2		
3 4 5	1	The origin of high δ^{18} O zircons: Marbles, megacrysts, and metamorphism
6 7	2	
8 9 10	3	Aaron J. Cavosie ¹ , John W. Valley ² , Noriko T. Kita ² , Michael J. Spicuzza ² ,
11 12	4	Takayuki Ushikubo ² , Simon A. Wilde ³
13 14	5	
15 16 17	6	¹ Dept. of Geology, Univ. of Puerto Rico, Mayagüez PR 00681, USA
18 19	7	² WiscSIMS, Dept. of Geoscience, Univ. of Wisconsin, Madison WI 53706, USA
20 21 22	8	³ Dept. of Applied Geology, Curtin Univ. of Technology, Perth, Australia
23 24	9	
25 26 27	10	Corresponding Author: Aaron J. Cavosie
28 29	11	Email: aaron.cavosie@upr.edu
30 31 22	12	Tel: +001-787-431-9039
32 33 34	13	Fax: +001-787-265-3845
35 36	14	
37 38 39	15	
40 41	16	
42 43 44	17	
45 46	18	March 2011
47 48 49	19	
50 51	20	
52 53	21	
54 55 56	22	
57 58	23	
59 60 61		
62 63		
64 65		

Abstract

25	The oxygen isotope ratios (δ^{18} O) of most igneous zircons range from 5 to 8‰,
26	with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from
27	quartzite, metapelite, metabasite, and eclogite record δ^{18} O values from 5 to 17‰, with
28	99% below 15‰. However, zircons with anomalously high δ^{18} O, up to 23‰, have been
29	reported in detrital suites; source rocks for these unusual zircons have not been identified.
30	We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic
31	petrogenesis for anomalously high δ^{18} O in zircon. A suite of 28 large detrital zircon
32	megacrysts from Mogok (Myanmar) analyzed by laser fluorination yield δ^{18} O from 9.4 to
33	25.5‰. The U-Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields
34	$\delta^{18}O=15.4\pm0.1\%$ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin-
35	section of Sri Lanka granulite facies calcite marble yields $\delta^{18}O = 19.4\%$ by ion
36	microprobe, and confirms a metamorphic petrogenesis of zircon in marble.
37	Small oxygen isotope fractionations between zircon and most minerals require a
38	high δ^{18} O source for the high δ^{18} O zircons. Predicted equilibrium values of Δ^{18} O(calcite-
39	zircon = 2-3‰ from 800-600°C show that metamorphic zircon crystallizing in a high
40	δ^{18} O marble will have high δ^{18} O. The high δ^{18} O zircons (>15‰) from both Sri Lanka and
41	Mogok overlap values of primary marine carbonates, and marbles are known detrital
42	gemstone sources in both localities. The high $\delta^{18}O$ zircons are thus metamorphic; the 15-
43	25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e.,
44	low fluid _(external) /rock); the lower δ^{18} O zircon values (9-15‰) are consistent with an
45	origin in an external fluid-dominated system, such as skarn derived from marble,
46	although many non-metasomatised marbles also fall in this range of $\delta^{18}O$. High $\delta^{18}O$

47	(>15‰) and absence of zoning can thus be used as a tracer to identify a marble source for
48	high δ^{18} O detrital zircons; this recognition can aid provenance studies in complex
49	metamorphic terranes where age determinations alone may not allow discrimination of
50	coeval source rocks. Metamorphic zircon megacrysts have not been reported previously,
51	and appear to be associated with high grade marble. Identification of high $\delta^{18}O$ zircons
52	can also aid geochronology studies that seek to date high grade metamorphic events due
53	to the ability to distinguish metamorphic from detrital zircons in marble.
54	
55	
56	Keywords: zircon, oxygen isotopes, Sri Lanka, Mogok, marble, megacryst, SIMS
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
	3

1. Introduction

The widespread occurrence and durability of zircon in many geologic environments has resulted in the development of an array of different chemical and isotopic analytical methods to understand its petrogenesis. Zircon has been shown to be highly retentive of oxygen isotope ratio (δ^{18} O) over a wide range of geologic conditions and time (Valley et al. 1994; Watson and Cherniak 1997; Peck et al. 2003; Page et al. 2007a; Moser et al. 2008). With accurate empirical and theoretical oxygen isotope fractionation factors for zircon and co-existing phases (Valley 2003), analysis of δ^{18} O in zircon offers unique insights into a variety of petrologic processes, including the recognition of primitive mantle-equilibrated melts (Valley et al. 1998; Page et al. 2007b; Cavosie et al. 2009; Grimes et al. 2011), evidence of the first continents and oceans (Wilde et al. 2001; Cavosie et al. 2005); evolution of the continental crust (Valley et al. 2005; Hawkesworth and Kemp 2006; Moser et al. 2008); origin of large batholiths (Lackey et al. 2005, 2008); origin of low δ^{18} O magmas (Bindeman and Valley 2001; Bindeman et al. 2008), evaluation of mineral-melt and mineral-mineral equilibria (King et al. 2001; Valley et al., 2003; Lackey et al. 2006; Trail et al. 2009), and a monitor of whole-rock alteration (King et al. 1997). Studies of δ^{18} O in metamorphic zircon also yield important information about sub-solidus processes, including the composition of crustal fluids, partial melting, and recrystallization (Peck et al. 2003; Martin et al. 2006; Page et al. 2007a; Lancaster et al. 2009; Gordon et al. 2009). In addition to 'normal' igneous and metamorphic zircon, there exist lesser-known occurrences of anomalously high δ^{18} O zircons, with δ^{18} O values higher than values reported in zircon from common igneous

and pelitic/siliceous metamorphic rocks (e.g., >15‰). Determining the origin of such high δ^{18} O in zircon is the focus of this paper.

Here we present laser fluorination analyses of δ^{18} O for a population of detrital zircons from Mogok (Myanmar), and ion microprobe measurements of δ^{18} O for two zircons from Sri Lanka. One of the Sri Lanka zircons is the widely used U-Pb standard CZ3, and the other is a zircon from a granulite facies marble. In conjunction with previous work, the new δ^{18} O data allow the first robust constraints to be placed on the origin of high δ^{18} O zircons. Of significance to the question of origin is the surprising fact that all reported occurrences of high δ^{18} O zircons (δ^{18} O >15‰) are either detrital or from an unusual source where reliable determinations of protolith have not been possible. A better understanding of origin based on oxygen isotope systematics will allow the high δ^{18} O values recorded in these grains to be used as a tracer for investigating the metamorphic petrogenesis of zircon.

1.1 The δ^{18} O of igneous zircon

Nearly all δ^{18} O studies of zircon (Zrn) have focused on magmatic grains, resulting in the recognition that most igneous zircon is either in high temperature equilibrium with mantle oxygen isotope ratios ($\delta^{18}O(Zrn) = 5.3 \pm 0.6$ %), or slightly higher (see reviews by Valley 2003; Valley et al. 2005). The upper limit for igneous $\delta^{18}O(Zrn)$ has increased from primitive mantle values of \sim 5-6‰ to evolved values of \sim 10 ‰ since the end of the Archean as a consequence of tectonics, changes in the atmosphere, evolving processes of weathering, and maturation of the crust (Valley et al. 2005). However, 99% of reported δ^{18} O values for igneous zircon of all ages are below 10‰ (Fig. 1a). One notable

115 exception is a suite of rare high δ^{18} O granitic rocks in the Grenville Frontenac Terrane 116 (Shieh 1985), where granitoids are interpreted to have originated from melting of buried 117 pelitic sediments and yield zircons with δ^{18} O up to 13.5‰ (Peck et al. 2004). Given that 118 no other granitoids of any age have been found with such high δ^{18} O(Zrn) (Valley et al. 119 2005), the anomalously high δ^{18} O Frontenac zircons are considered unique. Igneous 120 zircons can thus be characterized as having δ^{18} O <10‰.

122 1.2 The δ^{18} O of metamorphic zircon

We use the term "metamorphic zircon" to refer to whole zircons or parts of grains (e.g., rims) whose δ^{18} O composition results from sub-solidus processes, such as recrystallization or other processes that record oxygen isotope exchange with the host rock or fluids. Most published δ^{18} O data for metamorphic zircon (99%) range from 5 to 15‰ and are from metapelites and quartzites from the Adirondack Mountains (USA) and the Kapuskasing uplift (Canada), and metapelites and metabasites from Naxos (Greece) (Fig. 1b). Ion microprobe studies have demonstrated that zircon rims from Adirondack granulites (quartzites and pelitic migmatites) yield δ^{18} O as high as 12.8 ‰ (Peck et al. 2003; Page et al. 2007a; Lancaster et al. 2009); zircon rims from Adirondack amphibolite facies rocks (pelitic migmatites) yield similar values, up to 13.2‰ (Lancaster et al. 2009). The upper value of $\sim 13\%$ for Adirondack metamorphic zircon is thus comparable to that found in igneous zircon from the Frontenac granitoids, which is higher than all other igneous zircons. Detrital zircons from granulite facies quartzites in the Kapuskasing uplift contain igneous cores surrounded by metamorphic rims that yield δ^{18} O from 8.4 to 10.4‰ (Moser et al. 2008). At Naxos, metamorphic rims on zircons from metapelitic

gneiss yield δ^{18} O up to 15% as measured by ion microprobe, and represent the highest δ^{18} O values published for zircons from metapelitic rocks (Martin et al. 2006).

1.3. High δ^{18} O zircons

Three occurrences of zircon with high δ^{18} O values from unknown or obscure source rocks have been published. Peck et al. (2001) and Valley (2003) report a δ^{18} O value of 22.9‰ for "Mog" (USNM #R18113), a large detrital zircon from a placer deposit in an amphibolite terrane near Mogok, Myanmar. The Mogok area is known for the mining of placer deposits that yield large gemstones such as corundum, forsterite, and spinel (Yui et al. 2008). Nasdala et al. (2008) reported a δ^{18} O of 13.9‰ for M257, a zircon U-Pb standard from Sri Lanka. Zircon M257 is a large megacryst (long dimension = 20 mm) detrital zircon from a placer deposit in the Highlands Southwest Complex, a granulite terrane in Sri Lanka that is also known for the mining of gemstones from placer deposits (Nasdala et al. 2008). Like Mog, the protolith of M257 is not known. The only report of an anomalously high δ^{18} O zircon from a known source rock is from an ultra-high pressure (UHP) terrane in the Dabie-Sulu Orogen, China. Zircons separated from an eclogite facies boudin of metasedimentary rock hosted in a UHP marble yield $\delta^{18}O =$ 16.8‰ by bulk laser analysis (Wu et al. 2006a). The authors cite the high δ^{18} O as evidence that oxygen isotope equilibrium was attained between the eclogite protolith and the zircons, and was buffered by the high δ^{18} O marble. Wu et al. (2006a) reported that cathodoluminescence (CL) imaging and U-Pb spot analysis showed that many of the zircons contain inherited cores with two distinct overgrowths; thus the bulk analysis of δ^{18} O=16.8‰ is an average of core and multiple rim domains.

162 2. Samples and Methods

163 2.1. Detrital zircons (Myanmar)

Twenty-eight detrital zircons from a fluvial deposit near Mogok (Myanmar) were analyzed for δ^{18} O in this study. The zircons are rounded, large (2 to 8 mm in length), and occur in a variety of colors, including dark red, orange, olive green, yellow, and clear (see color images in Online Resource 2). The Mogok zircons were analyzed for δ^{18} O in ~2 mg aliquots at the University of Wisconsin by gas source mass spectrometry using BrF₅ and a 32 W CO₂ laser. Sample analyses were corrected for accuracy with UWG-2 garnet (δ^{18} O =5.8‰ VSMOW) (Valley et al. 1995), analyzed multiple times at the beginning of the run. The reproducibility of UWG-2 for the two analytical sessions (May 5, 2008 and May 6, 2009) was 0.04‰ (2 standard deviations, sd) for each session.

174 2.2. U-Pb standard CZ3 (Sri Lanka)

CZ3 is a zircon U-Pb standard from a fluvial deposit in a granulite terrane from Sri Lanka (Pidgeon et al. 1994). The CZ3 crystal was a large ~1 g zircon with no observable zoning (Pidgeon et al. 1994), and was adopted as the primary U-Pb standard used at the Curtin University SHRIMP facility (Nelson 1997; de Laeter and Kennedy 1998). CZ3 has a 206 Pb/ 238 U age of 564 Ma, and U and Th concentrations of 551±10 ppm and 30±2, respectively (Pidgeon et al. 1994; Nelson 1997; Nasdala et al. 2004). Forty analyses of rare earth elements (REE) by SHRIMP-RG yield an average ΣREE abundance of 26 ppm (Mattinson et al. 2006). The Lu-Hf isotope compositions of CZ3

5 are ${}^{176}Lu/{}^{177}Hf = 0.000034$ and ${}^{176}Hf/{}^{177}Hf = 0.281729$ (Xu et al. 2004; Wu et al. 2006b), б which yield $\epsilon Hf_{(564)} = -25.5$ (Xu et al. 2004). Six chips of CZ3 were analyzed for δ^{18} O by ion microprobe. The chips were previously embedded in four 25 mm diameter epoxy mounts where they were utilized as U-Pb standards (Cavosie et al. 2004). Cathodoluminescence (CL) imaging of the six chips yield mostly homogeneous images showing contrast variations only around cracks. No growth zoning (magmatic or otherwise) or mineral inclusions were observed in any chips of CZ3, consistent with previous descriptions (Pidgeon et al. 1994; Nasdala et al. 2004). The mounts were re-polished to remove pits following U-Pb determinations and analyses for δ^{18} O were made using a CAMECA IMS-1280 ion microprobe at the University of Wisconsin from July 19-21, 2006. 2.3. Zircon-bearing marble CJJ4 (Sri Lanka) A zircon identified in a thin-section of a granulite facies marble from Sri Lanka was analyzed for δ^{18} O by ion microprobe. Rock sample CJJ4 was collected by Elsenheimer (1988) from the Highlands Southwest Complex of Sri Lanka, and reported to contain 70% carbonate. Elsenheimer (1988) reported the assemblage calcite + diopside + phlogopite + pyrite + scapolite + titanite + tremolite + zircon, and a value for δ^{18} O(calcite) of 23.6‰. In an archived thin section (UW #1845-88) cut from sample CJJ4, a euhedral zircon was identified enclosed in a calcite + tremolite matrix (Fig. 2a), and is interpreted on textural considerations to be a metamorphic zircon. No discernable cathodoluminescence signal was detected from this zircon (see image in Online Resource 3). The zircon was cast in the center of a 25 mm epoxy mount and re-polished (Fig. 2b),

206 along with a chip of zircon oxygen isotope standard KIM5 for δ^{18} O analysis by ion 207 microprobe.

209 2.4. WiscSIMS Cameca 1280 ion microprobe methods

Analysis protocols for δ^{18} O in zircon closely follow those described elsewhere (Kita et al 2009; Valley and Kita 2009). A ¹³³Cs⁺ primary ion beam (20 keV total impact voltage) was focused to a diameter of 10 μ m on the sample surface. Secondary O⁻ ions were accelerated from the sample by -10 kV and the analysis site was centered under a uniform electron field generated by a normal-incidence electron gun for charge compensation. The intensity of ¹⁶O was $\sim 2 \times 10^9$ cps, depending on the primary intensity (ca. 1×10^9 cps/nA). Mass resolving power was set to ca. 2500, sufficient to separate hydride interferences on ¹⁸O. Two multi-collector Faraday cups (FC) were used for simultaneous measurement of ¹⁶O and ¹⁸O. The base line of the FC amplifiers was calibrated at the beginning of each analytical session. Total analytical time per spot was about 4 min, including time for locating and selecting the analytical positions (1 - 2 min), pre-sputtering (10 sec), automatic retuning of the secondary beam (ca. 60 sec), and analysis (80 sec). Chips of zircon standard KIM-5 ($\delta^{18}O = 5.09 \pm 0.12\%$, 2 sd (standard deviation) VSMOW, Valley 2003; Cavosie et al. 2005) embedded in the sample mounts were used to calibrate δ^{18} O analyses of CZ3 and CJJ4.

226 3. Results

227 Sixteen δ^{18} O analyses were made of Sri Lanka zircon CZ3 by ion microprobe and 228 calibrated with 40 bracketing analyses of KIM-5 (Table 1). The average of all CZ3 analyses made on the six grains in four different analytical sessions over 3 days (July 19-21, 2006) is $\delta^{18}O = 15.43 \pm 0.42\%$ VSMOW (2 sd, n=16, 2 standard error = 0.10%) (Fig. 3). Uncertainty listed for individual analyses is based on the reproducibility of KIM-5 during that session, and ranges from 0.32 to 0.39‰ (2 sd). The sd of all 16 measurements of CZ3 ($\pm 0.42\%$, 2 sd) is only slightly larger than that for KIM-5 in any given session (Table 1).

Six analyses of δ^{18} O were made on zircon CJJ4 by ion microprobe and calibrated with 12 bracketing analyses of KIM-5 (Table 2). During post- δ^{18} O analysis imaging of the analytical pits, analyses #4 and #5 were found to have been made close to a \sim 40 µm hole in the center of the grain that may have resulted from the preferential removal of intergrown calcite during polishing (Fig. 2a). The two pits were located on rough surfaces of the zircon that were slightly lower than the polished surface, and hence not made on a polished surface (Fig. 2b). Given the irregular nature of these pits, data from these two analyses were not considered further based on published criteria for evaluation and rejection of irregular pits (Cavosie et al. 2005). The remaining four analyses yield $\delta^{18}O =$ $19.4 \pm 0.6\%$ (2 sd) VSMOW. Uncertainty listed for individual analyses is based on the reproducibility of KIM-5 during that session, and ranges from 0.34 to 0.28‰ (2 sd). The δ^{18} O values for CZ3 and CJJ4 are plotted in Figure 4a along with previously published data from Sri Lanka, including calcite from granulite facies marbles and corundum from skarns and detrital deposits. Also plotted in Figure 4a is a shaded field indicating the range of $\delta^{18}O(\text{zircon})$ in equilibrium with measured $\delta^{18}O(\text{calcite})$ at 700°C. Analyses for δ^{18} O were made on 28 detrital zircons from Mogok by laser

fluorination during analytical sessions on May 5, 2008 and May 6, 2009 (Table 3). The

 δ^{18} O values range from 9.37 to 25.48‰, with an average of 18.64‰. An uncertainty of 0.04‰ (2 sd) for individual analyses of Mogok zircons is based on the reproducibility of UWG-2 during the sessions. The δ^{18} O values for the Mogok zircons are plotted in Figure 4b along with previously published data from Mogok, including calcite from amphibolite facies marbles and other minerals from marble and detrital deposits.

258 4

4. Discussion

259 4.1 Constraints on the source rocks of high δ^{18} O zircons

The large range in δ^{18} O for both the Sri Lanka and Mogok δ^{18} O(Zrn) data sets (Fig. 4) requires multiple source rocks. The high δ^{18} O values of the Sri Lanka (13.9 to 19.4‰) and Mogok (9.4 to 25.5‰) zircons allow first-order constraints to be placed on the nature of these sources. Crustal sources are indicated, as zircons with $\delta^{18}O > 6\%$ are not known from uncontaminated mantle-derived magmas (Valley et al. 1998; Cavosie et al. 2009; Grimes et al. 2011). A metamorphic origin is also indicated for the $\delta^{18}O(Zrn)$ values >13.5% (27 of 32 grains, 84%), as igneous zircons with δ^{18} O above 13.5% are not known and values above 10‰ are rare (Valley et al. 2005) (Fig. 1a). Relatively small oxygen isotope fractionations between most minerals and zircon at high temperature (Valley 2003) further require the source rocks to have higher δ^{18} O (whole-rock) values than the zircons. Sedimentary rocks, such as shale, chert, limestone, as well as metamorphosed equivalents, have high primary δ^{18} O values relative to igneous rocks (e.g., >15%) (Valley et al. 2005) and are thus suitable candidates for potential source rocks of the high δ^{18} O zircons. Pelitic shale can have whole-rock δ^{18} O up to 24‰; a global survey of shale yields an average δ^{18} O of 17‰ (Land and Lynch 1996). While

shale is a high δ^{18} O source, metamorphosed shale does not appear to be a likely protolith for the large detrital zircons analyzed in this study, as zircons reported from metapelites are not megacrystic and commonly preserve growth zoning and inherited detrital cores (Dempster et al. 2004; Rasmussen 2005). The three high δ^{18} O Sri Lankan zircons (CJJ4, CZ3, and M257) all show an absence of growth zoning in CL. The highest values of δ^{18} O for metamorphic rims on Adirondack and Naxos zircons (up to 15‰) partially overlap 9 of 32 (30%) of the lowest δ^{18} O zircons from Sri Lanka and Mogok zircon δ^{18} O (Figs. 1 and 4), however, the high δ^{18} O domains in the Adirondack and Naxos zircons occur as rims around clearly identifiable zoned cores, not as large unzoned megacrystic zircons. Chert is a high δ^{18} O source rock, and zircon in oxygen isotope equilibrium with high δ^{18} O chert (SiO₂) is predicted to have similarly high δ^{18} O (Valley et al. 2003). Zircon occurrences in chert appear to be rare, and may reflect the paucity of Zr. The only δ^{18} O reported for zircon in metamorphosed chert is by Page et al. (2009), who reported metamorphic rims with δ^{18} O from 17 to 24‰ around zircons with oscillatory zoned inherited igneous cores ($\delta^{18}O = 4.7$ to 9.1%) in amphibolite facies chert on Santa Catalina Island (USA). The high δ^{18} O rims from the Santa Catalina meta-chert zircons overlap with the highest δ^{18} O zircons from both Sri Lanka and Mogok. However, similar to the metapelite zircons, the high δ^{18} O components of the Santa Catalina zircons occur as rims around igneous cores, rather than as large megacrystic zircon, and no inherited cores or other growth zoning has been observed in the Sri Lanka zircons. Marine carbonates, or marbles, commonly have $\delta^{18}O(\text{calcite}) > 17\%$ (Valley 1986); values up to 28‰ have been reported for many greenschist to granulite facies marbles (Fig. 5). For this discussion, we use "marble" to describe calcite- or dolomite-

rich rocks produced from the recrystallization of a marine carbonate protolith regardless of the extent of fluid-rock interaction, whereas "skarn" is used to describe a rock that is largely the result of metasomatic replacement of a carbonate protolith by a high fluidrock interaction. Note that in marbles that have experienced high-grade metamorphism, the role of fluids can be controversial and this distinction may be unclear (Valley et al. 1990).

Zircons have been reported in marbles from several areas (Elsenheimer 1988; Ferry 1996; Tang et al. 2006; Liu et al. 2006); marble is thus known to contain zircon and has an appropriate range of δ^{18} O(whole-rock) to be a suitable source for the high δ^{18} O zircons. The hypothesis that marble is a source for high δ^{18} O zircons can be further evaluated based on oxygen isotope exchange considerations. The equilibrium fractionation factor for calcite-zircon calculated from published values for zircon-quartz and quartz-calcite yields 1000 $\ln\alpha_{\text{(calcite-zircon)}} = 2.26*10^6/\text{T}^2$ (T in K, Valley 2003). This fractionation factor yields Δ^{18} O(calcite-zircon) = 2.0 to 3.8% from 800 to 500 °C (Fig. 6). In the following sections δ^{18} O values of calcite from rocks in Mogok and Sri Lanka are compared with the zircon data to evaluate further marble as a potential source for the high δ^{18} O zircons.

316 4.2 Origin of Mogok high δ^{18} O zircons

The source of large zircons in the Mogok placer deposits has not been determined, however the area is well known for the occurrence of gemstone deposits (corundum, spinel, forsterite) in amphibolite facies marbles of Tertiary age, as well as placer deposits of these minerals (Garnier et al. 2008). Mogok marbles yield $\delta^{18}O(\text{calcite}) = 19.9$ to

321	27.8‰ (Garnier et al. 2008; Yui et al. 2008), values typical for marine carbonate (Fig.
322	4b). Gemstones from Mogok marbles are also characterized by high δ^{18} O, including
323	rubies ($\delta^{18}O = 20.1$ to 25.7‰), spinel ($\delta^{18}O = 19.7$ to 22.2‰), and forsterite ($\delta^{18}O = 19.2$
324	to 22.0‰); corundum from placer deposits, desilicated pegmatites, and gemstones from
325	unknown source rocks ranges to lower values ($\delta^{18}O = 10.3$ to 21.4‰) (Giuliani et al.
326	2005; Garnier et al. 2008; Yui et al. 2008) (Fig. 4b). The δ^{18} O values of the zircons
327	measured in this study overlap with the gemstones, particularly for the higher zircon
328	values (Table 3). Not all of the Mogok detrital zircons are from high $\delta^{18}O$ rocks; there
329	appear to be several source rocks represented in the zircon population based on the range
330	in $\delta^{18}O(Zrn)$ from 9.4 to 25.5‰ (a single source would be required to preserve >15‰ in
331	δ^{18} O(whole-rock) variability and is viewed as unlikely). A weak correlation exists
332	between $\delta^{18}O(Zrn)$ and color; dark red-to-orange zircons (n=8) are restricted to a
333	narrower range from 12.6 to 15.8‰, whereas light yellow-to-green zircons span the
334	entire range (see color images in Online Resource 2). Roughly half (16 of 29) of the
335	Mogok detrital zircons have δ^{18} O >18‰, and are in oxygen isotope equilibrium with
336	measured calcite at 700°C (Fig. 4b). Marble is thus interpreted as the source for the
337	Mogok detrital zircons with δ^{18} O >18.0‰, whereas zircons with lower but still high δ^{18} O
338	(9.4-17‰) could have originated in marble, skarn or other lower δ^{18} O rocks.
339	
340	4.3 Origin of Sri Lanka high δ^{18} O zircons
341	4.3.1 Zircon CJJ4
342	The δ^{18} O value of 19.4‰ makes CJJ4 the highest δ^{18} O zircon identified from Sri
343	Lanka. CJJ4 is also the only high δ^{18} O zircon in this study with a known source rock-

344	granulite facies marble. Previously reported $\delta^{18}O(\text{calcite})$ values from granulite facies
345	marbles from the Highland Southwest Complex (HSWC) of Sri Lanka yield $\delta^{18}O(\text{calcite})$
346	= 15.9 to 24.4‰ (Elsenheimer 1988; Hoffbauer and Spiering 1994), values typical of
347	high grade marble (Fig. 5). The δ^{18} O(calcite) value of 23.6‰ measured by Elsenheimer
348	(1988) for a bulk sample of calcite from the same hand sample as CJJ4 yields
349	Δ^{18} O(calcite-zircon) = 4.2‰, corresponding to a temperature of 480°C if in equilibrium
350	(Fig. 6). Zircon CJJ4 is euhedral and in textural equilibrium with calcite and tremolite
351	(Fig. 2a), however it is not in isotopic equilibrium with calcite at granulite facies
352	temperatures. The non-equilibrium fractionation may indicate that the calcite is zoned at
353	the cm-scale; that is, the bulk calcite aliquot that yielded $\delta^{18}O = 23.6\%$ may have
354	contained calcite zoned with high and low $\delta^{18}O$ domains. Alternatively, the $\delta^{18}O$ value of
355	this calcite may have been partially reset during granulite facies metamorphism or
356	subsequent retrograde metamorphism. Taken together, the high $\delta^{18}O$ and absence of
357	growth zoning are consistent with the petrographic occurrence of zircon CJJ4 as a
358	metamorphic grain, and provides 'ground truth' that high $\delta^{18}O$ zircons can crystallize in
359	marble.
360	
361	4.3.2 Detrital zircon CZ3
362	Both CZ3 and M257 have U-Pb ages that coincide with the timing of
363	Neoproterozoic granulite facies metamorphism at ca. 570-560 Ma in the HSWC (Kröner
364	and Williams 1993; Hölzl et al. 1994). The compositions of CZ3 and M257 have
365	previously been well characterized due to their use as standards in U-Pb geochronology,

and thus additional geochemical data are available for evaluating marble as a source for these zircons based on the δ^{18} O values.

For CZ3, trace element abundances and ratios support a crustal origin, including high U (551 ppm) and low Th/U (0.05) (Pidgeon et al. 1994; Nelson 1997; Belousova et al. 1998; Valley et al. 1998; Konzett et al. 2000; Belousova et al. 2002; Nasdala et al. 2004). The low average ΣREE abundance of 26 ppm for CZ3 (Mattinson et al. 2006) is not typical of igneous zircon from the crust; such low abundances have only been previously reported for zircons from kimberlite (Belousova et al. 1998; Spetsius et al. 2002; Page et al. 2007b) and carbonatite (Hoskin and Schaltegger 2003). The CART classification scheme for zircon provenance based on trace element composition (Belousova et al. 2002) suggests an origin for CZ3 in kimberlite, however, the high U, low ϵ Hf (Griffin et al. 2000), low Th/U, and high δ^{18} O of CZ3 clearly preclude an origin in the mantle. Separately, each trace element data set for CZ3 shows characteristics typical for igneous zircon from both the crust (U, ε Hf, δ^{18} O) and the mantle (Σ REE), and also for metamorphic zircon (Th/U). However, the combined trace element data for CZ3 are unlike any known igneous zircon (Hoskin and Ireland 2000; Belousova et al. 2002; Hoskin and Schaltegger 2003), and taken together with the high δ^{18} O and lack of growth zoning in CZ3, are consistent with a metamorphic petrogenesis in marble, or skarn derived from marble. With a δ^{18} O value of 15.4‰, CZ3 is in equilibrium with measured δ^{18} O values of Sri Lanka calcite at temperatures from 700-800°C (Fig. 4a).

387 4.3.3 Detrital zircon M257

388	Zircon standard M257 has a δ^{18} O value of 13.9‰ (Nasdala et al. 2008), slightly
389	lower than CZ3. M257 has a 206 Pb/ 238 U age of 561 Ma, U abundance of 840 ppm, a Th/U
390	ratio of 0.27, and it is unzoned (Nasdala et al. 2008). It contains ~1 ppm Li, and has a
391	δ^7 Li value of 2.1±1.0 (Li et al. 2010). No other trace element data have thus far been
392	reported for M257. With a δ^{18} O of 13.9‰, M257 is marginally in equilibrium with the
393	lowest measured δ^{18} O values of Sri Lanka calcite at temperatures of 700-800°C (Fig. 4a).
394	The similarity of M257 to CZ3 in age, lack of growth zoning, and lower, but still high,
395	δ^{18} O, indicate that M257 also originated as a metamorphic zircon, in marble or marble-
396	derived skarn.
397	

4.4 Petrogenesis of high δ^{18} O zircons

Zircon was identified as a trace mineral in 5 of 33 granulite facies marbles from Sri Lanka by Elsenheimer (1988). In this paper it is further demonstrated by in situ analysis that Sri Lanka granulite facies marble (sample CJJ4) contains high δ^{18} O zircon, here interpreted to have crystallized during high grade metamorphism. We propose that metamorphosed marble is a suitable source rock for the high δ^{18} O detrital zircons from Sri Lanka and Mogok analyzed in this study, based on the oxygen isotope systematics between zircon and calcite, and also from the results of other studies that have demonstrated the occurrence of zircon in marble. Tang et al. (2006) reported zircons in 'impure marble' from the Sulu orogen (China) and interpreted their origin as detrital igneous grains, based on euhedral forms and the presence of oscillatory zoning. If detrital zircons provide the Zr for metamorphic zircon growth in high grade marbles, a process of dissolution and reprecipitation is indicated; this is consistent with the absence of inherited

411	zoning in the high $\delta^{18}O$ zircons reported here. Dissolution and reprecipitation may
412	explain other occurrences and/or disappearances of zircon in marble. In the Ballachulish
413	contact aureole (Scotland), zircon occurs as a trace phase in siliceous quartz-free
414	dolomites, persisting until the baddeleyite isograd is encountered (Ferry 1996):
415	
416	zircon + 2 dolomite = baddeleyite + forsterite + 2 calcite + 2 CO ₂
417	$ZrSiO_4 + 2 CaMg(CO_3)_2 = ZrO_2 + Mg_2SiO_4 + 2 CaCO_3 + 2 CO_2$
418	
419	Phase equilibria constraints demonstrate that zircon in the Ballachulish aureole is
420	stable with dolomite at 3 kbar and at temperatures up to ~710 $^{\circ}$ C (Ferry 1996; Ferry et al.
421	2002). The upper stability of zircon will reach higher temperature and pressure values in
422	quartz-saturated calcitic marbles in the absence of dolomite. A 'zircon-in' reaction was
423	not identified for the Ballachulish marbles; it is thus unclear if these zircons are detrital or
424	metamorphic, as their zoning characteristics were not described. Zircon was also reported
425	as an abundant accessory phase in high $\delta^{18}O$ marble dikes cross-cutting granulite facies
426	rocks in the eastern Himalaya that were interpreted to be remobilized from
427	metasedimentary carbonates (Liu et al. 2006); zircon zoning characteristics were not
428	reported, so both detrital and metamorphic origins are possible.
429	The reports of zircon in marble described above include grains that range from
430	10s to $<$ 200 μ m in length; thus the processes active during their formation may be
431	applicable to the petrogenesis of high δ^{18} O zircon CJJ4 (Fig. 2), which at ~150 µm can be
432	considered a 'typical' size zircon. The above examples do not, however, describe the
433	occurrence of megacrystic zircon in marble; the formation and/or (re)crystallization
	19

434	mechanisms may be very different for the large high $\delta^{18}O$ zircons from Mogok and Sri
435	Lanka, some of which are > 8 mm (Online Resource 2). Zircon megacrysts have been
436	reported from numerous rock types, including kimberlites (Kresten et al 1975; Valley et
437	al. 1998; Page et al. 2007b), carbonatites, syenites, and alkali basalts (Hinton and Upton
438	1991; Sutherland 1996), and to a lesser extent, granitic pegmatites. In all cases, the
439	zircons have been interpreted as igneous grains that originated in mantle-derived melts
440	based on the presence of oscillatory growth zoning (Page et al. 2007b; Ashwal et al.
441	2007; Siebel et al. 2009) and mantle-equilibrated oxygen isotope ratios (Valley et al.
442	1998; Upton et al. 1999; Valley, 2003; Page et al. 2007b; Siebel et al. 2009).
443	The large detrital zircons from Sri Lanka and Myanmar described here are clearly
444	distinguishable from previous reports of igneous zircon megacrysts based on their high
445	δ^{18} O values and absence of growth zoning, and may represent the first report of
446	megacrystic zircon from metamorphic rocks (even though we emphasize the fact that
447	their host rocks have not been identified). It is therefore likely that different
448	crystallization processes were active during the solid-state formation of the high $\delta^{18}O$
449	metamorphic megacrysts compared to the igneous megacrysts. Several studies have
450	addressed processes governing the growth, recrystallization, and coarsening of zircon in
451	quartzite and metapelitic rocks, including Ostwald ripening and the role of anatectic melt
452	enhanced Zr transfer (Nemchin et al. 2001; Ayers et al. 2003; Peck et al. 2010). Without
453	knowledge of certain characteristics of the host rocks for the high $\delta^{18}O$ megacrysts (e.g.,
454	bulk composition, Zr content, zircon crystal size distribution), it is not possible to
455	evaluate the influence of Ostwald ripening or the presence of partial melts during the
456	formation of the megacrysts. However, we note that in the above three studies the amount

of coarsening reported, whether by Ostwald ripening (Avers et al. 2003) or in conjunction with melt transfer (Nemchin et al. 2001; Peck et al. 2010) did not produce zircons larger than 250 μ m (most are <100 μ m), even when the overgrowth constituted 70% by volume of the grain. Moreover, in all cases, the newly precipitated overgrowths preserve readily identifiable growth zoning in CL images. It appears that both Ostwald ripening and/or partial melting in quartzite and metapelitic rocks, where documented, produce metamorphic zircons with markedly different internal zoning characteristics and grain sizes when compared to the high δ^{18} O zircon megacrysts from Sri Lanka and Mogok. A detailed investigation of the growth mechanisms for the high δ^{18} O megacrysts is beyond the scope of this paper, and would require identification of the source rocks.

468 4.5. Conclusions

The δ^{18} O of zircon from high δ^{18} O marble is a readily identifiable isotopic fingerprint of the source. The δ^{18} O of 19.4‰ for zircon CJJ4 from this study confirms a metamorphic petrogenesis of zircon in marble. High δ^{18} O can be combined with other geochemical data for determining provenance of detrital metamorphic zircon derived from carbonate rocks. Detrital zircons with δ^{18} O of 15‰ or higher are most likely to have originated in high δ^{18} O marble or skarn derived from marble. Meta-chert and metapelite can also be high δ^{18} O source rocks, however high δ^{18} O zircons reported from these lithologies occur as rims around inherited igneous cores and are thus readily distinguishable from the large and unzoned grains described here. Targeting high δ^{18} O metamorphic zircon in marble for U-Pb analysis may provide more accurate determination of the timing of high grade marble formation.

480	Acknowledgements
481	We thank George Rossman for contributing the Mogok zircons to this study. We thank
482	Bin Fu for assistance with operation of the WiscSIMS CAMECA 1280 and also John
483	Fournelle for SEM assistance at the University of Wisconsin. Brian Hess assisted in
484	careful preparation of sample mounts. Support for this work was provided by the NSF
485	(EAR-020734, EAR-0838058), DOE (93ER14389), ARC (DP0211706) and the NASA
486	Astrobiology Institute. WiscSIMS is partially supported by NSF-EAR (0319230,
487	0744079).
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	
502	
	22

503 References

504	
505	Ashwal LD, Armstrong RA, Roberts RJ, Schmitz MD, Corfu F, Hetherington CJ, Burke
506	K, Gerber M (2007) Geochronology of zircon megacrysts from nepheline-bearing
507	gneisses as constraints on tectonic setting: implications for resetting of the U-Pb and Lu-
508	Hf isotopic systems. Contrib Mineral Petrol 153:389-403
509	
510	Ayers JC, de la Cruz K, Miller C, Switzer O (2003) Experimental study of zircon
511	coarsening in quartzite \pm H ₂ O at 1.0 GPa and 1000 °C, with implications for
512	geochronological studies of high-grade metamorphism. Am Mineral 88:365-376.
513	
514	Belousova EA, Griffin WL, Pearson NJ (1998) Trace element composition and
515	cathodoluminescence properties of southern African kimberlitic zircons. Mineral Mag
516	62:355-366
517	
518	Belousova EA, Griffin WL, O'Reilly SY, Fisher NI (2002) Igneous zircon: trace element
519	composition as an indicator of source rock type. Contrib Mineral Petrol 143:602-622
520	
521	Bindeman IN, Valley JW (2001) Low δ^{18} O rhyolites from Yellowstone: Magmatic
522	evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491-1517
523	
	23

1
2
3
4
5
7
8
9
10
11
12
13 14
14 15
16
17
18
19
20
∠⊥ วว
22
24
25
26
27
28
29
30 31
32
33
34
35
36
3/
20 20
40
41
42
43
44
45 46
47
48
49
50
51
52
53 54
55
56
57
58
59
60 61
o⊥ 62
63
64

524	Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic
525	magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned
526	zircons. J Petrol 49:163-193
527	
528	Cavosie AJ, Kita NT, Valley JW (2009) Mantle oxygen isotope ratio recorded in
529	magmatic zircon from the Mid-Atlantic Ridge. Am Mineral 94:926-934
530	
531	Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U-
532	Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to
533	Mesoproterozoic (4348–1576 Ma) magmatism. Precam Res 135:251–279
534	
535	Cavosie AJ, Valley JW, Wilde SA, EIMF (2005) Magmatic δ^{18} O in 4400–3900 Ma
536	detrital zircons: a record of the alteration and recycling of crust in the Early Archean.
537	Earth Planet Sci Lett 235:663–681
538	
539	De Laeter JR, Kennedy AK (1998) A double focusing mass spectrometer for
540	geochronology. Int J Mass Spectrom 178:43-50
541	
542	Dempster TJ, Hay DC, Bluck BJ (2004) Zircon growth in slate. Geology 32:221-224
543	
544	Elsenheimer DW (1988) Petrologic and stable isotopic characteristics of graphite and
545	other carbon-bearing minerals in Sri Lankan granulites. Master's Thesis, University of
546	Wisconsin

547	
548	Ferry JM (1996) Three novel isograds in metamorphosed siliceous dolomites from the
549	Ballachulish aureole, Scotland. Am Mineral 81:485-494
550	
551	Ferry JM, Newton RC, Manning CE (2002) Experimental determination of the equilibria:
552	rutile + magnesite = geikielite + CO_2 and zircon + 2 magnesite = baddeleyite + forsterite
553	+ 2 CO ₂ . Am Mineral 87:1342-1350
554	
555	Garnier V, Giuliani G, Ohnenstetter D, Fallick AE, Dubessy J, Banks D, Vinh HQ,
556	Lhomme T, Maluski H, Pecher A, Bakshs KA, Long PV, Trinh PT, Schwartz D (2008)
557	Marble-hosted ruby deposits from Central and Southeast Asia: Towards a new genetic
558	model. Ore Geol Rev 34:169-191
559	
560	Giuliani G, Fallick AE, Garnier V, France-Lanord C, Ohnenstetter D, Schwarz D (2005)
561	Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology
562	33:249-252
563	
564	Gordon SM, Grove M, Whitney DL, Schmitt AK, Teyssier C (2009) Time-temperature-
565	fluid evolution of migmatite dome crystallization: Coupled U-Pb age , Ti thermometry,
566	and O isotopic ion microprobe depth profiling of zircon and monazite. Chem Geol
567	262:186-201
568	

569	Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY,
570	Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS
571	analysis of zircon megacrysts in kimberlite. Geochim Cosmochim Acta 64:133-147
572	
573	Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ^{18} O in
574	zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161:13-33
575	
576	Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811-
577	817
578	
579	Hinton RW, Upton BGJ (1991) The chemistry of zircon: Variations within and between
580	large crystals from syenite and alkali basalt xenoliths. Geochim et Cosmochim Acta
581	55:3287-3302
582	
583	Hoffbauer R, Spiering B (1994) Petrologic phase equilibria and stable isotope
584	fractionations of carbonate-silicate parageneses from granulite-grade rocks of Sri Lanka.
585	Precam Res 66: 325-349
586	
587	Hölzl S, Hofmann AW, Todt W, Köhler H (1994) U-Pb geochronology of the Sri Lankan
588	basement. Precam Res 66:123-149
589	
590	Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a
591	provenance indicator. Geology 28:627-630
	26

Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America, Chantilly, pp 27-55 King EM, Barrie CT, Valley JW (1997) Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: Magmatic values are preserved in zircon. Geology 25:1079-1082 King EM, Valley JW, Davis DW, Kowallis BJ (2001) Empirical determination of oxygen isotope fractionation factors for titanite with respect to zircon and quartz. Geochim et Cosmochim Acta 65:3165-3175 Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analyses and the effect of sample topography. Chem Geol 264:43-57 Konzett J, Armstrong RA, Gunther D (2000) Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contrib Mineral Petrol 139:704-

Kresten P, Fels P, Berggren G (1975) Kimberlitic zircons- a possible aid in prospecting for kimberlites. Mineral Deposita 10:47-56 Kröner A, Williams IS (1993) Age of metamorphism in the high-grade rocks of Sri Lanka. J Geol 101:513-521 Lackey JS, Valley JW, Saleeby JB (2005) Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: Evidence from high- δ^{18} O zircon. Earth Planet Sci Lett 235:315-330 Lackey JS, Valley JW, Hincke H (2006) Deciphering the source and contamination history of peraluminous magmas using δ^{18} O of accessory minerals: examples from garnet-bearing plutons of the Sierra Nevada batholith. Contrib Mineral Petrol 151:20-44 Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada Batholith: the oxygen isotope record. J Petrol 49:1397-1426 Lancaster PJ, Fu B, Page FZ, Kita NT, Bickford ME, Hill BM, McLelland JM, Valley JW (2009) Genesis of metapelitic migmatites in the Adirondack Mountains, New York. J Metamorph Geol 27:41-54

636	Land LS, Lynch FL (1996) δ^{18} O values of mudrocks: More evidence for an ¹⁸ O-buffered
637	ocean. Geochim Cosmochim Acta 60:3347-3352
638	
639	Li X-H, Li Q-L, Liu Y, Tang G-Q (2011) Further characterization of M257 zircon
640	standard: A working reference for SIMS analysis of Li isotopes. J Anal Atom Spectrom
641	26:352-358
642	
643	Liu Y, Berner Z, Massonne H-J, Zhong D (2006) Carbonatite-like dykes from the eastern
644	Himalaya syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of
645	metasedimentary carbonate rocks within the orogenic crust. J Asian Earth Sci 26:105-120
646	
647	Martin L, Duchene S, Deloule E, Vanderhaeghe O (2006) The isotopic composition of
648	zircon and garnet: A record of the metamorphic history of Naxos, Greece. Lithos 87:174-
649	192
650	
651	Mattinson CG, Wooden JL, Liou JG, Bird DK, Wu CL (2006) Age and duration of
652	eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China. Am J Sci
653	306:683-711
654	
655	Moser DE, Bowman JR, Wooden J, Valley JW, Mazdab F, Kita N (2008) Creation of a
656	continent recorded in zircon zoning. Geology 36:239-242
657	
	29

658	Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004)
659	Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219-
660	231
661	
662	Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL,
663	Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Götze J, Häger T, Kröner
664	A, Valley JW (2008) Zircon M257- a homogeneous natural reference material for the ion
665	microprobe U-Pb analysis of zircon. Geostand Geoanal Res 32:247-265
666	
667	Nelson DR (1997) Compilation of SHRIMP U-Pb zircon geochronology data, 1996. Geol
668	Surv West Aust Rec 1997/2:5-10
669	
670	Nemchin AA, Giannini LM, Bodorkos S, Oliver NH (2001) Ostwald ripening as a
671	possible mechanism for zircon overgrowth formation during anatexis: theoretical
672	constraints, a numerical model, and its application to pelitic migmatites of the Tickalara
673	Metamorphics, northwestern Australia. Geochim Cosmochim Acta 65:2771-2787
674	
675	Page FZ, Ushikubo T, Kita NT, Riciputi LR, Valley JW (2007a) High precision oxygen
676	isotope analysis of picogram samples reveals $2-\mu m$ gradients and slow diffusion in
677	zircon. Am Mineral 92:1772-1775
678	
	30

679	Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen V, Basei MAS,
680	Valley JW (2007b) Zircons from kimberlites: New insights from oxygen isotopes, trace
681	elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887-3903
682	
683	Page FZ, Holsing NA, Kita N, Essene EJ, Valley JW (2009) Four stages of
684	metasomatism recorded in zircon from garnet metachert and variable metasomatism in
685	garnet hornblendite, Santa Catalina Island, California. Eos Trans AGU 90(52) Fall Meet
686	Suppl (abstract V51E-1780)
687	
688	Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare
689	earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high $\delta^{18}O$
690	continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65:4215-
691	4229
692	
693	Peck WH, Valley JW, Graham CM (2003) Slow oxygen diffusion rates in igneous
694	zircons from metamorphic rocks. Am Mineral 88:1003-1014
695	
696	Peck WH, Valley JW, Corriveau L, Davidson A, McLelland J, Farber D (2004)
697	Constraints on terrane boundaries and origin of 1.18 to 1.13 Ga granitoids of the Southern
698	Grenville Province from oxygen isotope ratios of zircon. In: Tollo RP, McLelland J,
699	Corriveau L, Bartholomew MJ (eds) Proterozoic evolution of the Grenville orogen in
700	North America, Memoir, vol 197. Geological Society of America, Boulder, CO, pp 163-
701	181

2		
5 4 5	702	
6 7	703	Peck WH, Bickford ME, McLelland JM, Nagle AN, Swarr GJ (2010) Mechanism of
8 9 10	704	metamorphic zircon growth in a granulite-facies quartzite, Adirondack Highlands,
11 12	705	Grenville Province, New York. Am Mineral 95:1796-1806.
13 14 15	706	
16 17	707	Pidgeon RT, Furfaro D, Kennedy AK, Nemchin AA, Van Bronswjk W (1994)
18 19	708	Calibration of zircon standards for the Curtin SHRIMP II. ICOG 8, U.S. Geological
20 21 22	709	Survey Circular 1107:251
23 24	710	
25 26 27	711	Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks:
28 29	712	evidence for zirconium mobility at ~250 C. Contrib Mineral Petrol 150:146-155
30 31 32	713	
33 34	714	Shieh Y-N (1985) High δ^{18} O granitic plutons from the Frontenac Axis, Grenville
35 36	715	Province of Ontario, Canada. Geochim Cosmochim Acta 49:117-123
37 38 39	716	
40 41	717	Siebel W, Schmitt AK, Danisik M, Chen F, Meier S, Weiß S, Eroglu S (2009) Prolonged
42 43 44	718	mantle residence of zircon xenocrysts from the western Eger rift. Nature Geosci 2:886-
45 46	719	890
47 48 49	720	
50 51	721	Spetsius ZV, Belousova EA, Griffin WL, O'Reilly SY, Pearson NJ (2002) Archean
52 53	722	sulfide inclusions in Paleozoic zircon megacrystals from the Mir kimberlite, Yakutia:
54 55 56	723	implications for the dating of diamonds. Earth Planet Sci Lett 199:111-126
57 58	724	
59 60 61		
62 63		37
64 65		52

	1
	S
	2
	3
	4
	4
	5
	5
	6
	-
	/
	8
	-
	9
1	Δ
T	0
1	1
1	\mathbf{c}
T	2
1	3
-	
1	4
1	F
-	J
1	6
1	-
T	/
1	8
	-
L	9
2	Λ
4	U
2.	1
_	~
2	2
2	2
2	5
2	4
	-
2	5
2	б
-	<u> </u>
2	7
ი	0
4	0
2	9
_	~
3	0
2	1
5	-
	\sim
3	2
3	⊿ ว
3 3	∠ 3
3 3 3	⊿ 3 4
3 3 3	⊿ 3 4
3 3 3 3	⊿ 3 4 5
3 3 3 3 2	2 3 4 5 6
3 3 3 3 3	2 3 4 5 6
3 3 3 3 3 3 3	2 3 4 5 6 7
3 3 3 3 3 3 3	⊿34 567
3 3 3 3 3 3 3 3 3	⊿ 3 4 5 6 7 8
333333333	∠ 3 4 5 6 7 8 9
333333333	23456789
3333334	⊿ 34 567890
3333334	2 3 4 5 6 7 8 9 0
33333344	2 3 4 5 6 7 8 9 0 1
333333444	2 3 4 5 6 7 8 9 0 1 2
33333334444	2 3 4 5 6 7 8 9 0 1 2
33333334444	234567890123
333333344444	2 3 4 5 6 7 8 9 0 1 2 3 4
3333333444444	2345678901234
33333334444444	23456789012345
333333344444444	234567890123456
3333334444444	234567890123456
333333344444444	2345678901234567
33333334444444444	23456789012345678
3333334444444444	23456789012345678
33333344444444444	234567890123456789
3333334444444444444	2345678901234567890
3333334444444444	2345678901234567890
33333344444444444455	23456789012345678901
333333444444444455	23456789012345678901
333333344444444445555	234567890123456789012
333333344444444445555	2345678901234567890123
333333444444444455555	2345678901234567890123
33333334444444444555555	23456789012345678901234
33333334444444444555555	234567890123456789012345
333333344444444445555555	234567890123456789012345
333333444444444555555555555555555555555	2345678901234567890123456
333333444444444555555555555555555555555	2345678901234567890123456
333333444444444555555555555555555555555	23456789012345678901234567
333333344444444455555555555555555555555	234567890123456789012345678
333333344444444445555555555555555555555	234567890123456789012345678
333333344444444445555555555555555555555	2345678901234567890123456789
333333344444444445555555555555555555555	23456789012345678901234567890
333333344444444445555555555555555	23456789012345678901234567890
333333344444444445555555555555666	234567890123456789012345678901
33333334444444444555555555555666	234567890123456789012345678901
33333334444444444555555555556666	2345678901234567890123456789012
333333344444444445555555555566666	23456789012345678901234567890123
333333344444444445555555555566666	23456789012345678901234567890123

725	Sutherland FL (1996) Alkaline rocks and gemstones, Australia: a review and synthesis.
726	Aust J Earth Sci 43:323-343
727	
728	Tang J, Zheng Y-F, Wu Y-B, Gong B (2006) Zircon SHRIMP U-Pb dating, C and O
729	isotopes for impure marbles from the Jiaobei terrane in the Sulu orogen: Implication for
730	tectonic affinity. Precam Res 144:1-18
731	
732	Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of
733	oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta
734	73:7110-7126
735	
736	Upton BGJ, Hinton RW, Aspen P, Finch A, Valley JW (1999) Megacrysts and associated
737	xenoliths: Evidence for migration of geochemically enriched melts in the upper mantle
738	beneath Scotland. J Petrol 40:935-956
739	
740	Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: Valley JW,
741	Taylor HP, O'Neil JR (eds) Reviews in mineralogy, vol 16, pp 445-490
742	
743	Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon,
744	Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America,
745	Chantilly, pp 343-385
746	
747	Valley JW, Kita NT (2009) In situ Oxygen Isotope Geochemistry by Ion Microprobe,
	33

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 21
3⊥ 20
3⊿ 22
33 24
34 25
25
27
38
30
40
40 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

748	In: Fayek M (ed) MAC Short Course: Secondary Ion Mass Spectrometry in the Earth
749	Sciences 41:19-63
750	
751	Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of
752	zircon. Earth Planet Sci Lett 126:187-206
753	
754	Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope
755	fractionation in zircon. Geochim Cosmochim Acta 67:3257-3266
756	
757	Valley JW, Bohlen SR, Essene EJ, Lamb W (1990) Metamorphism in the Adirondacks.
758	II. The Role of Fluids. J Petrol 31:555-596
759	
760	Valley JW, Kitchen N, Kohn M, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet
761	standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser
762	heating. Geochim Cosmochim Acta 59:5223-5231
763	
764	Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from
765	kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1-
766	11
767	
768	Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman
769	IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of
770	crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561-
771	580

	2
	3
	1
	-
	5
	6
	7
	~
	8
	9
1	Λ
1	1
Τ	T
1	2
1	3
1	1
Т	4
1	5
1	6
1	7
Τ	/
1	8
1	9
-	0
2	0
2	1
2	2
2	2
2	3
2	4
2	5
~	2
2	6
2	7
2	R
~	0
2	9
3	0
2	1
5	т Т
3	2
3	3
2	4
5	+
~	-
3	5
3 3	5 6
337	5 6 7
333	5 6 7
3 3 3 3	5 6 7 8
33333	5 6 7 8 9
3 3 3 3 3	5 6 7 8 9
3 3 3 3 3 4	5 6 7 8 9 0
3 3 3 3 4 4	5 7 8 9 1
3 3 3 3 4 4 4	5 7 8 9 1 2
3 3 3 3 4 4 4 4 4	5 6 7 8 9 0 1 2 3
3 3 3 3 4 4 4 4 4	5 6 7 8 9 0 1 2 3
3 3 3 3 4 4 4 4 4 4	5 6 7 8 9 0 1 2 3 4
3 3 3 3 4 4 4 4 4 4 4 4	5 6 7 8 9 0 1 2 3 4 5
3 3 3 3 4 4 4 4 4 4 4 4 4	567890123456
333344444444	5678901234567
3 3 3 3 4 4 4 4 4 4 4 4 4	5678901234567
3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	56789012345678
3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	567890123456789
33334444444444444	5678901234567890
333344444444445	5678901234567890
3 3 3 3 4 4 4 4 4 4 4 4 5 5	56789012345678901
33334444444444555	567890123456789012
333344444444445555	5678901234567890122
3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	5678901234567890123
3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	56789012345678901234
333344444444445555555	567890123456789012345
333344444444445555555555555555555555555	5678901234567890123456
3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5	5678901234567890123456
333344444444445555555555555555555555555	56789012345678901234567
333334444444444555555555555555555555555	567890123456789012345678
333344444444445555555555555555555555555	5678901234567890123456780
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	5678901234567890123456789
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	56789012345678901234567890
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	567890123456789012345678901
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	5678901234567890123456789010
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	5678901234567890123456789012
3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	56789012345678901234567890123
333344444444445555555555666666	567890123456789012345678901234
33334444444444555555555556666666	5678901234567890123456789012345

772	
773	Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett
774	148:527-544
775	
776	Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for
777	the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175-
778	178
779	
780	Wu Y-B, Zheng Y-F, Zhao Z-F, Gong B, Liu X, Wu F-Y (2006a) U–Pb, Hf and O
781	isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted
782	eclogites from the Dabie orogen. Geochim Cosmochim Acta 70:3743-3761
783	
784	Wu F-Y, Yang Y-H, Xie L-W, Yang J-H, Xu P (2006b) Hf isotopic compositions of the
785	standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol 234:105-126
786	
787	Xu P, Wu F, Xie L, Yang Y (2004) Hf isotopic compositions of the standard zircons for
788	U-Pb dating. Chin Sci Bull 49:1641-1648
789	
790	Yui T-F, Zaw K, Wu C-M (2008) A preliminary stable isotope study on Mogok ruby,
791	Myanmar. Ore Geol Rev 34:192-199
792	
793	
794	
	35

795 FIGURE CAPTIONS

Fig. 1 Compilation of oxygen isotope ratios for zircon from igneous and metamorphic rocks. The shaded vertical bar indicates range of mantle-equilibrated zircon, $5.3\pm0.6\%$ (2) sd, Valley et al. 2005). a Oxygen isotope data for zircons separated from 1345 igneous rocks. Note that 99% of all igneous data are lower than 10‰ (dashed vertical line). **b** Oxygen isotope data for metamorphic zircons and rims from quartzites, metapelites, and metabasites. Note that 99% of all metamorphic data are lower than 15‰ (dashed vertical line). Data in **a** are from Valley et al. 2005 (n=1117) and 15 additional studies published from 2006-2010 (n=228); references in Online Resource 1) Fig. 2 Zircon CJJ4 from Sri Lanka granulite facies marble. a Back-scattered electron image of zircon CJJ4 in thin-section, prior to removal for casting in epoxy. b Secondary electron image of zircon CJJ4 after casting in epoxy and re-polishing. The lower-left tip of the zircon correlates to the tip on the left side of the zircon in **a**. White circles indicate location of δ^{18} O analysis pits by ion microprobe, including analysis number (Table 2). Zrn = zircon; Tr = tremolite; Cal = calciteFig. 3 Histogram of oxygen isotope analyses of zircon U-Pb standard CZ3 by ion microprobe Fig. 4 Compilation of oxygen isotope ratios for zircon and other minerals from Sri Lanka and Mogok (Myanmar). **a** Sri Lanka data include δ^{18} O values of calcite from granulite
818	facies marbles (Elsenheimer 1988; Hoffbauer and Spiering 1994); detrital zircon
819	megacrysts CZ3 (this study) and M257 (Nasdala et al. 2008); zircon from granulite facies
820	marble (CJJ4, this study); and corundum from various sources (Giuliani et al. 2005). b
821	Mogok data include δ^{18} O values of calcite from amphibolite facies marbles (Garnier et al.
822	2008; Yui et al. 2008); detrital zircons (this study: n=28; Valley 2003: n=1); and
823	corundum, spinel, and forsterite (Garnier et al. 2008; Giuliani et al. 2005; Yui et al.
824	2008). The star indicates the interpreted primary calcite δ^{18} O value of 27.5‰ by Yui et
825	al. (2008). The vertical dashed line in both zircon histograms at 10‰ is the igneous '99%
826	limit' indicated in Figure 1a. The shaded area in both zircon histograms indicates the
827	range of δ^{18} O values calculated for zircon in equilibrium with the measured range of δ^{18} O
828	values for a Sri Lanka calcite at 800 °C and b Mogok calcite at 700 °C. Note that
829	choosing lower metamorphic temperatures would shift the shaded ranges in both
830	histograms to the left. See text for discussion
831	
832	Fig. 5 Compilation of 605 oxygen isotope analyses of dolomite, calcite, and WR from
833	amphibolite and granulite facies marbles and skarns. The data represent 20 different high
834	grade metamorphic terranes. Mrbl = marble; WR = whole rock. Data sources are listed in
835	Online Resource 1
836	
837	Fig. 6 Oxygen isotope equilibrium for calcite-zircon. The calcite-zircon fractionation
838	factor is from Valley (2003)
839	

	meeu 1200 oxy	gen isotope	unaryses		O I O Standar	а СДЗ.
	¹⁸ O/ ¹⁶ O		$\delta^{18}O$		$\delta^{18}O$	
Grain-spot	$(\text{meas}, \text{x}10^3)^a$	$2 SE^{b}$	(meas)	2 SE	(VSMOW)	2 SD^{c}
Mount 01JH	H-13b (chip 1).	July 19 2000	5			
KIM5-44	2.01837	0.000412	6.57	0.20		
KIM5-45	2.01742	0.00043	6.09	0.21		
KIM5-46	2.01766	0.000617	6.21	0.31		
KIM5-47	2.01806	0.000455	6.42	0.23		
KIM5-48	2.01770	0.000555	6.23	0.28		
KIM5-49	2.01796	0.00040	6.36	0.20		
CZ3-1.1	2.03817	0.000506	16.44	0.25	15.21	0.32
CZ3-1.2	2.03924	0.000429	16.97	0.21	15.74	0.32
CZ3-1.3	2.03880	0.000587	16.76	0.29	15.52	0.32
KIM5-50	2.01732	0.000616	6.04	0.31		
KIM5-51	2.01787	0.000471	6.32	0.23		
KIM5-52	2.01823	0.000548	6.50	0.27		
KIM5-53	2.01822	0.000538	6.49	0.27		
KIM5-54	2.01784	0.000542	6.31	0.27		
KIM5-55	2.01799	0.000581	6.38	0.29		
KIM-5 (n=1	12)					0.32
Mount 01JH	H-36 (chip 2) Ju	aly 20 2006				
KIM5-1	2.01774	0.000608	6.26	0.30		
KIM5-2	2.01865	0.000567	6.71	0.28		
KIM5-3	2.01856	0.000505	6.67	0.25		
KIM5-4	2.01844	0.000537	6.60	0.27		
KIM5-5	2.01899	0.000433	6.88	0.22		
KIM5-6	2.01834	0.000457	6.55	0.23		
CZ3-2.1	2.03876	0.000369	16.74	0.18	15.25	0.32
KIM5-7	2.01838	0.00047	6.57	0.23		
KIM5-8	2.01819	0.000539	6.48	0.27		
KIM5-9	2.01836	0.00050	6.57	0.25		
KIM5-10	2.01826	0.000566	6.52	0.28		
KIM-5 (n=1	10)					0.32
Mount 01JH	I-54b (chip 3).	July 21 2006	5			
KIM5-11	2.01867	0.000547	6.72	0.27		
KIM5-12	2.01886	0.00052	6.81	0.26		
KIM5-13	2.01912	0.000422	6.94	0.21		
KIM5-14	2.01838	0.000561	6.57	0.28		
CZ3-3.1	2.03977	0.000525	17.24	0.26	15.55	0.33
CZ3-3.2	2.03938	0.000475	17.04	0.23	15.35	0.33
CZ3-3.3	2.04011	0.000313	17.41	0.15	15.72	0.33

Table 1. Cameca 1280 oxygen isotope analyses of zircon U-Pb standard CZ3.

		<u>, </u>				
KIM5-15	2.01932	0.000488	7.04	0.24		
KIM5-16	2.01879	0.000453	6.78	0.22		
KIM5-17	2.01912	0.000423	6.94	0.21		
KIM5-18	2.01844	0.00050	6.60	0.25		
KIM5-19	2.01850	0.000464	6.63	0.23		
KIM-5 (n=9)						0.33
Mount W74/4	(chip 4, 5,	6) July 21 20	06			
KIM5-1	2.01747	0.00050	6.12	0.25		
KIM5-2	2.01805	0.000416	6.41	0.21		
KIM5-3	2.01775	0.000573	6.26	0.28		
KIM5-4	2.01792	0.000355	6.34	0.18		
CZ3-4.1	2.03880	0.000424	16.76	0.21	15.47	0.39
CZ3-5.1	2.03808	0.000327	16.40	0.16	15.12	0.39
CZ3-6.1	2.03899	0.000539	16.85	0.26	15.57	0.39
CZ3-4.2	2.03810	0.000518	16.41	0.25	15.12	0.39
CZ3-5.2	2.03814	0.00040	16.43	0.20	15.15	0.39
CZ3-6.2	2.03867	0.000466	16.69	0.23	15.41	0.39
CZ3-4.3	2.03870	0.00040	16.71	0.20	15.42	0.39
CZ3-5.3	2.03902	0.000452	16.87	0.22	15.58	0.39
CZ3-6.3	2.03921	0.000562	16.96	0.28	15.68	0.39
KIM5-5	2.01833	0.000438	6.55	0.22		
KIM5-6	2.01803	0.000486	6.40	0.24		
KIM5-7	2.01877	0.000379	6.77	0.19		
KIM5-8	2.01764	0.000377	6.20	0.19		
KIM5-9	2.01785	0.00050	6.31	0.25		
KIM-5 (n=9)						0.39
CZ3 (average	e, n=16)			0.11	15.43	0.42
Analyses are li	isted in chro	onological ord	ler, within	each sess	ion	
Consult and KDV 7						

Table 1. Cameca 1280 oxygen isotope analyses of zircon U-Pb standard CZ3.

Sample analyses are bracketed by the zircon standard KIM-5

^aMeas = measured; ^bSE = standard error; ^cSD = standard deviation

			2					
	¹⁸ O/ ¹⁶ O		δ^{18} O		δ^{18} O			
Grain-spot	$(\text{meas}, \text{x}10^3)^a$	$2 SE^{b}$	(meas)	2 SE	(VSMOW)	2 SD ^c		
Mount CJJ4: August 10, 2009								
KIM5-1	2.01717	0.00037	5.97	0.18	-			
KIM5-2	2.01764	0.00044	6.20	0.22	-			
KIM5-3	2.01740	0.00044	6.08	0.22	-			
KIM5-4	2.01716	0.00054	5.96	0.27	-			
CJJ4-1	2.04679	0.00038	20.74	0.19	19.66	0.34		
KIM5-5	2.01748	0.00071	6.12	0.35	-			
KIM5-6	2.01821	0.00040	6.49	0.20	-			
KIM5-7	2.01781	0.00044	6.29	0.22	-			
KIM5-8	2.01760	0.00050	6.18	0.25	-			
CJJ4-2	2.04554	0.00043	20.12	0.21	18.94	0.28		
CJJ4-3	2.04661	0.00035	20.65	0.17	19.47	0.28		
CJJ4-4	2.02765	0.00037	11.20	0.18	10.02 *	0.28		
CJJ4-5	2.02950	0.00030	12.12	0.15	10.94 *	0.28		
CJJ4-6	2.04684	0.00045	20.77	0.22	19.58	0.28		
KIM5-9	2.01791	0.00034	6.34	0.17	-			
KIM5-10	2.01739	0.00032	6.08	0.16	-			
KIM5-11	2.01760	0.00045	6.19	0.22	-			
KIM5-12	2.01798	0.00041	6.37	0.21	-			
CJJ4 (average, n=4) 19.4 0.6								
Analyses are listed in chronological order, within each session								
Sample analyses are bracketed by the zircon standard KIM-5								
^a meas = measured; ${}^{b}SE$ = standard error; ${}^{c}SD$ = standard deviation								

Table 2. Cameca 1280 oxygen isotope analyses of Sri Lanka zircon CJJ4.

*Irregular analysis spot- data rejected. See text for discussion.

Sample #	aliquot (mg)	Color	δ ¹⁸ Ο	2 SD^{a}
Session 1: May 5, 2	2008 (n=10)			
MOGOK 20	2.12	clear/ lt. yellow ^b	24.33	0.04
MOGOK 2g	1.96	clear/ lt. green	23.44	0.04
MOGOK 1A	2.06	clear/ lt. yellow	23.10	0.04
MOGOK 2i	1.89	lt. yellow/ olive green	21.89	0.04
MOGOK 1k	2.16	dark green	19.21	0.04
MOGOK 1H	2.68	lt. orange/ honey yellow	17.96	0.04
MOGOK 2a	1.96	lt. orange	15.65	0.04
MOGOK 2j	2.15	lt. yellow	12.08	0.04
MOGOK 2b	2.80	lt. orange	10.72	0.04
MOGOK 2h	2.31	lt. olive green	9.37	0.04
UWG-2	1.66		5.53	-
UWG-2	1.59		5.56	-
UWG-2	1.49		5.52	-
UWG-2, average (r	n=3)		5.54	0.04
Session 2: May 6, 2	2009 (n=18)			
Mogok 2L	2.88	clear/ lt. olive green	25.48	0.04
Mogok 2M	2.95	clear/ lt. yellow	25.37	0.04
Mogok 1G	2.32	clear/ lt. yellow	25.09	0.04
Mogok 1D	2.49	lt. yellow/ olive green	24.78	0.04
Mogok 1E	2.92	clear/ lt. green	22.38	0.04
Mogok 2D	2.40	clear/ lt. yellow	22.15	0.04
Mogok 2E	2.48	clear/ lt. yellow	21.77	0.04
Mogok 1i	2.56	lt. yellow/ olive green	20.83	0.04
Mogok 1J	3.02	lt. yellow/ olive green	18.90	0.04
Mogok 2N	2.53	clear/ lt. yellow	16.97	0.04
Mogok 1C	2.81	dark yellow/ olive green	16.68	0.04
Mogok 4H	2.65	orange-red	15.85	0.04
Mogok 4F	2.92	orange	15.83	0.04
Mogok 4D	2.66	dark orange-red	14.27	0.04
Mogok 3D	3.15	dark orange-red	14.21	0.04
Mogok 4C	2.64	dark red	13.96	0.04
Mogok 3B	2.57	two-tone: dark red to clear	12.82	0.04
Mogok 4E	2.85	dark red	12.58	0.04
UWG-2	2.06		5.80	-
UWG-2	2.23		5.76	-
UWG-2	1.67		5.76	-
UWG-2	1.51		5.78	-
UWG-2, average (n	n=4)		5.78	0.04

Table 3. Laser fluorination oxygen isotope analyses of detrital zircons from Mogok, Myanmar.

^aSD = standard deviation; ^blt. = light

Figure 2

Figure 3

Figure 5

Online Resource 1

Article title: Origin of high δ^{18} O zircons: Marbles, megacrysts, and metamorphism Journal: Contributions to Mineralogy and Petrology Authors: Aaron J. Cavosie, John W. Valley, Noriko T. Kita, Mike Spicuzza, Takayuki Ushikubo, Simon Wilde Corresponding author: Aaron J. Cavosie, Univ. of Puerto Rico. Email: aaron.cavosie@upr.edu

Sample #	$\delta^{18}\mathbf{O}$	Unit lithology/rock		Reference
Australia				
TKB5	6.70	Cobargo dioritic enclave	I-type granite	Kemp et al. 2007
TKB1	6.51	Cobargo tonalite	I-type granite	Kemp et al. 2007
TKB11	6.51	Cobargo granite	I-type granite	Kemp et al. 2007
TKB100	8.10	Why Worry tonalite	I-type granite	Kemp et al. 2007
TKB17	8.15	Pretty Point tonalite	I-type granite	Kemp et al. 2007
TKB15	6.82	doleritic enclave	I-type granite	Kemp et al. 2007
B4-28	6.69	Blind gabbro	I-type granite	Kemp et al. 2007
KK2	7.74	Round Flat tonalite	I-type granite	Kemp et al. 2007
KK4	6.87	Round Flat tonalite	I-type granite	Kemp et al. 2007
97-159	6.47	Wando tonalite	I-type granite	Kemp et al. 2009
97-WA1	7.28	Warradale tonalite	I-type granite	Kemp et al. 2009
COH-8	5.21	quartz diorite	granitoid	Kemp et al. 2009
HV-1	9.14	Hawkins dacite	S-type granite	Kemp et al. 2009
BB1	8.36	Coontralantra grano.	S-type granite	Kemp et al. 2009
BB3	9.47	Arable granodiorite	S-type granite	Kemp et al. 2009
BB6	8.37	Arable granodiorite	S-type granite	Kemp et al. 2009
Kdd-1	7.24	Kadoona dacite	I-type granite	Kemp et al. 2009
TKG-1	6.87	Glenbog granodiorite	I-type granite	Kemp et al. 2009
178	4.80	Narraburra granite	A-type granite	Kemp et al. 2009
Brazil				
Loure 2	6.52	Lourenco pluton	granitoid	Ferreira et al. 2010
Loure 3	6.52	Lourenco pluton	granitoid	Ferreira et al. 2010
Loure 40	6.88	Lourenco pluton	granitoid	Ferreira et al. 2010
Ccima 2	8.40	Curral de Cima pluton	granitoid	Ferreira et al. 2010
Ccima 8	8.10	Curral de Cima pluton	granitoid	Ferreira et al. 2010
Greenland				
G01136	5.10	Itsaq Gneiss Complex	Meta-tonalite	Heiss et al. 2009
G01113	4.90	Itsaq Gneiss Complex	Meta-tonalite	Heiss et al. 2009
G97118	5.00	Itsaq Gneiss Complex	Meta-tonalite	Heiss et al. 2009
248228	4.90	Itsaq Gneiss Complex	Meta-tonalite	Heiss et al. 2009
248202	5.00	Itsaq Gneiss Complex	felsic meta-volc.	Heiss et al. 2009
248203	4.90	Itsaq Gneiss Complex	felsic meta-volc.	Heiss et al. 2009
248251	4.20	Itsaq Gneiss Complex	granitoid gneiss	Heiss et al. 2010
248212	4.60	Itsaq Gneiss Complex	granitoid gneiss	Heiss et al. 2010
G97/111	5.80	augen gneiss	meta-granite	Heiss et al. 2010
VM9701	4.00	Ikkattoq gneiss	granitoid gneiss	Heiss et al. 2010
195392	5.00	Qorqut granite complex	migmatite	Heiss et al. 2010
195376	4 20	Ooraut granite complex	granite	Heiss et al 2010

Oxygen isotope ratios for igneous zircon published from 2006-2010 used in Fig. 1

Sample #	δ ¹⁸ Ο	Unit	lithology/rock	Reference
Kimberlites			07	
	5.32	Kaalvallei Mine	kimberlite	Page et al. 2007
	5.45	Balmoral Mine	kimberlite	Page et al. 2007
	5.18	Kamfersdam Mine	kimberlite	Page et al. 2007
	5.30	Leicester Mine	kimberlite	Page et al. 2007
	5.35	Kimberley Pool	kimberlite	Page et al. 2007
	4.69	Jwaneng DK2, Precambrian	kimberlite	Page et al. 2007
	5.73	Jwaneng DK2, Permian	kimberlite	Page et al. 2007
	5.55	Orapa rutile-bearing suite	kimberlite	Page et al. 2007
	4.98	Orto-Yarga, Anomaly 12/853	kimberlite	Page et al. 2007
	4.73	Chomurdakh, Khaiyrgastakh	kimberlite	Page et al. 2007
	5.07	Chomurdakh, Anomaly 180/78	kimberlite	Page et al. 2007
	7.09	Ukukit West, Leningrad	kimberlite	Page et al. 2007
	5.26	Ukukit West, Anomaly 134	kimberlite	Page et al. 2007
	5.02	Ukukit West, Anomaly 152	kimberlite	Page et al. 2007
	5.53	Mir	kimberlite	Page et al. 2007
	5.20	Ponte Funda	kimberlite	Page et al. 2007
	5.33	Sa~o Joa~o da Glo´ ria	kimberlite	Page et al. 2007
	4.87	Fazen da Inac, ao	kimberlite	Page et al. 2007
	5.28	Botafogo	kimberlite	Page et al. 2007
	5.49	Vargem 4B	kimberlite	Page et al. 2007
	5.05	Buriti	kimberlite	Page et al. 2007
	5.28	Tata~o	kimberlite	Page et al. 2007
	5.12	Morro do Lobo	kimberlite	Page et al. 2007
	8.25	Cedro	kimberlite	Page et al. 2007
	5.17	Japecanga	kimberlite	Page et al. 2007
	5.55	Capa~o da Erva	kimberlite	Page et al. 2007
	5.08	Almas	kimberlite	Page et al. 2007
	5.08	Canas AN32	kimberlite	Page et al. 2007
	5.48	Canastrel	kimberlite	Page et al. 2007
	5.51	Descida para Vargem	kimberlite	Page et al. 2007
	5.25	Galeria	kimberlite	Page et al. 2007
	5.28	Morunga	kimberlite	Page et al. 2007
	5.82	Poc _s o Verde	kimberlite	Page et al. 2007
	5.60	Tamborete	kimberlite	Page et al. 2007
	5.31	Vargem 1, Poc _s o 9	kimberlite	Page et al. 2007
	7.53	Velosa	kimberlite	Page et al. 2007
	7.31	Represinha	kimberlite	Page et al. 2007
	5.02	Acuri	kimberlite	Page et al. 2007
	4.80	Mutum	kimberlite	Page et al. 2007
	4.92	Duas Barras	kimberlite	Page et al. 2007
	5.09	Six-Pak, Kenosha, Wisconsin	kimberlite	Page et al. 2007
	5.47	Site 73, Hermansville, Mich.	kimberlite	Page et al. 2007
Mid-Atlantic Ridge				

153-922B-2R-2 153-920B-2R-1 5.30 20-23 cm 5.00 44-50 cm gabbro Cavosie et al. 2009 vein in serpentinite Cavosie et al. 2009

Sample #	δ ¹⁸ Ο	Unit	lithology/rock	Reference
153-920B-5R-1	5.50	59-64 cm	vein in serpentinite	Cavosie et al. 2009
Mid-Atlantic Ridge/ SW	' Indiai	n Ridge		
209-1270D-3R-1	5.50	47 cm	vein in serpentinite	Grimes et al. 2011
209-1270D-4R-1	5.20	133 cm	vein in serpentinite	Grimes et al. 2011
209-1275D-2R-2	5.30	96cm	plagiogranite	Grimes et al. 2011
209-1275D-29R-2	5.40	89 cm	plagiogranite	Grimes et al. 2011
209-1275D-31R-2	5.30	68 cm	plagiogranite	Grimes et al. 2011
209-1275D-36R-1	5.10	81 cm	plagiogranite	Grimes et al. 2011
209-1275D-39R-2	5.50	0 cm	plagiogranite	Grimes et al. 2011
209-1275D-43R-1	5.50	34 cm	plagiogranite	Grimes et al. 2011
MARVEL2000	5.10	Alvin 3652-1333	fault schist	Grimes et al. 2011
MARVEL2000	5.20	Alvin 3646-1205	fault schist	Grimes et al. 2011
MARVEL2000	5.40	D3-21 (dredge)	fault schist	Grimes et al. 2011
MARVEL2000	5.50	Alvin 3647-1359	fault schist	Grimes et al. 2011
MARVEL2000	5.60	Alvin 3652-1002	breccia	Grimes et al. 2011
304-U1309B-7R-1	4.90	77 cm	plagiogranite	Grimes et al. 2011
304-U1309B-13R-2	5.20	26 cm	plagiogranite	Grimes et al. 2011
304-U1309D-5R-3	5.10	136 cm	plagiogranite	Grimes et al. 2011
304-U1309D-9R-2	5.20	97 cm	plagiogranite	Grimes et al. 2011
304-U1309D-40R-1	5.30	21 cm	plagiogranite	Grimes et al. 2011
305-U1309D-93R-1	5.30	27 cm	plagiogranite	Grimes et al. 2011
305-U1309D-115R-2	5.20	59 cm	plagiogranite	Grimes et al. 2011
305-U1309D-178R-1	5.20	97 cm	plagiogranite	Grimes et al. 2011
305-U1309D-216R-1	5.00	54 cm	plagiogranite	Grimes et al. 2011
305-U1309D-295R-3	5.10	100 cm	plagiogranite	Grimes et al. 2011
304-U1309D-47R-2	5.30	102 cm	oxide gabbro	Grimes et al. 2011
304-U1309D-54R-1	5.10	52 cm	oxide gabbro	Grimes et al. 2011
304-U1309D-69R-2	4.90	52 cm	oxide gabbro	Grimes et al. 2011
304-U1309D-75R-3	5.00	99 cm	oxide gabbro	Grimes et al. 2011
305-U1309D-114R-1	5.30	62 cm	oxide gabbro	Grimes et al. 2011
305-U1309D-126R-2	5.00	27 cm	oxide gabbro	Grimes et al. 2011
305-U1309D-131R-2	5.30	0 cm	oxide gabbro	Grimes et al. 2011
305-U1309D-168R-2	5.20	0 cm	oxide gabbro	Grimes et al. 2011
305-U1309D-189R-4	5.10	41 cm	oxide gabbro	Grimes et al. 2011
305-U1309D-244R-2	5.00	100 cm	oxide gabbro	Grimes et al. 2011
305-U1309D-259R-1	5.00	22 cm	oxide gabbro	Grimes et al. 2011
305-U1309D-276R-1	5.40	34 cm	oxide gabbro	Grimes et al. 2011
304-U1309D-5R-3	4.80	136 cm	plagiogranite	Grimes et al. 2011
305-U1309D-295R-3	4.70	100 cm	plagiogranite	Grimes et al. 2011
179-1105A-8R-4	5.60	21 cm	plagiogranite	Grimes et al. 2011
118-735B-7D-1	5.10	10 cm	plagiogranite	Grimes et al. 2011
176-735B-90R-1	5.40	45 cm	plagiogranite	Grimes et al. 2011
176-735B-110R-4	5.20	8 cm	plagiogranite	Grimes et al. 2011
176-735B-137R-2	5.40	71 cm	plagiogranite	Grimes et al. 2011
176-735B-202R-7	5.00	85 cm	plagiogranite	Grimes et al. 2011
118-735B-28R-1	5.30	56 cm	gabbro	Grimes et al. 2011

Sample #	δ ¹⁸ Ο	Unit	lithology/rock	Reference
New Zealand				
RNZ20	5.54	Separation Point Bath.	monzogranite	Bolhar et al. 2008
RNZ49	5.31	Separation Point Bath.	granite	Bolhar et al. 2008
RNZ83	5.05	Pearse pluton	granodiorite	Bolhar et al. 2008
RNZ87	5.61	Rocky pluton	granodiorite	Bolhar et al. 2008
NF3	4.37	North Fiord pluton	granite	Bolhar et al. 2008
SF2a	3.61	Takahe pluton	granodiorite	Bolhar et al. 2008
TT6	3.18	Titiroa pluton	granite	Bolhar et al. 2008
WFO1	5.47	Western Fiordland pluton	orthogneiss	Bolhar et al. 2008
Nubian Shield				
2	8.09	Taba orthogneiss	Elat IAC	Be-eri et al. 2009
3	8.18	Roded orthogneiss	Elat IAC	Be-eri et al. 2009
4	6.92	Elat granitic orthogneiss	Elat IAC	Be-eri et al. 2009
5	5.57	Aliat paragneis	Elat IAC	Be-eri et al. 2009
6	7.32	SMGD def. pluton	Feiran IAC	Be-eri et al. 2009
7	7.93	SGG def. pluton	calc-alkaline suite1	Be-eri et al. 2009
8	6.57	Jantil def. pluton	calc-alkaline suite1	Be-eri et al. 2009
9	4.99	Rurabi def. pluton	calc-alkaline suite1	Be-eri et al. 2009
10	7.06	Elat-Shlomo pluton	calc-alkaline suite1	Be-eri et al. 2009
11	6.36	Elat-Rehavam pluton	calc-alkaline suite2	Be-eri et al. 2009
12	6.61	RQD pluton	calc-alkaline suite2	Be-eri et al. 2009
13	6.17	TPG pluton	calc-alkaline suite2	Be-eri et al. 2009
14	5.43	Shahira pluton	calc-alkaline suite2	Be-eri et al. 2009
15	5.32	Zreir pluton	calc-alkaline suite2	Be-eri et al. 2009
16	5.45	Hibran-Miar pluton	calc-alkaline suite2	Be-eri et al. 2009
17	5.69	Rahba pluton	calc-alkaline suite2	Be-eri et al. 2009
18	6.50	Ahdar pluton	calc-alkaline suite2	Be-eri et al. 2009
19	5.14	Sama pluton	calc-alkaline suite2	Be-eri et al. 2009
20	5.05	Lathi pluton	calc-alkaline suite2	Be-eri et al. 2009
21	6.77	Malaha pluton	calc-alkaline suite2	Be-eri et al. 2009
22	5.30	Girgar pluton	calc-alkaline suite2	Be-eri et al. 2009
23	5.16	Gashi pluton	calc-alkaline suite2	Be-eri et al. 2009
24	5.28	Mandar pluton	calc-alkaline suite2	Be-eri et al. 2009
25	6.14	Sulaf pluton	calc-alkaline suite2	Be-eri et al. 2009
26	5.25	Abu-K'sheib pluton	calc-alkaline suite2	Be-eri et al. 2009
27	6.50	Tubeina pluton	calc-alkaline suite2	Be-eri et al. 2009
28	5.89	Nasrin pluton	alkaline suite	Be-eri et al. 2009
29	5.50	TAG pluton	alkaline suite	Be-eri et al. 2009
30	5.78	TMN pluton	alkaline suite	Be-eri et al. 2009
31	5.79	Timna syenite pluton	alkaline suite	Be-eri et al. 2009
32	6.60	Yehoshafat pluton	alkaline suite	Be-eri et al. 2009
33	6.49	Elat subvolcanics	alkaline suite	Be-eri et al. 2009
34	6.84	Elat composite dike	alkaline suite	Be-eri et al. 2009
35	6.36	Elat rhyolite dike1	alkaline suite	Be-eri et al. 2009
36	6.35	Elat rhyolite dike2	alkaline suite	Be-eri et al. 2009
37	6.23	Elat rhyolite dike3	alkaline suite	Be-eri et al. 2009

Sample #	δ^{18} O	Unit	lithology/rock	Reference
38	5.14	Sahara pluton	alkaline suite	Be-eri et al. 2009
39	4.79	Sharm pluton	alkaline suite	Be-eri et al. 2009
40	4.49	Yahmed pluton	alkaline suite	Be-eri et al. 2009
41	5.13	Umm-Shomer pluton	alkaline suite	Be-eri et al. 2009
42	5.20	Dahab pluton	alkaline suite	Be-eri et al. 2009
43	6.70	Serbal pluton	alkaline suite	Be-eri et al. 2009
44	5.49	Umm-I-Fai pluton	alkaline suite	Be-eri et al. 2009
45	5.65	Iqna-Kid pluton	alkaline suite	Be-eri et al. 2009
46	8.04	Umm-Bugma pluton	alkaline suite	Be-eri et al. 2009
47	5.53	Katharina ring dikes	alkaline suite	Be-eri et al. 2009
48	5.82	Katharina pluton	alkaline suite	Be-eri et al. 2009
49	6.68	Iqna subvolcanics	alkaline suite	Be-eri et al. 2009
50	7.07	Iqna pluton	alkaline suite	Be-eri et al. 2009
YE-9	7.09	Elat granitic gneiss	granitoid	Katzir et al. 2007
YE-16	6.68	Elat granitic gneiss	granitoid	Katzir et al. 2007
YE-24	7.23	Elat granitic gneiss	granitoid	Katzir et al. 2007
YE-11	7.15	Elat granite	monzogranite	Katzir et al. 2007
YE-33	6.97	Elat granite	monzogranite	Katzir et al. 2007
YE-34	6.36	Elat granite	monzogranite	Katzir et al. 2007
YE-36	6.76	Yehoshafat granite	syenogranite	Katzir et al. 2007
YE-35	6.52	Yehoshafat granite	syenogranite	Katzir et al. 2007
AG-81	6.60	Yehoshafat granite	syenogranite	Katzir et al. 2007
AG-40	5.75	Timna Complex	quartz syenite	Katzir et al. 2007
AG-62	5.82	Timna Complex	quartz syenite	Katzir et al. 2007
AG-63	5.50	Timna Complex	alkali feld granite	Katzir et al. 2007
AG-63a	5.55	Timna Complex	alkali feld granite	Katzir et al. 2007
AG-67	5.48	Timna Complex	alkali feld granite	Katzir et al. 2007
IL-8	5.48	Katharine ring complex	perthite qtz syenite	Katzir et al. 2007
IL-84	5.66	porphyry, ring dike	granitoid	Katzir et al. 2007
IL-147	5.49	porphyry, ring dike	granitoid	Katzir et al. 2007
IL-9	5.50	porphyry, ring dike	granitoid	Katzir et al. 2007
69	6.27	Timna granite	A-type granite	Steinitz et al. 2009
70	6.11	Timna granite	A-type granite	Steinitz et al. 2009
71	6.10	Timna granite	A-type granite	Steinitz et al. 2009
44	5.93	Timna monzodiorite	A-type granite	Steinitz et al. 2009
64	5.68	Timna monzodiorite	A-type granite	Steinitz et al. 2009
66	5.60	Timna monzodiorite	A-type granite	Steinitz et al. 2009
77	5.89	Timna monzodiorite	A-type granite	Steinitz et al. 2009
Scotland (Caledonides)	0.00			1 1 1 1 0010
Kemnay	9.00	Kemnay granite	S-type granite	Appleby et al. 2010
Cove	9.80	Cove granite	S-type granite	Appleby et al. 2010
Nigg Bay	6.80	Nigg Bay granite	S-type granite	Appleby et al. 2010
USA (St. Francois Mints		uri) Krah Lieb		$V_{\rm inc} = 4 \pm 1.2000$
Knob Lick	0.05	NIOD LICK	granite	King et al. 2008
Hawn Park	1.52	Hawn State Park	granite	King et al. 2008
Pickle Creek	5.78	Hawn State Park	granite	King et al. 2008

Sample #	δ ¹⁸ Ο	Unit	lithology/rock	Reference
Munger	8.17	Munger granite	granite	King et al. 2008
MOSH-100	7.90	Shannon county drill core	granite	King et al. 2008
Troy	5.88	Troy Granite	granite	King et al. 2008
USA (Arbuckle Mounta	nins, Ol	klahoma)		
ARB 36	6.14	Tishomingo granite	granite	King et al. 2008
BRG	6.09	Blue River gneiss	gneiss	King et al. 2008
BRG	6.12	Blue River gneiss	gneiss	King et al. 2008
Gd	6.13	granodiorite	granodiorite	King et al. 2008
TISH	6.14	Tishomingo granite	granite	King et al. 2008
TSH	6.28	Tishomingo granite	granite	King et al. 2008
USA (Salton Trough, C	A)			
SB0402	5.15	Obsidian Butte rhyolite	volcanic	Schmitt and Vazquez 2006
SB0402-i1	2.60	Obsidian Butte granophyre xeno	volcanic	Schmitt and Vazquez 2006
SB0403-1	3.84	Obsidian Butte basaltic xeno	volcanic	Schmitt and Vazquez 2006
SB0403-i2	5.05	Obsidian Butte basaltic xeno	volcanic	Schmitt and Vazquez 2006
SB0403-i2	4.97	Obsidian Butte basaltic xeno	volcanic	Schmitt and Vazquez 2006
SB0401-i1	4.80	Red Island "felsite" xeno	volcanic	Schmitt and Vazquez 2006

References for above data that are not listed in the main article

(1) Appleby, S.K., Gillespie, M.R., Graham, C.M., Hinton, R.W., Oliver, G.J.H., Kelly, N.M., EIMF,

2010, Contributions to Min. Petrol., 160, 115-132.

(2) Be'eri-Shlevin, Y., Katzir, Y., Valley, J.W., 2009. Lithos 107, 169-184.

(3) Bolhar, R., Weaver, S.D., Whitehouse, M.J., Palin, J.M., Woodhead, J.D., Cole, J.W., 2008.

Earth and Planet. Sci. Letters, 268, 312-324.

(4) Ferreira, V.P., Sial, A.N., Pimentel, M.M., Armstrong, R., Spicuzza, M.J., Guimaraes, I.P.,

da Silva Filho, A.H., 2011. Lithos 121(1-4), 189-201.

(5) Heiss, J., Bennett, V.C., Nutman, A.P., Williams, I.S., 2009. Geochim. et Cosmochim. Acta 73, 4489-4516.
(6) Heiss, J., Bennett, V.C., Nutman, A.P., Williams, I.S., 2010. Contrib. Min. Petrol., in press. DOI 10.1007/s00410-010-0578-z

(7) Katzir, Y., Litvinovsky, B.A., Jahn, B.M., Eyal, M., Zanvilevich, A.N., Valley, J.W., Vapnik, Y., Beeri, Y., Spicuzza, M.J., 2007. Lithos, 97, 336-364.

(8) Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M. Whitehouse, M.J., 2007. Science, 315, 980. DOI: 10.1126/science.1136154

(9) Kemp, A.I.S., Hawkesworth, Collins, W.J., Gray, C.M., Blevin, P.L., EIMF., 2009.

Earth and Planet. Sci. Letters, 284, 455-466.

(10) King, E.M., Trzaskus, A.P., Valley, J.W., 2008. Precambrian Res., 165, 49-60.

(11) Schmitt, A.K., Vazquez, J.A., 2006. Earth Planet. Sci. Letters, 252(3-4), 260-274.

(12) Steinitz, A., Katzir, Y., Valley, J.W., Be-Eri-Shlevin, Y., Spicuzza, M.J., 2009. Geol. Mag, 1-15.

Online Resource 1 (cont.)

Article title: Origin of high δ^{18} O zircons: Marbles, megacrysts, and metamorphism Journal: Contributions to Mineralogy and Petrology Authors: Aaron Cavosie, John Valley, Noriko Kita, Mike Spicuzza, Takayuki Ushikubo, Simon Wilde Corresponding author: Aaron J. Cavosie, Univ. of Puerto Rico. Email: aaron.cavosie@upr.edu

Location/ Sample	$\delta^{18}\mathbf{O}$	MM facies	lithology	Reference
Canada, British Co	lumbia,	Valhalla Com	plex	
EL-20	9.50		migmatite- paragneiss	Gordon et al. 2009
UP-20	10.30		deformed metapelite	Gordon et al. 2009
Canada, Super Pro	vince, K	apuskasing up	lift (n=26)	
KAP05-32 G2	8.7	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G3	9	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G4	8.74	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G5	9.41	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G6m	8.8	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G60	9.6	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G7	8.38	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G8	8.57	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G9	9.39	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G10	10.02	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G15	10.11	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G27	10.04	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G34	9.27	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G35	8.7	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G37	10.13	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G39	9.14	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G42	9.86	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G43	9.32	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G46	9.97	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G50	8.54	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G53	9.61	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G56	9.98	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G57	10	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G59	10.18	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05032 G61	9.38	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
KAP05-32 G63	9.93	granulite	metamorphic rim on detrital zircon	Moser et al. 2008
China, Dabie Shan	orogen			
Xindian	16.85	eclogite	UHP eclogite boudin	Wu et al. 2006
Greece, Naxos (n=3	1)			
80b6	7.40	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006
80b9	5.50	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006
80b3-r1	7.10	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006
80b47-r1	5.10	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006
80b16-r1 (Rim A)	7.40	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006
80b16-r2 (Rim B)	6.70	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006

Oxygen isotope ratios for metamorphic zircon used in figure 1t

Location/ Sample	δ ¹⁸ Ο	MM facies	lithology	Reference
80b23-2	5.50	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006
80b17-r2	8.30	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006
80b38-1	8.00	amphibolite	zircon rim, metabasite NA0180b	Martin et al. 2006
62b15 (n=2)	14.70	amphibolite	zircon rim, metapelite NA0262b	Martin et al. 2006
62b7-1	13.70	amphibolite	zircon rim, metapelite NA0262b	Martin et al. 2006
62b6-1	14.70	amphibolite	zircon rim, metapelite NA0262b	Martin et al. 2006
62b14-1	15.00	amphibolite	zircon rim, metapelite NA0262b	Martin et al. 2006
62b6-3	13.60	amphibolite	zircon rim, metapelite NA0262b	Martin et al. 2006
62b10	14.60	amphibolite	zircon rim, metapelite NA0262b	Martin et al. 2006
62b12	14.30	amphibolite	zircon rim, metapelite NA0262b	Martin et al. 2006
113b22-1	10.40	amphibolite	zircon rim, calcic gneiss NA01113b	Martin et al. 2006
113b5-1	13.00	amphibolite	zircon rim, calcic gneiss NA01113b	Martin et al. 2006
113b6-2	9.50	amphibolite	zircon rim, calcic gneiss NA01113b	Martin et al. 2006
113b16-r	13.70	amphibolite	zircon rim, calcic gneiss NA01113b	Martin et al. 2006
113b15-r	12.90	amphibolite	zircon rim, calcic gneiss NA01113b	Martin et al. 2006
113b26 (n=2)	11.95	amphibolite	zircon rim, calcic gneiss NA01113b	Martin et al. 2006
granite 01-14	7.90		anatectic granite with recrystalized zrc	Martin et al. 2008
granite 01-3	6.50		anatectic granite with recrystalized zrc	Martin et al. 2008
granite 01-4	8.10		anatectic granite with recrystalized zrc	Martin et al. 2008
granite 01-16	7.90		anatectic granite with recrystalized zrc	Martin et al. 2008
granite 01-16	6.80		anatectic granite with recrystalized zrc	Martin et al. 2008
granite 01-32	5.70		anatectic granite with recrystalized zrc	Martin et al. 2008
granite 01-7	7.60		anatectic granite with recrystalized zrc	Martin et al. 2008
granite 01-7	7.40		anatectic granite with recrystalized zrc	Martin et al. 2008
USA, Adirondack M	Iountain	s (n=61)		
Adirondack Lowland	.S			
MH-02-19	13.20	amphibolite	MM overgrowth- Devils Elbow	Lancaster et al. 2009
MH-02-15a	10.20	amphibolite	MM overgrowth- Foolish Dog L	Lancaster et al. 2009
MH-02-16b	10.00	amphibolite	MM overgrowth- Foolish Dog M	Lancaster et al. 2009
MH-02-09	9.00		Rt. 812 L	Lancaster et al. 2009
MH-02-10	7.80		Rt. 812 M	Lancaster et al. 2009
Adirondack Highland	ls			
BM-04-01b (M)	12.50	granulite	MM overgrowth- Daniels Rd. M	Lancaster et al. 2009
BM-04-01a (L)	12.30	granulite	MM overgrowth- Daniels Rd. L	Lancaster et al. 2009
BMH-01-14	11.60	granulite	MM overgrowth- Treadway Mt. #1L	Lancaster et al. 2009
BM-04-06a	7.30		Treadway Mt. #2L	Lancaster et al. 2009
MH-02-06	11.50	granulite	MM overgrowth- Pleasant Lake M	Lancaster et al. 2009
BMH-01-20	9.50		Pumpkin Hollow	Lancaster et al. 2009
BMH-01-12	11.20	granulite	MM overgrowth- Pleasant Lake L	Lancaster et al. 2009
BM-04-02b (M)	11.20	granulite	MM overgrowth- Comstock M	Lancaster et al. 2009
BMH-01-16	10.90	granulite	MM overgrowth- Conklingtonville Dam	Lancaster et al. 2009
06-ADK-34D	10.80	granulite	MM overgrowth- Treadway Mt. #2M	Lancaster et al. 2009
BMH-04-06B1	10.40	granulite	MM overgrowth- Treadway Mt. #2M	Lancaster et al. 2009
06-ADK-35AZrc1.4/	8.10		meta- avg. of 2 analyses	Lancaster et al. 2009
06-ADK-34DZrc2.2	10.80		meta	Lancaster et al. 2009

Location/ Sample	δ ¹⁸ Ο	MM facies	lithology	Reference
06-ADK-50EZrc1.1	7.70		meta	Lancaster et al. 2009
BM-04-02a (L)	10.20	granulite	MM overgrowth- Comstock L	Lancaster et al. 2009
BM-04-01a, 35	12.63	granulite	MM overgrowth- Daniels Rd. L	Page et al. 2007
92ADK7	10.14		quartzite	Peck et al. 2003
97ADK2	9.62		quartzite	Peck et al. 2003
97ADK2-1	12.60	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-10	10.90	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-11	9.80	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-12	11.30	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-15	12.70	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-17	10.50	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-18	11.10	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-3	11.30	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-6	12.80	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-7	11.40	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-8	9.30	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK2-9	11.80	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK-3	7.83		quartzite	Peck et al. 2003
97ADK-4	9.05		quartzite	Peck et al. 2003
97ADK4-1	10.70	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK4-11	11.70	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK4-2	10.00	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK4-3	9.80	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK4-5	10.10	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK4-6	10.50	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK4-7	10.00	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK4-8	10.00	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97ADK4-9	10.50	granulite	MM overgrowth- Irving Pond Fm.	Peck et al. 2003
97WE10	8.98	C	quartzite	Peck et al. 2003
97BM2	9.28		quartzite	Peck et al. 2003
SL2	7.76		quartzite	Peck et al. 2003
Adirondacks			^	
AC85-7	8.36		AMCG, metamorphic/disturbed zircons	Valley et al. 1994
AC85-9	8.45		AMCG, metamorphic	Valley et al. 1994
CGAB	6.04		AMCG, metamorphic/disturbed zircons	Valley et al. 1994
Rt. 81	9.15		quartzite	Valley et al. 1994
CT-1	9.60		quartzite	Valley et al. 1994
CT-2	9.82		quartzite	Valley et al. 1994
SL-1	7.91		quartzite	Valley et al. 1994
SL-2	7.90		quartzite	Valley et al. 1994
AC85-11	7.71	granulite	jotunitic gneiss; meta zircons	Valley et al. 2003
AM87-9	7.80	granulite	charnockitic gneiss; meta zircons	Valley et al. 2003
AM87-10	8.04	granulite	charnockite; meta zircons	Valley et al. 2003
TOE	8.29	granulite	metagranite; meta zircons	Valley et al. 2003

All references above are listed in the main article.

Online Resource 1 (cont.)

Article title: Origin of high δ^{18} O zircons: Marbles, megacrysts, and metamorphism Journal: Contributions to Mineralogy and Petrology Authors: Aaron J. Cavosie, John W. Valley, Noriko T. Kita, Mike Spicuzza, Takayuki Ushikubo, Simon Wilde Corresponding author: Aaron J. Cavosie, Univ. of Puerto Rico. Email: aaron.cavosie@upr.edu

Location/ Sample	$\delta^{18}\mathbf{O}$	MM facies	material	Reference
Antarctica				
CO#18,Sr#18	-4.92	amph-gran	calcite	Satish-Kumar et al. 2010
CO#11,Sr#11	-4.37	amph-gran	calcite	Satish-Kumar et al. 2010
CO#17	-4.07	amph-gran	calcite	Satish-Kumar et al. 2010
CO#12	-3.9	amph-gran	calcite	Satish-Kumar et al. 2010
CO#3,Sr#1	-3.76	amph-gran	calcite	Satish-Kumar et al. 2010
CO#5	-1.47	amph-gran	calcite	Satish-Kumar et al. 2010
CO#15	0.47	amph-gran	calcite	Satish-Kumar et al. 2010
CC2	12.33	amph-gran	calcite	Satish-Kumar et al. 2010
CC3	12.33	amph-gran	calcite	Satish-Kumar et al. 2010
CC1	12.57	amph-gran	calcite	Satish-Kumar et al. 2010
CC4	14.36	amph-gran	calcite	Satish-Kumar et al. 2010
CC5	14.36	amph-gran	calcite	Satish-Kumar et al. 2010
CC1	14.92	amph-gran	calcite	Satish-Kumar et al. 2010
CC2	14.93	amph-gran	calcite	Satish-Kumar et al. 2010
CC2	15.66	amph-gran	calcite	Satish-Kumar et al. 2010
CC3	17	amph-gran	calcite	Satish-Kumar et al. 2010
CC1	17.39	amph-gran	calcite	Satish-Kumar et al. 2010
Antarctica				
602b-c1	16.3	granulite	calcite	Satish-Kumar and Wada 2000
602b-c2	16.02	granulite	calcite	Satish-Kumar and Wada 2000
602b-c3	15.81	granulite	calcite	Satish-Kumar and Wada 2000
602b-c4	16.13	granulite	calcite	Satish-Kumar and Wada 2000
602c-C1	16.44	granulite	calcite	Satish-Kumar and Wada 2000
602c-C2	16.35	granulite	calcite	Satish-Kumar and Wada 2000
602c-C3	16.84	granulite	calcite	Satish-Kumar and Wada 2000
602c-C4	16.28	granulite	calcite	Satish-Kumar and Wada 2000
602c-C5	16.56	granulite	calcite	Satish-Kumar and Wada 2000
602d-c1	16.91	granulite	calcite	Satish-Kumar and Wada 2000
602d-c2	17.04	granulite	calcite	Satish-Kumar and Wada 2000
602d-c3	17.02	granulite	calcite	Satish-Kumar and Wada 2000
602e-c1	15.8	granulite	calcite	Satish-Kumar and Wada 2000
602e-c2	15.53	granulite	calcite	Satish-Kumar and Wada 2000
602e-c3	15.89	granulite	calcite	Satish-Kumar and Wada 2000
602e-c4	15.64	granulite	calcite	Satish-Kumar and Wada 2000
602e-c5	16.69	granulite	calcite	Satish-Kumar and Wada 2000
602e2-c21	17.41	granulite	calcite	Satish-Kumar and Wada 2000
602e2-c22	16.2	granulite	calcite	Satish-Kumar and Wada 2000
602e2-c3	16.27	granulite	calcite	Satish-Kumar and Wada 2000
China, Sulu Oroger				
02SD06	12.86	amphibolite	calcite	Tang et al. 2006

Oxygen isotope ratios for high-grade marbles used in Fig. 5

Location/ Sample	$\delta^{18}\mathbf{O}$	MM facies	material	Reference
02SD07	18.92	amphibolite	calcite	Tang et al. 2006
02SD08	13.13	amphibolite	calcite	Tang et al. 2006
04SD07	19.32	amphibolite	calcite	Tang et al. 2006
04SD11	17.24	amphibolite	calcite	Tang et al. 2006
02SD16	20.03	amphibolite	calcite	Tang et al. 2006
02SSD17	23.82	amphibolite	calcite	Tang et al. 2006
China, Sulu and Dab	ie Shan	Orogen		
95-QL-3B	-2.95	amph-gran	calcite	Rumble et al. 2000
SL91-8	24.74	amph-gran	calcite	Rumble et al. 2000
SL91-8A	23.68	amph-gran	calcite	Rumble et al. 2000
SL91-8B	22.66	amph-gran	calcite	Rumble et al. 2000
SL91-8I	23.58	amph-gran	calcite	Rumble et al. 2000
SL91-9E	24.54	amph-gran	calcite	Rumble et al. 2000
SL92-9A	23.81	amph-gran	calcite	Rumble et al. 2000
SL92-9D	21.07	amph-gran	calcite	Rumble et al. 2000
SL92-9J	20.56	amph-gran	calcite	Rumble et al. 2000
SL95-9B	22.79	amph-gran	calcite	Rumble et al. 2000
94-7A	15.09	amph-gran	calcite	Rumble et al. 2000
94-7B	22.26	amph-gran	calcite	Rumble et al. 2000
94-DB-08E	19.06	amph-gran	calcite	Rumble et al. 2000
95-16B	20.39	amph-gran	calcite	Rumble et al. 2000
95-16C	18.09	amph-gran	calcite	Rumble et al. 2000
CP-7	19	amph-gran	calcite	Rumble et al. 2000
MHM-17	7.84	amph-gran	calcite	Rumble et al. 2000
MHM-19	8.73	amph-gran	calcite	Rumble et al. 2000
94-DB-57A	11.35	amph-gran	calcite	Rumble et al. 2000
94-DB-57C	9.24	amph-gran	calcite	Rumble et al. 2000
SH-05	11.49	amph-gran	calcite	Rumble et al. 2000
SH06	11.4	amph-gran	calcite	Rumble et al. 2000
SH07	12.5	amph-gran	calcite	Rumble et al. 2000
SH08	11.42	amph-gran	calcite	Rumble et al. 2000
92H17	17.04	amph-gran	calcite	Rumble et al. 2000
92HW20	12.41	amph-gran	calcite	Rumble et al. 2000
94-DB-	12.03	amph-gran	calcite	Rumble et al. 2000
95-015	12.78	amph-gran	calcite	Rumble et al. 2000
96201	18.27	amph-gran	calcite	Rumble et al. 2000
96202	17.95	amph-gran	calcite	Rumble et al. 2000
96204	14.47	amph-gran	calcite	Rumble et al. 2000
96205	15.48	amph-gran	calcite	Rumble et al. 2000
96301	13.58	amph-gran	calcite	Rumble et al. 2000
96302	15.07	amph-gran	calcite	Rumble et al. 2000
96303	16.94	amph-gran	calcite	Rumble et al. 2000
96304	12.47	amph-gran	calcite	Rumble et al. 2000
96305	16.54	amph-gran	calcite	Rumble et al. 2000
96307	11.61	amph-gran	calcite	Rumble et al. 2000
96308	13.33	amph-gran	calcite	Rumble et al. 2000
96309	14.44	amph-gran	calcite	Rumble et al. 2000
96401	14.6	amph-gran	calcite	Rumble et al. 2000

-

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
96402	14.98	amph-gran	calcite	Rumble et al. 2000
96403	14.56	amph-gran	calcite	Rumble et al. 2000
96404	16.82	amph-gran	calcite	Rumble et al. 2000
96405	17.3	amph-gran	calcite	Rumble et al. 2000
96406	12.03	amph-gran	calcite	Rumble et al. 2000
96502	11.47	amph-gran	calcite	Rumble et al. 2000
96504	12.16	amph-gran	calcite	Rumble et al. 2000
96509A	12.74	amph-gran	calcite	Rumble et al. 2000
96509B	12.64	amph-gran	calcite	Rumble et al. 2000
96509C	12.78	amph-gran	calcite	Rumble et al. 2000
96509D	12.71	amph-gran	calcite	Rumble et al. 2000
96510A	11.59	amph-gran	calcite	Rumble et al. 2000
96510B	11.89	amph-gran	calcite	Rumble et al. 2000
96510C	11.67	amph-gran	calcite	Rumble et al. 2000
96510D	11.67	amph-gran	calcite	Rumble et al. 2000
96510F	11.74	amph-gran	calcite	Rumble et al. 2000
96510G	11.81	amph-gran	calcite	Rumble et al. 2000
96601	12.33	amph-gran	calcite	Rumble et al. 2000
96602	18.36	amph-gran	calcite	Rumble et al. 2000
96701	14.15	amph-gran	calcite	Rumble et al. 2000
96702	14.09	amph-gran	calcite	Rumble et al. 2000
96705	12.76	amph-gran	calcite	Rumble et al. 2000
96706	13.86	amph-gran	calcite	Rumble et al. 2000
96708	13.46	amph-gran	calcite	Rumble et al. 2000
96710	16.31	amph-gran	calcite	Rumble et al. 2000
96711	17.51	amph-gran	calcite	Rumble et al. 2000
96712	20.08	amph-gran	calcite	Rumble et al. 2000
96713	17.14	amph-gran	calcite	Rumble et al. 2000
93-46B	8.78	amph-gran	calcite	Rumble et al. 2000
94-DB-	14.68	amph-gran	calcite	Rumble et al. 2000
92-8D	6.61	amph-gran	calcite	Rumble et al. 2000
92-D2	22.86	amph-gran	calcite	Rumble et al. 2000
XH05	11.13	amph-gran	calcite	Rumble et al. 2000
XH09	9.31	amph-gran	calcite	Rumble et al. 2000
94-18B	11.27	amph-gran	calcite	Rumble et al. 2000
94-18C	11.5	amph-gran	calcite	Rumble et al. 2000
94-18D	10.99	amph-gran	calcite	Rumble et al. 2000
94-52A	20.53	amph-gran	calcite	Rumble et al. 2000
94-52B	22.81	amph-gran	calcite	Rumble et al. 2000
94-52E	19.4	amph-gran	calcite	Rumble et al. 2000
94-DB-53B	15.95	amph-gran	calcite	Rumble et al. 2000
94-53C	15.1	amph-gran	calcite	Rumble et al. 2000
MW-45	17.93	amph-gran	calcite	Rumble et al. 2000
92-W-50	13.34	amph-gran	calcite	Rumble et al. 2000
Greece- Naxos				
111	18.48	amphibolite	calcite	Bickle and Baker 1990
112	18.66	amphibolite	calcite	Bickle and Baker 1990
114	18.62	amphibolite	calcite	Bickle and Baker 1990

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
115	18.75	amphibolite	calcite	Bickle and Baker 1990
13	20.08	amphibolite	calcite	Bickle and Baker 1990
3	20.74	amphibolite	calcite	Bickle and Baker 1990
4	22.42	amphibolite	calcite	Bickle and Baker 1990
5	23.36	amphibolite	calcite	Bickle and Baker 1990
6	23.05	amphibolite	calcite	Bickle and Baker 1990
7	23.85	amphibolite	calcite	Bickle and Baker 1990
12	24.59	amphibolite	calcite	Bickle and Baker 1990
8	24.99	amphibolite	calcite	Bickle and Baker 1990
9	24.39	amphibolite	calcite	Bickle and Baker 1990
10	24.06	amphibolite	calcite	Bickle and Baker 1990
14	24.02	amphibolite	calcite	Bickle and Baker 1990
1	17.03	amphibolite	calcite	Bickle and Baker 1990
62	16.29	amphibolite	calcite	Bickle and Baker 1990
62	16.1	amphibolite	calcite	Bickle and Baker 1990
2	17.5	amphibolite	calcite	Bickle and Baker 1990
4	19.13	amphibolite	calcite	Bickle and Baker 1990
5	20.11	amphibolite	calcite	Bickle and Baker 1990
6	20.72	amphibolite	calcite	Bickle and Baker 1990
7	24.18	amphibolite	calcite	Bickle and Baker 1990
8	26.59	amphibolite	calcite	Bickle and Baker 1990
63	26.74	amphibolite	calcite	Bickle and Baker 1990
9	26.88	amphibolite	calcite	Bickle and Baker 1990
India, Kerala Khond	alite bel			
SK1-27C	12.4	granulite	calcite	Satish-Kumar et al. 2001
SKI-27B	11.9	granulite	calcite	Satish-Kumar et al. 2001
SK1-27a	12.2	granulite	calcite	Satish-Kumar et al. 2001
SK1-10a	12	granulite	calcite	Satish-Kumar et al. 2001
SK1-10Ba	12.1	granulite	calcite	Satish-Kumar et al. 2001
SK1-10Bb	12.3	granulite	calcite	Satish-Kumar et al. 2001
N/CS/a	11	granulite	calcite	Satish-Kumar et al. 2001
N/CS/b	10.9	granulite	calcite	Satish-Kumar et al. 2001
N/CS/c	10.9	granulite	calcite	Satish-Kumar et al. 2001
N/C32F/a	11.5	granulite	calcite	Satish-Kumar et al. 2001
N/32F3b	10.9	granulite	calcite	Satish-Kumar et al. 2001
SK 3-1a1	13	granulite	calcite	Satish-Kumar et al. 2001
SK 3-1a2	13.1	granulite	calcite	Satish-Kumar et al. 2001
SK 3-1a3	13.4	granulite	calcite	Satish-Kumar et al. 2001
SK 3-1a4	14.1	granulite	calcite	Satish-Kumar et al. 2001
SK 3-1a5	13.3	granulite	calcite	Satish-Kumar et al. 2001
KOR/CS/a	14.7	granulite	calcite	Satish-Kumar et al. 2001
KOR/CS/b	14.1	granulite	calcite	Satish-Kumar et al. 2001
KOR/CS/c	13.6	granulite	calcite	Satish-Kumar et al. 2001
SK20-3b1	22	granulite	calcite	Satish-Kumar et al. 2001
SK20-3b2	21.9	granulite	calcite	Satish-Kumar et al. 2001
SK7-6C	20.9	granulite	calcite	Satish-Kumar et al. 2001
SK7-6D	20.7	granulite	calcite	Satish-Kumar et al. 2001
SK21-2aC	20.4	granulite	calcite	Satish-Kumar et al. 2001

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
SK21-2aD	20.3	granulite	calcite	Satish-Kumar et al. 2001
SK20-3bA	21	granulite	calcite	Satish-Kumar et al. 2001
SK20-3bD	22	granulite	calcite	Satish-Kumar et al. 2001
SK20-1aA	21.4	granulite	calcite	Satish-Kumar et al. 2001
SK20-1aB	21.7	granulite	calcite	Satish-Kumar et al. 2001
SK20-5C1	20.9	granulite	calcite	Satish-Kumar et al. 2001
SK20-5C2	21.1	granulite	calcite	Satish-Kumar et al. 2001
SK7-6J	21	granulite	calcite	Satish-Kumar et al. 2001
SK7-6K	20	granulite	calcite	Satish-Kumar et al. 2001
Norway- Lofoten-Veste	eralen			
A-1	21.7	granulite	calcite	Baker and Fallick 1988
A-2	11.2	granulite	calcite	Baker and Fallick 1988
A-3	17.4	granulite	calcite	Baker and Fallick 1988
A-4	20.6	granulite	calcite	Baker and Fallick 1988
A-5	23.5	granulite	calcite	Baker and Fallick 1988
A-6	23.3	granulite	calcite	Baker and Fallick 1988
A-7	20.5	granulite	calcite	Baker and Fallick 1988
A-8	24.2	granulite	calcite	Baker and Fallick 1988
B,C-1	10.1	granulite	calcite	Baker and Fallick 1988
B,C-2	12.3	granulite	calcite	Baker and Fallick 1988
B,C-3	12.3	granulite	calcite	Baker and Fallick 1988
D-1	13.7	granulite	calcite	Baker and Fallick 1988
D-2	14.3	granulite	calcite	Baker and Fallick 1988
D-3	13.1	granulite	calcite	Baker and Fallick 1988
D-4	13.7	granulite	calcite	Baker and Fallick 1988
D-5	15.8	granulite	calcite	Baker and Fallick 1988
D-6	11.9	granulite	calcite	Baker and Fallick 1988
D-7	15.3	granulite	calcite	Baker and Fallick 1988
E1	13.7	granulite	calcite	Baker and Fallick 1988
E2	15.6	granulite	calcite	Baker and Fallick 1988
Fl	16.7	granulite	calcite	Baker and Fallick 1988
F2	14.8	granulite	calcite	Baker and Fallick 1988
G-1	16.7	granulite	calcite	Baker and Fallick 1988
G-2	17	granulite	calcite	Baker and Fallick 1988
G-3	17.2	granulite	calcite	Baker and Fallick 1988
H-I	23.4	granulite	calcite	Baker and Fallick 1988
H-2	21.3	granulite	calcite	Baker and Fallick 1988
H-3	19.2	granulite	calcite	Baker and Fallick 1988
H-4	19.7	granulite	calcite	Baker and Fallick 1988
H-5	11./	granulite	calcite	Baker and Fallick 1988
H-6	14.6	granulite	calcite	Baker and Fallick 1988
H-/	18.9	granulite	calcite	Baker and Fallick 1988
H-8	17.9	granulite	calcite	Baker and Fallick 1988
I-1 I-2	14.1	granulite	calcite	Baker and Fallick 1988
1-2 1-2	12.4	granulite	calcite	Baker and Fallick 1988
I-3 I 1	12.1	granulite	calcite	Baker and Fallick 1988
J-1	15.9	granuiite	calcite	Baker and Fallick 1988
J-2	17.6	granulite	calcite	Baker and Fallick 1988

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
J-3	20	granulite	calcite	Baker and Fallick 1988
J-4	16.1	granulite	calcite	Baker and Fallick 1988
J-5	20.1	granulite	calcite	Baker and Fallick 1988
J-6	19.4	granulite	calcite	Baker and Fallick 1988
K-1	15.9	granulite	calcite	Baker and Fallick 1988
K-2	17.6	granulite	calcite	Baker and Fallick 1988
K-3	15.8	granulite	calcite	Baker and Fallick 1988
K-4	17.8	granulite	calcite	Baker and Fallick 1988
L-1	17.5	granulite	calcite	Baker and Fallick 1988
L-2	17	granulite	calcite	Baker and Fallick 1988
L-3	16.9	granulite	calcite	Baker and Fallick 1988
L-4	14.1	granulite	calcite	Baker and Fallick 1988
L-5	22.1	granulite	calcite	Baker and Fallick 1988
L-6	17.4	granulite	calcite	Baker and Fallick 1988
M-1	14.6	granulite	calcite	Baker and Fallick 1988
M-2	14.7	granulite	calcite	Baker and Fallick 1988
M-3	14.5	granulite	calcite	Baker and Fallick 1988
M-4	16.5	granulite	calcite	Baker and Fallick 1988
M-5	14.5	granulite	calcite	Baker and Fallick 1988
M-6	15.5	granulite	calcite	Baker and Fallick 1988
M-7	15.4	granulite	calcite	Baker and Fallick 1988
M-8	15.7	granulite	calcite	Baker and Fallick 1988
M-9	12.4	granulite	calcite	Baker and Fallick 1988
M-10	13.6	granulite	calcite	Baker and Fallick 1988
M-11	14.7	granulite	calcite	Baker and Fallick 1988
M-12	9.9	granulite	calcite	Baker and Fallick 1988
M-13	14.7	granulite	calcite	Baker and Fallick 1988
M-14	14.4	granulite	calcite	Baker and Fallick 1988
M-15	17.9	granulite	calcite	Baker and Fallick 1988
M-16	13	granulite	calcite	Baker and Fallick 1988
Norway- W. Gneiss Re	gion			
E11m	17.9	amphibolite	calcite	Agrinier et al. 1985
C300m	6.7	amphibolite	calcite	Agrinier et al. 1985
C300c	6.8	amphibolite	calcite	Agrinier et al. 1985
USA- ADIRONDACKS	5	11		
AUS77-1	13.3	granulite	calcite	Valley and O'Neil 1984
AUS78-5	13.7	granulite	calcite	Valley and O'Neil 1984
AUS/8-10	22.6	granulite	calcite	Valley and O'Neil 1984
BL2-2	21.9	granulite	calcite	Valley and O'Neil 1984
FH2-2	23.8	granulite	calcite	Valley and O'Neil 1984
ГН4-1 БИ5-2	10.9	granulite	calcite	valley and UNell 1984
FHD-2	18.6	granulite	calcite	valley and UNeil 1984
ГН0-2 СОУ24_4	17.2	granulite	calcite	Valley and UNell 1984
GUV24-4	26.4	granulite	calcite	Valley and O'Neil 1984
GUV34	25.6	granulite	calcite	Valley and UNell 1984
GUV 39 COV50 2	20.8	granulite	calcite	Valley and O'Neil 1984
GUV50-2	21.0	granulite	calcite	valley and UNell 1984
GOV33	26.1	granulite	calcite	valley and O'Nell 1984

Location/ Sample	$\delta^{18}\mathbf{O}$	MM facies	material	Reference
GOV67	24.7	granulite	calcite	Valley and O'Neil 1984
GOV77-300-3	25.5	granulite	calcite	Valley and O'Neil 1984
GOV77-307-7	20.4	granulite	calcite	Valley and O'Neil 1984
GOV77-307-9	18.8	granulite	calcite	Valley and O'Neil 1984
GOV377-311-5	19	granulite	calcite	Valley and O'Neil 1984
GOV78-10	23.3	granulite	calcite	Valley and O'Neil 1984
GOV78-17	27.2	granulite	calcite	Valley and O'Neil 1984
GOV78-22	27	granulite	calcite	Valley and O'Neil 1984
GOV78-23	17.3	granulite	calcite	Valley and O'Neil 1984
GOV100	19.9	granulite	calcite	Valley and O'Neil 1984
GOV104	22.5	granulite	calcite	Valley and O'Neil 1984
IL2-1	13.6	granulite	calcite	Valley and O'Neil 1984
IL2-6	13.5	granulite	calcite	Valley and O'Neil 1984
IL2-7	13.8	granulite	calcite	Valley and O'Neil 1984
IL10-1	20.2	granulite	calcite	Valley and O'Neil 1984
IL11	17	granulite	calcite	Valley and O'Neil 1984
IL13	16.8	granulite	calcite	Valley and O'Neil 1984
IL14	17.3	granulite	calcite	Valley and O'Neil 1984
IL20	12.8	granulite	calcite	Valley and O'Neil 1984
IL25	20.9	granulite	calcite	Valley and O'Neil 1984
IL27	22.7	granulite	calcite	Valley and O'Neil 1984
LP1-1	14.6	granulite	calcite	Valley and O'Neil 1984
LP8-2	18.3	granulite	calcite	Valley and O'Neil 1984
LP77-201	26.1	granulite	calcite	Valley and O'Neil 1984
LP77-210-11	22.4	granulite	calcite	Valley and O'Neil 1984
LP77-210-12	22.3	granulite	calcite	Valley and O'Neil 1984
LP77-210-13	21.5	granulite	calcite	Valley and O'Neil 1984
LP77-210-15	25.5	granulite	calcite	Valley and O'Neil 1984
LP77-216-1	19.8	granulite	calcite	Valley and O'Neil 1984
LP200	23.3	granulite	calcite	Valley and O'Neil 1984
LP204-1	18.9	granulite	calcite	Valley and O'Neil 1984
NC7-76	22.7	granulite	calcite	Valley and O'Neil 1984
NC10	17.9	granulite	calcite	Valley and O'Neil 1984
NC12	22.7	granulite	calcite	Valley and O'Neil 1984
NC13-76	21.1	granulite	calcite	Valley and O'Neil 1984
NC78-3	21.8	granulite	calcite	Valley and O'Neil 1984
NC78-5	23.3	granulite	calcite	Valley and O'Neil 1984
NC78-6	22.2	granulite	calcite	Valley and O'Neil 1984
OF3-1	13.3	granulite	calcite	Valley and O'Neil 1984
OF202	12.3	granulite	calcite	Valley and O'Neil 1984
OF203-1	13.9	granulite	calcite	Valley and O'Neil 1984
SL9-1	17.8	granulite	calcite	Valley and O'Neil 1984
SP2-2	16.8	granulite	calcite	Valley and O'Neil 1984
SP2-3	16.8	granulite	calcite	Valley and O'Neil 1984
SP200	22.8	granulite	calcite	Valley and O'Neil 1984
TP9-5	22.4	granulite	calcite	Valley and O'Neil 1984
TP10-1	24.3	granulite	calcite	Valley and O'Neil 1984
TP13-1	12.3	granulite	calcite	Valley and O'Neil 1984

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
TP16	14.3	granulite	calcite	Valley and O'Neil 1984
TP20-1	19.4	granulite	calcite	Valley and O'Neil 1984
V-3-11-355	17.1	granulite	calcite	Valley and O'Neil 1984
V-3-11-434	16.8	granulite	calcite	Valley and O'Neil 1984
V-3-11-461	20.3	granulite	calcite	Valley and O'Neil 1984
V-3-11-514	18.1	granulite	calcite	Valley and O'Neil 1984
W2-3b	21.9	granulite	calcite	Valley and O'Neil 1984
W3-1	18.2	granulite	calcite	Valley and O'Neil 1984
W78-3	23.7	granulite	calcite	Valley and O'Neil 1984
USA- ADIRONDACKS		-		-
C87GV12	16.9	amphibolite	calcite	Cartwright and Valley 1991
C87GV13	18.4	amphibolite	calcite	Cartwright and Valley 1991
C87GV17	17	amphibolite	calcite	Cartwright and Valley 1991
C87GV18	19.7	amphibolite	calcite	Cartwright and Valley 1991
C87GV19	22.7	amphibolite	calcite	Cartwright and Valley 1991
C87GV20	23	amphibolite	calcite	Cartwright and Valley 1991
C87GV23	22.6	amphibolite	calcite	Cartwright and Valley 1991
C87HA71	18.3	granulite	calcite	Cartwright and Valley 1991
C87HA72	16.6	granulite	calcite	Cartwright and Valley 1991
C87HA73	20.5	granulite	calcite	Cartwright and Valley 1991
C87HA74	21.9	granulite	calcite	Cartwright and Valley 1991
C87HA76	20.6	granulite	calcite	Cartwright and Valley 1991
C87HA78	19	granulite	calcite	Cartwright and Valley 1991
C87HA80	21.9	granulite	calcite	Cartwright and Valley 1991
C87HA81	21.4	granulite	calcite	Cartwright and Valley 1991
C87HA83	23.7	granulite	calcite	Cartwright and Valley 1991
C87HA85	22.7	granulite	calcite	Cartwright and Valley 1991
Ontario- GRENVILLE		0		
145-3	27.8	amphibolite	calcite	Shieh et al. 1976
198-4	26.9	amphibolite	calcite	Shieh et al. 1976
198-5	26.4	amphibolite	calcite	Shieh et al. 1976
110-3	25.2	amphibolite	calcite	Shieh et al. 1976
86	22.6	amphibolite	calcite	Shieh et al. 1976
130	19.6	amphibolite	calcite	Shieh et al. 1976
199	19.3	amphibolite	calcite	Shieh et al. 1976
233	23.8	amphibolite	calcite	Shieh et al. 1976
USA and Canada- Gr	enville	•		
FN2	22.4	granulite	calcite	Valley and O'Neil 1981
HBU79-1-1	16.8	granulite	calcite	Valley and O'Neil 1981
HBU79-1-2	16.6	granulite	calcite	Valley and O'Neil 1981
MR7	24.8	amphibolite	calcite	Valley and O'Neil 1981
PS79-1-1	16.6	amphibolite	calcite	Valley and O'Neil 1981
Q100	23.6	amphibolite	calcite	Valley and O'Neil 1981
Q120	20.3	amphibolite	calcite	Valley and O'Neil 1981
USA- ADIRONDACKS		-		
LL-1	25.8	amph/gran	calcite	Whelan et al. 1984
UL-4	27	amph/gran	calcite	Whelan et al. 1984
UL-13	24.8	amph/gran	calcite	Whelan et al. 1984

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
HT-6	25.2	amph/gran	calcite	Whelan et al. 1984
HT-10	25.4	amph/gran	calcite	Whelan et al. 1984
USA, Scotland, Italy				
KP3E	19.57	595 C	calcite	Ferry et al. 2010
R3L	18.37	595 C	calcite	Ferry et al. 2010
B4Q	10.12	700 C	calcite	Ferry et al. 2010
KPIL	11.01	595 C	calcite	Ferry et al. 2010
B4L	21.4	680 C	calcite	Ferry et al. 2010
Turkey				
OB-1	28.76	amph.	calcite	Orhan et al. 2010
OB-4a	29.83	amph.	calcite	Orhan et al. 2010
OA-2-10	28.61	amph.	calcite	Orhan et al. 2010
KA-16	27.66	amph.	calcite	Orhan et al. 2010
NB-9	28.53	amph.	calcite	Orhan et al. 2010
Mozambique		•		
Mvm040	17.9	amphibolite	WR	Melezhik et al. 2008
Mvm041	18.9	amphibolite	WR	Melezhik et al. 2008
Mvm042	20.3	amphibolite	WR	Melezhik et al. 2008
Mvm043	16.8	amphibolite	WR	Melezhik et al. 2008
Mvm044	14.6	amphibolite	WR	Melezhik et al. 2008
Mvm045	15.1	amphibolite	WR	Melezhik et al. 2008
BB037	16.6	amphibolite	WR	Melezhik et al. 2008
Mvm052	19.3	amphibolite	WR	Melezhik et al. 2008
mvm051	22.7	amphibolite	WR	Melezhik et al. 2008
mvm050	21.7	amphibolite	WR	Melezhik et al. 2008
mvm053	22.4	amphibolite	WR	Melezhik et al. 2008
mvm054	22	amphibolite	WR	Melezhik et al. 2008
mvm056	22.7	amphibolite	WR	Melezhik et al. 2008
BB031	22	amphibolite	WR	Melezhik et al. 2008
Mvm65	22.2	amphibolite	WR	Melezhik et al. 2008
Mvm66	22.6	amphibolite	WR	Melezhik et al. 2008
Mvm75	21.4	amphibolite	WR	Melezhik et al. 2008
Mvm061	19.5	amphibolite	WR	Melezhik et al. 2008
Mvm064	22.6	amphibolite	WR	Melezhik et al. 2008
Mvm067	22	amphibolite	WR	Melezhik et al. 2008
Mvm070	22.2	amphibolite	WR	Melezhik et al. 2008
Mvm071	21.8	amphibolite	WR	Melezhik et al. 2008
Mvm072	21.2	amphibolite	WR	Melezhik et al. 2008
Mvm081	21.7	amphibolite	WR	Melezhik et al. 2008
BB022	16.7	amphibolite	WR	Melezhik et al. 2008
TBM143A	24.7	amphibolite	WR	Melezhik et al. 2008
IH04.027	15.1	amphibolite	WR	Melezhik et al. 2008
JS285	22	amphibolite	WR	Melezhik et al. 2008
JS299	19	amphibolite	WR	Melezhik et al. 2008
TBM-126	19	amphibolite	WR	Melezhik et al. 2008
JS200	26.1	amphibolite	WR	Melezhik et al. 2008
JS303	28.4	amphibolite	WR	Melezhik et al. 2008
	20. -	umpmoonte		Merelink et ul. 2000

TBM-097 19.6 amphibolite WR Melezhik et al. 2008 TBM-099 18.6 amphibolite WR Melezhik et al. 2008 TBM-090 18.6 amphibolite WR Melezhik et al. 2008 TBM-090 18.6 amphibolite WR Melezhik et al. 2008 AS04-26 20.1 amphibolite WR Melezhik et al. 2005 Fr15a 24.9 amphibolite WR Melezhik et al. 2005 Fr40 21 amphibolite WR Melezhik et al. 2005 Fr41 20.8 amphibolite WR Melezhik et al. 2005 Fr42 20.8 amphibolite WR Melezhik et al. 2005 Fr33a 21.9 amphibolite WR Melezhik et al. 2005 Fr34a 24.9 amphibolite WR Melezhik et al. 2005 Fr37a 24.9 amphibolite WR Melezhik et al. 2005 Fr38 19 amphibolite WR Melezhik et al. 2005 Fr17 27.1 amphibolite WR Melezhik et al. 2005 Fr18 26.5 <td< th=""><th>Location/ Sample</th><th>$\delta^{18}\mathbf{O}$</th><th>MM facies</th><th>material</th><th>Reference</th></td<>	Location/ Sample	$\delta^{18}\mathbf{O}$	MM facies	material	Reference
TBM-098 19.9 amphibolite WR Melezhik et al. 2008 TBM-105 20.8 amphibolite WR Melezhik et al. 2008 AS04-26 20.1 amphibolite WR Melezhik et al. 2008 Norwegian Coledonids: WR Melezhik et al. 2005 Fil3 18.3 amphibolite WR Melezhik et al. 2005 Fr13 18.3 amphibolite WR Melezhik et al. 2005 Fir40 21 amphibolite WR Melezhik et al. 2005 Fr42 20.8 amphibolite WR Melezhik et al. 2005 Fir40 21 amphibolite WR Melezhik et al. 2005 Fir33a 21.9 amphibolite WR Melezhik et al. 2005 Fir37a 24.9 amphibolite WR Melezhik et al. 2005 Fir37a 24.9 amphibolite WR Melezhik et al. 2005 Fir37a 24.9 amphibolite WR Melezhik et al. 2005 Fir38 19 amphibolite WR Melezhik et al. 2005 Fir38 14.2 amphibolite WR Melezhik et al. 2005 Fir38 19 amphibolite WR Melezhik et al. 2005 <td< td=""><td>TBM-097</td><td>19.6</td><td>amphibolite</td><td>WR</td><td>Melezhik et al. 2008</td></td<>	TBM-097	19.6	amphibolite	WR	Melezhik et al. 2008
TBM-105 18.6 amphibolite WR Melezhik et al. 2008 AS04-26 20.1 amphibolite WR Melezhik et al. 2008 Norwegian Coledonides WR Melezhik et al. 2005 Fr15a 18.3 amphibolite WR Melezhik et al. 2005 Fr35a 2.2 amphibolite WR Melezhik et al. 2005 Fr40 21 amphibolite WR Melezhik et al. 2005 Fr412 20.8 amphibolite WR Melezhik et al. 2005 Fr43a 21.9 amphibolite WR Melezhik et al. 2005 Fr33a 21.9 amphibolite WR Melezhik et al. 2005 Fr35a 24.9 amphibolite WR Melezhik et al. 2005 Fr36a 17.3 amphibolite WR Melezhik et al. 2005 Fr37a 24.9 amphibolite WR Melezhik et al. 2005 Fr17a 27.1 amphibolite WR Melezhik et al. 2005 Fr18 26.5 amphibolite WR Melezhik et al. 2005 Fr19 30.2	TBM-098	19.9	amphibolite	WR	Melezhik et al. 2008
TBM-105 20.8 amphibolite WR Melezhik et al. 2008 AS04-26 20.1 amphibolite WR Melezhik et al. 2008 Pr13 18.3 amphibolite WR Melezhik et al. 2005 Fr15a 24.9 amphibolite WR Melezhik et al. 2005 Fr40 21 amphibolite WR Melezhik et al. 2005 Fr42 20.8 amphibolite WR Melezhik et al. 2005 Fr33a 21.9 amphibolite WR Melezhik et al. 2005 Fr34a 24.9 amphibolite WR Melezhik et al. 2005 Fr37a 24.9 amphibolite WR Melezhik et al. 2005 Fr38a 19 amphibolite WR Melezhik et al. 2005 Fr17 27.1 amphibolite WR Melezhik et al. 2005 Fr18 26.5 amphibolite WR Melezhik et al. 2005 Fr19 30.2 amphibolite WR Melezhik et al. 2005 Fr22 25.5 amphibolite WR Melezhik et al. 2005 Fr23 26.5 amphibo	TBM-099	18.6	amphibolite	WR	Melezhik et al. 2008
AS04-2620.1amphiboliteWRMelezhik et al. 2008Norwegian ColedonidesFr1318.3amphiboliteWRMelezhik et al. 2005Fr15a24.9amphiboliteWRMelezhik et al. 2005Fr35a22amphiboliteWRMelezhik et al. 2005Fr4021amphiboliteWRMelezhik et al. 2005Fr4120.8amphiboliteWRMelezhik et al. 2005Fr4220.8amphiboliteWRMelezhik et al. 2005Fr33a21.9amphiboliteWRMelezhik et al. 2005Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr222.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr222.5amphiboliteWRMelezhik et al. 2005Fr2326.5amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr25 </td <td>TBM-105</td> <td>20.8</td> <td>amphibolite</td> <td>WR</td> <td>Melezhik et al. 2008</td>	TBM-105	20.8	amphibolite	WR	Melezhik et al. 2008
Norwegian Coledonides Fr13 18.3 amphibolite WR Melezhik et al. 2005 Fr15a 2.2 amphibolite WR Melezhik et al. 2005 Fr40 21 amphibolite WR Melezhik et al. 2005 Fr416 2.6.5 amphibolite WR Melezhik et al. 2005 Fr33a 21.9 amphibolite WR Melezhik et al. 2005 Fr34a 24.9 amphibolite WR Melezhik et al. 2005 Fr35a 1.9 amphibolite WR Melezhik et al. 2005 Fr37a 24.9 amphibolite WR Melezhik et al. 2005 Fr38 19 amphibolite WR Melezhik et al. 2005 Fr38 19 amphibolite WR Melezhik et al. 2005 Fr18 26.5 amphibolite WR Melezhik et al. 2005 Fr18 26.5 amphibolite WR Melezhik et al. 2005 Fr19 30.2 amphibolite WR Melezhik et al. 2005 Fr2	AS04-26	20.1	amphibolite	WR	Melezhik et al. 2008
Fr1318.3amphiboliteWRMelezhik et al. 2005Fr15a24.9amphiboliteWRMelezhik et al. 2005Fr35a22amphiboliteWRMelezhik et al. 2005Fr4021amphiboliteWRMelezhik et al. 2005Fr4120.8amphiboliteWRMelezhik et al. 2005Fr33a21.9amphiboliteWRMelezhik et al. 2005Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr36a17.3amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2326.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr2726.6amphibolite <td>Norwegian Coledonide</td> <td>s</td> <td></td> <td></td> <td></td>	Norwegian Coledonide	s			
Fr15a24.9amphiboliteWRMelezhik et al. 2005Fr4021amphiboliteWRMelezhik et al. 2005Fr4220.8amphiboliteWRMelezhik et al. 2005Fr16a26.5amphiboliteWRMelezhik et al. 2005Fr33a21.9amphiboliteWRMelezhik et al. 2005Fr36a17.3amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3924.1amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2326.5amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2121.4amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr2226amphiboliteWRMelezhik et al. 2005Fr2326.6amphibolite <td>Fr13</td> <td>18.3</td> <td>amphibolite</td> <td>WR</td> <td>Melezhik et al. 2005</td>	Fr13	18.3	amphibolite	WR	Melezhik et al. 2005
Fr35a22amphiboliteWRMelezhik et al. 2005Fr4021amphiboliteWRMelezhik et al. 2005Fr416a26.5amphiboliteWRMelezhik et al. 2005Fr33a21.9amphiboliteWRMelezhik et al. 2005Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr38a19amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2326.5amphiboliteWRMelezhik et al. 2005Fr2424amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1221.6amphibolite <td< td=""><td>Fr15a</td><td>24.9</td><td>amphibolite</td><td>WR</td><td>Melezhik et al. 2005</td></td<>	Fr15a	24.9	amphibolite	WR	Melezhik et al. 2005
Fr4021amphiboliteWRMelezhik et al. 2005Fr4220.8amphiboliteWRMelezhik et al. 2005Fr16a26.5amphiboliteWRMelezhik et al. 2005Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3814.2amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2326.5amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr1717.4amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr1721.4amphiboliteWRMelezhik et al. 2005Fr1822.6amphiboliteWRMelezhik et al. 2005Fr2921.4amphibolite	Fr35a	22	amphibolite	WR	Melezhik et al. 2005
Fr4220.8amphiboliteWRMelezhik et al. 2005Fr16a26.5amphiboliteWRMelezhik et al. 2005Fr33a21.9amphiboliteWRMelezhik et al. 2005Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr35a17.3amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr2814.2amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2424.6amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1421.4amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboli	Fr40	21	amphibolite	WR	Melezhik et al. 2005
Fr16a26.5amphiboliteWRMelezhik et al. 2005Fr33a21.9amphiboliteWRMelezhik et al. 2005Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2326.5amphiboliteWRMelezhik et al. 2005Fr2426.6amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1221.4amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1221.4amphiboliteWRMelezhik et al. 2005Fr1221.6amphiboliteWRMelezhik et al. 2005Fr1221.6amphibolite<	Fr42	20.8	amphibolite	WR	Melezhik et al. 2005
Fr33a21.9amphiboliteWRMelezhik et al. 2005Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr36a17.3amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3924.1amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr222.5amphiboliteWRMelezhik et al. 2005Fr2426.6amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr1222.6amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr1222.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr29a21amphibol	Fr16a	26.5	amphibolite	WR	Melezhik et al. 2005
Fr34a24.9amphiboliteWRMelezhik et al. 2005Fr36a17.3amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3924.1amphiboliteWRMelezhik et al. 2005Fr2814.2amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2326.5amphiboliteWRMelezhik et al. 2005Fr2424.4amphiboliteWRMelezhik et al. 2005Fr2526.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1121.7amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr25a21.2amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr1121.7amphiboli	Fr33a	21.9	amphibolite	WR	Melezhik et al. 2005
Fr36a17.3amphiboliteWRMelezhik et al. 2005Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3924.1amphiboliteWRMelezhik et al. 2005Fr1814.2amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2326.5amphiboliteWRMelezhik et al. 2005Fr2424.4amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2521amphibolite<	Fr34a	24.9	amphibolite	WR	Melezhik et al. 2005
Fr37a24.9amphiboliteWRMelezhik et al. 2005Fr3819amphiboliteWRMelezhik et al. 2005Fr3924.1amphiboliteWRMelezhik et al. 2005Fr2814.2amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr1726.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1121.7amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1227.6amphiboliteWRMelezhik et al. 2005Fr1221.7amphiboliteWRMelezhik et al. 2005Fr1421.4amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2621.amphibolite <td>Fr36a</td> <td>17.3</td> <td>amphibolite</td> <td>WR</td> <td>Melezhik et al. 2005</td>	Fr36a	17.3	amphibolite	WR	Melezhik et al. 2005
Fr3819amphiboliteWRMelezhik et al. 2005Fr3924.1amphiboliteWRMelezhik et al. 2005Fr2814.2amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1226.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2526.6amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2526.6amphiboliteWRMelezhik et al. 2005Fr2621amphibolite	Fr37a	24.9	amphibolite	WR	Melezhik et al. 2005
Fr3924.1amphiboliteWRMelezhik et al. 2005Fr2814.2amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2426.6amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1222.6amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2421.4amphiboliteWRMelezhik et al. 2005Fr2422.6amphiboliteWRMelezhik et al. 2005Fr2526.3amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2526.6amphiboliteWRMelezhik et al. 2005Fr2621.2amphibolit	Fr38	19	amphibolite	WR	Melezhik et al. 2005
Fr2814.2amphiboliteWRMelezhik et al. 2005Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1121.7amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr29a21amphiboliteWRMelezhik et al. 2005Fr29a21amphiboliteWRMelezhik et al. 2005Fr2620amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboliteWRMelezhik et al. 2005Fr1121.7amphiboliteWRMelezhik et al. 2005Fr2821.2amphiboliteWRMelezhik et al. 2005Fr29a21amphibolite	Fr39	24.1	amphibolite	WR	Melezhik et al. 2005
Fr1727.1amphiboliteWRMelezhik et al. 2005Fr1826.5amphiboliteWRMelezhik et al. 2005Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2426.5amphiboliteWRMelezhik et al. 2005Fr2526.6amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr2226amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr25a21amphiboliteWRMelezhik et al. 2005Fr2021amphiboliteWRMelezhik et al. 2005Fr2122.6amphiboliteWRMelezhik et al. 2005Fr2221amphiboliteWRMelezhik et al. 2005Fr2321amphiboliteWRMelezhik et al. 2005Gata21.2amphibolite	Fr28	14.2	amphibolite	WR	Melezhik et al. 2005
Fr1826.5amphiboliteWRMelezhik et al. 2005Fr19 30.2 amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1121.7amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35620amphibolite	Fr17	27.1	amphibolite	WR	Melezhik et al. 2005
Fr1930.2amphiboliteWRMelezhik et al. 2005Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1222.6amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1222.6amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35620amphibolite <td>Fr18</td> <td>26.5</td> <td>amphibolite</td> <td>WR</td> <td>Melezhik et al. 2005</td>	Fr18	26.5	amphibolite	WR	Melezhik et al. 2005
Fr2028.5amphiboliteWRMelezhik et al. 2005Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr25a21amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35121.2amphiboliteWRMelezhik et al. 2005a35421.3amphibolit	Fr19	30.2	amphibolite	WR	Melezhik et al. 2005
Fr2126.4amphiboliteWRMelezhik et al. 2005Fr2225amphiboliteWRMelezhik et al. 2005Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr1021.4amphiboliteWRMelezhik et al. 2005Fr1121.4amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr2424.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr29a21amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr20	28.5	amphibolite	WR	Melezhik et al. 2005
Fr2225 $amphibolite$ WRMelezhik et al. 2005 $Fr25$ 26.5 $amphibolite$ WRMelezhik et al. 2005 $Fr26$ 24 $amphibolite$ WRMelezhik et al. 2005 $Fr27$ 26.6 $amphibolite$ WRMelezhik et al. 2005 $Fr11$ 21.4 $amphibolite$ WRMelezhik et al. 2005 $Fr10$ 21.7 $amphibolite$ WRMelezhik et al. 2005 $Fr11$ 23.9 $amphibolite$ WRMelezhik et al. 2005 $Fr12a$ 22.6 $amphibolite$ WRMelezhik et al. 2005 $Fr24$ 24.7 $amphibolite$ WRMelezhik et al. 2005 $Fr29a$ 21 $amphibolite$ WRMelezhik et al. 2005 $Fr56a$ 21.2 $amphibolite$ WRMelezhik et al. 2005MP-114a19.5 $amphibolite$ WRMelezhik et al. 2005 $a246$ 19.5 $amphibolite$ WRMelezhik et al. 2005 $a246$ 19.5 $amphibolite$ WRMelezhik et al. 2005 $a348$ 18.7 $amphibolite$ WRMelezhik et al. 2005 $a357$ 20.3 $amphibolite$ WRMelezhik et al. 2005 $a357$ 20.3 $amphibolite$ WRMelezhik et al. 2005 $a281$ 22.1 $amphibolite$ WRMelezhik et al. 2005 $a284$ 21.7 $amphibolite$ WRMelezhik et al. 2005	Fr21	26.4	amphibolite	WR	Melezhik et al. 2005
Fr2526.5amphiboliteWRMelezhik et al. 2005Fr2624amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboliteWRMelezhik et al. 2005Fr121.4amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr22	25	amphibolite	WR	Melezhik et al. 2005
Fr2624amphiboliteWRMelezhik et al. 2005Fr2726.6amphiboliteWRMelezhik et al. 2005Fr121.4amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr2421.amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr25	26.5	amphibolite	WR	Melezhik et al. 2005
Fr2726.6amphiboliteWRMelezhik et al. 2005Fr121.4amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005A24619.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr26	24	amphibolite	WR	Melezhik et al. 2005
Fr121.4amphiboliteWRMelezhik et al. 2005Fr1021.7amphiboliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Hef-821.5amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a35122.1amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr27	26.6	amphibolite	WR	Melezhik et al. 2005
Fr1021.7amphibiliteWRMelezhik et al. 2005Fr1123.9amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr29a21amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Hef-821.5amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr1	21.4	amphibolite	WR	Melezhik et al. 2005
Fr1123.9amphiboliteWRMelezhik et al. 2005Fr12a22.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr29a21amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Hef-821.5amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr10	21.7	amphibolite	WR	Melezhik et al. 2005
Fr1222.6amphiboliteWRMelezhik et al. 2005Fr2424.7amphiboliteWRMelezhik et al. 2005Fr29a21amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Hef-821.5amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr11	23.9	amphibolite	WR	Melezhik et al. 2005
Fr2424.7amphiboliteWRMelezhik et al. 2005Fr29a21amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Hef-821.5amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005a38122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr12a	22.6	amphibolite	WR	Melezhik et al. 2005
Fr29a21amphiboliteWRMelezhik et al. 2005Fr56a21.2amphiboliteWRMelezhik et al. 2005Hef-821.5amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr24	24.7	amphibolite	WR	Melezhik et al. 2005
Fr56a21.2amphiboliteWRMelezhik et al. 2005Hef-821.5amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr29a	21	amphibolite	WR	Melezhik et al. 2005
Hef-821.5amphiboliteWRMelezhik et al. 2005MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr56a	21.2	amphibolite	WR	Melezhik et al. 2005
MP-114a19.5amphiboliteWRMelezhik et al. 2005a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Hef-8	21.5	amphibolite	WR	Melezhik et al. 2005
a24619.5amphiboliteWRMelezhik et al. 2005a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	MP-114a	19.5	amphibolite	WR	Melezhik et al. 2005
a26720.1amphiboliteWRMelezhik et al. 2005a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	a246	19.5	amphibolite	WR	Melezhik et al. 2005
a34818.7amphiboliteWRMelezhik et al. 2005a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	a267	20.1	amphibolite	WR	Melezhik et al. 2005
a35620amphiboliteWRMelezhik et al. 2005a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	a348	187	amphibolite	WR	Melezhik et al. 2005
a35720.3amphiboliteWRMelezhik et al. 2005Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	a356	20	amphibolite	WR	Melezhik et al. 2005
Fr7421.2amphiboliteWRMelezhik et al. 2005a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	a357	203	amphibolite	WR	Melezhik et al. 2005
a28122.1amphiboliteWRMelezhik et al. 2005a28421.7amphiboliteWRMelezhik et al. 2005	Fr74	21.2	amphibolite	WR	Melezhik et al. 2005
a284 21.7 amphibolite WR Melezhik et al. 2005	a281	22.1	amphibolite	WR	Melezhik et al. 2005
	a284	21.1	amphibolite	WR	Melezhik et al. 2005
a290 24.7 amphibolite WR Melezhik et al 2005	a290	21.7	amphibolite	WR	Melezhik et al. 2005
a306 23.2 amphibolite WR Melezhik et al. 2005	a306	27.7	amphibolite	WR	Melezhik et al. 2005
a307 24.8 amphibolite WR Melezhik et al. 2005	a307	23.2 74 8	amphibolite	WR	Melezhik et al. 2005

-

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
a385	23	amphibolite	WR	Melezhik et al. 2005
a386	23.4	amphibolite	WR	Melezhik et al. 2005
a285	21.8	amphibolite	WR	Melezhik et al. 2005
a289	24.6	amphibolite	WR	Melezhik et al. 2005
a293	24.4	amphibolite	WR	Melezhik et al. 2005
a255	25.9	amphibolite	WR	Melezhik et al. 2005
Fr1	21.4	amphibolite	WR	Melezhik et al. 2005
Fr2	22.2	amphibolite	WR	Melezhik et al. 2005
Fr3	20.9	amphibolite	WR	Melezhik et al. 2005
Fr4	20.4	amphibolite	WR	Melezhik et al. 2005
Fr5	19.9	amphibolite	WR	Melezhik et al. 2005
Fr7	17.3	amphibolite	WR	Melezhik et al. 2005
Fr8a	18.5	amphibolite	WR	Melezhik et al. 2005
Fr9a	19.9	amphibolite	WR	Melezhik et al. 2005
Fr10	21.7	amphibolite	WR	Melezhik et al. 2005
Fr55	26.7	amphibolite	WR	Melezhik et al. 2005
Fr54	24.1	amphibolite	WR	Melezhik et al. 2005
Fr53	24.3	amphibolite	WR	Melezhik et al. 2005
Fr59	23.1	amphibolite	WR	Melezhik et al. 2005
Fr52	21.8	amphibolite	WR	Melezhik et al. 2005
Fr58	20	amphibolite	WR	Melezhik et al. 2005
Fr60	22.8	amphibolite	WR	Melezhik et al. 2005
Fr50	20.6	amphibolite	WR	Melezhik et al. 2005
Fr57	19.5	amphibolite	WR	Melezhik et al. 2005
Fr49a	17.5	amphibolite	WR	Melezhik et al. 2005
Fr56	21.2	amphibolite	WR	Melezhik et al. 2005
Fr23	21	amphibolite	WR	Melezhik et al. 2005
Fr41	20.1	amphibolite	WR	Melezhik et al. 2005
Fr44	23	amphibolite	WR	Melezhik et al. 2005
Fr45	17.7	amphibolite	WR	Melezhik et al. 2005
Fr47	16.4	amphibolite	WR	Melezhik et al. 2005
Fr48a	19.2	amphibolite	WR	Melezhik et al. 2005
Fr14	25.5	amphibolite	WR	Melezhik et al. 2005
a246	19.5	amphibolite	WR	Melezhik et al. 2005
Fr43a	22.5	amphibolite	WR	Melezhik et al. 2005
Fr69	17.1	amphibolite	WR	Melezhik et al. 2005
Fr70	18.7	amphibolite	WR	Melezhik et al. 2005
a336	18.8	amphibolite	WR	Melezhik et al. 2005
Fr67	16.8	amphibolite	WR	Melezhik et al. 2005
Fr68	16.2	amphibolite	WR	Melezhik et al. 2005
Fr76	19.7	amphibolite	WR	Melezhik et al. 2005
Fr64	19.6	amphibolite	WR	Melezhik et al. 2005
Fr46	19.6	amphibolite	WR	Melezhik et al. 2005
Fr75	19.7	amphibolite	WR	Melezhik et al. 2005
Fr77	20.7	amphibolite	WR	Melezhik et al. 2005
Fr78	21.5	amphibolite	WR	Melezhik et al. 2005
Fr79	25.9	amphibolite	WR	Melezhik et al. 2005

China- Sulu

Location/ Sample	$\delta^{18}\mathbf{O}$	MM facies	material	Reference
02SD06	14.31	amphibolite	dolomite	Tang et al. 2006
02SD07	20.2	amphibolite	dolomite	Tang et al. 2006
02SD16	18.6	amphibolite	dolomite	Tang et al. 2006
02SSD17	23.44	amphibolite	dolomite	Tang et al. 2006
USA, Adirondacks				-
GOV57	21.4	granulite	dolomite	Valley and O'Neil 1984
GOV60	22.5	granulite	dolomite	Valley and O'Neil 1984
GOV63	23.2	granulite	dolomite	Valley and O'Neil 1984
GOV74	21.8	granulite	dolomite	Valley and O'Neil 1984
GOV77-300	23.8	granulite	dolomite	Valley and O'Neil 1984
GOV78-18	21	granulite	dolomite	Valley and O'Neil 1984
GOV78-20	23.4	granulite	dolomite	Valley and O'Neil 1984
GOV80	21.1	granulite	dolomite	Valley and O'Neil 1984
GOV83	21.1	granulite	dolomite	Valley and O'Neil 1984
USA, Adirondacks		0		· · · · · · · · · · · · · · · · · · ·
LL-1	25.4	amph/gran	dolomite	Whelan et al. 1984
LL-2	25.1	amph/gran	dolomite	Whelan et al. 1984
UC-4	25.8	amph/gran	dolomite	Whelan et al. 1984
UC-5	25.7	amph/gran	dolomite	Whelan et al. 1984
USA, Scotland, Italy				
B43A	17.37	655 C	dolomite	Ferry et al. 2010
B1W	18.7	690 C	dolomite	Ferry et al. 2010
B4L	20.99	680 C	dolomite	Ferry et al. 2010
P2A	23.19	710 C	dolomite	Ferry et al. 2010
China, Sulu and Dab	ie Shan	Orogen		
SL91-8B	23.11	amph-gran	dolomite	Rumble et al. 2000
SL91-8I	24.03	amph-gran	dolomite	Rumble et al. 2000
SL92-9A	24.26	amph-gran	dolomite	Rumble et al. 2000
SL92-9D	21.52	amph-gran	dolomite	Rumble et al. 2000
SL92-9J	21.02	amph-gran	dolomite	Rumble et al. 2000
94-8A	18.95	amph-gran	dolomite	Rumble et al. 2000
94-DB-08E	19.52	amph-gran	dolomite	Rumble et al. 2000
95-16B	20.84	amph-gran	dolomite	Rumble et al. 2000
95-16C	18.55	amph-gran	dolomite	Rumble et al. 2000
CP-7	19.51	amph-gran	dolomite	Rumble et al. 2000
92-72B	18.35	amph-gran	dolomite	Rumble et al. 2000
96101	17.92	amph-gran	dolomite	Rumble et al. 2000
96102	18.3	amph-gran	dolomite	Rumble et al. 2000
96103	17.98	amph-gran	dolomite	Rumble et al. 2000
96104	17.68	amph-gran	dolomite	Rumble et al. 2000
96105	9.89	amph-gran	dolomite	Rumble et al. 2000
96206	12.18	amph-gran	dolomite	Rumble et al. 2000
96301	14.05	amph-gran	dolomite	Rumble et al. 2000
96302	15.53	amph-gran	dolomite	Rumble et al. 2000
96303	17.4	amph-gran	dolomite	Rumble et al. 2000
96304	12.93	amph-gran	dolomite	Rumble et al. 2000
96305	17	amph-gran	dolomite	Rumble et al. 2000
96307	12.08	amph-gran	dolomite	Rumble et al. 2000

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
96308	13.8	amph-gran	dolomite	Rumble et al. 2000
96309	14.9	amph-gran	dolomite	Rumble et al. 2000
96401	15.07	amph-gran	dolomite	Rumble et al. 2000
96402	15.44	amph-gran	dolomite	Rumble et al. 2000
96403	15.03	amph-gran	dolomite	Rumble et al. 2000
96404	17.28	amph-gran	dolomite	Rumble et al. 2000
96405	17.76	amph-gran	dolomite	Rumble et al. 2000
96406	12.45	amph-gran	dolomite	Rumble et al. 2000
96705	13.22	amph-gran	dolomite	Rumble et al. 2000
96707	16.26	amph-gran	dolomite	Rumble et al. 2000
94-DB-	15.14	amph-gran	dolomite	Rumble et al. 2000
92-8D	7.08	amph-gran	dolomite	Rumble et al. 2000
92-D2	23.32	amph-gran	dolomite	Rumble et al. 2000
94-18B	11.73	amph-gran	dolomite	Rumble et al. 2000
94-18C	11.97	amph-gran	dolomite	Rumble et al. 2000
94-18D	11.46	amph-gran	dolomite	Rumble et al. 2000
94-52A	20.99	amph-gran	dolomite	Rumble et al. 2000
94-52B	23.26	amph-gran	dolomite	Rumble et al. 2000
94-52E	19.85	amph-gran	dolomite	Rumble et al. 2000
W-44	17.76	amph-gran	dolomite	Rumble et al. 2000
MW-45	18.39	amph-gran	dolomite	Rumble et al. 2000
92-W-50	13.8	amph-gran	dolomite	Rumble et al. 2000
Antarctica				
CO#10,Sr#10	0.38	amph-gran	dol + calcite	e Satish-Kumar et al. 2010
CO#1,Sr#1	1.77	amph-gran	dol + calcite	e Satish-Kumar et al. 2010
CO#7,Sr#7	3.41	amph-gran	dol + calcite	e Satish-Kumar et al. 2010
CO#4	4.7	amph-gran	dol + calcite	e Satish-Kumar et al. 2010
CO#8,Sr#8	3.73	amph-gran	dolomite	Satish-Kumar et al. 2010
CC3	10.04	amph-gran	dolomite	Satish-Kumar et al. 2010
CO#6,Sr#6	10.22	amph-gran	dolomite	Satish-Kumar et al. 2010
CC2	10.89	amph-gran	dolomite	Satish-Kumar et al. 2010
CO#13	11	amph-gran	dolomite	Satish-Kumar et al. 2010
CC1	11.06	amph-gran	dolomite	Satish-Kumar et al. 2010
CC2	11.45	amph-gran	dolomite	Satish-Kumar et al. 2010
CC1	11.64	amph-gran	dolomite	Satish-Kumar et al. 2010
CO#14,Sr#14	12.14	amph-gran	dolomite	Satish-Kumar et al. 2010
CO#2,Sr#1	12.19	amph-gran	dolomite	Satish-Kumar et al. 2010
CO#9,Sr#9	12.48	amph-gran	dolomite	Satish-Kumar et al. 2010
CO#16	12.77	amph-gran	dolomite	Satish-Kumar et al. 2010
CC3	12.88	amph-gran	dolomite	Satish-Kumar et al. 2010
CC3	13.35	amph-gran	dolomite	Satish-Kumar et al. 2010
CC1	13.38	amph-gran	dolomite	Satish-Kumar et al. 2010
CC2	13.44	amph-gran	dolomite	Satish-Kumar et al. 2010
CC1	13.59	amph-gran	dolomite	Satish-Kumar et al. 2010
CC2	13.65	amph-gran	dolomite	Satish-Kumar et al. 2010
CO#19	14.7	amph-gran	dolomite	Satish-Kumar et al. 2010
CC1	15.22	amph-gran	dolomite	Satish-Kumar et al. 2010
CC2	15.27	amph-gran	dolomite	Satish-Kumar et al. 2010

Location/ Sample	δ ¹⁸ Ο	MM facies	material	Reference
Y69-0602e*	16.69	amph-gran	dolomite	Satish-Kumar et al. 2010
Y69-0602d*	17.02	amph-gran	dolomite	Satish-Kumar et al. 2010
SKARN DATA				
Turkey				
TMK 29	18.51	low amph	calcite	Oyman 2010
TEK 22	18.36	low amph	calcite	Oyman 2010
Turkey				
NB-7a	10.33	amph.	calcite	Orhan et al. 2010
NA-10b	11.1	amph.	calcite	Orhan et al. 2010
NA-15	17.96	amph.	calcite	Orhan et al. 2010
NB-8	17.86	amph.	calcite	Orhan et al. 2010
OB-7	12.97	amph.	calcite	Orhan et al. 2010
NA-12b	1.96	amph.	calcite	Orhan et al. 2010
NA-9	2.77	amph.	calcite	Orhan et al. 2010
NC-4	1.21	amph.	calcite	Orhan et al. 2010
OA-3-2	3.83	amph.	calcite	Orhan et al. 2010
KA-12	1.79	amph.	calcite	Orhan et al. 2010
KA-13	2.49	amph.	calcite	Orhan et al. 2010
OB-5	20.62	amph.	calcite	Orhan et al. 2010
OB-6	18.78	amph.	calcite	Orhan et al. 2010
South Korea				
L1-C	20.3	amph	calcite	Shin and Lee 2002
L2-C	23	amph	calcite	Shin and Lee 2002
USA, Adirondacks				
GOV78-14	19.8	granulite	calcite	Valley and O'Neil 1984
LP77-210-2	18.5	granulite	calcite	Valley and O'Neil 1984
LP77-210-3	18.6	granulite	calcite	Valley and O'Neil 1984
LP77-210-4	19.3	granulite	calcite	Valley and O'Neil 1984
LP77-210-5	19	granulite	calcite	Valley and O'Neil 1984
LP77-210-6	17.6	granulite	calcite	Valley and O'Neil 1984

References

- (1) Baker AJ, Fallick AE (1988) Earth Planet Sci Lett 91:132-140
- (2) Bickle MJ, Baker J (1990) Earth Planet Sci Lett 97:78-93
- (3) Cartwright I, Valley JW (1991) Earth Planet Sci Lett 107:148-163
- (4) Ferry et al. (2010) Geochim Cosmochim Acta 74:6517-6540
- (5) Melezhik et al. (2008) Precam Res 162: 540-558
- (6) Melezhik et al. (2005) Chem Geol 216: 203-224
- (7) Orhan A, Mutlu H, Fallick AE (2010) J Asian Earth Sci, in press
- (8) Oyman T (2010) Ore Geol Rev 37:175-201
- (9) Rumble D, Wang Q, Zhang R (2000) Lithos 52:79-95
- (10) Satish-Kumar M, Wada H (2000) Chem Geol 166:173-182
- (11) Satish-Kumar M, Wada H, Santosh M (2001) Gondwan Res 4:377-386
- (12) Satish-Kumar et al. (2010) Lithos 114:217-228
- (13) Shieh Y-N, Schwarcz HP, Shaw DM (1976) Contrib Mineral Petrol 54:1-16
- (14) Shin D, Lee I (2002) Ore Geol Rev 22:17-39
- (15) Tang et al. (2006) Precam Res 144:1-18
- (16) Valley JW, Oneil JR (1981) Geochim Cosmochim Acta 45:411-419

Location/Sample δ^{18} O MM facies material Reference

(17) Valley JW, Oneil JR (1984) Contrib Mineral Petrol 85:158-173(18) Whelan JF, Rye RO, DeLorraine W (1984) Econ Geol 79:239-265
Online Resource 2

Article title: The origin of high δ^{18} O zircons: Marbles, megacrysts, and metamorphism Journal: Contributions to Mineralogy and Petrology

Authors: Aaron J. Cavosie, John W. Valley, Noriko T. Kita, Mike Spicuzza, Takayushi Ushikubo, Simon A. Wilde

Corresponding author: Aaron J. Cavosie, Univ. of Puerto Rico. Email: aaron.cavosie@upr.edu

The following page contains a photo-mosaic of 28 detrital zircons from Mogok (Myanmar) analyzed for δ^{18} O by laser fluorination in this study. The number on the upper left of each image is the grain number. The number on the lower left of each image is the δ^{18} O value in ‰ (see Table 3 for additional details). The grains have been arranged from lowest δ^{18} O in the upper left (9.37‰), and increase in each row from left to right, to the highest δ^{18} O (25.48‰) in the lower right. A group containing dark red grains has been outlined in black. Each increment of the scale bar is 1 (one) mm.

Online Resource 3

Article title: The origin of high δ^{18} O zircons: Marbles, megacrysts, and metamorphism Journal: Contributions to Mineralogy and Petrology

Authors: Aaron J. Cavosie, John W. Valley, Noriko T. Kita, Mike Spicuzza, Takayushi Ushikubo, Simon A. Wilde

Corresponding author: Aaron J. Cavosie, Univ. of Puerto Rico. Email: aaron.cavosie@upr.edu

a Cathodoluminescence (CL) image of zircon CJJ4, taken at the University of Wisconsin, Madison using a Hitachi 3400 SEM. Zircon CJJ4 is located directly in the center of the image (compare with location of zircon in b). No visible CL was observed for this grain.
b Back scattered electron image of the same general area in a. Zrn = zircon; Tr = tremolite; Cal = calcite (see also Fig. 2a in article).