
Processed frame using Whyte et 

al.’s filter. 

Figure 20d Entry detection: Processed 
frame using the proposed MFS 

framework. 
 

    
Figure 21a Entry detection: Canny Figure 21b Entry detection: Canny Figure 21c Entry detection: Canny Figure 21d Entry detection: Canny 



Expert Systems with Applications 24
algorithm for original video frame. algorithm after deconvolution filter.  algorithm after Whyte et al.’s filter. algorithm within proposed MFS 

framework. 
 

    
Figure 22a Entry detection: Sobel 
algorithm for original video frame. 

Figure 22b Entry detection: Sobel 
algorithm after deconvolution filter.  

Figure 22c Entry detection: Sobel 
algorithm after Whyte et al.’s filter. 

Figure 22d Entry detection: Sobel 
algorithm within proposed MFS 

framework. 
 

Figure 23 shows the average distance errors formulated in (3) over the 100 original images of the validation set, 1 

where the entry edges are considered. It shows the errors for the original images and the three processed images 2 

associated with the deconvolution filter, Whyte et al. filter and the proposed MSF filter. Results show that smaller 3 

errors can be obtained on the original images comparing with the processed images. Also, the proposed MSF 4 

framework can obtain slightly smaller errors than those obtained by the proposed MSF framework, and it obtained 5 

similar errors compared with the Whyte et al.’s filter which is a recently developed deblurring method. 6 

 7 
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 8 
Figure 23 Entry detection: Distance errors for Guidedog. 9   10 

Figure 24 shows the average computational time used for edge detection corresponding to the original images and 11 

the processed images associated with the deconvolution filter, Whyte et al.’s filter and the proposed MSF framework. 12 

Similar to the computational time used on corridor detection, Whyte et al.’s filter requires much more computational 13 

time than the deconvolution filter which requires more computational time than the proposed MSF framework. Hence, 14 

the proposed MSF framework requires the smallest amount of computational time compared with the other 15 

enhancement methods. Therefore, similar to corridor detection, better edge detection can be achieved by the proposed 16 

MSF framework and only marginally additional computational time is required compared with solely using the edge 17 

detectors. 18 
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Canny Roberts Sobel Zerocross
10

-4

10
-3

10
-2

10
-1

10
0

10
1

C
om

pu
ta

tio
na

l t
im

e 
(s

ec
on

ds
)

 

 

Pure edge detection
Deconvolution + edge detection
Whyte et al. + edge detection
Proposed MFS + edge detection

 1 
Figure 24 Entry detection: Computational time for Guidedog. 2 

 3 

In this research, the proposed MSF framework and the other tested methods are implemented on a PC platform as 4 

described in Section 3.1. Results show that smaller detection errors are obtained by the MSF framework and smaller 5 

computational time is required when performing detection on large movement. As the MSF framework and the other 6 

tested methods are deterministic algorithms, same algorithmic steps are performed when different platforms are 7 

implemented. Same results in term of the detection errors can be obtained. Therefore, this is expected that the MSF 8 

framework can obtain small errors for large movement, when different platforms are implemented. 9 

Results also show that faster computational time is required by the MSF framework, when they are implemented in 10 

PC. Hence, the computational complexity of the MSF framework is smaller than the other tested methods. As the 11 

tested methods and the MSF framework are all deterministic algorithms, their asymptotic computational complexities 12 

are the same when implementing on different platforms. Therefore, it can be expected that the MSF framework is 13 

faster than the other tested methods when different platforms are implemented. 14 

 15 

 16 
4. CONCLUSION AND FUTURE WORK 17 

In this paper, a modified sigmoid function (MSF) framework was proposed based on the inertial measurement unit 18 

(IMU) data in order to assist indoor navigation. It attempted to enhance the navigation effectiveness for visually 19 

impaired persons who use smartphones for indoor navigation. The MSF framework improves the contrast of the video 20 

frames containing motion blur, resulting in more precise edge detection. It overcomes the limitation of deblurring 21 

algorithms, which are computationally expensive and are not practical for real-time implementations. 22 

The effectiveness of the MSF framework was evaluated based on four scenarios involving visually impaired 23 

persons engaged in navigation. One used a white cane and another used a guide dog for corridor and entry detections 24 

which are important for indoor navigation of visually impaired persons. The detections with a white cane exhibited a 25 

small movement and thus small blur was generated. The detections with a guide dog exhibited a large movement and 26 
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thus large blur was generated. Four commonly-used edge detectors were implemented within the MSF framework 1 

for performance evaluation. Three approaches were considered: solely using the edge detectors; using two deblurring 2 

algorithms including the deconvolution filter and Whyte et al.’s filter; and using the proposed MSF framework, where 3 

the deconvolution filter is commonly used on image deblurring on smartphones and the Whyte et al.’s filter is a 4 

recently developed deblurring method. 5 

For the video frames containing strong blur, results showed that the proposed MSF framework is an improvement 6 

on existing techniques with regard to both edge detection performance and computational complexity. Specifically, 7 

smaller errors for detections of indoor corridors and entries were obtained compared to existing benchmark methods. 8 

Furthermore, the MSF framework performed similarly well to an advanced system based on deblurring, while 9 

maintaining an average 10-fold smaller computational complexity than the deconvolution filter and 100-fold smaller 10 

than Whyte et al.’s filter. 11 

Future work is to develop a database which includes visual and movement data for navigation of visually impaired 12 

persons, as this database is not available in the public. This data will be collected from visually impaired persons who 13 

simulate navigations in different indoor environments and with different movement levels. This database will consist 14 

of video sequences synchronized with the IMU data which are captured by a mobile device installed with a camera 15 

and a synchronized IMU. Using this database, the effectiveness of the MSF framework can be further evaluated. Also 16 

this database can be used as a benchmark to evaluate effectiveness of image enhancement algorithms which are 17 

particularly developed for indoor navigation of visually impaired persons.  18 

The work presented in this paper aims to develop an image enhancement algorithm in order to help the edge or 19 

object detection. The final goal is to build a comprehensive navigation system for blind and vision-impaired people 20 

using arrange sensors in a hand held devices. In the next stage, we will implement the algorithm in a hand held device 21 

for real time evaluation. 22 

 23 
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