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Abstract: Since returns of financial assets generally exhibit skewness and kurtosis, modelling returns

using a distribution with the ability to capture both of these statistical aspects will increase the accuracy

of risk forecasts based on these distributions. The authors propose the use of the multivariate skew

normal (MVSN) mixture model to fit asset returns in order to increase the accuracy of Value-at-Risk

(VaR) estimates. This paper presents a novel application of the MVSN mixture model to estimate VaR.

There is generally no explicit analytical solution for the parameters of the MVSN mixture model via max-

imum likelihood estimation (MLE), therefore the use of the Expectation Maximization (EM) Algorithm

is proposed in order to find the parameter estimates of the model.

The example provided in this paper consists of a portfolio of monthly returns of six shares listed on

the Australian Securities Exchange (ASX). The shares are BHP Billiton Limited (BHP), Commonwealth

Bank of Australia (CBA), Cochlear Limited (COH), News Corporation (NWS), Origin Energy (ORG),

and Wesfarmers Limited (WES). Hence, the dimensionality, p, of this portfolio is six. The period of

analysis for the data is 01/01/1998 - 01/04/2011.

This paper models the MVSN mixture model with a number of mixtures ranging from one to four. A

mixture of multivariate normal densities is modelled for comparison to the MVSN mixture model. We

find that for one to three mixtures, the MVSN mixture model provides an improved fit. The improved fit

of the MVSN mixture model is translated to the performance of the VaR models, where the results show

that for one to three numbers of mixtures, the VaR model using the MVSN mixture model assumption

indicates improved risk forecasts when compared to the mixture of multivariate normal densities. Fur-

thermore, for the example examined, we find that the model which incorporates the skewness parameter

(MVSN mixture model) requires a fewer number of mixtures when compared to a mixture of normal

densities. This is an interesting result as reduced model complexity requires less computational ability,

computation time, and will results in decreased computational anomalies.
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1 INTRODUCTION

Returns of financial assets generally exhibit skewness and kurtosis, rendering the normal distribution

assumption for estimating risk, such as Value-at-Risk (VaR), a weak tool. The normal distribution has

been found to underestimate risk for returns (See, Zangari [1996], Li [1999]). However, the use of

mixtures of normal densities have been shown to increase the accuracy of VaR forecasts as the assumption

of this distribution allows for higher kurtosis when compared to the normal distribution alone (See, for

example, Venkataraman [1997]). If indeed financial returns are skewed, the incorporation of a skewness

parameter will further increase the accuracy of risk forecasts. The multivariate skew normal (MVSN)

distribution is a natural extension of the multivariate normal distribution, which can accommodate for

asymmetry. Therefore, we propose the use of a mixture of MVSN densities (MVSN mixture model) to

model asset returns and estimate VaR. This density allows for the inclusion of a skewness parameter,

therefore it is more flexible than a mixture of normal densities. There is generally no explicit analytical

solution for the parameter estimates of the MVSN mixture model via maximum likelihood estimation

(MLE); hence the EM algorithm is used to find these estimates iteratively. Lin [2009] proposes a concise

framework for implementing the EM Algorithm to find the parameter estimates of the MVSN mixture

model. The use of the MVSN mixture model will be demonstrated by modelling a portfolio which

consists of monthly returns of six shares listed on the Australian Securities Exchange (ASX). Therefore,

the portfolio corresponds to a dimensionality of six. The multivariate normal mixture model will also

be fitted to this portfolio for comparison to the MVSN mixture model. VaR will be calculated via a

simulation based on the parameter estimates of the two models, and the results will be compared via a

range of tests.

2 THE MULTIVARIATE SKEW NORMAL MIXTURE MODEL

The univariate skew normal density was first considered in depth by Azzalini [1985]. Various forms of

multivariate extensions have been considered by Azzalini, A. and A. Dalla Valle [1996], Azzalini, A. and

A. Capitanio [1999], Arnold and Beaver [2002], and Sahu, Dey, and Branco [2003].

For a random vector X, the MVSN density with p× 1 location vector ξ, p× p positive definite covariance

matrix Σ, and p× p skewness matrix Λ, is defined as

f(x|ξ,Σ,Λ) = 2pφp(x|ξ,Ω)Φp

(
ΛTΩ−1(x− ξ)|Δ)

(1)

where Ω = Σ+ΛTΛ, Δ = (Ip+ΛTΣ−1Λ)
−1

, and φp(.|μ,Σ) and Φp(.|Σ) denote the pdf of Np(μ,Σ)
and cdf of Np(0,Σ), respectively [Lin, 2009].

Now consider a set of random variables X1, . . . , Xn that follow a mixture of MVSN densities. The

probability density function (pdf) can be defined as

Xj ∼
g∑

i=1

wif(ξi,Σi,Λi), wi ≥ 0,

g∑
i=1

wi = 1 (2)

where f(ξi,Σi,Λi) is defined as per equation (1) and, Θ = (θ1, . . . , θg), where θi = (wi, ξi,Σi,Λi)
are the unknown parameters of mixture i, and wi mixing probabilities.

Then, the log-likelihood function of the MVSN mixture model of equation (2) is

�(Θ|y) =
n∑

j=1

log

(
g∑

i=1

wif(ξi,Σi,Λi)

)
. (3)

There is generally no explicit analytical solution for the log-likelihood function of equation (3) via MLE.

Therefore, Lin [2009] suggests the use of the EM Algorithm, in order to solve for the maximum like-

lihood (ML) estimates of the MVSN mixture model. It is considered more efficient when compared to

multidimensional optimisation.
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3 EM ALGORITHM

The EM Algorithm is an iterative procedure which solves for the parameter estimates via simulation.

There are two steps which comprise the algorithm, the E-step and the M-step. Firstly, x1, . . . ,xn

is considered the incomplete or observed data. For the E-step, an unobservable vector of zero-one

indicator variables, Zj = (Z1j , . . . , Zgj)
T , for j = 1, . . . , n, must be introduced. Where Zj ∼

multinomial(1;w1, . . . , wg), and Zrj = 1 if Xj comes from mixture r. The associated complete-

data log-likelihood is �c(Θ|x,Z, τ), where τ ∼ HalfNormalp(0, Ip). Θ cannot be estimated via

the complete-data log-likelihood since it contains unobservable components, however, the E-step over-

comes this problem by compensating for the unobservable data by averaging the complete-data log-

likelihood over its conditional distribution, given the observed data. Therefore, the Q-function is de-

fined as Q(Θ|Θ̂(k)) = E(�c(Θ|x, τ,Z)|x, Θ̂(k)), where Θ̂(k) is the current parameter estimates.

The calculation of the Q-function involves the computation of E(Zij |xj , Θ̂), E(Zijτj |yj , Θ̂
(k)), and

E(Zijτjτ
T
j |xj , Θ̂

(k)).

Next, the M-step maximizes the Q-function over the current parameters estimates. The E-step and M-step

are repeated, or iterated, until convergence. The algorithm converges when the difference between the

successive log-likelihoods is small enough, usually a difference of 10−5 is considered sufficient.

The starting values of the EM Algorithm can be chosen by performing a k-means clustering algo-

rithm initialised with random start, and by specifying the indicator variable zero-one membership ac-

cording to the results of the k-means clustering. The initial values of wi, ξi, Σi should be chosen as

ŵ
(0)
i =

∑n
j=1 Ẑ

(0)
ij n−1, ξ̂

(0)
i = (

∑n
j=1 Ẑ

(0)
ij xj)(

∑n
j=1 Ẑ

(0)
ij )−1, and Σ̂

(0)
i = (

∑n
j=1 Ẑ

(0)
ij (xj−ξ̂

(0)
i )(xj−

ξ̂
(0)
i )T )(

∑n
j=1 Ẑ

(0)
ij )−1, respectively. The initial values of Λi, can be chosen as diagonal. The diagonal

imposition of the skewness matrix ensures that the correlation structure of the data is unaffected [Sahu,

Dey, and Branco, 2003]. Therefore, Λ̂
(0)
i = Diag{Λ̂(0)

i1 , . . . , Λ̂
(0)
ip }, with values slightly deviated from

zero, whose sign corresponds to the sign of the sample skewness of the k-means clustering observations

[Lin, 2009].

The computations are performed in the program R (available at http://www.r-project.org/). Even with

existing high computational power there are computational limitations, as there are complexities which

exist within the methods of using iterative procedures such as the EM Algorithm. The EM Algorithm is

an efficient method; however there are computational limitations in some cases. For example, increasing

the portfolio size (dimensionality) coupled with a larger number of mixtures (e.g., g � 4) has been found

to drastically increase computational time, and computational anomalies.

4 MODEL COMPARISON

Let SNmix model denote the MVSN mixture model as defined in equation (2). Setting the skewness

parameter, Λi = 0 ∀i = 1, 2, . . . , g in equation (2) results in a mixture of normal densities. Let this

model be denoted NORMmix. The two models will be compared by the construction of Likelihood

Ratio (LR) tests, with reference to the skewness parameter, Λ. The hypotheses tested for the LR test are

H 0 : Λ1 = . . . = Λg = 0 versus H1 : Λi �= 0, for at least one i = 1, . . . , g. The associated LR test

statistic is

LR = −2{�(Θ̂|x)0 − �(Θ̂|x)1} (4)

which is asymptotically distributed as χ2
r , where r is the number of restrictions. Hence, the LR tests will

show whether of the introduction of the parameter, Λ, which represents the skewness, is significant. The

LR test will be conducted for each g = 1, 2, 3, 4.

If m and n are the number of parameters, and the number of observations, respectively, then the AIC the

BIC can be defined as AIC = −2(�(Θ̂|y)−m), and BIC = −2(�(Θ̂|y)− 0.5m log(n)). Accounting

for over parameterisation, the model with the lower AIC and BIC is preferred.

Assuming asymptotic normality, the parameter significance (i.e., the parameters are different from zero)

of the SNmix model are assessed by analysing the standard errors. The standard errors are found via

the inverse of the information matrix [Lin, 2009]. The parameter estimates and standard errors of the

parameter estimates are available upon request from the authors.
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5 VALUE-AT-RISK AND MODEL EVALUATION

Although VaR has been criticised for not satisfying the axioms to be a coherent risk measure by Artzner

et al. [1999], VaR is consistently used by banking institutions as a measure of risk.

Consider X as the aggregate return, such that, X = X1+X2+. . .+Xp, where each Xi for i = 1, 2, . . . , p
are the return of each of the shares in the portfolio. If one is interested in possible losses, or negative

returns, then, VaR can be defined as the smallest value satisfying

P (X < xq) = α (5)

where α is the significance level and xq is the qth quantile of X. Hence, VaR can be understood as the

quantile of X at a given significance level.

Assuming that (X1,X2, . . . ,Xp) follows the SNmix model and NORMmix model, respectively, and

the corresponding parameter estimates are found via the EM Algorithm, a large set of observations is

simulated based on the parameters of the fitted distribution. Next, the simulated value of X is obtained,

and VaR is calculated by finding the appropriate quantile. These two models will be denoted SNmix VaR

model and NORMmix VaR model, respectively.

In order to verify if the VaR models are adequate, Kupiec [1995] proposes a test, based on backtesting,

to determine if the losses projected by the VaR models accurately predict actual losses. The number of

violations follows a binomial distribution [Jorion, 1995]. Let the proportion of violations, ν = ω
n , where

ω is the number of violations of VaR in the actual data, and n is the sample size. The hypotheses of this

test are H0 : α = α∗ versus H1 : α �= α∗, where α is the probability of violation as defined by the VaR

model, and α∗ is the target value of α. The LR statistic is

LRbacktesting = 2{ln (νω(1− ν)n−ω
)− ln

(
α∗ω(1− α∗)n−ω

)} (6)

which is χ2
1 distributed.

Furthermore, it can be seen that as α∗ → α, then ω
α×n → 1. The exceeding ratio, as defined by Choi and

Min [2011], is therefore defined as the number of violations of VaR, ω, divided by the expected number

of violations, α × n. It can be seen that if the exceeding ratio is greater than 1, then the VaR model is

under-forecasting VaR, and if the exceeding ratio is less than 1, the VaR model is over-forecasting VaR.

This result can be used to rank the VaR models, and will be used as a means to compare the SNmix VaR

models to the NORMmix VaR models in order to judge which more accurately forecasts risk. Moreover,

the exceeding ratio can be used as a method for identifying which number of mixtures, g, of the SNmix

VaR models, provides the best risk estimate.

Christoffersen [1998] proposes a test for serial independence of VaR violations. This tests the null hy-

pothesis of serial independence against the alternative of first-order Markov dependence. The LR statistic

is

LRindependence = (1− π)(n00+n10)π(n01+n11) (7)

where n00 denotes the number of observations in which a violation followed consecutively by another

violation, n01 denotes the number of observations in which a violation followed consecutively by no

violation, n10 denotes the number of observations in which no violation is followed consecutively by a

violation, n11 denotes the number of observations where no violation is followed consecutively by no

violation, and π = n01+n11

n00+n10+n01+n11
. The test statistic is χ2

1 distributed.

6 EXAMPLE

The example presented consists of a portfolio of the monthly returns of six shares listed on the Australian

Securities Exchange (ASX). The data is sourced from Datastream. The shares are BHP Billiton Limited

(BHP), Commonwealth Bank of Australia (CBA), Cochlear Limited (COH), News Corporation (NWS),

Origin Energy (ORG), and Wesfarmers Limited (WES). Hence, the dimensionality, p, is 6. The return

is calculated by rt = 100 × log
(

Pt

Pt−1

)
, where rt is the return at time t, Pt and Pt−1 correspond to the

price of the share at time t and t − 1, respectively. The period of analysis for the data is 01/01/1998 -
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01/04/2011. Table 1 shows the summary statistics for the returns of each share, and the return of the total

portfolio which is the sum of all the returns for each share. There is skewness and excess kurtosis present

in all share returns and the return of the total portfolio.

Table 1. Summary statistics

BHP CBA COH NWS ORG WES Total
Minimum −22.662 −24.5296 −29.972 −30.1022 −37.9751 −25.1258 −78.020
Maximum 14.3187 16.0597 16.9658 23.8883 29.0528 21.7674 77.710
Mean 0.2844 0.1511 0.4050 −0.0040 0.2519 0.1600 1.248
Std Dev 4.3210 3.2624 4.2065 5.0084 3.9754 3.6951 26.4785
Skewness −0.5212 −0.2092 −0.3296 −0.0137 0.8513 −0.1845 −0.4152
Kurtosis 5.3142 7.0802 6.9871 6.4571 11.0189 7.8920 6.3987

The LR statistic for g = 1 number of mixtures is 14.796 (p-value = 0.0219), g = 2 number of mixtures is

24.484 (p-value = 0.0175), g = 3 number of mixtures is 40.058 (p-value = 0.0021), and g = 4 number

of mixtures is 14.036 (p-value = 0.9458). Thus, there is sufficient evidence to conclude that the skewness

parameter, Λ, is significantly different from zero for g = 1, 2, 3 number of mixtures at the 5% level of

significance. Therefore, these results suggest that for g = 1, 2, 3 number of mixtures, the SNmix model is

favoured over the NORMmix model. The results of the AIC suggest that the SNmix model is statistically

favoured over the NORMmix models for g = 1, 2, 3 number of mixtures, however the NORMmix model

is favoured for g = 4 number of mixtures. The results of the more stringent BIC suggest that the SNmix

model is favoured over the NORMmix model for only g = 1 number of mixtures, with the NORMmix

model being favoured for all other number of mixtures.

Table 2. Summary of the VaR model results

number of mixtures, g SNmix NORMmix
VaR −55.83 −53.90

1 exceeding ratio 1.2579 2.5157
LRBacktesting 0.0987 2.5976
LRIndependence 2.1962e−05 3.8660e−07

VaR −57.19 −52.16
2 exceeding ratio 1.2579 3.1447

LRBacktesting 0.0987 4.7115��

LRIndependence 2.1962e−05 9.5141e−09

VaR −79.30 −39.84
3 exceeding ratio 0.6289 5.0314

LRBacktesting 0.2547 13.2960���

LRIndependence 0.0023 1.6908e−14

VaR −78.48 −56.77
4 exceeding ratio 0.6289 1.2579

LRBacktesting 0.2547 0.0987
LRIndependence 0.0023 2.1962e−05

� � � significant at the 0.01 level

�� significant at the 0.05 level

� significant at the 0.10 level

The results of the VaR, with α = 0.01, are presented in Table 2. The results of the in-sample backtesting

show that the SNmix VaR model accurately predicts risk for all number of mixtures. Moreover, the

NORMmix VaR model inaccurately predicts risk for g = 2, 3 number of mixtures. Furthermore, the

results of the exceeding ratio show that the SNmix VaR model out-performs the NORMmix VaR model

for g = 1, 2, 3 number of mixtures. The results of the serial independence test show that for all number

of mixtures, for both the SNmix and NORMmix VaR models, the violations are not serially correlated.

Furthermore, since the exceeding ratio can be used to rank VaR models, the models which perform equally

best are the SNmix VaR model with g = 1, 2 number of mixtures, and the NORMmix VaR model with

g = 4 number. The associated VaR is $55.83, $57.19, and $56.77 respectively, corresponding to a 1%
chance of a loss equal to these amounts.
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7 CONCLUSIONS AND RECOMMENDATIONS

We propose the use of the MVSN mixture model to fit asset returns since financial data tends to exhibit

both skewness and excess kurtosis. The EM Algorithm is used to find the parameter estimates of the

MVSN mixture model, since there is generally no explicit analytical solution for the parameter estimates

via MLE. The example presented within this paper consists of monthly log returns of shares listed on the

ASX. The dimensionality of the portfolio presented is six. For this example, the results of the model fit

indicates that the SNmix model with g = 1, 2, 3 number of mixtures provides a more accurate fit to the

data when compared to the NORMmix model. Hence, the incorporation of a skewness parameter results

in an improved fit for the data. The improved fit of the SNmix model for these numbers of mixtures is

translated to the estimation of VaR, where the model validation shows that the SNmix VaR model with

these numbers of mixtures more accurately forecasts risk when compared to the NORMmix VaR model.

Furthermore, with respect to the accuracy of forecasting risk, the SNmix VaR model with g = 1, 2 number

of mixtures, and the NORMmix VaR model with g = 4 number of mixtures provide a comparable

fit. In terms of estimation, the SNmix models require 34 and 67 parameters estimated, for g = 1, 2
number of mixtures, respectively. Whereas, the NORMmix model with g = 4 number of mixtures

requires the estimation of 111 parameters. Therefore, for the given example, modelling share returns

using a distribution which can capture skewness reduces the number of mixtures required to accurately

forecast risk. This result is important as with reduced model complexity comes reduced computational

time, and computational requirement. Moreover, computational anomalies are less prevalent when model

complexity is reduced.

This paper presents the estimation of VaR with the assumption that the data analysed are independently

and identically distributed (iid); the authors accept that there is empirical evidence which suggests that

an underlying non-iid structure may be present with financial time series data. However, this paper

demonstrates that, even for the iid case, fitting the MVSN mixture model to financial returns data increases

the accuracy of VaR forecasts when compared to a more traditional method (mixture of normal densities).

Thus, the authors suggest that the methodology presented within this paper can be extended and applied

to data which has first been fitted with a conditional volatility model (GARCH-type model), to capture

the possible time-varying relationships which may exist in financial returns data.
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