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Abstract

With the considerable growth of number of mobile subscriptions worldwide, the

demand for wireless communication technologies that can provide higher data

rates is increasing. This demand is also driving researchers to develop new ways

to address capacity challenges and explore new network topologies that offer

features and functions. Multiple-input multiple-output (MIMO) is one of the

technologies has been developed not only to mitigate multipath fading but also

turn it into a benefit for users. However, in long-range communication where

the path attenuation of wireless channels becomes significant, the relay nodes

are necessary to efficiently compensate the loss without increasing the transmit

power. By incorporating relay nodes in a MIMO system, the network coverage

and reliability can be significantly improved. In additional, the relay nodes can be

installed in places where obstacles affect single-hop communications to mitigate

shadowing.

In this thesis, we focus on interference MIMO relay systems. We first propose

the iterative algorithms to jointly optimize the source, relay, and receiver matrices

subjecting to the individual power constraints at the source and the relay nodes.

Based on the fact that the mean-squared error (MSE) of the signal waveform

estimation at the receivers is closely related to the raw bit-error-rate (BER), the

minimal MSE (MMSE) is chosen as the design criterion. The direct paths between

the source and destination nodes are taken into account as they provide valuable

spatial diversity. The proposed algorithms outperform the existing techniques in

terms of both MSE and BER. Next, to reduce the complexity of optimization

problem, we investigate a simplified relay matrix design through modifying the

transmission power constraint at the relay node. The modified relay optimization

problem has a closed-form solution.

iii



Chapter 0. Abstract iv

Then we study the transceiver design for two-way interference MIMO relay

systems. Based on the simplified relay matrix design for one-way interference

MIMO system that we proposed, we develop an advanced algorithm for two-way

relay networks. The simulation results show that the proposed algorithm has a

slightly worse performance than the existing works in terms of the system MSE

and BER. However, the computational complexity of the simplified algorithm is

significantly reduced for interference MIMO relay systems with a large number

of user pairs.
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Chapter 1

Introduction

The aim of this thesis is to design advanced algorithms for interference multiple-

input multiple-output (MIMO) relay communication systems. In this introduct-

ory chapter, we briefly present a necessary background on interference MIMO

relay communication systems and overview the contributions of this thesis.

1.1 Overview of MIMO Communication Systems

Communication theories show that the degree-of-freedom of the communication

system grows approximately linear with the number of equipped antennas [1].

Thus equipping the transceivers with multiple antennas leads to an increase in

the channel capacity, especially in a scattering environment [1–5]. On the other

hand, wireless transmission in a rich scattering environment suffers the multipath

fading which reduces the performance of the communication system. In order to

overcome this, the MIMO system is introduced not only to mitigate multipath

fading, but also turn it into a benefit for the user [1]. By equipping multiple

transmit and receive antennas, the MIMO technology offers several advantages

compared to existing single-input single-output systems such as array gain, di-

versity gain, spatial multiplexing gain, and interference reduction [2, 6].

• The array gain is the improvement in signal-to-noise ratio (SNR) at the

receiver. This is the result of a coherent combining effect of multiple trans-

mitting and receiving antennas. The array gain requires perfect channel

knowledge in either the transmitter or receiver and depends on the number

1
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of transmit and receive antennas.

• The diversity gain is the improvement in the reliability of the system and

can be achieved by transmitting the same signal across multiple independent

fading channels. The receiver receives multiple independent replicas of the

same signal and the probability that at least one of the received signals is

not suffered from deep fade increases. In effect, it improves the quality and

reliability of the entire system.

• The spatial multiplexing gain is the linear increase in the achievable data

rate. It relies on transmitting independent data streams through independ-

ent spatial channels. Under suitable channel conditions, for example rich

scattering channels, multiple independent data streams can be transmitted

within the same allocated bandwidth and the data streams can be separ-

ated at the receiver. Furthermore, the capacity of the system scales linearly

with the number of established data streams.

• Interference reduction is achievable through exploiting the spatial difference

between the desired signal and the cochannel signal. The knowledge of the

desired signal’s channel is required while it is not necessary to have know-

ledge of the interference channels. When interference reduction is imple-

mented at the transmitter, it helps to minimize the co-channel interference

(CCI) while transmitting the signal to the desired user.

Unfortunately, diversity gain and spatial multiplexing gain have benefits from

the spatial degrees of freedom in different ways which makes it impossible to

exploit all the features of MIMO technology simultaneously [6]. The choice of

gain to implement within a particular MIMO system depends on the aim to

improve the data rate or the reliability of the system. Such a trade-off is very

useful in practical MIMO communication systems.

1.2 MIMO Relay Communication Systems

In long-range communication where the path attenuation of wireless channels be-

comes significant, the relay nodes are necessary to efficiently compensate the loss
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Figure 1.1: A three-node two-hop communication system

without increasing the transmit power. By incorporating relay nodes in a MIMO

system, the network coverage and reliability can be significantly improved [7–26].

In additional, the relay nodes can be installed in places where obstacles affect

single-hop communications to mitigate shadowing. Furthermore, when taking

the direct paths into account, the provision of independent propagation paths

can efficiently combat the multipath fading [7, 8].

Figure 1.1 illustrates the diagram of a three-node two-hop MIMO communic-

ation system. Here, Hsr, Hsd, and Hrd are the source-relay, source-destination,

and relay-destination channels respectively. In a MIMO relay system, commu-

nication between source nodes and destination nodes can be assisted by single or

multiple relays equipped with multiple antennas. The relays can either decode-

and-forward (DF), amplify-and-forward (AF), or compress-and-forward (CF) the

relayed signals. In the AF scheme, the received signals are simply amplified (in-

cluding a possible linear transformation) through the relay precoding matrices

before being forwarded to the destination nodes. Therefore, in general the AF

strategy has lower complexity and shorter processing delay than the DF and CF

strategy.

1.3 Interference MIMO Relay Communication

Systems

In wireless communication networks, multiple transmitters share the same radio

resources and each receiver not only receives data sent from the paired transmitter

but also observes CCI from the other transmitters in the network. The CCI is

being identified as one of the main impairments that limit the throughput in

wireless communication networks. Thus, developing schemes that mitigate CCI
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has become critical.

Traditionally, the CCI has been dealt with by several approaches such as

decoding the interference, using orthogonal multiplexing schemes, and treating

the interference as noise.

• Decoding the interference is used when the interference is much stronger

than the signal and it can be decoded along with the desired signal. This

approach is less common in practice due the complexity of the receiver [34]

and the extension of the results to more than two users is not straightfor-

ward

• When the interference is weak, introducing structure into the interference

signals is not useful thus the interference is treated as noise.

• Orthogonal multiplexing is the practical approach to mitigate the interfer-

ence which is as strong as signals. In frequency division multiple access

(FDMA), the system bandwidth is divided among the transmitters while

transmitters take turns transmitting data in time division multiple access

(TDMA). One of the widely used scheme is the code division multiple ac-

cess (CDMA). However, such interference avoidance solutions has become

fairly inefficient as they cannot achieve the full degrees of freedom available

in the channel.

Recently, a new approach in interference management, called interference

alignment (IA), was first considered in [20]. IA is a cooperative interference

management strategy that maximizes interference-free space for the desired sig-

nal. The transmitters design their transmitted signals such that the interference

received at the receiver is aligned in only a portion of the signalling space.

Figure 1.2 shows the diagram of an interference MIMO relay system where K

source-destination pairs {Si −Di, i = 1..K} communicate simultaneously with

the aid of L distributed relay nodes {Rj, j = 1..L}. The source, destination, and

relay nodes are equipped with multiple antennas.
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Figure 1.2: An interference MIMO relay communication system

1.4 Two-Way MIMO Relay Communication Sys-

tems

Most of the relay networks are assumed to work in half-duplex mode as it can

avoid interference at the relay nodes [27]. Thus, in a typical AF two-way MIMO

relay system, the communication between two source nodes is accomplished in

four time slots: from source node 1 to the relay node, from the relay node to

source node 2, from source node 2 to the relay node and from the relay node

to source node 1. By using the idea of analog network coding [28], the two-way

relaying protocol in which, the two source nodes exchange their information in

two time slots without using extra channel resources, has been studied recently to

overcome the loss in terms of spectral efficiency in half-duplex systems. In the first

time slot, the relays receive data from the two source nodes simultaneously, and in

the second phase, the relays re-transmit the received signal to both source nodes.

Since each source node knows its own transmitted data, the self-interference (SI)

in the transmitted signal can be cancelled.

Figure 1.3 shows the diagram of a two-hop interference MIMO relay commu-

nication system where K user pairs {Si − Di, i = 1..K}, distributed on two

different sites, communicate with the aid of a single relay R. The direct links

(DL) between site 1 and site 2 user pair are ignored as they undergo much larger

path attenuation compared with the links via the relay.
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Figure 1.3: A multiuser two-hop interference MIMO relay communication sys-
tem

1.5 Thesis Overview and Contributions

In this thesis, advanced transceiver designs for MIMO communication systems

are presented and studied. In Chapter 2, we investigate the iterative algorithms

for an AF interference MIMO relay communication system. Chapter 3 studies

a robust design for the case in which a single relay node is used. By modifying

the transmission power constraint at the relay node, the computational complex-

ity of optimizing the relay precoding matrix is significantly reduced. In Chapter

4, we propose an iterative transceiver design algorithm for a two-way interfer-

ence MIMO relay communication system where multiple user pairs communicate

simultaneously with the aid of single relay node.

It is clear that the average BER across users is dominated by the highest MSE

[30, 31]. The minimization of the MSE results in reduction of the intersymbol

interference and indirectly reduces the BER. Thus, MSE is chosen as the precoders

design criterion.

Throughout the chapters of this thesis, the proposed algorithms are carried

out at a central controlling unit, which can be any node in the system. We assume

that the controlling unit has knowledge of the global channel state information

(CSI). After the convergence of the algorithms, the controlling unit sends the

information on the optimal source, relay, and receiver matrices to corresponding

nodes.

Chapter 2: Joint Source Relay Optimization

In this chapter, we develop two iterative algorithms to solve the highly noncon-

vex joint source, relay and receiver optimization problem for interference MIMO
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relay communication systems. The direct source-destination links are taken into

account for the design of the transceivers. The minimal mean-squared error

(MMSE) of the signal waveform estimation at the destination nodes is chosen

as the design criterion to optimize the transceiver matrices for interference sup-

pression. In the first algorithm, we iteratively optimize the source, relay, and

receiver matrices. To reduce the per-iteration complexity, in second algorithm,

we develop an iterative algorithm where each source and relay matrix is optimized

individually by fixing all other matrices. Simulation results demonstrate that the

proposed algorithms outperform the existing techniques in terms of the system

mean-squared error (MSE) and bit-error-rate (BER).

Chapter 2 is based on the journal publication:

• K. X. Nguyen, Y. Rong, and S. Nordholm, “Joint source and relay matrices

optimization for interference MIMO relay systems”, EURASIP Journal on

Wireless Commun. Network., 2015: 73.

and two conference publications:

• K. X. Nguyen, Y. Rong, and Z. He, “A frequency domain equalizer for

amplify-and-forward underwater acoustic relay communication systems”,

Proc. 9th Int. Conf. Inform. Commun. Signal Process. (ICICS), Tainan,

Taiwan, Dec. 10-13, 2013.

• K. X. Nguyen, Y. Rong, “Joint source and relay matrices optimization for

interference MIMO relay systems”, Proc. Int. Symposium Inf. Theory Its

Applications (ISITA’2014), Melbourne, Australia, Oct. 26-29, 2014, pp.

640-644.

Chapter 3: Simplified Transceiver Design for Interference

MIMO Relay Systems

Complexity is a major concern in the practical implementation of MIMO sys-

tems. Signal processing algorithms typically improve the performance of the

system at the cost of computational complexity. Several works have focused on

achieving sub-optimal performance in order to significantly reduce the computa-

tional complexity. Thus, in this chapter, we investigate an interference MIMO
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relay communication system where multiple transmitter-receiver pairs commu-

nicate simultaneously with the aid of a relay node. Two iterative algorithms are

proposed to exploit the performance and complexity trade-off.

Chapter 3 is based on the journal publication:

• K. X. Nguyen, Y. Rong, and S. Nordholm, “MMSE-based transceiver design

algorithms for interference MIMO relay systems”, IEEE Trans. Wireless

Commun., vol. 14, no. 11, pp. 6414-6424, Nov 2015.

and the conference publication:

• K. X. Nguyen, Y. Rong, and S. Nordholm, “Transceiver optimization for

interference MIMO relay systems using the structure of relay matrix”, Proc.

24th Wireless and Optical Commun. Conf. (WOCC’2015), Taipei, Taiwan,

Oct. 23-24, 2015, pp. 29-33.

Chapter 4: Transceiver Design for Two-Way MIMO Relay

Systems

In this chapter, we investigate the transceiver design for interference two-way

MIMO relay systems where multiple two-way links communicate simultaneously

with the aid of a single relay node. We derive the optimal structure of the

relay precoding matrix. By modifying the power constraint at the relay node, we

propose a novel relay precoding matrix optimization algorithm with a closed-form

solution. The proposed iterative transceiver design algorithm converges faster and

has a lower computational complexity than existing algorithms particularly for

interference MIMO relay systems with a large number of user pairs, with only

small performance degradation.

Chapter 4 is based on the journal publication:

• K. X. Nguyen, Y. Rong, and S. Nordholm, “Simplified MMSE precoding

mesign in interference two-way MIMO relay systems”, IEEE Signal Process.

Lett., vol. 23, no. 2, pp. 262-266, Feb. 2016.
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1.6 Notation

The notations used in this thesis are as follows: Scalars are denoted with lower

or upper case normal letters, vectors are denoted with bold-faced lower case

letters, and matrices are denoted with bold-faced upper case letters. Superscripts

(·)T , (·)H , and (·)−1 denote matrix transpose, conjugate transpose, and inverse,

respectively, tr() stands for matrix trace, vec() stacks columns of a matrix on

top of each other into a single vector, bd() denotes a block-diagonal matrix, ⊗

represents the Kronecker product, E[ ] denotes the statistical expectation, and

In stands for the n × n identity matrix. Note that the scope of any variable in

each chapter is limited to that particular chapter.



Chapter 2

Joint Source Relay Optimization

In this chapter, we investigate the transceiver design for linear non-regenerative

interference MIMO relay communication systems when the direct links between

the source and destination nodes are taken into consideration. The MMSE of

the signal waveform estimation at the destination nodes is chosen as the design

criterion to optimize the source, relay, and receiver matrices for interference sup-

pression. As the joint source, relay, and receiver optimization problem is non-

convex with matrix variables, a globally optimal solution is computationally in-

tractable to obtain [29]. After a review of existing works in Section 2.1, the

system model is introduced in Section 2.2. We propose two iterative algorithms

in Section 2.3 to provide computationally efficient solutions to the original prob-

lem through solving convex subproblems. These two algorithms provide efficient

performance-complexity tradeoff. Simulation results in Section 2.4 demonstrate

that the proposed algorithms converge quickly after a few iterations and signi-

ficantly outperform existing scheme in terms of the system BER. Conclusions

are drawn in Section 2.5. The detailed proofs of (2.15) and (2.23) are given in

Appendix 2.A and Appendix 2.B respectively.

2.1 Overview of Existing Techniques

Relay-aided MIMO communication technology has attracted great research in-

terest recently [10, 16]. By incorporating relay nodes in a MIMO system, the

network coverage and reliability can be significantly improved. In a MIMO relay

10
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system, communication between source nodes and destination nodes can be as-

sisted by single or multiple relays equipped with multiple antennas. The relays

can either DF or AF the relayed signals [17]. In the AF scheme, the received sig-

nals are simply amplified (including a possible linear transformation) through the

relay precoding matrices before being forwarded to the destination nodes. There-

fore, in general, the AF strategy has lower complexity and shorter processing

delay than the DF strategy.

For single-user two-hop MIMO communication systems with a single relay

node, the optimal source and relay precoding matrices have been developed in

[18]. For a single-user two-hop MIMO relay system with multiple parallel relay

nodes, the design of relay precoding matrices has been studied in [19]. Recent

progress on the optimization of AF MIMO relay systems has been summarized

in the tutorial of [16].

For MIMO interference channel, the idea of IA [20] was developed for interfer-

ence suppression by arranging the desired signal and interference into appropri-

ated signal spaces. The idea of IA has been applied in interference MIMO relay

systems in [21, 22]. However, there is still no general solution for IA as a number

of conditions must be met. One main reason is that the number of dimensions

required for IA is very large and it depends on the number of independent fad-

ing channels. This leads to high computational complexity and infeasibility in

practical systems. In [23], an iterative algorithm has been proposed to optimize

the source beamforming vector and the relay precoding matrices to minimize the

total source and relay transmit power such that a minimum signal-to-interference-

plus-noise ratio (SINR) threshold is maintained at each receiver. Three iterative

transceiver design algorithms to minimize either the matrix-weighted sum mean-

squared error (SMSE) or the total leakage have been developed in [24]. However,

the works in [21, 24] did not take the direct source-destination links into consid-

eration.

The direct links between the source and destination nodes provide valuable

spatial diversity to the MIMO relay system and should not be ignored. In this

chapter, we investigate the transceiver design for AF interference MIMO relay
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communication systems where multiple source nodes transmit information simul-

taneously to the destination nodes with the aid of multiple relay nodes, and each

node is equipped with multiple antennas. The direct source-destination links are

taken into account for the design of the transceivers. We aim at optimizing the

source, relay, and receiver matrices to suppress the interference and minimize

the SMSE of the signal waveform estimation at the destination nodes, subjecting

to transmission power constraints at the source and relay nodes. The SMSE cri-

terion is chosen as it provides a good trade-off between performance and complex-

ity. Since the joint source, relay, and receiver optimization problem is nonconvex

with matrix variables, a globally optimal solution is computationally intractable

to obtain. We propose two iterative algorithms to provide computationally effi-

cient solutions to the original problem through solving convex subproblems. In

each iteration of the first algorithm, we first optimize all receiver matrices based

on the source and relay matrices from the previous iteration. Then, we optim-

ize all relay matrices using the receiver matrices in this iteration and the source

matrices from the previous iteration. Finally, the source matrices are updated.

In the second algorithm, the receiver matrices are optimized in the same

way as the first algorithm. However, in contrast to the first algorithm, each

source and relay matrix is optimized individually by fixing all other matrices.

We show that both proposed algorithms converge. Comparing the two proposed

algorithms, the first algorithm has a better MSE and BER performance, while

the second algorithm has a smaller per-iteration computational complexity. Such

performance-complexity trade-off is very useful for practical MIMO relay commu-

nication systems. Simulation results demonstrate that the proposed algorithms

outperform the existing technique in terms of the system MSE and BER.

We assume that similar to [24], the two proposed algorithms are carried out at

a central controlling unit, which can be any node in the system. The controlling

unit has knowledge of the global CSI. After the convergence of the algorithms, the

controlling unit sends the information on the optimal source, relay, and receiver

matrices to corresponding nodes.
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2.2 System Model and Problem Formulation

We consider a two-hop interference MIMO relay communication system where K

source-destination pairs communicate simultaneously with the aid of a network

of L-distributed relay nodes as shown in Fig. 2.1. The kth source node and the

kth destination node are equipped with Nsk and Ndk antennas, respectively, k =

1, · · · , K, and the number of antennas at the lth relay node is Nrl, l = 1, · · · , L.

B1

...

BK

F1

...

FL

...

W1

...

WK

H11

H
1K

H
L
1

H
LK

G
11

G
1L

G
K
1

GK
L

T11

T
K1

T1K

TKK

...

...

...

...

...
...

...
...

Figure 2.1: Block diagram of an interference MIMO relay system with multiple
relay nodes.

Using half duplex relay nodes, the communication between source and destin-

ation pairs is completed in two time slots. At the first time slot, the kth source

node transmits an Nsk × 1 signal vector

xsk = Bksk, k = 1, · · · , K (2.1)

to the relay nodes and the destination nodes, where sk is the d× 1 information-

carrying symbol vector and Bk is the Nsk × d source precoding matrix. The

received signal vectors at the lth relay node and the kth destination node are
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given by

yrl =
K∑
k=1

Hlkxsk + vrl, l = 1, · · · , L (2.2)

yd1k =
K∑
m=1

Tkmxsm + vd1k, k = 1, · · · , K (2.3)

where Hlk is the Nrl×Nsk MIMO fading channel matrix between the kth source

node and the lth relay node, Tkm is the Ndk×Nsm MIMO fading channel matrix

between the mth source node and the kth destination node, vrl is the Nrl × 1

additive white Gaussian noise (AWGN) vector at the lth relay node with zero

mean and covariance matrix E[ vrlv
H
rl ] = σ2

rlINrl
, l = 1, · · · , L, and vd1k is the

Ndk×1 AWGN vector at the kth destination node at the first time slot with zero

mean and covariance matrix E[vd1kv
H
d1k] = σ2

dkINdk
, k = 1, · · · , K.

During the second time slot, the received signal vector at the lth relay node

is amplified with the Nrl ×Nrl precoding matrix Fl as

xrl = Flyrl, l = 1, · · · , L. (2.4)

The precoded signal vector xrl is forwarded to the destination nodes. The received

signal vector at the kth destination node is given by

yd2k =
L∑
l=1

Gklxrl + vd2k, k = 1, · · · , K (2.5)

where Gkl is the Ndk × Nrl MIMO channel matrix between the lth relay node

and the kth destination node and vd2k is the Ndk × 1 AWGN vector at the kth

destination node at the second time slot with zero mean and covariance matrix

E[vd2k vHd2k] = σ2
dkINdk

, k = 1, · · · , K.

From (2.1)-(2.5), the signal vector received at the kth destination node over

two consecutive time slots is

yk =

 yd2k

yd1k

 =
K∑
m=1


L∑
l=1

GklFl Hlm

Tkm

Bmsm+

 v̄dk

vd1k

 (2.6)

where v̄dk =
∑L

l=1 GklFlvrl + vd2k is the total noise vector at the kth destination

node at the second time slot.
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Due to their simplicity, linear receivers are used at the destination nodes to

retrieve the transmitted signals. Thus, the estimated signal vector at the kth

destination node can be written as

ŝk = WH
k yk, k = 1, · · · , K (2.7)

where Wk = [WT
k2,W

T
k1]T is the receiver weight matrix, and Wk1 and Wk2

are the Ndk × d receiver weight matrices for the direct link and the relay link,

respectively. In (2.6) and (2.7), we have

ŝk = [WH
k2 WH

k1]

 yd2k

yd1k


=

(
WH

k2

L∑
l=1

GklFlHlk + WH
k1Tkk

)
Bksk︸ ︷︷ ︸

desired signal

+
K∑

m=1,m 6=k

(
WH

k2

L∑
l=1

Gkl FlHlm + WH
k1Tkm

)
Bmsm︸ ︷︷ ︸

interference

+ WH
k2v̄dk + WH

k1vd1k︸ ︷︷ ︸ . (2.8)

noise

In (2.1) and (2.4), the transmission power constraints at the source and relay

nodes can be written as

tr
(
BkB

H
k

)
≤ Psk, k = 1, · · · , K (2.9)

tr
(
FlE

[
yrly

H
rl

]
FH
l

)
≤ Prl, l = 1, · · · , L (2.10)

where Psk and Prl denote the power budget at the kth source node and the lth

relay node, respectively, and E
[
yrly

H
rl

]
=
∑K

m=1 Hlm BmBH
mHH

lm + σ2
rlINrl

is the

covariance matrix of the received signal vector at the lth relay node.

In this chapter, we aim at optimizing the source precoding matrices {Bk} =

{Bk, k = 1, · · · , K}, the relay precoding matrices {Fl} = {Fl, l = 1, · · · , L},

and the receiver weight matrices {Wk} = {Wk, k = 1, · · · , K}, to minimize

the sum-MSE of the signal waveform estimation at the destination nodes under

transmission power constraints at the source and relay nodes. We would like to
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mention that MMSE is a sensible design criterion based on the links of MSE to

other performance measures in MIMO systems such as mutual information and

SINR [18, 25].

From (2.8), the MSE of the kth source-destination pair can be calculated as

MSEk = tr
(
E
[
(ŝk − sk) (ŝk − sk)

H
])

= tr
(

(WH
k H̃kk − Id)( WH

k H̃kk − Id)
H

+WH
k CkWk + WH

k ΞkWk

)
, k = 1, · · · , K (2.11)

where H̃km is the equivalent MIMO channel matrix from the mth source node

to the kth destination node, Ck = E
{[

v̄Tdk, vTd1k

]T[
v̄Hdk, vHd1k

]}
and Ξk are the

covariance matrices of the equivalent noise and the interference at the kth des-

tination node, respectively. For k,m = 1, · · · , K, they are given respectively

as

H̃km =


L∑
l=1

GklFlH̄lm

TkmBm

 , Ξk =
K∑

m=1,m 6=k

H̃kmH̃
H

km

Ck =


L∑
l=1

σ2
rlGklFlF

H
l GH

kl + σ2
dkINdk

0

0 σ2
dkINdk


where H̄lm = HlmBm is the equivalent MIMO channel matrix between the mth

source node and the lth relay node.

From (2.9)-(2.11), the optimal source, relay, and receiver matrix design prob-

lem can be written as

min
{Wk},{Bk},{Fl}

K∑
k=1

MSEk (2.12a)

s.t. tr
(
BkB

H
k

)
≤Psk, k=1, · · · , K (2.12b)

tr
(
FlE[yrly

H
rl ]F

H
l

)
≤Prl, l=1, · · · , L. (2.12c)



Chapter 2. Joint Source Relay Optimization 17

2.3 Proposed Source, Relay, and Receiver Mat-

rix Design Algorithms

The problem (2.12) is highly nonconvex with matrix variables, and a globally

optimal solution is intractable to obtain. In this section, we propose two block

coordinate descent algorithms to solve the problem (2.12) by optimizing {Wk},

{Bk}, and {Fl} in an alternating way through solving convex subproblems.

2.3.1 Proposed Algorithm 2.1

In each iteration of this algorithm, we first optimize {Wk} based on {Bk} and

{Fl} from the previous iteration. Then, we optimize all relay matrices based on

{Wk} from the current iteration and {Bk} from the previous iteration. Finally,

we optimize all source matrices using {Wk} and {Fl} from the current iteration.

It can be seen from (2.11) that Wk only affects MSEk. Thus, with given {Fl}

and {Bk}, the optimal linear receiver matrix which minimizes MSEk in (2.11) is

the solution to the following unconstrained optimization problem

min
Wk

MSEk. (2.13)

The solution to the problem (2.13) is the well-known MMSE receiver [36]

given by

Wk = (H̃kkH̃
H
kk + Ck + Ξk)

−1H̃kk, k = 1, · · · , K. (2.14)

Let us introduce fl = vec(Fl), l = 1, · · · , L. With given receiver matrices

{Wk} and source precoding matrices {Bk}, the sum-MSE SMSE =
∑K

k=1 MSEk

can be rewritten as a function of f = [fT1 , fT2 , · · · , fTL ]T as

ψ1(f) =
K∑
k=1

[
(Okkf − ok)

H(Okkf − ok) + fHQkf

+
K∑
m6=k

(Okmf − qkm)H(Okmf − qkm)
]

+ t1 (2.15)

where t1 =
∑K

k=1 σ
2
dktr(W

H
k Wk) is independent of f and for k,m = 1, · · · , K,
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l = 1, · · · , L

Okm = [Ok,1,m, Ok,2,m, · · · , Ok,L,m] (2.16)

Qk = bd (Qk1, Qk2, · · · , QkL) (2.17)

ok = vec(Id − T̄kk), qkm = −vec( T̄km) (2.18)

Ok,l,m = H̄
T
lm ⊗ Ḡkl, Qkl = σ2

rlINrl
⊗ (ḠH

klḠkl). (2.19)

Here, Ḡkl = WH
k2Gkl is the equivalent MIMO channel matrix between the

lth relay node and the kth destination node and T̄km = WH
k1TkmBm is the

equivalent direct link MIMO channel matrix between the mth source node and

the kth destination node. The detailed proof of (2.15) is given in Appendix 2.A.

By introducing

Dll=

(
K∑
m=1

HlmBmBH
m HH

lm+σ2
rlINr

)T
⊗ INrl

, l = 1, · · · , L (2.20)

and D̄l = bd (Dl1, Dl2, · · · ,DlL), where Dlj = 0, l 6= j, the relay transmit power

constraints in (2.10) can be rewritten as

fHD̄lf ≤ Prl, l = 1, · · · , L. (2.21)

Using (2.15) and (2.21), the relay matrix optimization problem can be written

as

min
f

ψ1(f) (2.22a)

s.t. fHD̄lf ≤ Prl, l = 1, · · · , L. (2.22b)

The optimization problem (2.22) is a quadratically constrained quadratic pro-

gramming (QCQP) problem [37]. From (2.19), we can see that Qkl, k = 1, · · · , K,

l = 1, · · · , L are positive semi-definite (PSD) matrices, and thus from (2.17), Qk,

k = 1, · · · , K are PSD matrices. Moreover, it can be seen from (2.20) that Dll,

l = 1, · · · , L are PSD matrices, and thus, D̄l, l = 1, · · · , L are PSD matrices.

Therefore, the QCQP problem (2.22) is convex and can be efficiently solved by

the interior-point method [37]. In particular, the problem (2.22) can be solved

by the CVX MATLAB toolbox for disciplined convex programming [38].

Let us introduce bk = vec(Bk), k = 1, · · · , K. With given receiver matrices

{ Wk} and relay matrices {Fl}, the sum-MSE can be rewritten as a function of
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b = [bT1 , bT2 , · · · ,bTK ]T as

Φ1(b) =
K∑
k=1

(
S̄kb− vec(Id)

)H(
S̄kb− vec(Id)

)
+bHUb + t2. (2.23)

where t2 =
∑K

k=1 tr(W
H
k CkWk) can be ignored in the optimization process as it

is independent of b and

U = bd(U1,U2, · · · ,UK) (2.24)

S̄k = [Sk1,Sk2, · · · ,SkK ] (2.25)

Skk = Id ⊗ P̄kk, Ski = 0, i 6= k (2.26)

Uk = Id ⊗

(
K∑

m=1,m 6=k

P̄H
mkP̄mk

)
. (2.27)

Here, P̄mk = WH
m2

L∑
l=1

ḠmlFlHlk+WH
m1Tmk. The detailed proof of (2.23) is given

in Appendix 2.B.

Let us introduce Eij = Id ⊗
(
HH
ijF

H
i FiHij

)
, El = bd (El1,El2, · · · , ElK),

Ēi = bd
(
Ēi1, Ēi2, · · · , ĒiK

)
, where Ēii = IdNs and Ēij = 0, i 6= j. The optimal b

can be obtained by solving the following problem

min
b

Φ1(b) (2.28a)

s.t. bHĒmb ≤ Psm, m = 1, · · · , K (2.28b)

bHElb ≤ Prl − σ2
rltr(FlF

H
l ), l = 1, · · · , L. (2.28c)

From (2.27), we can see that Uk, k = 1, · · · , K are PSD matrices, and thus

from (2.24), U is PSD. Moreover, it can be seen that Ēm, m = 1, · · · , K and El,

l = 1, · · · , L are PSD matrices. Therefore, the problem (2.28) is a convex QCQP

problem and can be solved by the CVX MATLAB toolbox [38] for disciplined

convex programming.

The steps of applying the proposed Algorithm 2.1 to optimize {Bk}, {Fl},

and {Wk} are summarized in Table 2.1, where the superscript (n) denotes the

variable at the nth iteration, and ε is a small positive number up to which conver-

gence is acceptable. Since all subproblems (2.13), (2.22), and (2.28) are convex,

the solution to each subproblem is optimal. Thus, the value of the objective func-

tion (2.12a) monotonically decreases after each iteration. Moreover, the value of

(2.12a) is lower bounded by at least zero. Therefore, the proposed Algorithm 2.1
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Table 2.1: Procedure of solving the problem (2.12) by the proposed Algorithm
2.1

1. Initialize the Algorithm with
{
F

(0)
l

}
and

{
B

(0)
k

}
satisfying (2.9) and (2.10);

Set n = 0.

2. Obtain
{
W

(n+1)
k

}
based on (2.14) with fixed

{
F

(n)
l

}
and

{
B

(n)
k

}
.

3. Update {F(n+1)
l } through solving the problem (2.22) with given

{
B

(n)
k

}
and{

W
(n+1)
k

}
.

4. Update {B(n+1)
k } by solving the problem (2.28) with fixed

{
F

(n+1)
l

}
and{

W
(n+1)
k

}
.

5. If SMSE(n) − SMSE(n+1) ≤ ε, then end.
Otherwise, let n := n+ 1 and go to step 2.

is guaranteed to converge. Adopting the results from [39], the detailed proof of

convergence of the proposed Algorithm 2.1 is given in Appendix 2.C.

2.3.2 Proposed Algorithm 2.2

In the proposed Algorithm 2.1, all source precoding matrices are optimized to-

gether through b, while all relay precoding matrices are updated together through

f. Since the dimensions of b and f are
∑K

k=1Nskd and
∑L

l=1N
2
rl, respectively,

the computational complexity of solving the QCQP problems (2.22) and (2.28)

using the interior point method [40] is O
(
(
∑K

k=1Nskd)3
)

and O
(
(
∑L

l=1N
2
rl)

3
)
,

respectively. Therefore, the computational complexity at each iteration of the

proposed Algorithm 2.1 is O
(
(
∑K

k=1Nskd)3 + (
∑L

l=1N
2
rl)

3
)
, which can be very

high for interference MIMO relay systems with a large K and L. To reduce the

per-iteration complexity, in this subsection, we develop an iterative algorithm

where each source and relay matrix is optimized individually by fixing all other

matrices.

Adopting notations from proposed Algorithm 2.1, with given receiver matrices

{Wk}, source precoding matrices {Bk}, and relay precoding matrices Fj, j =
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1, · · · , L, j 6= l, the sum-MSE can be rewritten as a function of Fl as

SMSE =
K∑
k=1

tr

[
(ḠklFlH̄lk −Akl)(ḠklFlH̄lk −Akl)

H

+
L∑
l=1

σ2
rlḠklFl FH

l ḠH
kl +

K∑
m=1,m 6=k

(ḠklFlH̄lm−Dk,l,m)

×(ḠklFlH̄lm−Dk,l,m)H
]

+ t1 (2.29)

where for k,m = 1, · · · , K, l = 1, · · · , L

Akl = Id −
L∑

j=1,j 6=l

ḠkjFjH̄jk −Tkk (2.30)

Dk,l,m = −
L∑

j=1,j 6=l

ḠkjFjH̄jm −Tkm.

Using the identities in (2.37)-(2.39), the SMSE in (2.29) can be written as

ψ2(fl) =
K∑
k=1

[
(Ok,l,kfl − akl)

H(Ok,l,kfl − akl) + fHl Qklfl + rkl

+
K∑

m=1,m 6=k

(Ok,l,mfl − dk,l,m)H(Ok,l,mfl − dk,l,m)
]

(2.31)

where for k,m = 1, · · · , K, l = 1, · · · , L

akl = vec(Akl)

rkl = tr

(
L∑

j=1,j 6=l

σ2
rjḠkjFj FH

j ḠH
kj + σ2

dkW
H
k Wk

)
dk,l,m = vec (Dk,l,m) .

Note that since the terms rkl in (2.31) are independent of fl, they can be

ignored when optimizing fl. The relay transmit power constraint in (2.10) can be

rewritten as

fHl Dllfl ≤ Prl. (2.32)

Based on (2.31) and (2.32), the optimal fl can be obtained by solving the

following problem for each l = 1, · · · , L

min
fl
ψ2(fl) s.t. fHl Dlfl ≤ Prl. (2.33)

The problem (2.33) is a QCQP problem and can be solved effectively using

the CVX toolbox.
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With given receiver matrices {Wk}, relay precoding matrices {Fl}, and source

precoding matrices Bj, j = 1, · · · , K, j 6= k, the SMSE can be rewritten as a

function of bk as

Φ2(bk) = (Skkbk − vec(Id))
H(Skkbk − vec(Id)) + bHk Ukbk + zk

where

zk =
K∑

m=1,m 6=k

[
(Smmbm − vec(Id))

H(Smmbm − vec(Id)) + bHmUmbm

]
+ t2

k = 1, · · · , K.

By introducing clk = σ2
rltr(FlF

H
l ) +

∑K
j=1,j 6=k bHj Eljbj, k = 1, · · · , K, l =

1, · · · , L, the optimal bk can be obtained by solving the following problem for

each k = 1, · · · , K

min
bk

Φ2(bk) (2.34a)

s.t. bHk bk ≤ Psk (2.34b)

bHk Elkbk ≤ Prl − clk, l = 1, · · · , L. (2.34c)

The problem (2.34) is a QCQP problem and can be solved by the CVX MAT-

LAB toolbox [38] for disciplined convex programming. The steps of using the

proposed Algorithm 2.2 to optimize {Bk}, {Fl}, and {Wk} are summarized in

Table 2.2. Similar to the analysis used to the proposed Algorithm 2.1, since all

subproblems (2.13), (2.33), and (2.34) are convex, the solution to each subprob-

lem is optimal. Thus, the value of the objective function (2.12a) monotonically

decreases after each iteration. Moreover, the value of (2.12a) is lower bounded by

at least zero. Therefore, the convergence of the proposed Algorithm 2.2 follows

directly from this observation.

Since the dimensions of bk and fl are Nskd and N2
rl, respectively, the computa-

tional complexity of solving the QCQP problems (2.22) and (2.34) is O
(
(Nskd)3

)
and O

(
N6
rl

)
, respectively. Thus, the computational complexity at each iteration

of the proposed Algorithm 2.2 is O
(∑K

k=1(Nskd)3 +
∑L

l=1N
6
rl

)
, which is lower than

the per-iteration computational complexity of the proposed Algorithm 2.1. How-

ever, we will see through numerical simulations that the proposed Algorithm 2.1

has a better MSE and BER performance than that of the proposed Algorithm 2.2.
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Table 2.2: Procedure of solving the problem (2.12) by the proposed Algorithm
2.2

1. Initialize the Algorithm with
{
F

(0)
l

}
and

{
B

(0)
k

}
satisfying (2.9) and (2.10);

Set n = 0.

2. Obtain
{
W

(n+1)
k

}
based on (2.14) with fixed

{
F

(n)
l

}
and

{
B

(n)
k

}
.

3. For l = 1, · · · , L, update F
(n+1)
l through solving the problem (2.33) with

given
{
B

(n)
k

}
,
{
W

(n+1)
k

}
, and F

(n)
j , j = 1, · · · , L, j 6= l.

4. For k = 1, · · · , K, update B
(n+1)
k by solving the problem (2.34) with fixed{

F
(n+1)
l

}
,
{

W
(n+1)
k

}
, and B

(n)
j , j = 1, · · · , K, j 6= k.

5. If SMSE(n) − SMSE(n+1) ≤ ε, then end.
Otherwise, let n := n+ 1 and go to step 2.

Such performance-complexity trade-off is very useful for practical interference

MIMO relay communication systems.

2.4 Numerical Examples

In this section, we illustrate the performance of the proposed algorithms through

numerical simulations. All channel matrices have independent and identically

distributed (i.i.d.) complex Gaussian entries with zero mean and unit variance.

The noises are i.i.d. Gaussian with zero mean and unit variance. Unless explicitly

mentioned, the quadrature phase-shift keying (QPSK) constellations are used to

modulate the source symbols. For the sake of simplicity, we set d = 2 and assume

that all nodes have three antennas, i.e., Nsk = Ndk = Nrl = 3, k = 1, · · · , K,

l = 1, · · · , L, all source nodes have the same power budget as Psk = 15dB,

k = 1, · · · , K, and all relay nodes have the same power budget as Prl = P ,

l = 1, · · · , L.

For all simulation examples, the simulation results are averaged over 105 in-

dependent channel realizations. Unless explicitly mentioned, we assume that

there are K = 4 source-destination pairs and L = 5 relay nodes in the interfer-

ence MIMO relay system. The proposed algorithms are initialized at F
(0)
l =√

Prl/tr
(∑K

k=1 H̄lkH̄
H
lk + INrl

)
INrl

, l = 1, · · · , L, and B
(0)
k =

√
Psk/NskINsk

,
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k = 1, · · · , K. We would like to mention that when the matrix weight is iden-

tity matrix, the performance of the matrix-weighted sum-MSE minimization

(WSMSE) algorithm without power control in [24] is similar to the proposed

Algorithm 2.2 without considering the direct links.

In the first example, we study the performance of the proposed algorithms

at different number of iterations. We also compare the performance of the al-

gorithms when the direct links are ignored. Moreover, the performance of the

total leakage minimization (TLM) algorithm in [24] is included as a benchmark.

Fig. 2.2 shows the MSE performance of the proposed algorithms versus P at dif-

ferent number of iterations for the first source-destination pair (k = 1). It can be

seen from Fig. 2.2 that both proposed algorithms perform better than the TLM

algorithm when the direct links are ignored. The performance of both proposed

algorithm is significantly improved when the direct links are taken into account.

For both proposed algorithms, the MSE reduces with increasing number of iter-

ations. Moreover, it can be observed that after ten iterations, the decreasing of

the MSE is small. Thus, we suggest that only ten iterations need to be carried

out in practice to achieve a good performance-complexity trade-off. It can also

be seen from Fig. 2.2 that both proposed algorithms have almost the same MSE

performance at convergence.

For this example, the average BER of all source-destination pairs yielded by

both proposed algorithms versus P at different number of iterations is shown in

Fig. 2.3. It can be clearly seen that the proposed algorithms with direct links yield

much smaller BER than the case when the direct links are ignored, especially at

high P level. We can also observe from Fig. 2.3 that the proposed Algorithm 2.1

has a slightly better BER performance than the proposed Algorithm 2.2. It can

also be seen from Fig. 2.3 that when the direct links are ignored, the proposed

algorithms perform better than the TLM algorithm.

In the second example, we study the performance of the proposed algorithms

with different number of relay nodes. Fig. 2.4 shows the MSE performance of the

proposed Algorithm 2.1 versus P with L = 5 and L = 10. It can be seen that

by doubling the number of relay nodes, a power gain of 10 dB is obtained at the

MSE of 0.2.
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Figure 2.2: Example 2.1: MSE versus P at different number of iterations.
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Figure 2.3: Example 2.1: BER versus P at different number of iterations.
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Figure 2.4: Example 2.2: MSE versus P for different L.

For this example, the BER performance of the proposed Algorithm 2.1 with

L = 5 and L = 10 is illustrated in Fig. 2.5. It can be seen that by increasing

the number of relay nodes, the system spatial diversity is increased, and thus, a

better BER performance is achieved. In particular, we observe that an 8 dB gain

is obtained at the BER of 10−3 by increasing L from 5 to 10. It is worth to notice

that in the case that L = 5 relays are used, running the proposed algorithm until

converged can significantly improve the performance by 2 dB at BER of 10−3.

In the next example, we study the performance of the proposed algorithms

with different number of source-destination pairs. Fig. 2.6 shows the BER per-

formance of both proposed algorithms versus P . Moreover, the BER of both

algorithms using the 16QAM modulation scheme is also illustrated in Fig. 2.6.

As expected, the system BER is increased when higher order constellations are

used. We can also observe from Fig. 2.6 that with a smaller number of source-

destination pairs, the number of interference channels decreases which yields a

better BER performance. Interestingly, the BER difference between the two pro-

posed algorithm becomes bigger when K = 3.

In the last example, we study the performance of the proposed algorithms on
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Figure 2.7: Example 2.4: Achievable end-to-end sum-rates.

the achievable end-to-end sum-rates of all source-destination pairs. The achiev-

able end-to-end sum rates can be calculated as

SR =
K∑
k=1

log2

(
det
(
Id + H̃H

kk (Ck + Ξk)
−1 H̃kk

))
(2.35)

It can be seen from Fig. 2.7 that, as expected, with the direct links taken into

account, both proposed algorithms achieve a higher sum-rate. Fig. 2.7 shows

that the proposed Algorithm 2.1 yields slightly better rate than the proposed

Algorithm 2.2.

2.5 Chapter Summary

In this chapter, we have investigated the transceiver design for interference MIMO

relay systems with direct source-destination links based on the MMSE criterion.

Two block coordinate descent algorithms have been developed to jointly optim-

ize the source, relay, and receiver matrices under power constrains at each source
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node and relay node. Numerical simulation results show that the proposed al-

gorithms converge quickly after a few iterations. The system MSE and BER per-

formance can be significantly improved compared with the algorithms without

considering the direct links. The proposed Algorithm 2.1 has a better MSE and

BER performance than the proposed Algorithm 2.2 at a higher per-iteration com-

putational complexity.

2.A Proof of (2.15)

From (2.11), we have

SMSE =
K∑
k=1

tr

[( L∑
l=1

ḠklFlH̄lk+T̄kk−Id

)
×
( L∑
l=1

ḠklFlH̄lk+T̄kk−Id

)H
+

L∑
l=1

σ2
rlḠkl FlF

H
l ḠH

kl

+σ2
dkW

H
k2Wk2 + σ2

dk WH
k1Wk1

+
K∑
m6=k

( L∑
l=1

ḠklFlH̄lm+T̄km

)( L∑
l=1

ḠklFlH̄lm+T̄km

)H]
. (2.36)

Using the identities of [41]

tr(ATB) = (vec(A))Tvec(B) (2.37)

tr(AHBAC) = (vec(A))H(CT⊗B)vec(A) (2.38)

vec(ABC) = (CT⊗A)vec(B) (2.39)

the SMSE ((2.36)) can be represented as a function of fl, l = 1, · · · , L, as

SMSE =
K∑
k=1

[( L∑
l=1

Ok,l,kfl − ok

)H( L∑
l=1

Ok,l,kfl − ok

)
+

K∑
m6=k

( L∑
l=1

Ok,l,mfl− qkm

)H( L∑
l=1

Ok,l,mfl− qkm

)
+

L∑
l=1

fHl Qklfl

]
+t1

= ψ1(f).
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2.B Proof of (2.23)

From (2.11), we have

SMSE

=
K∑
k=1

tr
[(

P̄kkBk−Id

)(
P̄kkBk−Id

)H
+

K∑
m=1,m 6=k

P̄kmBmBH
mP̄H

km

]
+ t2. (2.40)

Using the identities in (2.37)-(2.39), the SMSE function in (2.40) can be writ-

ten as

SMSE

=
K∑
k=1

[
(Skkbk − vec(Id))

H(Skkbk − vec(Id)) +
K∑

m=1,m 6=k

bHm

(
Id ⊗ P̄H

kmP̄km

)
bm

]
+t2

=
K∑
k=1

[
(Skkbk−vec(Id))

H(Skkbk−vec(Id))+bHk Ukbk

]
+t2

= Φ1(b).

2.C Proof of convergence of Proposed Algorithm 2.1

At the convergence point, since {F(n)
l } and {B(n)

k } are the optimal solution to the

subproblems (2.22) and (2.28) respectively, we have

tr
(
∇WJ

(
Θ(n)

)T (
W −W(n)

))
≥ 0 (2.41)

tr
(
∇Fl

J
(
Θ(n)

)T (
Fl − F

(n)
l

))
≥ 0 (2.42)

tr
(
∇Bk

J
(
Θ(n)

)T (
Bk −B

(n)
k

))
≥ 0 (2.43)

where W , [W1, · · · ,WK ], W(n) , [W
(n)
1 , · · · ,W(n)

K ], B , [B1, · · · ,BK ],

B(n) , [B
(n)
1 , · · · ,B(n)

K ], F , [F1, · · · ,FL], F(n) , [F
(n)
1 , · · · ,F(n)

L ], Θ(n) ,

[W(n),B(n),F(n)] and ∇XJ
(
Θ(n)

)
denotes the gradient of the objective func-

tion (2.12a) along the direction of X ∈ {W(n),B(n), F(n)} at Θ(n). By summing

up (2.41)-(2.43), we have tr
(
∇J

(
Θ(n)

)T (
Θ−Θ(n)

))
≥ 0, where ∇J

(
Θ(n)

)
,

[∇WJ
(
Θ(n)

)
,∇FJ

(
Θ(n)

)
,∇BJ

(
Θ(n)

)
], which shows that {Fl}, {Bk} and {Wk}

may either decrease or maintain but cannot increase the objective function (2.12a).

Moreover, the objective function is lower bounded by at least zero. Therefore,

the iterative algorithm converges to (at least) a stationary point of (2.12a) [44].
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Simplified Transceiver Design for

Interference MIMO Relay

Systems

In this chapter, we investigate the robust transceiver design for AF interference

MIMO relay communication systems, where multiple transmitter-receiver pairs

communicate simultaneously with the aid of a relay node. The aim is to min-

imize the MSE of the signal waveform estimation at the receivers subjecting to

transmission power constraints at the transmitters and the relay node. As the

transceiver optimization problem is nonconvex with matrix variables, the glob-

ally optimal solution is intractable to obtain. To overcome the challenge, we

propose an iterative transceiver design algorithm where the transmitter, relay,

and receiver matrices are optimized iteratively by exploiting the optimal struc-

ture of the relay precoding matrix. To reduce the computational complexity

of optimizing the relay precoding matrix, we propose a simplified relay matrix

design through modifying the transmission power constraint at the relay node.

The modified relay optimization problem has a closed-form solution. The system

model and problem formulation are introduced in Section 3.2. The proposed joint

transmitter, relay, and receiver matrices design algorithms are presented in Sec-

tion 3.3. In Section 3.4, we discuss the ability to extend the proposed algorithms

to the more general scenarios such as imperfect CSI and multiple relay nodes.

Simulation results are presented in Section 3.5 to demonstrate the performance

31
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of the proposed algorithms. Conclusions are drawn in Section 3.6.

3.1 Introduction

The transceiver design in Chapter 2 takes the direct links into account as they

may provide valuable spatial diversity. In the scenarios where the direct links

are blocked by obstacles or suffer from higher path loss (i.e. source-destination

distance is much longer that source-relay or relay-destination distances) [23], they

are much weaker than the source-relay or the relay-destination links. Thus, in this

chapter, we consider an interference MIMO relay communication system where

multiple transmitter-receiver pairs communicate simultaneously with the aid of

a single relay node. The relay node has an important role as the direct links

are omitted. The transmitters, receivers, and the relay node are equipped with

multiple antennas. The CSI of all the source-relay and relay-destination links are

assumed to be known at both the transmitters and receivers. Based on the fact

that the raw BER is closely related to the MSE of the signal waveform estimation

at the receivers, the MMSE is chosen as the design criterion.

Complexity is one of the criteria that mostly used for assessing the perform-

ance of a communication system. Complexity of an algorithm can be calculated

by the number of instructions or the run time until the algorithm converges.

Greater complexity can be equated with greater run time, and in most cases, it

also implies greater accuracy or performance. Thus, the objective of new trans-

ceiver design is to obtain an overall complexity reduction while satisfying a cer-

tain performance requirement. In Chapter 2, we propose the transceiver design

based on iterative approach to solve the highly nonconvex optimization problem.

The proposed algorithms provide good performance in term of MSE and BER.

However, they have high computational complexity. To reduce the complexity,

in this chapter, we investigate an approach that exploits the structure of the

relay precoding matrix. We propose two algorithms to significantly reduce the

computational complexity compared to the algorithms in Chapter 2. By using

the iterative approach, the nonconvex optimization problem is decoupled into

convex subproblems which can be solved effectively. Furthermore, by modifying
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the power constraint at the relay node, the relay optimization problem has a

closed-form solution.

The design of the two proposed algorithms follows the procedure of design-

ing Algorithm 2.2. Different from Algorithm 2.2, the relay precoding matrix is

designed based on its optimal structure which yields smaller computational com-

plexity to optimize. Moreover, in the second algorithm, we propose a simplified

relay matrix design through modifying the transmission power constraint at the

relay node. The modified relay optimization problem is suboptimal, but it is con-

vex and has a closed-form solution. Simulation results show that the simplified

relay matrix design has a slightly worse performance than the optimal relay mat-

rix in terms of the system MSE and BER. However, the computational complexity

of the simplified algorithm is much smaller than that of the optimal relay design

for interference MIMO relay systems with a large number of transmitter-receiver

pairs.

B1

...

BK

F
W1

...

WK

H1

HK

G1

G
K

...

...

...

...

...
...

Figure 3.1: Block diagram of an interference MIMO relay system with a single
relay node.

3.2 Interference MIMO Relay Systems Model

We consider a two-hop interference MIMO relay communication system where K

transmitter-receiver pairs communicate simultaneously with the aid of a single

relay node as shown in Fig. 3.1. The direct links between transmitters and re-

ceivers are ignored as they undergo much larger path attenuation compared with

the links via the relay node [23]. The kth transmitter and receiver are equipped
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with Nsk and Ndk antennas, respectively, and the number of antennas at the relay

node is Nr.

We assume that the relay node works in the half-duplex mode so the commu-

nication between transmitter-receiver pairs is completed in two time slots. In the

first time slot, the kth transmitter encodes the d×1 information-carrying symbol

vector sk with the Nsk × d transmitter precoding matrix Bk before transmitting

the Nsk × 1 precoded signal vector

xsk = Bksk, k = 1, · · · , K (3.1)

to the relay node. The received signal vector at the relay node is given by

yr =
K∑
k=1

HkBksk + nr (3.2)

where Hk is the Nr × Nsk MIMO channel matrix between the kth transmitter

and the relay node, nr is the Nr × 1 AWGN vector at the relay node with zero

mean and covariance matrix E
[
nrn

H
r

]
= σ2

rINr .

In the second time slot, the relay node amplifies the received signal vector

with the Nr ×Nr precoding matrix F as

xr = Fyr. (3.3)

The precoded signal vector xr is forwarded to the receivers. The received signal

vector at the kth receiver is given by

ydk = Gkxr + ndk, k = 1, · · · , K (3.4)

where Gk is the Ndk×Nr MIMO channel matrix between the relay node and the

kth receiver, ndk is the Ndk× 1 AWGN vector at the kth receiver with zero mean

and covariance matrix E
[
ndkn

H
dk

]
= σ2

dkINdk
.

Due to their simplicity, linear receivers are used to retrieve the transmitted

signals, and we have d ≤ Nr and d ≤ Ndk, k = 1, · · · , K. The estimated signal

vector at the kth receiver can be written as

ŝk = WH
k ydk, k = 1, . . . , K (3.5)
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where Wk is the Ndk× d receiver weight matrix. Using (3.2)-(3.4), the estimated

signal vector in (3.5) becomes

ŝk = WH
k

(
GkF

K∑
m=1

HmBmsm + n̄dk

)

= WH
k GkFHkBksk︸ ︷︷ ︸+ WH

k GkF
K∑

m=1,m6=k

HmBmsm + WH
k n̄dk︸ ︷︷ ︸ (3.6)

desired signal interference plus noise

where n̄dk , GkFnr + ndk is the total noise vector at the kth receiver.

The signal vectors sent by transmitters and the signal vector forwarded from

the relay node must satisfy the following transmission power constraints

tr
(
BkE

[
sks

H
k

]
BH
k

)
≤ Psk, k = 1, · · · , K (3.7)

tr
(
FE
[
yry

H
r

]
FH
)
≤ Pr (3.8)

where Psk and Pr denote the power budget at the kth transmitter and the relay

node, respectively, E
[
sks

H
k

]
= Id is the covariance matrix of the information-

carrying symbol vector at the kth transmitter, and the covariance matrix of the

received signal vector at the relay node E
[
yry

H
r

]
=
∑K

m=1 HmBmBH
mHH

m+σ2
rINr .

From (3.6), the MSE of estimating sk can be calculated as

MSEk = tr
(
E
[
(ŝk − sk) (ŝk − sk)

H
])

= tr
(

(WH
k H̃k − Id)(W

H
k H̃k − Id)

H + WH
k CnkWk + WH

k ΞkWk

)
(3.9)

k = 1, · · · , K

where H̃k is the equivalent MIMO channel matrix of the kth transmitter-receiver

pair, Cnk = E
[
n̄dkn̄

H
dk

]
is the covariance matrix of the equivalent noise, and

Ξk is the covariance matrix of interference at the kth receiver. They are given

respectively as

H̃k = GkFH̄k, k = 1, · · · , K

Cnk = E
[
(GkFnr+ndk)(GkFnr+ndk)

H
]

= σ2
rGkFFHGH

k + σ2
dkINdk

, k = 1, · · · , K

Ξk = GkF
K∑

m=1,m6=k

H̄mH̄H
mFHGH

k , k = 1, · · · , K
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where H̄k , HkBk is the equivalent MIMO channel matrix between the kth

transmitter and the relay node.

The aim of this chapter is to optimize the transmitter precoding matrices

{Bk} , {Bk, k = 1, · · · , K}, the relay precoding matrix F, and the receiver

weight matrices {Wk} , {Wk, k = 1, · · · , K}, to minimize the sum-MSE of the

signal waveform estimation at the receivers under transmission power constraints

at the transmitters and the relay node. From (3.7)-(3.9), the optimal transmitter,

relay, and receiver matrices design problem can be written as

min
{Wk},{Bk},F

K∑
k=1

MSEk (3.10a)

s.t. tr
(
BkB

H
k

)
≤Psk, k=1, · · · , K (3.10b)

tr
(
FE[yry

H
r ]FH

)
≤Pr. (3.10c)

3.3 Proposed Transmitter, Relay, and Receiver

Matrices Design Algorithms

The problem (3.10) is highly nonconvex with matrix variables, and a globally op-

timal solution is intractable to obtain. To overcome this challenge, in this section,

we propose two iterative algorithms to solve the problem (3.10) by optimizing

{Wk}, {Bk}, and F in an alternating way through solving convex subproblems.

3.3.1 Proposed Tri-Step Algorithm

In each iteration of this algorithm, we first optimize {Wk} based on {Bk} and F

from the previous iteration. Then by using the optimized receiver matrices {Wk}

and the transmitter matrices {Bk} from the previous iteration, we optimize the

relay matrix F. Finally, we optimize the transmitter matrices {Bk} based on

{Wk} and F obtained from the current iteration.

It can be seen from (3.7) and (3.8) that the power constraints are independent

of {Wk}. Thus, with given relay matrix and transmitter matrices, the optimal

linear receiver matrix which minimizes MSE in (3.9) is the well-known MMSE
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receiver [36]

Wk =
(
LkL

H
k + Cnk + Ξk

)−1
Lk, k = 1, · · · , K. (3.11)

With given transmitter matrices {Bk} and receiver matrices {Wk} obtained

in (3.11), the sum-MSE SMSE =
∑K

k=1 MSEk can be rewritten as a function of

F as

SMSE =
K∑
k=1

tr
((

WH
k GkFH̄k−Id

)(
WH

k GkFH̄k−Id

)H
+σ2

rW
H
k GkFFHGH

k Wk + σ2
dkW

H
k Wk

+WH
k GkF

K∑
m=1,m 6=k

H̄mH̄H
mFHGH

k Wk

)
. (3.12)

Let us introduce

H = [H1B1, . . . , HKBK ] = UhΛhV
H
h (3.13)

G = [GT
1 , . . . , GT

K ]T = UgΛgV
H
g (3.14)

as the singular-value decomposition (SVD) of the equivalent transmitters-relay

channel H and the equivalent relay-receivers channel G. The dimensions of Uh,

Λh, Vh are Nr × L1, L1 × L1, Kd × L1, respectively and the dimensions of Ug,

Λg, Vg are N̄d × L2, L2 × L2, Nr × L2, respectively, where N̄d ,
∑K

k=1Ndk,

L1 , min(Kd,Nr), and L2 , min(N̄d, Nr).

It can be shown similar to [47] that the optimal structure of the relay precoding

matrix F is

F = VgAUH
h (3.15)

where A is an L2 × L1 matrix. It can be seen from (3.15) that we only need to

optimize A in order to optimize F. Since the dimension of A is smaller than or

equal to that of F, optimizing A may have a smaller computational complexity

than directly optimizing F.

From (3.13) and (3.14), we have

HkBk = UhΛhV
H
h,k, Gk = Ug,kΛgV

H
g , k = 1, · · · , K (3.16)

where Vh,k contains the ((k − 1)d + 1)-th to the kd-th rows of Vh, and Ug,k

contains the (
∑k−1

i=1 Ndi + 1)-th to the (
∑k

i=1 Ndi)-th rows of Ug, that is, Vh =
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[VT
h,1, . . . , VT

h,K ]T , Ug = [UT
g,1, . . . , UT

g,K ]T . Note that Vh,k and Ug,k have

dimensions of d × L1 and Ndk × L2, respectively. By substituting (3.15) into

(3.16), we obtain that for k = 1, · · · , K

GkFH̄k=Ug,kΛgAΛhV
H
h,k (3.17)

GkFFHGH
k =Ug,kΛgAAHΛgU

H
g,k (3.18)

GkF
K∑

m=1,m 6=k

H̄mH̄H
mFHGH

k =Ug,kΛgA
K∑

m=1,m 6=k

ΛhV
H
h,mVh,mΛhA

HΛgU
H
g,k (3.19)

Using (3.17)-(3.19), the SMSE in (3.12) becomes

SMSE =
K∑
k=1

tr
((

WH
k Ug,kΛgAΛhV

H
h,k−Id

)(
WH

k Ug,kΛgAΛhV
H
h,k−Id

)H
+WH

k Ug,kΛgA
K∑

m=1,m 6=k

ΛhV
H
h,mVh,mΛhA

HΛgU
H
g,kWk

+σ2
rW

H
k Ug,kΛgAAHΛgU

H
g,kWk + σ2

dkW
H
k Wk

)
(3.20)

Using the identities of [41]

tr(ATB) = (vec(A))Tvec(B) (3.21)

tr(AHBAC) = (vec(A))H(CT⊗B)vec(A) (3.22)

vec(ABC) = (CT⊗A)vec(B) (3.23)

the SMSE (3.20) can be represented as a function of a , vec(A) as

SMSE =
K∑
k=1

[(
Oka− vec(Id)

)H(
Oka− vec(Id)

)
+ aHQka + aHSka

]
+t1 (3.24)

where t1 ,
∑K

k=1 σ
2
dktr(W

H
k Wk) does not depend on a, and for k = 1, · · · , K

Ok =
(
ΛhV

H
h,k

)T ⊗ (WH
k Ug,kΛg)

Qk = σ2
rIL1 ⊗ (ΛgU

H
g,kWkW

H
k Ug,kΛg)

Sk =

(
K∑

m=1,m 6=k

ΛhV
H
h,mVh,mΛh

)T

⊗ (ΛgU
H
g,kWkW

H
k Ug,kΛg)

From (3.15), the relay node transmission power constraint (3.8) can be written

as

tr(FE
[
yry

H
r

]
FH) = tr(A(Λ2

h + σ2
rIL1)A

H) (3.25)
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By introducing D = (Λ2
h+σ2

rIL1)⊗ IL2 , (3.25) can be rewritten as

aHDa ≤ Pr (3.26)

From (3.24) and (3.26), the relay matrix optimization problem can be written as

min
a

SMSE (3.27a)

s.t. aHDa ≤ Pr (3.27b)

The problem (3.27) is a QCQP problem [37], which is a convex optimization

problem and can be efficiently solved by the interior-point method [37]. The

problem (3.27) can be solved by the CVX MATLAB toolbox for disciplined convex

programming [38].

With given receiver matrices {Wk} and the relay matrix F, the sum-MSE can

be rewritten as a function of {Bk} as

SMSE =
K∑
k=1

tr
((

ḠkFHkBk−Id

)(
ḠkFHkBk−Id

)H
+ḠkF

K∑
m=1,m6=k

HmBmBH
mHH

mFHḠH
k

)
+ t2 (3.28)

where Ḡk = WH
k Gk and t2 ,

∑K
k=1 tr(W

H
k CnkWk) can be ignored in the optim-

ization process as it does not depend on {Bk}.

Using the identities in (3.21)-(3.23), the SMSE function in (3.28) can be writ-

ten as a function of bk , vec(Bk) as

SMSE =
K∑
k=1

[
(Skbk − vec(Id))H(Skbk − vec(Id))

+
K∑

m=1,m 6=k

bHm

(
Id ⊗HH

mFHḠH
k ḠkFHm

)
bm

]
+t2

=
K∑
k=1

[(
Skbk−vec(Id)

)
H
(
Skbk−vec(Id)

)
+bHk Tkbk

]
+t2 (3.29)

where for k = 1, · · · , K

Sk , Id ⊗ (ḠkFHk)

Tk , Id ⊗
K∑

m=1,m6=k

HH
k FHḠH

mḠmFHk
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By introducing T , bd(T1, · · · ,TK) and S̄k , [Sk1, · · · ,SkK ], where Skk = Sk

and Ski = 0, i 6= k, the SMSE function (3.29) can be written as a function of

b = [bT1 , bT2 , · · · ,bTK ]T as

Φ1(b) =
K∑
k=1

(
S̄kb− vec(Id)

)H(
S̄kb− vec(Id)

)
+bHTb. (3.30)

Let us introduce Ej = Id ⊗
(
HH
j FHFHj

)
, E = bd (E1,E2, · · · ,EK), Ēi =

bd
(
Ēi1, Ēi2, · · · , ĒiK

)
, where Ēii = IdNs and Ēij = 0, i 6= j. The optimal b can

be obtained by solving the following problem

min
b

Φ1(b) (3.31a)

s.t. bHĒkb ≤ Psk, k = 1, · · · , K (3.31b)

bHEb ≤ Pr − σ2
r tr(FFH) (3.31c)

The problem (3.31) is a QCQP problem and can be solved by the CVX MAT-

LAB toolbox [38] for disciplined convex programming.

The steps of applying the proposed tri-step algorithm to optimize {Bk}, F,

and {Wk} are summarized in Table 3.1, where the superscript (n) denotes the

variable at the nth iteration, and ε is a small positive number up to which con-

vergence is acceptable. By adopting the proof for convergence of the proposed

Algorithm 2.1 in 2.A, since all subproblems (3.11), (3.27), and (3.31) are convex,

the iterative algorithm converges to (at least) a stationary point of (3.10a).

Now we analyze the computational complexity of the proposed tri-step al-

gorithm assuming Kd ≤ Nr (i.e., L1 = Kd) and N̄d ≤ Nr (i.e., L2 = N̄d).

Since the dimension of b is
∑K

k=1Nskd and the dimension of a is N̄dKd =∑K
k=1NdkKd, the computational complexity of solving the QCQP problems (3.27)

and (3.31) using the interior point method [40] isO
(
(
∑K

k=1NdkKd)3
)

andO
(
(K+

1)
1
2 (
∑K

k=1Nskd)3
)
, respectively. Therefore, the computational complexity at each

iteration of the proposed tri-step algorithm is O
(
(
∑K

k=1 NdkKd)3+(K+1)
1
2 (
∑K

k=1

Nskd)3
)
. It can be seen that the per-iteration computational complexity of the

tri-step algorithm can be very high for interference MIMO relay systems with a

large number of users K, and in this case, the complexity is dominated by the

relay matrix optimization.
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Table 3.1: Procedure of solving the problem (3.10) by the proposed tri-step
algorithm.

1. Initialize the algorithm with F(0) and
{
B

(0)
k

}
satisfying (3.7) and (3.8); Set

n = 0.

2. Obtain
{
W

(n+1)
k

}
based on (3.11) with fixed F(n) and

{
B

(n)
k

}
.

3. Update A through solving the problem (3.27) with given
{
B

(n)
k

}
and{

W
(n+1)
k

}
.

4. Update F(n+1) based on (3.15) from the optimal A.

5. Update {B(n+1)
k } by solving the problem (3.31) with fixed F(n+1) and{

W
(n+1)
k

}
.

6. If MSE(n) −MSE(n+1) ≤ ε, then end.
Otherwise, let n := n+ 1 and go to Step 2.

3.3.2 Simplified Relay Matrix Design

To reduce the computational complexity of optimizing the relay matrix, in this

subsection, we develop a simplified relay matrix design algorithm by modifying

the power constraint at the relay node, which enables the relay optimization

problem to be decomposed into convex subproblems with closed-form solutions.

Substituting the MMSE receiver in (3.11) to (3.20) and using (3.17)-(3.19),

the SMSE can be rewritten as

SMSE

=
K∑
k=1

tr
(
Id − H̄H

k FHGH
k (GkFH̄kH̄

H
k FHGH

k + Cnk + Ξk)
−1GkFH̄k

)
=

K∑
k=1

tr
(
Id − (Ug,kΛgAΛhV

H
h,k)

H
( K∑
m=1

Ug,mΛgAΛhV
H
h,m(Ug,mΛgAΛhV

H
h,m)H

+σ2
rUg,kΛgAAHΛgU

H
g,k+σ

2
dkINdk

)−1

Ug,kΛgAΛhV
H
h,k

)
. (3.32)

Let us introduce

ΛgA = UH
g C =

K∑
k=1

UH
g,kCk (3.33)

where C = [CT
1 ,C

T
1 , · · · ,CT

K ]T and Ck is an Ndk × L1 matrix. Since Ug is a

unitary matrix, for any A, we have C = UgΛgA. Thus, instead of optimizing A,

we can optimize {Ck} , {C1, · · · ,CK}.
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Using (3.33), the optimal F in (3.15) is

F = VgΛ
−1
g UH

g CUH
h . (3.34)

By substituting (3.33) back into (3.32), we obtained the SMSE as a function of

{Ck} as

SMSE =
K∑
k=1

ψk(Ck) (3.35)

where

ψk(Ck) = tr
(
Id−Vh,kΛhC

H
k

( K∑
m=1

CkΛhV
H
h,mVh,mΛhC

H
k

+σ2
rCkC

H
k + σ2

dkINdk

)−1

CkΛhV
H
h,k

)
. (3.36)

Interestingly, it can be seen from (3.35) and (3.36) that the MSE of the kth

transmitter-receiver pair ψk is a function of Ck only. In other words, the objective

function is decomposed in terms of the optimization variable.

From (3.33), the transmission power constraint at the relay node (3.25) can

be written as

tr(A(Λ2
h + σ2

rIL1)A
H) = tr(CHΠCΨ) ≤ Pr (3.37)

where Π = UgΛ
−2
g UH

g and Ψ = Λ2
h + σ2

rIL1 . It can be seen from (3.37) that Ck,

k = 1, · · · , K, are coupled through the power constraint. We propose to modify

the power constraint (3.37) by applying the inequality of tr(AB) ≤ tr(A)tr(B).

The transmit power at the relay node becomes

tr(CHΠCΨ) ≤ tr(CΨCH)tr(Π). (3.38)

Then the power constraint in (3.37) is modified to be

K∑
k=1

tr(CkΨCH
k ) ≤ Pr/tr(Λ

−2
g ). (3.39)

In fact, (3.39) imposes a stricter transmission power constraint at the relay node,

i.e., if (3.39) holds, the original power constraint (3.37) is also satisfied.

Based on (3.36) and (3.39), the modified relay matrix optimization problem

can be written as

min
{Ck}

K∑
k=1

ψk(Ck) (3.40a)

s.t.
K∑
k=1

tr(CkΨCH
k ) ≤ P̄r (3.40b)
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where P̄r = Pr/tr(Λ
−2
g ) is the modified power budget at the relay node. We can

see from (3.40a) and (3.40b) that the relay matrix optimization problem can be

decomposed into K subproblems where the kth subproblem is to optimize Ck as

min
Ck

ψk(Ck) (3.41a)

s.t. tr(CkΨCH
k ) ≤ Prk. (3.41b)

Here Prk ≥ 0, k = 1, · · · , K, and
∑K

k=1 Prk = P̄r. Interestingly, by adopting the

derivation from [18], in the following, we show that the problem (3.41) can be

viewed as the MMSE-based relay matrix optimization problem for a single-user

two-hop MIMO relay system, which is convex and has a closed-form solution.

Let us introduce the following matrices for k = 1, · · · , K

Jrk =
K∑

m=1,m 6=k

ΛhV
H
h,mVh,mΛh + σ2

rIL1 (3.42)

Xk = J
− 1

2
rk ΛhV

H
h,k (3.43)

Yk = CkJ
1
2
rk (3.44)

where the dimensions of Xk and Yk are L1 × d and Ndk × L1, respectively. The

MSE for the kth transmitter-receiver pair becomes

fk(Yk) = tr
(
Id −XH

k YH
k

(
YkXkX

H
k YH

k + YkY
H
k + σ2

dkINdk

)−1

YkXk

)
= tr((Id+XH

k YH
k (YkY

H
k +σ2

dkINdk
)−1YkXk)

−1) (3.45)

and the power constraint (3.41b) becomes

tr(Yk(XkX
H
k + IL1)Y

H
k ) ≤ Prk. (3.46)

Using (3.45) and (3.46), the problem (3.41) can be equivalently rewritten as

min
Yk

fk(Yk) (3.47a)

s.t. tr(Yk(XkX
H
k + IL1)Y

H
k ) ≤ Prk. (3.47b)

The problem (3.47) is the MMSE-based relay matrix optimization problem for a

single-user two-hop MIMO relay system [18], [42] with the first hop channel Xk,

the relay matrix Yk and the second hop channel INdk
. It can be shown similar to

[18], [42] that the optimal structure of Yk is

Yk =
[
Id, 0d×(Ndk−d)

]T
Λy,kU

H
x,k (3.48)
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where Xk = Ux,kΛx,kV
H
x,k is the SVD of Xk, and the dimensions of Ux,k, Λx,k

and Vx,k are L1 × d, d× d, and d× d, respectively.

By substituting (3.48) back into (3.40a) and (3.40b), the relay matrix optim-

ization problem becomes

min
{Λy,k}

K∑
k=1

tr
(
(Id + Λ2

x,k(Id + σ2
dkΛ

−2
y,k)
−1)−1

)
(3.49a)

s.t.
K∑
k=1

tr(Λ2
y,k(Λ

2
x,k + Id)) ≤ P̄r (3.49b)

where {Λy,k} , {Λy,1, · · · ,Λy,K}. The problem (3.49) can be equivalently re-

written as the following problem with scalar variables

min
{λy,k,i}

K∑
k=1

d∑
i=1

(
1 +

λ2
x,k,iλ

2
y,k,i

λ2
y,k,i + σ2

dk

)−1

(3.50a)

s.t.
K∑
k=1

d∑
i=1

λ2
y,k,i(λ

2
x,k,i + 1) ≤ P̄r (3.50b)

λy,k,i ≥ 0, k = 1, · · · , K, i = 1, · · · , d (3.50c)

where λx,k,i and λy,k,i, i = 1, · · · , d, are the ith diagonal element of Λx,k and Λy,k,

respectively, and {λy,k,i} , {λy,1,1, · · · , λy,K,d}.

The problem (3.50) has the well-known water-filling solution and is given by

λy,k,i =

√√√√ 1

λ2
x,k,i + 1

[√
σ2
dkλ

2
x,k,i

(λ2
x,k,i + 1)β

− σ2
dk

]†
k = 1, · · · , K, i = 1, · · · , d (3.51)

where [x]† , max(x, 0), and β > 0 is the solution to the following equation

K∑
k=1

d∑
i=1

[√
σ2
dkλ

2
x,k,i

(λ2
x,k,i + 1)β

− σ2
dk

]†
= P̄r. (3.52)

As the left-hand side of (3.52) is a non-increasing function of β, it can be efficiently

solved by the bisection method [37]. Finally, the relay precoding matrix can be

obtaining from (3.34), (3.44), (3.48), and (3.51).

The transmitter matrices {Bk} and receiver matrices {Wk} can be optimized

through (3.31) and (3.11), respectively. The steps of applying the simplified relay

matrix design to solve the transceiver optimization problem are summarized in
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Table 3.2: Procedure of solving the problem (3.10) through the simplified relay
matrix design.

1. Initialize the algorithm with F(0) and
{
B

(0)
k

}
satisfying (3.7) and (3.8); Set

n = 0.

2. Obtain
{
W

(n+1)
k

}
based on (3.11) with fixed F(n) and

{
B

(n)
k

}
.

3. Solve the problems (3.50) with given
{
B

(n)
k

}
to find {λy,k,i} and update

F(n+1) through (3.34), (3.44), (3.48), and (3.51).

4. Update {B(n+1)
k } by solving the problem (3.31) with fixed F(n+1) and{

W
(n+1)
k

}
.

5. If MSE(n) −MSE(n+1) ≤ ε, then end.
Otherwise, let n := n+ 1 and go to Step 2.

Table 3.2. Since the dimension of {λy,k,i} is Kd, the computational complexity

of solving the problem (3.50) is O(Kd). When L1 = Kd (as in the complexity

analysis in Section 3.3.1), the SVD of Xk has a complexity order of O(Kd3).

Therefore, the complexity of the simplified relay matrix design is O(K2d3), which

is much lower than the computational complexity of the relay matrix design in the

previous subsection. However, we will see through numerical simulations that the

proposed algorithm in Table 3.1 has a better MSE and BER performance than

the algorithm in Table 3.2. Such performance-complexity tradeoff is very useful

for practical interference MIMO relay communication systems.

3.4 Extension of The Proposed Algorithms

3.4.1 Interference MIMO Relay Systems with CSI Mis-

match

In case of CSI mismatch, we assumed that the source-relay channel matrix Hk

is estimated at the relay and the relay-destination channel matrix is estimated

at the destination. Each channel can be modelled as a channel estimate and its
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estimation error covariance.

Hk = Ĥk + Θ
1
2
h,kHw,kΦ

T
2
h,k, k=1, · · · , K (3.53)

Gk = Ĝk + Θ
1
2
g,kGw,kΦ

T
2
g,k, k=1, · · · , K (3.54)

where Ĥk, Ĝk are the estimated channel matrices, Θh,k and Φh,k denote the

covariance matrix of channel estimation error seen from transmitter side and

receiver side, respectively. The matrix Hw,k and Gw,k are the Gaussian random

matrix with i.i.d. zero mean and unit variance entries and are the unknown part

in the CSI mismatch. The dimensions of Θh,k is Nsk×Nsk, Θg,k and Φh,k have a

dimension of Nr ×Nr, while Φg,k is a Ndk ×Ndk matrix. Thus, the true channel

matrices can be modelled as the well-known Gaussian-Kronecker model

Hk ∼ CN
(
Ĥk,Θh,k ⊗Φh,k

)
, k=1, · · · , K (3.55)

Gk ∼ CN
(
Ĝk,Θg,k ⊗Φg,k

)
, k=1, · · · , K (3.56)

As the exact CSI is unknown, in the following, we show that both proposed

algorithms can be extended to design statistically robust transceivers. It is shown

in [43] that for H ∼ CN
(
Ĥ,Θ⊗Φ

)
, there is

EH [HXHH ] = ĤXĤH + tr(XΘT )Φ (3.57)

where EH [.] stands for the expectation with respect to the H random matrix

H. Considering the CSI mismatch (3.53), (3.54) and using (3.57), we have for

m, k = 1, · · · , K

EG,H [Lk] = ĜkFĤkBk , L̂k (3.58)

EG,H
[
GkFH̄mH̄H

mFHGH
k

]
=EG

[
GkF

(
ĤmBmBH

mĤH
m + αmΦh,m

)
FHGH

k

]
= ĜkF

(
ĤmBmBH

mĤH
m + αmΦh,m

)
FHĜH

k + βm,kΦg,k (3.59)

σ2
rEG

[
GkFFHGH

k

]
=σ2

rĜkFFHĜH
k + γkΦg,k (3.60)

where for m, k = 1, · · · , K

αm = tr(BmBH
mΘT

h,m)

βm,k = tr
(
F
(
ĤmBmBH

mĤH
m + αmΦh,m

)
FHΘT

g,k

)
γk = tr(FFHΘT

g,k)



Chapter 3. Simplified Transceiver Design 47

Using (3.58)-(3.60), the statistical expectation of the sum-MSE in (3.12) with

respect to Hk and Gk, k = 1, , K, can be calculated as

EG,H [SMSE] =
K∑
k=1

tr
(

(WH
k L̂k − Id)(W

H
k L̂k − Id)

H + WH
k

(
Ĉn,k + Ξ̂k + γkΦg,k

+
K∑
m=1

(αmĜkFΦh,mFHĜH
k + βm,kΦg,k)

)
Wk

)
where for m, k = 1, · · · , K

Ĉn,k =σ2
rĜkFFHĜH

k + σ2
dkINdk

Ξ̂k = ĜkF
K∑

m=1,m6=k

ĤmBmBH
mĤH

mFHĜH
k

By introducing

P1 ,
K∑
m=1

α1,mΦh,m + σ2
rINr (3.61)

P2,k ,
K∑
m=1

βm,kΦg,k + σ2
dkINdk

+ α2,kΦg,k, k = 1, · · · , K (3.62)

we can rewrite (3.61) as

EG,H [SMSE]

=
K∑
k=1

tr
(

(WH
k L̂k − Id)(W

H
k L̂k − Id)

H + WH
k (ĜkFP1F

HĜH
k + Ξ̂k + P2,k)Wk

)
(3.63)

Let us introduce

W̃H
k , WH

k P
1
2
2,k, D̃k , P

− 1
2

i Ĥk, Ẽk , P
− 1

2
2,k Ĝk, F̃ , FP

1
2
1 (3.64)

we can rewrite (3.63) as

EG,H [SMSE] =
K∑
k=1

tr
(

(W̃H
k L̃k − Id)(W̃

H
k L̃k − Id)

H + W̃H
k (C̃n,k + Ξ̃k)W̃k

)
(3.65)

where for m, k = 1, · · · , K

L̃k = G̃kF̃H̃kBk

C̃n,k = G̃kF̃F̃HG̃H
k + INdk

Ξ̃k =
K∑

m=1,m6=k

G̃kF̃H̃kBkB
H
k H̃H

k F̃HG̃H
k
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In the case of CSI mismatch, the power constraint in (3.10c) becomes

tr
(
FE[yry

H
r ]FH

)
= tr

(
F(

K∑
m=1

(ĤmBmBH
mĤH

m + αmΦh,m) + σ2
rINr)F

H
)

= tr
(
F̃(

K∑
m=1

H̃mBmBH
mH̃H

m + σ2
rINr)F̃

H
)

(3.66)

Using (3.65) and (3.66), the statistically robust transmitter, relay, and re-

ceiver matrices design problem for interference MIMO relay systems under CSI

mismatch can be equivalently written as

min
{W̃k},{Bk},F̃

EG,H [SMSE] (3.67a)

s.t. tr
(
BkB

H
k

)
≤Psk, k=1, · · · , K (3.67b)

tr
(
F̃(

K∑
m=1

(H̃mBmBH
mH̃H

m + INr)F̃
H
)
≤Pr (3.67c)

where {W̃k} , {W̃1, · · · ,W̃K}. By comparing the problem (3.67) with the

problem (3.10), it can be seen that the problem (3.67) is in fact a transmitter

optimization problem for an “equivalent” interference MIMO relay system where

the transmitter-relay and relay-receiver channels are H̃k and G̃k , k = 1, · · · , K,

respectively, the relay precoding matrix is F̃, and the transmitter and receiver

matrices are Bk and W̃k, k = 1, · · · , K , respectively. Therefore, both proposed

algorithms can be applied to solve the problem (3.67).

3.4.2 Multiple Relays MIMO Communication System

The proposed tri-step algorithm can be easily extended to interference MIMO

relay systems with multiple relay nodes. Let us consider a system with L relay

nodes, where Fl denotes the precoding matrix at the lth relay node, Hlk and Gkl

are the channel matrices from the kth transmitter to the lth relay, and from the

lth relay to the kth receiver, respectively. Let us introduce the following SVDs

for l = 1, · · · , L

[Hl1B1, . . . , HlKBK ] = Uh,lΛh,lV
H
h,l

[GT
1l, . . . , GT

Kl]
T = Ug,lΛg,lV

H
g,l
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Similar to (3.15), it can be shown the optimal structure of relay precoding matrix

Fl is

Fl = Vg,lAlU
H
h,l, l = 1, · · · , L (3.68)

Similar to the procedure in Table 3.1, in each iteration of the tri-step algorithm,

we first update Wk with given Bk and {Fl} , {F1, · · · ,FL}. Then we update

each relay matrix Fl based on its optimal structure (3.68) with fixed Wk, Bk,

and other relay matrices Fm, m = 1, · · · , L, m 6= l. Finally, we optimize Bk

with given Wk and Fl. On the other hand, the proposed simplified relay matrix

design cannot be straightforwardly extended to multi-relay systems. Similar to

(3.34), the optimal Fl in (3.68) can be written as

Fl = Vg,lΛ
−1
g,lU

H
g,lClU

H
h,l. (3.69)

where Cl = [CT
l,1, · · · ,CT

l,K ]T . It can be shown that the MSE of the kth

transmitter-receiver pair is a function of C1,k, C2,k, · · · , CL,k . However, the

power constraint at the lth relay node is a function of Cl,1, Cl,2, · · · , Cl,K .

Thus, unlike a single-relay system, the optimal relay matrix design problem in

multi-relay systems cannot be easily decomposed into K subproblems with closed-

form solutions, due to the couplings among all Cl,k. Developing a simplified relay

matrices design algorithm for an interference MIMO relay system with multiple

relay nodes is an interesting future research topic.

3.5 Numerical Examples

In this section, we study the performance of the proposed joint transceiver matrices

design algorithms for interference MIMO relay systems in Table 3.1 (Algorithm 3.1)

and Table 3.2 (Algorithm 3.2) through numerical simulations. We consider an

interference MIMO relay system with d = 3, where all transmitters and receiv-

ers have the same number of antennas, i.e., Nsk = Ndk = 4, k = 1, · · · , K,

and the relay node has Nr = 20 antennas. We also assume that all transmit-

ters have the same power budget of Psk = 20dB, k = 1, · · · , K. All channel

matrices have i.i.d. complex Gaussian entries with zero mean and unit variance,

and all noises are i.i.d. Gaussian with zero mean and unit variance. The QPSK
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Figure 3.2: Example 3.1: MSE versus the number of iterations, K = 2.

constellations are used to modulate the source symbols. All simulation results

are averaged over 5 × 105 independent channel realizations. Both proposed al-

gorithms are initialized with F(0) =
√
Pr/tr

(∑K
k=1 PskHkHH

k /Nsk + INr

)
INr and

B
(0)
k =

√
Psk/NskINsk

, k = 1, · · · , K. As a benchmark, the performance of the

proposed algorithms is compared with the joint power control and transceiver-

relay beamforming (TxRxBF) algorithm developed in [23] and the TLM algorithm

developed in [24].

In the first numerical example, we study the convergence speed of the pro-

posed algorithms. Fig. 3.2 and Fig. 3.3 show the performance of the two proposed

algorithms versus different number of iterations. We also observe that the pro-

posed Algorithm 3.1 converges around 10 iterations. In fact, the decreasing of the

MSE and the BER are negligible after the five iterations. Thus, we suggest that

only 5 iterations are needed for the proposed Algorithm 3.1 to achieve a good

performance. The simulation results show that the conditions for convergence of

the proposed Algorithm 3.2, step 5 in Table 3.2, is typically met with two itera-

tions. By imposing the stricter condition on the power constraints in (3.39), the

search for F is now limited in a stricter space. Thus, the optimal F after the first
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Figure 3.3: Example 3.1: BER versus the number of iterations, K = 2.

iteration is typically closer to the final optimal solution compare to the proposed

Algorithm 3.1.

In the second numerical example, we compare the performance of the two

proposed algorithms together with the TLM algorithms. Fig. 3.4 shows the nor-

malized SMSE performance of the three algorithms tested versus Pr with K = 2.

It can be seen that both proposed algorithms outperform the TLM algorithm

throughout the whole Pr range. While the proposed Algorithm 3.1 has a better

MSE performance than the proposed Algorithm 3.2 at convergence, the latter

algorithm has a lower computational complexity.

For this example, the BER of all transmitter-receiver pairs versus Pr yielded

by the three algorithms is shown in Fig. 3.5. It can be seen that both proposed

algorithms yield smaller BER than the TLM algorithm over the whole Pr range.

Moreover, when it converges, the proposed Algorithm 3.1 has a better BER per-

formance than the proposed Algorithm 3.2 at a higher computational complexity.

It also shows that both transmitter-receiver pairs achieve almost identical BER,

indicating that both proposed algorithms are fair to all links.
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Figure 3.4: Example 3.2: MSE versus Pr at convergence, K = 2.

In the third numerical example, we study the performance of the proposed

algorithms with different number of transmitter-receiver pairs K. The normalized

SMSE performance of both proposed algorithms versus Pr is shown in Fig. 3.6

for K = 2, 3, 4. As expected, for both algorithms, the MSE increases with K.

Moreover, the proposed Algorithm 3.1 has better MSE performance than the

proposed Algorithm 3.2 for all K values.

For the fourth numerical example, we study the effect of CSI mismatch on the

performance of the two proposed algorithms. In our simulation, we assume the

channel estimation error at the receiver side is uncorrelated, i.e., Θh,k = σ2
eINsk

and Θg,k = σ2
eINr when measures the variance of the channel estimation error.

The covariance matrix of the channel estimation error at the receiver side is set

as

Φh,k =


1 φh φ2

h φ3
h

φh 1 φh φ2
h

φ2
h φh 1 φh

φ3
h φ2

h φh 1

Φg,k =


1 φg φ2

g φ3
g

φg 1 φg φ2
g

φ2
g φg 1 φg

φ3
g φ2

g φg 1


where we choose φh = φg = 0.45 in the simulation. Fig. 3.7 shows the performance

of the two proposed algorithms under at σ2
e = 0.01 and 0.001 respectively.
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Figure 3.5: Example 3.2: BER versus Pr for each transmitter-receiver pair,
K = 2.

As the TxRxBF algorithm in [23] considered an interference MIMO relay

system with d = 1, thus in this final example, we compare the performance of the

two proposed algorithms with the TxRxBF algorithm and the TLM algorithm.

Fig. 3.8 shows that the proposed Algorithm 3.1 has a better performance than

the TxRxBF algorithm while it outperforms the proposed Algorithm 3.2. The

computational complexity of the TxRxBF algorithm is higher than the proposed

Algorithm 3.2 and lower than the proposed Algorithm 3.1. Thus, the simulation

result confirms such performance-complexity tradeoff.

3.6 Chapter Summary

In this chapter, we have presented two algorithms for jointly optimizing the trans-

mitter, relay, and receiver matrices of interference MIMO relay systems. In par-

ticular, the optimal structure of the relay precoding matrix has been derived

to reduce the computational complexity. Moreover, by modifying the power con-

straint at the relay node, a simplified relay matrix design has been proposed which
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Figure 3.6: Example 3.3: MSE versus Pr for different K.

has a closed-form solution. Numerical simulation results show that the proposed

algorithms converge quickly after a few iterations. The proposed Algorithm 3.1

has a better MSE and BER performance than the proposed Algorithm 3.2 at a

higher computational complexity.
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Figure 3.7: Example 3.4: Effect of CSI mismatch on the proposed algorithms.
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Chapter 4

Interference Two-Way MIMO

Relay Systems

In this chapter, the two-way interference MIMO relay systems are investigated.

After a review of existing works in Section 4.1, the system model and problem

formulation are introduced in Section 4.2. The transceivers design algorithm is

developed in Sections 4.3. Simulation results are presented in Section 4.4 to

demonstrate the performance of the proposed algorithm. Conclusions are drawn

in Section 4.5.

4.1 Introduction

Most of the relay networks are assumed to work in half-duplex mode as it can

conserve bandwidth and avoid interference at the relay nodes [27]. Thus, in an

typical AF two-way MIMO relay system, the communication between two source

nodes is accomplished in four time slots: from source node 1 to the relay node,

from the relay node to source node 2, from source node 2 to the relay node and

from the relay node to source node 1. By using the idea of analogue network

coding [28], the two-way relaying protocol in which, the two source nodes ex-

change their information in two time slots without using extra channel resources,

has been studied recently to overcome the loss in terms of spectral efficiency in

half-duplex systems. In the first time slot, the relays receive data from the two

source nodes simultaneously, and in the second phase, the relays re-transmit the

56
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received signal to both source nodes. Since the received signal at each source

node contains the data from the other node and its own transmitted data, the SI

in the transmitted signal can be cancelled.

For single user two-way AF MIMO single relay systems, the optimal design of

source and relay matrices have been developed in [48] to maximize the achievable

weighted sum rate. An iterative algorithm based on the convex QCQP prob-

lem were introduced in [49]. A unified framework has been developed in [50]

to optimize the source and relay matrices for a broad class of frequently used

objective functions such as the MMSE, the MMI, and the minimax MSE. The

impact of quality-of-service (QoS) constraints on two-way MIMO relay systems

has been studied in [51]. For a single-user two-hop MIMO relay system with

multiple parallel relay nodes, an iterative algorithms using the gradient descent

algorithm has been studied in [52]. The works in [53]-[54] designed the optimal

transceiver processing matrices based on both the zero-forcing (ZF) and MMSE

criteria for interference two-way MIMO relay systems; however, the work only

consider the case of single relay node. In [55], the projection based separation of

multiple operators (ProBaSeMO) decouples the system into multiple independent

single-user two-way MIMO relay subsystems before enhancing the performance of

each subsystem individually. In [56], a general multi-user multi-cell relay network

has been investigated. The algorithms proposed in [55] and [56] adopt the block

diagonal technique to align the desired signal of a user in the null space of the

combined channels of all the other users. Maximal sum-rate is the chosen design

criterion.

In this chapter, we investigate the simplified relay matrix design for a two-way

interference MIMO relay system where multiple user pairs communicate simul-

taneously with the aid of single relay node. The source nodes and the relay node

are equipped with multiple antennas. The aim of this chapter is to optimize the

source and relay matrices to suppress the interference and minimize the SMSE

of the signal waveform estimation at the receivers, subjecting to transmission

power constraints at transmitters and the relay node. We propose an iterative

transceiver design algorithm to solve the subproblems as the transceiver optimiz-

ation problem is nonconvex with matrix variables. Compared with existing work
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such as [53]-[54], this chapter exploits the optimal structure of the relay matrix

to significantly reduce the computational complexity. Furthermore, the optim-

ization problem has a closed-form solution. The simplified relay matrix design

cannot be found in existing works on transceiver design for interference MIMO

relay systems [48]-[56]

In each iteration of this algorithm, we first update the receiver matrices based

on the transmitter and relay matrices from the previous iteration. Then based

on the transmitter matrices from the previous iteration and the receiver matrices

in this iteration, we modified the transmission power constraint at the relay and

obtain the closed form solution of relay matrix. Finally, the transmitter matrices

are updated with the optimal relay matrix and receiver matrices obtain in this it-

eration. The MSE and BER simulation results show that the proposed algorithm

has a slightly worse performance than the existing works in terms of the sys-

tem MSE and BER. However, the computational complexity of the simplified

algorithm is significant reduced for interference MIMO relay systems with a large

number of user pairs.

4.2 System Model and Problem Formulation

We investigate a multi-user two-hop interference MIMO relay communication

system where K user pairs, distributed on two different sites, communicate with

the aid of a single relay as shown in Fig. 4.1. For simplicity, the direct links

between site 1 and site 2 user pair are ignored as they undergo much larger path

attenuation compared with the links via the relay. Each kth node at site 1 and

site 2 is equipped with Nk,1 and Nk,2 antennas, respectively, and the number of

antennas at the relay node is Nr.

In this chapter, the relay node is assumed to work in the half-duplex mode

so the communication between the user pairs is completed in two time slots. In

the first time slot, the kth nodes at site i = 1, 2, encodes the symbol vector sk,i

with the source precoding matrices Bk,i before transmitting the Nk,i×1 precoded

signal vector

xk,i = Bk,isk,i, k = 1, . . . , K, i = 1, 2 (4.1)



Chapter 4. Interference Two-Way MIMO Relay Systems 59

B1,1

W1,1

...

BK,1

WK,1

F

B1,2

W1,2

...

BK,2

WK,2

H1,1

G1,1

HK
,1

GK
,1

G1,2

H1,2
G
K
,2

H
K
,2

...

...

...

...

...
...

Figure 4.1: Block diagram of an interference two-way MIMO relay system.

to the relay nodes. The information-carrying vector sk,i and the source precoding

matrix Bk,i have the size of d× 1 and Nk,i × d, respectively. The received signal

vector at the relay node is given by

yr =
K∑
k=1

Hk,1Bk,1sk,1 +
K∑
k=1

Hk,2Bk,2sk,2 + nr (4.2)

where Hk,i is the Nr ×Nk,i up-link MIMO channel matrix between the kth node

at site i and the relay node, nr is the Nr × 1 AWGN vector at the relay node

with zero mean and covariance matrix E
[
nrn

H
r

]
= σ2

rINr .

In the second time slot, the relay amplifies the received signal with the Nr×Nr

precoding matrix F as

xr = Fyr. (4.3)

The precoded signal vector xr is broadcast back to the nodes at site i = 1, 2.

The received signal vector at the kth node of site i is given by

yk,i = Gk,iFyr + nk,i, k = 1, . . . , K, i = 1, 2 (4.4)

where Gk,i is the Nk,i × Nr down-link MIMO channel matrix between the relay

node and the kth node at site i, nk,i is the Nk,i × 1 AWGN vector at the kth

destination node with zero mean and covariance matrix E
[
nk,in

H
k,i

]
= σ2

kINk,i
.

In this chapter, linear receivers are used to retrieve the transmitted signal.

The estimated signal vector at the kth node of site i can be written as

s̄k,i = WH
k,iyk,i k = 1, . . . , K, i = 1, 2 (4.5)

where Wk is a Nk × d receiver matrix at the kth node of site i. Using (4.4), the
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estimated signal in (4.5) becomes:

s̄k,i = WH
k,iGk,iFHk,̄iBk,̄isk,̄i︸ ︷︷ ︸

desired signal

+WH
k,iGk,iF

K∑
m 6=k

Hm,̄iBm,̄ism,̄i+WH
k,iGk,iF

K∑
m=1

Hm,iBm,ism,i︸ ︷︷ ︸
interference

+ WH
k,in̄k,i︸ ︷︷ ︸ .
noise, k = 1, . . . , K, i = 1, 2 (4.6)

where n̄k,i , Gk,iFnr+nk,i is the total noise at the kth node of the ith site. Each

of kth node at site i has knowledge of its own transmitted signal vector thus the

SI in (4.6) can be easily cancelled. The estimated signal vector at the kth node

of the ith site becomes:

ŝk,i = WH
k,iGk,iFHk,̄iBk,̄isk,̄i +WH

k,iGk,iF
K∑
m 6=k

Hm,̄iBm,̄ism,̄i

+WH
k,iGk,iF

K∑
m 6=k

Hm,iBm,ism,i + WH
k,in̄dk,i, k = 1, . . . , K, i = 1, 2 (4.7)

At the source nodes and the relay node, the signal vectors transmitted from

each node must satisfy the transmission power constraints as

tr
(
FE
[
yry

H
r

]
FH
)
≤ Pr (4.8)

tr
(
Bk,iE

[
sk,is

H
k,i

]
BH
k,i

)
≤ Pk,i (4.9)

k = 1, . . . , K, i = 1, 2.

where Pk,i and Pr denote the power budget at the kth node of site i and the

relay node, respectively, and E
[
sk,is

H
k,i

]
= Id is the covariance matrix of the

information-carrying symbol vector at the kth node of site i, and E
[
yry

H
r

]
=

2∑
i=1

K∑
k=1

Hk,iBk,iB
H
k,iH

H
k,i + σ2

rINr is the covariance matrix of the received signal

vector at the relay node.

The aim of this chapter is to optimize the precoding matrices {Bk,i} ,

{Bk,i, k = 1, · · · , K; i = 1, 2}, the relay precoding matrix F, and the receiver

matrices {Wk,i} , {Wk,i, k = 1, · · · , K; i = 1, 2}, to minimize the sum-MSE of
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the signal waveform estimation at the receivers under transmission power con-

straints at the source and relay nodes.

The MSE of the signal waveform estimation at the kth node of site i can be

calculated as

MSEk,i

= tr(E
[(

ŝk,i − sk,̄i
) (

ŝk,i − sk,̄i
)H]

)

= tr((WH
k,iLk,i − Id)(W

H
k,iLk,i − Id)

H + WH
k,iCnk,iWk,i + WH

k,iΞk,iWk,i) (4.10)

k = 1, . . . , K, i = 1, 2

where Lk,i is the equivalent MIMO channel matrix of the kth site 1 - site 2 user

pair, Cnk,i = E
[
n̄k,in̄

H
k,i

]
is the covariance matrix of the equivalent noise, and Ξk,i

is the covariance matrix of interference at the kth node of site i. They are given

respectively as

Lk,i = Gk,iFH̄k,̄i (4.11)

Cnk,i = E
[
(Gk,iFnr+nk,i)(Gk,iFnr+nk,i)

H
]

= σ2
rGk,iFFHGH

k,i + σ2
k,iINk

(4.12)

Ξk,i = Gk,iF
2∑
j=1

K∑
m6=k

H̄m,jH̄
H
m,jF

HGH
k,i (4.13)

k = 1, . . . , K, i = 1, 2

where H̄k,i = Hk,iBk,i is the equivalent MIMO channel matrix between the kth

source node of site i and the relay node.

From (4.8)-(4.10), the optimal source, relay, and receiver matrices design prob-

lem can be written as

min
{Wk,i},{Bk,i},F

2∑
i=1

K∑
k=1

MSEk,i (4.14a)

s.t. tr
(
Bk,iB

H
k,i

)
≤Pk,i (4.14b)

tr
(
FE[yry

H
r ]FH

)
≤Pr. (4.14c)

k = 1, . . . , K, i = 1, 2
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4.3 Proposed Algorithm 4

The problem (4.14) is highly nonconvex with matrix variables, and a globally

optimal solution is intractable to obtain. In this section, we propose an algorithm

that iteratively design the optimal receiver matrices Wk,i, the source matrices

Bk,i and the relay matrix F, such that the sum MSE is minimized with the power

constraints in (4.8) and (4.9). Furthermore, the power constraint at the relay

node (4.8) is modified to obtain the closed-form solution for the relay matrix F.

In each iteration, we optimize {Wk,i} based on {Bk,i} and F from the previous

iteration. Then using the optimized receiver matrices {Wk,i} and the source

matrices Bk,i from previous iteration, we optimize the relay matrix F. Finally,

we optimize source matrices based on {Wk,i} and F obtained from this iteration.

From (4.8) and (4.9), the power constraint is independent of Wk,i. Thus, with

the given relay matrix and source matrices, the optimal linear receiver matrix

which minimizes MSE in (4.10) is the well-known MMSE receiver:

Wk,i =
(
Lk,iL

H
k,i + Cnk,i + Ξk,i

)−1
Lk,i (4.15)

Substitute the MMSE receiver obtained in ((4.15)) to (4.10), the sum-MSE

SMSE =
∑2

i=1

∑K
k=1 MSEk,i can be rewritten as a function of F as

SMSE =
2∑
i=1

K∑
k=1

tr(Id − LH
k,iWk,i)

=
2∑
i=1

K∑
k=1

tr
(
Id − LH

k,i

(
Lk,iL

H
k,i + Nk,i + Ξk,i

)−1
Lk,i

)
=

2∑
i=1

K∑
k=1

tr
[
Id − H̄H

k,̄iF
HGH

k,i(Gk,iFH̄k,̄iH̄
H
k,̄iF

HGH
k,i

+Cnk,i + Ξk,i)
−1Gk,iFH̄k,̄i

]
(4.16)

Let us denote

H = [H̄1,2, . . . , H̄K,2, H̄1,1, . . . , H̄K,1] = UhΛhV
H
h (4.17)

G = [GT
1,1, . . . ,G

T
K,1,G

T
1,2, . . . ,G

T
K,2]T = UgΛgV

H
g (4.18)

as the SVD of the equivalent relay-nodes channel H and the equivalent nodes-

relay channel G. The dimensions of Uh, Λh, Vh are Nr × L1, L1 × L1, L1 × L1,
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respectively and the dimension of Ug, Λg, Vg are L2 × L2, L2 × L2, Nr × L2,

respectively, where L1 = 2Kd and L2 =
∑2

i=1

∑K
k=1Nk,i. We can derive the

following

Hk,iBk,i = UhΛhV
H
hk,i (4.19)

Gk,i = Ugk,iΛgV
H
g (4.20)

where Vhk,i contains the ((k−1)d+1+(2−i)L1)th to (kd+(2−i)L1)th rows from

nh, and Ugk,i contains the (
∑k−1

m=1Nm,i+1+(i−1)
∑K

m=1Nm,̄i)th to (
∑k

m=1Nm,i+

(i−1)
∑K

m=1Nm,̄i)th rows from Ug that Vh = [VT
h1,2, . . . ,V

T
hK,2,V

T
h1,1, . . . ,V

T
hK,1]T ,

Ug = [UT
g1,1, . . . , UT

gK,1, UT
g1,2, . . . , UT

gK,2]T . We should note that nhk,i and Ugk,i

have dimension of d× L1, Nk,i × L2, respectively.

Adopt the proof from [47], the optimal structure for relays matrix F is

F = VgAUH
h (4.21)

where A is a L2 × L1 arbitrary matrix. By substituting (4.21) into (4.19) and

(4.20), we obtain the following

Gk,iFH̄k,̄i = Ugk,iΛgAΛhV
H
hk,̄i (4.22)

Gk,iFFHGH
k,i = Ugk,iΛgAAHΛgU

H
gk,i (4.23)

Ξk,i = Ugk,iΛgA
2∑
j=1

K∑
m6=k

ΛhV
H
hm,jVhm,jΛhA

HΛgU
H
gk,i (4.24)

The SMSE in (4.16) becomes

SMSE

=
2∑
i=1

K∑
k=1

tr
[
Id −Vhk,̄iΛhA

HΛgU
H
gk,i(Ugk,iΛgAΛhV

H
hk,̄iVhk,̄iΛhA

HΛgU
H
gk,i

+σ2
rUgk,iΛgAAHΛH

g UH
gk,i + σ2

kINk,i

+Ugk,iΛgA
2∑
j=1

K∑
m 6=k

ΛhV
H
hm,jVhm,jΛhA

HΛgU
H
gk,i)

−1Ugk,iΛgAΛhV
H
hk,̄i

]
(4.25)

From (4.25), the SMSE can not be decomposed into subproblems because of

the complicating variable matrix A. Let us introduce

ΛgA = UH
g C =

2∑
i=1

K∑
k=1

UH
gk,iCk,i (4.26)
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where C = [CT
1,1, . . . ,C

T
K,1,C

T
1,2, . . . ,C

T
K,2]T and Ck,i is an Nk,i×L1 matrix. Since

Ug is an unitary matrix, for any matrix A, we have C , UgΛgA. Thus, instead

of optimizing A, we can optimize {C} = {C1,1, . . . , CK,1, C1,2, . . . , CK,2}. The

relay matrix F in (4.21) becomes

F = VgΛ
−1
g UH

g CUH
h . (4.27)

By substituting (4.27) into (4.25) we obtain the SMSE as a function of Ck,i

as

SMSE =
2∑
i=1

K∑
k=1

ψk,i(Ck,i). (4.28)

where

ψk,i(Ck,i) = tr
[
Id −Vhk,̄iΛhC

H
k,i

(
Ck,iΛhV

H
hm,̄iVhm,̄iΛhC

H
k,i + σ2

rCk,iC
H
k,i

+Ck,i

2∑
j=1

K∑
m 6=k

ΛhV
H
hm,jVhm,jΛhC

H
k,i + σ2

k,iINk,i

)−1

Ck,iΛhV
H
hk,̄i

]
(4.29)

It can be seen from (4.28) and (4.29) that the MSE of received signal transmit-

ted from the kth node of site ī to the kth node of site i is a function of Ck,i

only. In other words, the objective function SMSE is decomposed in terms of the

optimization variable.

From (4.26), the transmit power at the relay in (4.8) can be rewritten as

tr(FE[yry
H
r ]FH) = tr(A(

2∑
i=1

K∑
k=1

ΛhV
H
hk,iVhk,iΛh + σ2

rIL1)A
H)

= tr(Λ−1
g UH

g C(Λ2
h + σ2

rIL1)C
HUgΛ

−1
g )

= tr
(
CHUgΛ

−2
g UH

g C
(
Λ2
h + σ2

rIL1

))
= tr(CHΠCΨ) ≤ Pr. (4.30)

where Π = UgΛ
−2
g UH

g , Ψ = Λ2
h+σ2

rIL1 . It can be seen from (4.30) that Ck,i, k =

1, . . . , K, i = 1, 2 are coupled through the power constraint. We propose to modify

the power constraint (4.30) by applying the inequality of tr(AB) ≤ tr(A)tr(B).

The transmit power at the relay node becomes

tr
{
CHΠCΨ

}
≤ tr

{
CΨCH

}
tr {Π} . (4.31)

Then the power constraint in (4.30) is modified to be

2∑
j=1

K∑
k=1

tr
{
Ck,iΨCk,i

H
}
≤ Pr/tr(Λ

−2
g ). (4.32)
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In fact, (4.32) imposes a stricter transmission power constraint at the relay node,

i.e., if (4.32) holds, the original power constraint (4.30) is also satisfied.

Based on (4.28) and (4.32), the modified relay matrix optimization problem

can be written as

min
{Ck,i}

2∑
i=1

K∑
k=1

ψk,i(Ck,i) (4.33a)

s.t.
2∑
j=1

K∑
k=1

tr
{
Ck,iΨCk,i

H
}
≤ P̄r (4.33b)

where P̄r = Pr/tr(Λ
−2
g ) is the modified power budget at the relay. We can

see from (4.33a) and (4.33b) that the relay matrix optimization problem can be

decomposed into 2K subproblems where the (k, i)th subproblem is to optimize

Ck,i as

min
Ck,i

ψk,i(Ck,i) (4.34a)

s.t. tr
{
Ck,iΨCH

k,i

}
≤ Prk,i (4.34b)

where Prk,i ≥ 0, k = 1, . . . , K; i = 1, 2 and
2∑
i=1

K∑
k=1

Prk,i = Pr/tr(Λ
−2
g ).

Let us introduce the following matrices for k = 1, . . . , K

Jrk =
2∑
j=1

K∑
m=1,m 6=k

ΛhV
H
hm,jVhm,jΛh + σ2

rIL1 (4.35)

Xk,i = J
− 1

2
rk ΛhV

H
hk,̄i (4.36)

Yk,i = Ck,iJ
1
2
rk (4.37)

where the dimensions of Xk,i and Yk,i are L1× d and Nk,i×L1 respectively. The

MSE at the kth node on site i becomes

fk,i(Yk,i)

= tr
(
Id −XH

k,iY
H
k,i

(
Yk,iXk,iX

H
k,iY

H
k,i + Yk,iY

H
k,i + σ2

k,iINk,i

)−1

Yk,iXk,i

)
(4.38)

and the power constraint at the relay in (4.34b) becomes

tr
{
Yk,i

(
Xk,iX

H
k,i + IL1

)
YH
k,i

}
≤ Prk,i (4.39)

Using (4.38)-(4.39), the problem (4.34) can be equivalently rewritten as

min
Yk,i

fk,i(Yk,i) (4.40a)

s.t. tr
{
Yk,i

(
Xk,iX

H
k,i + IL1

)
YH
k,i

}
≤ Prk,i (4.40b)
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The problem (4.40) is the MMSE-based relay matrix optimization problem

for a single-user two-hop MIMO relay system [18] with the first hop channel Xk,i,

the relay matrix Yk,i and the second hop channel INk,i
. It can be shown similar

to [18] that the optimal structure of Yk is

Yk,i =
[
Id, 0d×(Nk,i−d)

]T
Λyk,iU

H
xk,i (4.41)

k = 1, · · · , K, i = 1, 2

where Xk,i = Uxk,iΛxk,iV
H
xk,i is the SVD of Xk,i, Yk,i = Uyk,iΛyk,iV

H
yk,i is the

SVD of Yk,i, and the dimensions of Uxk,i, Λxk,i, Vxk,i, Uyk,i, Λyk,i, Vyk,i are

L1 × d, d× d, d× d, Nk,i × d, d× d, d× L1, respectively.

By substituting (4.41) back into the problem in (4.33a) and (4.33b), the relay

matrix optimization problem becomes

min
{Λyk,i}

2∑
i=1

K∑
k=1

tr
(
Id + Λ2

xk,i

(
Id + σ2

k,iΛ
−2
yk,i

)−1
)−1

(4.42a)

s.t.
2∑
i=1

K∑
k=1

tr
{
Λ2
yk,i

(
Λ2
xk,i + I

)}
≤ P̄r (4.42b)

where {Λyk,i} , {Λy1,1, . . . ,ΛyK,1, . . . ,Λy1,2, . . . ,ΛyK,2}. The problem (4.42) can

be equivalently rewritten as the following problem with scalar variables

min
{λyk,i,j}

2∑
i=1

K∑
k=1

d∑
j=1

{
1 +

λ2
xk,i,jλ

2
yk,i,j + 1

λ2
yk,i,j + σ2

k,i

}−1

(4.43a)

s.t.

2∑
i=1

K∑
k=1

tr
{
λ2
yk,i

(
λ2
xk,i + 1

)}
≤ P̄r (4.43b)

λyk,i,j ≤ 0, k = 1, . . . , K, i = 1, 2, j = 1, . . . , d (4.43c)

where λxk,i,j and λyk,i,j, j = 1, . . . , d, are the jth diagonal element of Λxk,i and

Λyk,i, respectively, and {λxk,i,j} , {λx1,1,1, . . . , λxK,2,d}.

The problem (4.43) has the well-known water-filling solution and is given by

λyk,i,j =

√√√√ 1

λ2
xk,i,j + 1

[√
σ2
k,iλ

2
xk,i,j

(λ2
xk,i,j + 1)β

− σ2
k,i

]†
= k = 1, . . . , K, i = 1, 2, j = 1, . . . , d (4.44)

where [x]† , max(x, 0), and β > 0 is the solution to the following equation

2∑
i=1

K∑
k=1

d∑
j=1

[√
σ2
k,iλ

2
xk,i,j

(λ2
xk,i,j + 1)β

− σ2
k,i

]†
= P̄r (4.45)
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As the left-hand side of (4.44) is a non-increasing function of β, it can be efficiently

solved by the bisection method [37]. Finally, the relay precoding matrix can be

obtaining from (4.27), (4.37), (4.41) and (4.44).

With given receiver matrices {Wk,i} and relay matrices F, the sum-MSE can

be rewritten as a function of {Bk,i} as

SMSE

=
2∑
i=1

K∑
k=1

tr
((

Ḡk,iHk,̄iBk,̄i−Id

)(
Ḡk,iHk,̄iBk,̄i−Id

)H
+Ḡk,i

2∑
j=1

K∑
m6=k

Hm,jBm,jB
H
m,jH

H
m,jḠ

H
k,i

)
+ t2 (4.46)

where Ḡk,i = WH
k,iGk,iF and t2 ,

∑2
i=1

∑K
k=1 tr(W

H
k,iCnk,iWk,i) can be ignored

in the optimization progress as it does not depend on {Bk,i}.

Using the identities of [41]

tr(ATB) = (vec(A))Tvec(B) (4.47)

tr(AHBAC) = (vec(A))H(CT⊗B)vec(A) (4.48)

vec(ABC) = (CT⊗A)vec(B) (4.49)

the SMSE function in (4.46) can be written as a function of bk,i , vec(Bk,i), as

SMSE

=
2∑
i=1

K∑
k=1

[(
Sk,ibk,̄i−vec(Id)

)
H
(
Sk,ibk,̄i−vec(Id)

)
+

2∑
j=1

K∑
m 6=k

bHm,j

(
Id ⊗HH

m,jḠ
H
k,iḠk,iHm,j

)
bm,j

]
+t2

=
2∑
i=1

K∑
k=1

[(
Sk,̄ibk,i−vec(Id)

)
H
(
Sk,̄ibk,i−vec(Id)

)
+ bHk,i

2∑
j=1

Tk,j,ib
H
k,i

]
+t2 (4.50)

where for k = 1, · · · , K

Sk,i , Id ⊗ Ḡk,iHk,̄i

Tk,j,i , Id ⊗
K∑

m=1,m 6=k

HH
k,iḠ

H
m,jḠm,jHk,i.

By introducing Ti , bd(
∑2

j=1 T1,j,i, · · · ,
∑2

j=1 TK,j,i) and S̄k,i , [Sk1,i, · · · ,SkK,i],

where Skk,i = Sk,i and Skj,i = 0, j 6= k, the SMSE function (4.50) can be written
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Table 4.1: Procedure of solving the problem (4.14) by the proposed Algorithm
4.

1. Initialize the algorithm with F(0) and
{
B

(0)
k,i

}
satisfying (4.8) and (4.9); Set

n = 0.

2. Obtain
{
W

(n+1)
k,i

}
based on (4.15) with fixed F(n) and

{
B

(n)
k,i

}
.

3. Solve the problems (4.42) with given
{
B

(n)
k,i

}
to find {λy,k,i} and update

F(n+1) through (4.44), (4.41), (4.37) and (4.27).

4. Update {B(n+1)
k,i } by solving the problem (4.51) with fixed F(n+1) and{

W
(n+1)
k,i

}
.

5. If MSE(n) −MSE(n+1) ≤ ε, then end.
Otherwise, let n := n+ 1 and go to Step 2.

as a function of bi = [bT1,i, bT2,i, · · · ,bTK,i]T , as

2∑
i=1

Φi(bi) =
2∑
i=1

[ K∑
k=1

(
S̄k,̄ibi − vec(Id)

)H(
S̄k,̄ibi − vec(Id)

)
+ bHi Tibi

]
.

Let us introduce Ek,i = Id ⊗
(
HH
k,iF

HFHk,i

)
, Ei = bd (E1,i, . . . ,EK,i), Ēk,i =

bd
(
Ēk1,i, . . . , ĒkK,i

)
, where Ēkk,i = IdNk,i

and Ēkj,i = 0, k 6= j. The optimal

{bi} , {bi, i = 1, 2} can be obtained by solving the following problem

min
{bi}

2∑
i=1

Φi(bi) (4.51a)

s.t. bHi Ēk,ibi ≤ Pk,i (4.51b)

bHi Eibi ≤ Pr − σ2
r tr(FFH). (4.51c)

k = 1, · · · , K, i = 1, 2

The problem (4.51) is a QCQP problem and can be solved by the CVX MATLAB

toolbox [38] for disciplined convex programming.

The steps of applying the simplified relay matrix design to solve the trans-

ceiver optimization problem are summarized in Table 4.1. Since the dimension

of {λy,k,i} is 2Kd, the computational complexity of solving the problem (4.43) is

O(Kd). When L1 = Kd, the SVD of Xk,i has a complexity order of O(Kd3).

Therefore, the complexity of the simplified relay matrix design is O(K2d3), which

is much lower than the computational complexity of the existing algorithms. How-

ever, we will see through numerical simulations that the proposed algorithm 4
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in Table 4.1 has a slightly worse MSE and BER performance than the exist-

ing algorithms. Such performance-complexity tradeoff is very useful for practical

interference MIMO relay communication systems.

4.4 Numerical Examples
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Proposed Algorithm 4
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ProBaSeMO [50]

Power allocation [51]

Figure 4.2: Example 4.1: MSE versus Pr, K = 2

In this section, we study the performance of the proposed algorithm 4 to jointly

optimize the transceiver matrices through numerical simulations. We consider an

interference MIMO relay system with d = 1, where all transmitters and receivers

have the same number of antennas, i.e., Nk,1 = Nk,2 = 2; and the relay node has

Nr = 10 antennas. We also assume that all source nodes have the same power

budget as Pk,1 = Pk,2 = 15dB, k = 1, · · · , K, and the relay node has the power

budget as Pr. As the power constraints in (4.51b) and (4.51c) are inequalities, it

is possible to scale up the actual power used by the proposed algorithm to met the

power constraints with equalities. However, scaling up the power also increases

the impact of the interference. In the following simulations, we skip the scaling up

process. All channel matrices have i.i.d. complex Gaussian entries with zero-mean

and unit variance. The noises are i.i.d. Gaussian with zero mean and unit vari-

ance. The QPSK constellations are used to modulate the source symbols. In all
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simulation examples, there are K = 2 source-destination pairs, and the simulation

results are averaged over 5× 105 independent channel realizations. The proposed

algorithms are initialized with F(0) =

√
Pr/tr(

2∑
i=1

K∑
k=1

Hk,iBk,iB
H
k,iH

H
k,i + σ2

rINr)INr

and
{
B

(0)
k,i =

√
Pk,i/Nk,iINk,i

}
. As a benchmark, the performance of the proposed

algorithm is compared with the MMSE relay precoding algorithms in [53] and

[54].
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Figure 4.3: Example 4.1: BER versus Pr, K = 2

In the first example, we compare the performance of the proposed algorithm

with the transceiver design algorithms in [53] -[56] for a MIMO relay system with

K = 2 two-way link pairs. For a fair comparison with [53], we set d = 1. Fig. 4.4

and Fig. 4.3 show the normalized SMSE and the BER performance of the five

algorithms tested versus Pr. It can be seen that while the proposed algorithm

outperforms the eigen-beamforming algorithm in [53] and the ProBaSeMO in [55],

the MMSE precoding algorithm in [54] and the power allocation algorithm in [56]

outperform the proposed algorithm. However, the computational complexity of

the algorithms in [54] and [56] is higher than the proposed algorithm. Such

performance-complexity tradeoff is very useful for practical interference two-way

MIMO relay communication systems.
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Figure 4.4: Example 4.2: MSE versus the number of iterations, K = 2.

In the second example, we study the convergence speed of the proposed al-

gorithm. Fig. 4.4 and Fig. 4.5 show respectively the normalized SMSE and BER

performance of the proposed algorithm versus the number of iterations at various

levels of Pr with K = 2. The simulation results show that the conditions for

convergence of the proposed Algorithm 4, step 5 in Table 4.1, is typically met

with two iterations. By imposing the stricter condition on the power constraints

in (4.32), the search for F is now limited in a stricter space. Thus, the optimal F

after the first iteration is typically closer to the final optimal solution. It can be

seen that at all Pr levels, the proposed algorithm converges within two iterations.

4.5 Chapter Summary

In this chapter, we have presented an approach for jointly optimizing source, re-

lay and receiver matrices of an interference two-way MIMO relay system. Com-

pared to other iterative algorithms, the proposed algorithm derives the optimal

structure of the relay precoding matrix to reduce the computational complexity.

Furthermore, the power constraint at the relay node is modified which decoupled

the highly nonconvex relay optimization problem into the convex sub-problems.

Interestingly, each of the simplified sub-problems has a closed-form solution. Nu-

merical simulation results show that the algorithm converges quickly after a few
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Figure 4.5: Example 4.2: BER versus the number of iterations, K = 2.

iterations. Moreover, it shows that all users can achieve performance fairness

among users.



Chapter 5

Conclusions and Future Work

Interference MIMO offers several advantages over single user MIMO commu-

nication. This thesis aims at designing and studying advanced algorithms for

interference MIMO communication systems.

5.1 Concluding Remarks

Advanced transceiver designs for MIMO communication systems have been in-

vestigated. In Chapter 2, we focus on the interference MIMO relay systems

where the direct links are sufficiently strong and taken into account. We develop

two iterative algorithms to solve the highly nonconvex joint source, relay and

receiver optimization problem for interference MIMO relay communication sys-

tems. The MMSE of the signal waveform estimation at the destination nodes is

chosen as the design criterion to optimize the transceiver matrices for interfer-

ence suppression. The simulation results show that the proposed algorithms have

much better MSE and BER performance compared with the algorithms without

considering the direct links. Besides, for the slight lost of performance, the pro-

posed Algorithm 2.2 has a lower per-iteration computational complexity than the

proposed Algorithm 2.1.

Considering complexity as a main design criterion, in Chapter 3, we investigate

the scenarios where the direct links of the interference MIMO relay systems are

weak enough and can be ignored. The two proposed algorithms in this chapter,

the tri-step algorithm and the simplified relay matrix design, follow the similar

73
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design procedure of the Algorithm 2.2. However, instead of optimizing the full

size matrix, we exploit the optimal structure of the relay matrix which signific-

antly reduces the computational complexity. Besides, we modify the transmission

power constraint at the relay node in the simplified matrix design which further

reduces the complexity. The simulation results show the simplified matrix design

has a slightly worse performance than the tri-step algorithm. However, in a net-

work that has a large number of transmitter-receiver pairs, the computational

complexity of the simplified algorithm is much lower. We also investigate the

possibility to extend the two proposed algorithms to the more general scenarios

such as imperfect CSI and multiple relay nodes. Unfortunately, unlike the tri-

step algorithm, to the best of our knowledge, the simplified algorithm can not be

extended to the case of multiple relays.

Finally, we extend the simplified relay matrix design to the AF two-way inter-

ference MIMO relay systems. Compared with the existing iterative algorithms,

the proposed algorithm derives the optimal structure of the relay precoding mat-

rix. Furthermore, the highly nonconvex relay optimization problem is decoupled

into convex sub-problems by modifying the power constraint at the relay node.

The simulation results show that the proposed algorithm achieves significant re-

duction in computational complexity in the trade of system performance.

5.2 Future Works

In this thesis, we have developed several advanced signal processing algorithms

for interference MIMO relay systems. In Chapter 2, two iterative algorithms are

proposed to jointly optimize source, relay and receiver matrices. The complex-

ity of iterative algorithms is higher than closed-form solutions, thus closed-form

solution to the problem can be an interesting future work.

In Chapter 3 and Chapter 4, it has been shown that the simplified relay

matrix designs significantly reduce the complexity of the system while keeping the

performance at a reasonable level. Moreover, the algorithms also have closed-form

solution, which has comparatively lower complexity than iterative algorithms.

However, the proposed algorithms are limited to the scenario that a single relay
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node is in operation. Thus, extending the algorithms for the system with multiple

relays still remains open as a challenging problem.

It has been shown in Chapter 2 that the direct links between the source and

destination nodes provide valuable spatial diversity and should not be ignored.

Thus, considering the direct links for the two-way interference MIMO relay sys-

tems in Chapter 4 will also be interesting to investigate.

The finally yet importantly, it is practical to investigate the robust solution

against imperfect CSI for each problem investigated in the thesis.
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