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Abstract 

Fire monitoring over Indonesia using MODIS satellite data is analysed using 

the Indofire and MOD14 algorithms. The analysis studies the relationships between  

fire occurrence during the decade 2001-2010 with cloud cover, vegetation cover, 

and climate parameters. The sensitivity of the algorithm to fire detection is also 

investigated. This understanding is important especially to the forest management 

authority in Indonesia to support its improved management of the fires and to 

reduce the negative impacts, particularly on the environment. 

The study shows cloud cover, seasons, vegetation cover type, and climate 

parameters influence the distribution of detected fires. Cloud cover obstructs the 

satellite view of fire on the earth’s surface, therefore the number of observed fire 

hotspots (FHS) is likely less than the actual number of occurring fires. We have 

applied a correction to the number of FHS by using proportion of cloud cover 

relative to land cover. The estimation of FHS number based on monthly cloud 

cover data is shown to be different to estimations based on yearly cloud cover data. 

Seasonal data analysis shows the occurrence of fires in the dry season in higher 

than during the wet season. Vegetation cover is also analysed and the data show 

that swamp bush areas are the most prone areas to be burned, particularly during 

the dry season. Finally, the climate parameters precipitation and SOI that indicate 

the El-Nino and La-Nina phenomenon are shown to be correlated with the temporal 

patterns of fire occurrence. The El-Nino phenomenon tends to delay the onset of the 

wet season and therefore the number of fire was detected is higher during the El-

Nino than the La-Nina. 

There is potential to adjust algorithm threshold coefficients to correct for wet 

season versus dry season biases. This justification is based on sensitivity analysis of 

the fire detection algorithm applied to MODIS data over Indonesia. The analysis 

was conducted using the MOD14 algorithm and shows that the algorithm displays a 

different response to the MODIS data acquired in the dry and wet seasons. The 

sensitivity to detecting and monitoring fires is related to the operation of the remote 

sensing algorithm, in particular the selection of detection threshold values. The 



iv 
 

results suggest it may be appropriate to apply threshold values of 317 K for the dry 

season and 316 K for MODIS data applied in Indonesia.  
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CHAPTER  1 
INTRODUCTION 

1.1 Background 
Rainforests play significant roles in sustaining the balance of global 

ecosystems, such as keeping air healthy; preventing the occurrence of floods, 

droughts, soil erosion, and landslides; and mitigating anthropogenic factors 

affecting climate change (REDD-Indonesia, 2011a). Rainforests provide medicinal 

plants, food resources, and much biological diversity, as well as providing homes 

for many kinds of animals (Mongabay, 2010a). Their existence is significant for 

balancing the ecosystem and reducing emission of greenhouse gases, mostly carbon 

dioxide (CO2), into the atmosphere (REDD-Indonesia, 2011b). Additionally, 

rainforests are considered as lungs of the world due to their function in converting 

CO2 to oxygen (O2) and keeping the air fresh and healthy (Mongabay, 2010c).  To 

keep the world’s ecosystems balanced, the existence of rainforests should be 

maintained (Mongabay, 2010b). 

Many environmental conservation researchers (Siegert and Hoffmann, 2000; 

Page et. al., 2002; Siegert, 2008; Ballhorn et. al., 2009; Jaenicke et. al., 2010) are 

aware of, and concerned with, the prevention of decreasing and degrading 

rainforests, especially tropical rainforests, located in the tropical “belt” (within 

latitudes 23.5 North and 23.5 South). The three countries with the largest tropical 

rainforests are Brazil, Congo, and Indonesia (Mongabay, 2010b).  

Indonesia, geographically located in the tropics region, has a large area of 

tropical rainforests, representing twenty percent of the world’s rainforests 

(Mongabay, 2010b). Most of the forests are located on three large islands: Sumatra 

8.3 Mha, Kalimantan 6.8 Mha, and West Papua 4.6 Mha (Dwiyono and Rachman, 

1996; Page and Riley, 2004). However, severe deforestation has destroyed tropical 

rainforests in Southeast Asia (FAO, 2001), particularly in Kalimantan with various 

types of forests (Langner, 2009). Langner (2009) reported the annual deforestation 
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rate in Kalimantan island was 1.7% between 2002 and 2005. The decreasing forest 

area is mostly caused by humans undertaking activities aiming to make their lives 

better; however, these activities have often had the opposite impact on the natural 

environment. For example, over the three decades 1980 to 2010, cutting down or 

clearing tropical rainforests in Kalimantan has been increasing due to massive 

transmigration and logging. Moreover, the increase of deforestation has also been 

caused by Indonesian government policy regarding Indonesia’s paddy production 

as part of the Mega Rice Project. As a result, millions of hectares of tropical 

rainforest areas in Kalimantan have been degraded (Roach et. al., 2004). As part of 

the Mega Rice Project, large areas of forest were converted into farmlands and 

canals. The Indonesian government created more than 4000 km of canals, 12 m 

wide, for drainage of the rice paddies (Riley, 2006). 

Deforestation and forest degradation in non-industrialized countries reduces 

the balance of O2 produced by forests as sources and the CO2 absorbed from the 

atmosphere (Harris et. al., 2008). Maintaining the existence of rainforests prevents 

a positive net amount of CO2 in the atmosphere. CO2 is a major greenhouse gas,  

which is absorbed by rainforests, considered as globally significant CO2 sinks 

(Levine, 1995). CO2 causes heat to be trapped as it enters the Earth’s atmosphere; 

this leads to an increase in the global mean temperature (Saharjo, 2004). 

The United Nations (UN), as representative of many countries in the world, is 

concerned with environmental conservation, particularly with respect to rainforests. 

The UN developed and supported conventions aimed at supporting the 

sustainability of the world’s rainforests. For example, the Kyoto Convention, 

known as the “Kyoto Protocol”, is an agreement to manage the forests to help 

provide a sink for anthropogenic emissions of CO2 as greenhouse gases, which 

impact global warming and climate change (Australian-Government, 2013). The 

Kyoto protocol initiated the concept of placing a value on the produced oxygen or 

carbon dioxide by any country in the world. A country that produces O2 more than 

CO2 is considered in positive credit, and the opposite will be considered in negative 

credit. As a consequence, a country which has negative total credit should pay 

another country with positive credit; this mechanism was introduced as carbon 

trading (NOVA, 2010). 
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In tropical regions, humans often undertake burning activities to manage their 

plantation fields and effect cultivation shifting activities (Crutzen and Andreae, 

1990). Fire or combustion is considered the easiest method in land clearing, and is 

often used to convert extensive areas of forest into plantations and cultivation land 

for agriculture (Siegert et. al., 2001). Fire is also employed to prevent spreading of 

invasive shrubs in grasslands, and in land use changing from primary forest to other 

uses. To reduce losses caused by fires, the alternative methods such as slash and 

pile are offered to gain better environmental stability. However, these methods are 

impractical due to the excessive time required and expenses (Tomich et. al., 1998). 

The uncontrolled use of fire has reduced wetland forests in Kalimantan over 

the last two decades (Siegert and Hoffmann, 2000; Fuller and Fulk, 2001). These 

activities decrease soil humidity, mostly in peat lands, and so increase the 

susceptibility to fire (Thoumi, 2009). Every year massive amounts of forest are 

burnt as a result of human activities (Ruchiat, 2001).  

In addition, Hoffmann et al. (1999) reported that rainforests in Kalimantan 

Indonesia have experienced an increase in severe fires due to a long period of 

ENSO (El-Nino Southern Oscillation) drought in late 1997. These forest fires had a 

significant impact on peatland because most of the fires occurred in the peatland 

area. Page, et al. (2002) utilized Landsat TM (Thematic Mapper) images  to study 

the impact of fire. They reported that there are 5.2 million ha of peatland rainforests 

in East Kalimantan of Indonesia; 25% of the entire province was affected by fires 

in 1997. 

In the late 1997 forest fire period, the Central Kalimantan province also dealt 

with numerous fires. This significant event affected most of Southeast Asia, not 

only in human respiratory disease but also a trans-boundary haze smoke pollution 

in Singapore, mainland Malaysia, Sumatra and Kalimantan itself (Tacconi, 2003). 

In the case of peatland forest fires, increasing carbon dioxide is not only 

caused by vegetation burning but also by peatlands burning (Jaenicke et. al., 2008). 

Research by Page et al.(2002) estimated that about 0.81 to 2.57 Giga tonnes of 

carbon in peatland forest was burned and drove carbon dioxide release into the 

atmosphere in Indonesia in 1997. The C to CO2 ratio is 44/12 therefore one would 

expect 2.97 to 9.42 Giga tonnes of CO2 released into the atmosphere. This was 
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equal to 13-40% of global carbon emissions. During that period the burning of 

peatlands contributed to 60% of smoke production in South-East Asia, and 

impacted 35 million people (ADB and BAPPENAS, 1999; MWH-Indonesia, 

2005). 

The rate of increasing global temperature may be controlled by minimizing 

forest burning which emits a significant amount of CO2 (Aldhous, 2004). Forest 

fire in Indonesia will become seriously worse in terms of the frequency of 

occurrence due to low awareness of people in land clearing management (Langner 

and Siegert, 1996). The Indonesian government has realized that the fires that have 

occurred in Indonesia have had a global impact, especially in terms of climate 

change and global warming (Adiningsih, 2003). Many national and international 

researchers have been encouraged to conduct environmental research in order to 

solve this problem (Langner and Siegert, 2006, 2009).  

The Indonesian government tasked three agencies, The Ministry of Forestry, 

LAPAN (Lembaga Penerbangan dan Antariksa Nasional) or translated as the 

National Institute of Aeronautics and Space, and the Ministry of Environment to 

take responsibility to manage the forest fires and their impacts. The Ministry of 

Forestry is responsibe for managing, controlling, and suppressing the forest fire 

occurrence in Indonesia. LAPAN undertakes research and develops systems to 

monitor and manage forest fires. The Ministry of Environment is authorized to act 

upon fire prevention, extinction, and rehabilitation of the environment after the 

effects of fire. The fire monitoring is carried out both manually and using remote 

observations from space: remote sensing technology (Lillesand and Keifer, 2004). 

Remote sensing technology is important when fire monitoring and information 

collection is aimed at understanding broad fire occurrence, and when gathering 

information in areas of limited accessibility. Remote sensing also gathers fire 

information in a consistent manner in terms of acquisition time and methodology, 

thus there is potential to utilize remote sensing data to understand spatial and 

temporal patterns. 

Remote sensing using satellite data is the main method applied in the 

research and development of the three agencies. The Forest Planning Agency 

(BAPLAN which is spelled out from Badan Planologi Kehutanan), as the agency 
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responsible in Indonesian for forest planning and sustainability, has conducted 

collaborative research related to fires and existing forest monitoring using Landsat-

7 ETM+ with 30 m spatial resolution, MODIS (Moderate Resolution Imaging 

Spectroradiometer) with spatial resolution 1 km, and SPOT (Satellite Pour 

l’Observation de la Terre) –Vegetation with spatial resolution 20m (BAPLAN, 

2006). LAPAN used NOAA-AVHRR (National Oceanic and Atmospheric 

Administration’s - Advanced Very High Resolution Radiometer) data with spatial 

resolution 1.1 km for their fire monitoring activities and research (Thoha, 2008). 

Beside the different data, both BAPLAN and LAPAN also used different methods 

and algorithms for fire detection which produce different fire detection results 

(Thoha, 2008). The algorithm utilized by LAPAN applied threshold values of 320 

K and 314 K to the NOAA-AVHRR day and night data respectively. Meanwhile, 

the threshold values applied to the BAPLAN algorithm with MODIS data was 315 

K and 310 K for the day and night respectively. Therefore typically LAPAN 

reports a lower number of detected hotspots compared to BAPLAN (Thoha, 2008).  

To manage these issues, the Indonesian government initiated the 

collaborative project between the Indonesian and Australian governments to create 

the fire detection and monitoring system called IndoFire. Currently, the main 

system of fire monitoring in Indonesia is IndoFire. The IndoFire system is based on 

the fire detection algorithm developed by NASA’s land research team for MODIS 

data application, namely the MOD14 algorithm. However, the system is still in 

need of adjustment. It requires research and development to meet the accurate, 

near-real time information required to support monitoring of fire activity in 

Indonesia, to provide information regarding fire activity and its relationship to fire 

hazard, and fire mitigation through early warning systems. 

Despite the promising potential of remote sensing technology to support 

“easier” observations for wide areas and in near-real time, the accuracy of detection 

results are affected by several factors such as cloud cover (Seielstad et. al., 2002), 

solar radiation (Giglio et. al., 1999), vegetation cover classification (Bucini and 

Lambin, 2002; Miettinen and Liew, 2003; Tulbure et. al., 2011), and seasonal 

factors (Schwemlein and Williams, 2006; Dayamba et. al., 2010). The accuracy and 
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sensitivity of the IndoFire system, which has been developed for Indonesian fire 

detection, has not yet been assessed (Steber, 2013). 

Assessing IndoFire as a fire detection system is important. Assessment results 

contribute to providing reliable information and an understanding of the 

performance and accuracy of the system for monitoring the occurrence of active 

fires, known as fire hot spots (FHS). 

1.2 Research Aim and Significance 
Research Aim 

This research aims to: 

1. Analyse the impact of cloud cover on the reported FHS number, and design an 

approach to predict the actual number of FHS for the whole area of interest.  

2. Investigate and analyse the impact of vegetation cover types on the fire activity 

based on the reported FHS number in various land cover classifications. 

3. Determine the sensitivity of the MOD14 algorithm applied to the MODIS data 

over Indonesia. 

4. Analyse the relationship of detected FHS number and the seasonal factors, 

precipitation and Southern Oscillation Index (SOI), for a decadal time series.  

Significance 
The results of this research will contribute to science development, and 

potentially be included in considerations by the Indonesian Government and 

authorities who have responsibility for fire monitoring and management. 

Firstly, the contributions in relation to science are: (1) the development of a 

new technique for fire mapping which considers cloud cover; (2) a deeper 

understanding of fire-prone vegetation cover types in Indonesia, which will give 

focus to fire prevention efforts and avoid associated negative impacts on the 

environment, health, and other resources; (3) develop an enhanced analysis of fire 

detection algorithms used in Indonesia based on MODIS data; and (4) conduct 

further analyses to determine the relationship between FHS characteristics and 

factors such as cloud coverage, vegetation cover, and climate parameters 

(precipitation and SOI). 
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Secondly, the results of this research provide scientific evidence and rational 

analysis of several factors that potentially impact fire detection using remote 

sensing data from satellites. The Indonesian authority agency in fire management 

will have additional reliable information about active fire characteristics and the 

fire detection method or algorithm. This research also contributes to the further 

development of an automated burnt area mapping algorithm, to improve the 

predictability of the impact of fire on infrastructure and environment.  

1.3 Thesis Structure 
This thesis is written in four chapters: introduction, review of literature, 

results and analysis of fire detection, and conclusion. 

Chapter 1. The Introduction describes general information related to this 

research including background to the Indonesian forest environment, the role of fire 

in this environment, and associated problems and issues. The efforts of the 

Indonesian Government in managing and controlling fire is also introduced in this 

chapter, followed by research aims, significance, and thesis structure. 

Chapter 2. The Review of Literature provides an overview of general 

understanding and concepts of remote sensing, especially satellite remote sensing, 

focusing the discussion on fire detection purposes. Descriptions and characteristics 

of remote sensing satellites are also introduced in this chapter. Also presented is the 

physical background theory of remote sensing, including how electromagnetic 

radiation interacts with the atmosphere and the Earth’s surface. Finally, a review of 

research regarding fire detection and principles using satellite remote sensing is 

explored, including thermal band discussions and the detection algorithms which 

have been used.  

Chapter 3. The Results and Analysis of Fire detection contains research 

findings and scientific explanations involving parameters which affect the fire 

detection results. Data and evidence supporting this research is presented. The 

cloud coverage as an uncontrolled factor is considered in the discussion of 

estimating the number of FHS. Fire characteristics in the different vegetation cover 

types are also discussed. Finally, the relationship of climate factors (precipitation 

and SOI) in the pattern of fire activity during the decade 2001-2010, and validation 
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methods applied in this research regarding fire occurring in two provinces of 

Indonesia, are presented. 

Chapter 4. The Conclusion presents an overview of the research results and 

introduces some points for possible on going research for remote sensing fire 

detection and burned area estimation. A summary of the research and results is a 

closing description of this chapter. 

Appendices containing supporting data are also included. 
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CHAPTER  2 
REVIEW OF LITERATURE 

This chapter discusses some of the principles of remote sensing for fire 

detection and monitoring using electromagnetic energy. Section 2.1 introduces the 

general principles of satellite remote sensing, in particular the satellites typically 

employed in environmental remote sensing, including sensing of fires. This first 

section gives a basic explanation of remote sensing and the physical principles of 

electromagnetic energy radiation in the context of earth observing by satellite-

borne sensors. Section 2.2 discusses thermal radiance as an essential domain of 

electromagnetic radiation from fire and basic principles related to detecting fire 

occurrence using the remotely sensed thermal radiation. Section 2.3 explains the 

methods of detecting fire using remote sensing satellite data, particularly MODIS 

data. This section also describes two algorithms (MOD14 and IndoFire) and how 

fire detection works. Some of the environmental parameters which affect the 

operation of the fire algorithm are discussed in Section 2.4. Such parameters are 

cloud cover, vegetation cover types, day and night time, and seasonal parameters 

(SOI and precipitation). The sensitivity of fire detection and relationships to the 

wet and dry seasons is described in Section 2.5. The issue of validation methods to 

assess the results of detecting fire is reviewed in Section 2.6. 

2.1 Remote Sensing Principles 
Remote sensing is defined as the “investigation of the characteristics of 

physical objects and environmental properties by the methods of recording, 

measuring and interpreting imagery and digital representations of energy patterns 

derived from non-contact sensor systems” (Lillesand and Keifer, 2004). Besides 

the science and technology point of view, remote sensing also encompasses the art 

of processing and interpreting data (Lillesand and Kiefer, 2000). Environmental 

remote sensing instruments are typically mounted on satellites or aircraft. The 
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remote sensing principle is similar to the way our body’s three’s senses: vision, 

smelling, and hearing work. That is, they do not need physical contact with objects 

to detect their properties. In remote sensing for fire monitoring, thermal properties 

of fire are sensed remotely from the sensors mounted on board the remote sensing 

satellites. 

Remote sensing, in the context of environmental monitoring typically relies 

on the detection and measurement of the energy of electromagnetic waves e.g. the 

light intensity, the heat emitted by objects, and sometimes radio waves (Sabins, 

1987). In remote sensing, energy reflected or emitted from the earth’s surface is 

measured using sensors that are mounted on aircraft or satellite platforms. 

Satellite-borne remote sensing instruments detect electromagnetic energy that is a 

combination of radiation reflected and emitted by the earth’s surface (Tso and 

Mather, 2009). The information collected by remote sensing methods is often 

formed into imagery data representing spatial features within the environment 

(Richards and Jia, 2006). 

Objects at the earth’s surface have different properties of absorption, 

reflection, and emission of the electromagnetic radiation. Water, soil, vegetation, 

buildings and roads exhibit different absorption and reflection characteristics at 

different wavelength regions of the electromagnetic spectrum (Chuvieco and 

Huete, 2010). Some materials at the earth’ surface, such as fire, not only exhibit 

reflectance properties, but also exhibit thermal properties. Fire at the earth’s 

surface (ground) will emit relatively high intensity thermal radiation that might be 

captured by remote sensing sensors (Chuvieco and Huete, 2010). The following 

sections describe the remote sensing principle of fire detection using satellite data. 

This discussion firstly introduces the general principles of electromagnetic 

radiation, including how electromagnetic energy interacts with the atmosphere and 

earth’s surface, and leads to the thermal radiation in the range of electromagnetic 

energy in respect to  fire radiation.   
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2.1.1 Electromagnetic Radiation 
Electromagnetic radiation emitted from the sun is incident at the top of the 

earth’s atmosphere (Figure 2.1), and can undergo scattering, absorption, reflection, 

and transmission, with some portion reaching the surface where it may be absorbed 

reflected, or transmitted (Campbell, 2002). Remote sensing data are collected by 

detecting and measuring the intensity of electromagnetic (EM) energy emitted or 

reflected by land surfaces such as soil, rock, vegetation and water (Chuvieco and 

Huete, 2010). A good understanding of the physical principles of EM energy and 

earth’s surface interplay is important for the accurate use of remote sensing in many 

applications. 

 
Figure 2.1. Electromagnetic energy from the sun transmitting through the earth’s 

atmosphere to the surface (Campbell, 2002). 

Every object has different responses to incident EM energy. The specific 

response characteristics may be used to identity an object by its spectral signature. 

The aim of remote sensing is to use the EM signals that are reflected or emitted to 

determine the object’s physical properties. For example, fire mostly emits EM 

energy in the thermal infrared waveband, and it is the specific characteristic of fire 

as a hot object, the temperature, that allows remote sensing to determine the 

location and “intensity” of a fire. In certain stages of burning or condition, fire also 

emits EM radiation in the visible regions of the EM spectrum. 

With respect to the satellite remote sensing for fire monitoring, a focus of this 

thesis research, this section discusses electromagnetic energy and its related 

characteristics that play a specific role in optical remote sensing. It will also 
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describe the physical point of view related to how electromagnetic radiation 

behaves when it interacts with a medium (atmosphere) and is incident on an object 

at the earth’s surface. 

2.1.2 Electromagnetic Radiation and the Atmosphere 
The information acquired by a space-borne sensor from the observed surface 

is affected by surface properties, and varies with the wavelength of the 

electromagnetic radiation. However, spectral differences in the radiation are not 

only due to properties of the surface. While propagating through the atmosphere, 

the interactions between electromagnetic radiance energy and the atmosphere can 

arise in forms of scattering and absorption.  
The upwelling electromagnetic energy from the earth’s surface transmits 

partially through the atmosphere before being detected by the satellite sensors. 

Certain spectral bands of electromagnetic energy are transmitted more than others 

by the atmosphere. The atmospheric constituents that affect the spectral 

transmittance of the atmosphere include water vapour (H2O), clouds, ozone (O3), 

and other aerosols. The radiance energy which is not scattered or absorbed will 

pass through the atmosphere. Figure 2.2 shows the variability in spectral 

transmittance of the atmosphere. The figure shows a high value of transmittance in 

only certain bands of wavelength, termed “atmospheric windows”. The radiation 

energy in the atmospheric window regions will be mostly transmitted through the 

atmosphere (Rees, 2001; Lillesand and Keifer, 2004). Remote sensing sensors 

mostly operate in atmospheric window regions to gain more information from 

radiation energy transmitted from the earth’s surface. 
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Figure 2.2.  Plot of spectral transmittance of electromagnetic radiation through the 

atmosphere (Rice, 2012). 

Figure 2.2 shows that CO2 absorbs energy at wavelengths around 3.0 µm and 

4.0 µm, H2O absorbs at various bands from about 1.0 µm to 3.0 µm,  and O3 at 

9.58µm (Philip, 2007). Therefore, the energy on those high absorption (low 

transmittance) wavelengths reaches the sensor with lower intensity. In addition, the 

atmospheric transmittance in the visible waveband from 0.3 microns to about 0.7 

microns shows a line with high transmittance values. With respect to the 

atmospheric window, the band width of remote sensing instruments is designed to 

get the optimum information of object characteristics. The atmospheric windows 

commonly used in remote sensing are the windows from 0.3μm to 2.3μm for 

observations in the visible range and the near infrared (NIR), the window between 

3μm and 5μm for observations in the mid infrared (MIR), and the window from 

8μm and 14μm for observations in the thermal infrared (TIR) (Lillesand and 

Keifer, 2004).  
With regards to the detection and monitoring of fire, which emits radiation in 

the thermal band, Figure 2.2 shows that the highest transmittance in the  TIR band 

ranges between the wavelengths 3-5µm and 8-12µm. This is why the satellite 

sensors intended to measure the thermal radiation from hot objects in the earth’s 

surface are designed with spectral bands at those wavelengths (Justice and Dowty, 

1994; Flasse and Ceccato, 1996).  
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2.1.3 Electromagnetic Radiation’s Interaction with the earth surface 
When electromagnetic energy is incident on the earth’s surface, particularly 

land areas, the energy might be reflected, absorbed (Lillesand and Keifer, 2004), or 

the absorbed energy re-emitted as thermal energy. The proportions of those three 

components differ depending on the incident electromagnetic wavelength and the 

surface properties. For different specific materials, the reflection and absorption 

vary for every wavelength. When different electromagnetic wavelengths interact 

with an object, different proportions of reflected or absorbed energy will result 

(Lillesand and Keifer, 2004). For example, trees reflect a different amount of 

energy from red and infrared radiation (Lillesand and Keifer, 2004; Chuvieco and 

Huete, 2010).  

Reflection of electromagnetic waves by objects can be used to recognize the 

object’s characteristics, but in some cases may be an unwanted effect. For example 

high intensity reflections from the earth’s surface might affect the accurate 

detection of fire using remote sensing methods. The reflectance (ρ) of objects is 

defined as the value of reflected energy (ER) from the objects to the incident energy 

(EI) that strikes the object’s surface. The reflectance, which is a function of 

wavelength (λ), is known as spectral reflectance and it is expressed as (Lillesand 

and Keifer, 2004): 

ఒ =  ாೃ(ఒ)ா಺(ఒ)ߩ   (2. 1) 

Where ER(λ) is the spectral upwelling (reflected) irradiance and EI(λ) is the 

spectral downwelling incident irradiance. The plot of the ratio of radiation reflected 

by different materials across the electromagnetic spectrum gives a unique signature 

or pattern, or a reflectance spectrum. The spectral reflectance of a surface is 

independent of the spectral nature of the incident radiation. A material can be 

recognized by its spectral reflectance signature if the detection system has enough 

spectral resolution to differentiate its spectrum from other materials. The earth’s 

surface is made of soil, water, and vegetation; each surface type responds in 

different ways to the electromagnetic radiation spectrum. Figure 2.3 shows the 

typical spectral reflectance spectra of water, vegetation, sand, concrete, and snow. 
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Figure 2.3.  Spectral reflectance signatures for representative earth surface 

materials (Chuvieco and Huete, 2010). 

Water shows the lowest reflectance values across the spectrum (less than 

10%) with the highest value placed at the blue end of the electromagnetic spectrum. 

Water reflectance decreases with increasing wavelength of radiation. The 

reflectance of snow in the visible bands has the highest value of all materials in 

Figure 2.3 with a magnitude up to 80% at a wavelength of approximately 0.4µm. 

Therefore nearly all of the visible bands of radiation are reflected when they reach 

the snow surface and snow appears white. Their reflectance intensity decreases 

along with increasing wavelength until it has relatively constant values in the SWIR 

spectrum at wavelengths of more than 2.2µm. Concrete reflectance values increase 

by 10-24% in the visible range and are relatively constant in NIR bands. SWIR 

wavelength radiation is reflected by concrete with 30-40%  reflectance. The sand 

reflectance pattern is similar to concrete but it has higher overall reflectance of 

between 20% and-70%.  

In the remote sensing approach to fire detection, the materials described 

above can potentially interfere in fire detection and cause false detection. Giglio 

(2003) reported that fire has low reflectance in the near infrared band 0.86 µm. He 
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determined a pixel of remote sensing satellite data as potential fire if the pixel has 

reflectance value below 0.3 or 30%. Based on the reflectance values in the NIR 

band (0,86µm) in Figure 2.3, the material with reflectance values lower than 30% is 

water. So it might satisfy the requirement of fire pixel determination in terms of 

reflectance value. However the criteria to determine a fire pixel is not only by 

reflectance but also by brightness temperature which is sensed in the thermal 

infrared band. The brightness temperature of water is far below the fire brightness 

temperature. The brightness temperature of water is about 130 K (Johnson, 2002). 

Therefore water pixels will be rejected as fire pixels because pixels are categorized 

as fire if they have a brightness temperature of at least 310 K for day pixels and 305 

K for night pixels (Kaufman, Justice, et. al., 1998; Giglio et al., 2003).  

2.2 Thermal Radiance of Electromagnetic Radiation 
Every object which has a temperature above absolute zero, that is 0 K or  

-273.15o C, emits radiation in the thermal region (3µm to 14µm) of the 

electromagnetic spectrum (Levin, 1999; Rees, 2001). The emitted radiance is 

distributed over a range of wavelengths in a continuous spectrum and is known as 

spectral radiance. The spectral radiance of blackbody radiation in the absolute 

temperature, T, is expressed by Planck’s function as (Rees, 2001): 

 ఒ = ଶ௛௖మఒఱ ൫௘೓೎/ഊೖ೅  ିଵ൯ (2. 2)ܮ 

where: Lλ = Spectral radiance (W m-2 sr -1 µm-1) 

  h = Planck’s constant = 6.625 x 10-34 W s2 

  k = Boltzmann’s constant = 1.38 x 10-23 W s2 K-1 

  c = Speed of light = 3 x 108 m s-1 

  T = Object temperature (Kelvin) 

With respect to Equation 2.2, we define c1= 2hc2  and c2=hc/k, so that the 

equation can be rewritten as 

 ఒ = ௖భఒఱ ൫௘೎మ/ഊ೅  ିଵ൯ (2. 3)ܮ 

where: c1= 119106211.8 W m-2 sr-1 µm-4 
 and   c2 = 14387.86 K µm 
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By inputing a range of wavelength (λ) values at a certain temperature (T), a 

graphic of electromagnetic radiation energy over the given range of wavelength 

can be generated, as shown in Figure 2.4. The lowest graph represents the lowest 

radiance temperature and the radiance value increases when the temperature 

increases. It is obvious that the higher the temperature, the blackbody radiation 

peaks shift to smaller wavelengths. This phenomenon is commonly known as 

Wien’s Displacement Law. In the mathematical formula, Wien’s Displacement 

Law is expressed by (Chuvieco, 1999): 

 λmax . T = b (2. 4) 

where  λmax  = the peak wavelength in meters (m) 

 T = the temperature of the blackbody in Kelvin (K) 

 b = a constant of proportionality, called “Wien's displacement constant” 
  = 2.8977685 × 10–3 m K (Codata, 2010) 

 
Figure 2.4.  Plot of radiance curves calculated using Equation 2.3. 

The formula of Wien's displacement law indicates that the higher the object 

temperature, the shorter the peak of wavelength of the emitted radiation spectrum. 

Based on Wien’s formula, we can calculate the peak wavelength of electromagnetic 
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radiation from objects at specified temperatures; for example, a calculation of the 

sun’s radiation peak wavelength. Suppose the surface temperature or effective 

temperature of the sun is 5778 K; the radiation spectrum peak wavelength will be 

2.9×10–3 m.K / 5778 K = 5.0 x 10-7 m. This value sits in the green visible light 

spectrum range. Another example is a forest fire with a temperature of 360 K. The 

peak wavelength emitted from fire is 2.9 × 10–3 m K / 360 K = 8.0 x 10-6 m; 

therefore fire emits peak energy in the thermal infrared spectrum range. Most fires 

have a peak radiance in the range of 3-12µm, so the appropriate satellite sensor for 

fire detection purposes is designed to detect radiation in this spectral range. 

2.3 Remote Sensing for Fire Detection 
The possibility of identification of surface temperature in sub-pixel data of 

satellite remote sensing was introduced by Dozier (1981). In sub-pixel resolution, 

land area with varying temperature will be sensed in different wavelengths of 

thermal radiance by the satellite sensors (Dozier, 1981). Two main aspects of fire 

that contribute to its radiated energy are temperature and size. In remotely sensed 

data, a pixel temperature is an average temperature value of an area covered in one 

pixel. This value might be contributed to by different temperatures within different 

portions of sub-pixels (part of the pixels). A fire pixel may have some portion of 

un-burned area and burning area which may be flaming or smoldering. A hotter part 

will contribute more radiance proportionally for the pixel than the remaining part. 

By manipulating the integration of Planck’s function (Equation 2.3) and based on 

the radiance values from channels at different wavelengths, it is possible to 

determine the radiant temperature of one sub-pixel area and the portion of the sub-

pixels from the appropriate temperature. The portions of a pixel occupied by each 

temperature field are not necessarily contiguous. It is assumed that there are only 

two types of land class, the target and background (Dozier, 1981). Although Dozier 

has reported a method to determine the sub-pixel contribution due to burning, this 

has not been integrated into operational fire detection algorithms. 

In remote sensing fire detection, a sub-pixel fire can be detected as fire if it 

has sufficient radiant flux as a contribution to the average temperature of the pixel 

so the pixel is possible to be flagged as fire (Robinson, 1991). The sensor used 



 

19 
 

REVIEW OF LITERATURE Chapter  2 

should detect the radiated energy in the range of fire temperature wavelengths. For 

example, a forest fire has a temperature of 700 K. Based on the Wien’s 

displacement (Equation 2.9), the peak emission wavelength from the fire is 2.9×10–

3 m K / 700 K = 4.1x10-6 m. This wavelength of fire emission energy sits in the 

thermal infrared (TIR) spectrum range, so the appropriate detector for fire 

investigation is a thermal infrared sensor. 

Sensors can be characterized by their spectral response function. Every sensor 

with a specific wavelength bandwidth has a specific response to various stages of 

fire occurrence in the landscape, such as flaming and smoldering. In the MODIS 

instrument, the thermal infrared sensors acting in the atmospheric window region 

are centred at 3.95 μm and 11 μm, that is, MODIS channels 21/22 and channel 31. 

The response of those 3.95 μm and 11 μm sensors, expressed by measured 

brightness temperature values, to the fraction of pixel occupied by fire is shown in 

Figure 2.5. With respect to the different responses of sensors 3.95 μm and 11 μm to 

the fraction of fire, Philip (2007) stated that the 11 μm sensor produced a pixel 

temperature 35 K lower than the 3.95 μm sensor when the pixel is occupied by 4% 

fire. The different responses to the temperature of these two sensors (3.95 μm and 

11 μm) is then basically used in the fire detection algorithm. 

 
 

Figure 2.5.  Response of the 3.95 μm and 11 μm MODIS bands to the fraction of 
pixel covered by fire (Philip, 2007). 
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In principle, fire detection algorithms exploit information from the detected 

objects in the thermal infrared bands. Every fire detection algorithm recognizes 

emitted fire energy in terms of pixel value. Although most fire detection algorithms 

utilize the same wavelength sensors, approximately 3.95 µm and 11 µm, they have 

slight differences in the fire detection methods such as: algorithm testing step 

orders, data pre-processing such as remapping or re-projecting, and the embedded 

algorithm threshold values. 

The aim of a fire detection algorithm is to identify whether the image pixels 

of a surface area on a satellite overpass represent fire in an actively burning area. 

Satellite data which have been used to monitor fire on the earth’s surface have been 

provided by the AVHRR (Advanced Very High Resolution Radiometer), VAS 

(Visible-Infrared Spin-Scan Radiometer Atmospheric Sounder), ATSR (Along 

Track Scanning Radiometer), and OLS (Operational Linescan System) instruments 

(Giglio et. al., 2000). NASA launched the MODIS instruments in 1999 and 2002, 

each equipped with more thermal infrared sensors than their predecessors, designed 

in particular for fire detection purposes (Kaufman et al., 1998; Giglio et al., 2003).  

With respect to many existing models of fire detection using satellite remote 

sensing, the following section focuses only on the description of the MOD14 

algorithm, arguably the current global “standard” fire detection algorithm applied to 

polar orbiting satellite remote sensing datasets. Also, the following section 

discusses the IndoFire algorithm which is used in Indonesia by the Ministry of 

Forestry, LAPAN, the Ministry of Environment and is based on the MOD14 

algorithm. 

Essentially, fire detection algorithm employs data which is captured by 

thermal infrared sensors (3.9 to 4 µm and 10.7 to 11.3 µm). MODIS is equipped 

with 5 thermal infrared sensors while NOAA-AVHRR has only 3 sensors in the 

same wavelength range. In addition, the MODIS instruments have better temporal 

resolution i.e. twice a day for each platform, the Terra and Aqua satellites. 

2.3.1 MOD14 algorithm 
The MOD14 algorithm, which was developed by the NASA Land Research 

Team, is based on the contextual algorithm applied to NOAA-AVHRR data. This 
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algorithm is designed to be applied to MODIS data (Giglio et al., 2003). The 

MOD14 algorithm produces a number of MODIS fire products, day/night fire 

occurrence, fire locations and other thermal anomalies (Justice et. al., 2002).  

The MOD14 algorithm processes MODIS data at 1 km resolution and 

includes geolocation files as input. MODIS data can be accessed through many 

different sources depending on the application purposes. LAADs web1 provides 

MODIS data and atmosphere products, Land Processes DAAC2 (LPDAAC) at the 

U.S. Geological Survey EROS Data Center3 (EDC) serves land products, snow and 

sea ice cover as Cryosphere data products can be accessed through the National 

Snow and Ice Data Center4 (NSIDC) in Boulder, Colorado, and the intended Ocean 

color products and sea surface temperature products and other information related 

to these are available at the OCDPS at GSFC5.  MODIS also provides direct access 

data from the spacecraft for the users who want to get x-band data using the 

MODIS Direct Broadcast signal. For fire observations, we used MODIS daily 

acquired datasets downloaded from LAADs web. 

The processed result is a MOD14 file in HDF format which contains 

information about the number of fire pixels, latitude/longitude of the fire pixels, fire 

intensity, confidence level, and pixel classification. There are 9 classifications of 

pixels in the MOD14 file, provided as Scientific Data Sets (SDS) called “fire mask” 

as shown in Table 2.1. Detected fire pixels are classified into three categories based 

on their confidence level i.e. low-confidence-fire, nominal-confidence-fire, and 

high-confidence-fire which are noted as 7, 8, and 9 respectively.  

  

                                                            
1 http://ladsweb.nascom.nasa.gov/data/search.html 
2 https://lpdaac.usgs.gov/ 
3 http://eros.usgs.gov/find-data 
4 http://nsidc.org/data/ 
5 http://oceancolor.gsfc.nasa.gov/ 
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Table 2.1.  MOD14 fire mask pixel classes (Giglio, 2005).  

Class Meaning 
0 Not processed (missing input data) 

2 Not processed (other reason) 

3 Water 

4 Cloud 

5 Non-fire clear land 

6 Unknown 

7 Low-confidence-fire 

8 Nominal-confidence-fire 

9 High-confidence-fire 
Note: A pixel class 1 is intentionally abandoned by Giglio (2005) with no stated reason 
since MODIS collection 3 active fire products. 

The MOD14 algorithm has been reported to detect fire over several different 

areas such as the Canadian boreal forest (Li, Nadon, et. al., 2000), Southern Africa 

(Morisette, Giglio, Csiszar, and Justice, 2005), Brazil (Morisette, Giglio, Csiszar, 

Setzer, et. al., 2005), and showed satisfactory results. This broad global success 

makes the MOD14 algorithm arguably the global standard for fire detection.  

However, the MODIS fire product or MOD14 algorithm was found to 

sometimes produce false detection for big fires (Nakayama et. al., 1999). 

Nakayama and Maki et al. (1999) made an improved method of the fire detection 

algorithm to be applied for detecting active fires in South Sumatra, Indonesia. 

Nakayama used a contextual algorithm, originally reported by Justice and Dowty 

(1994), to determine whether the pixel was a fire or not automatically by comparing 

the selected pixels with their neighbors. The algorithm can identify the occurrence 

of big fires better than the original MOD14 algorithm. 

The probability of the occurrence of false detection by MOD14 is also 

decreased by adjusting some variables in the algorithm. The variables are the values 

of reflectance and temperature and also the accuracy of rejecting unwanted factors 

such as cloud, water, sunglint, and desert boundary (Giglio et al., 2003). Among 

those variables above, this research aims to investigate how significant the 
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changing of temperature values, particularly threshold values, are to the MOD14 

algorithm results applied to MODIS data over Indonesia. The motivation for this 

work is previous research which reported that different temperature threshold 

values and research areas showed varying results in detecting fire (Prins and 

Menzel, 1992; Kaufman, Kleidman, et. al., 1998; Seielstad et al., 2002; Dayamba et 

al., 2010; Devineau et. al., 2010). 

2.3.1.1 MODIS Instruments 
The MODIS instruments are mounted aboard NASA’s Terra and Aqua 

satellites. The MODIS instrument aboard the Terra satellite was launched on 

December 18, 1999, and that aboard the Aqua satellite launched on May 4, 2002. 

The orbit altitude of the two satellites is 705 km above the earth’s surface. The 

MODIS Terra instruments acquired data for the first time on February 24, 2000. 

Aqua MODIS instruments started to take spatial data on June 24, 2002. The 

MODIS instrument channels have a spatial resolution of 250 m, 500 m, and 1 km 

at nadir, as shown in Appendix 1. The temporal resolution of MODIS satellites is 

0.5 day. The Terra satellite crosses the Earth’s equator at 10:30 and 22:30 local 

time and so it is known as Terra AM or Terra morning, while the Aqua satellite 

passes over the earth’s equator at 13:30 and 01:30 and so it is known as Aqua PM 

(Chuvieco and Huete, 2010).  

The MODIS data captured by the satellites are transmitted to ground station 

receivers. A ground station in White Sands, New Mexico, receives data transmitted 

by the MODIS instruments through the Tracking and Data Relay Satellite System 

(TDRSS). The data are then forwarded to the EOS Data and Operations System 

(EDOS) at the Goddard Space Flight Center. The raw data in level-0 from EDOS 

are processed by the MODIS Adaptive Processing System (MODAPS) into higher 

levels and products such as Level 1A, Level 1B, the geolocation file, the cloud 

mask product, the MODIS land product, and atmosphere products. All of these 

products are distributed into three Distributed Active Archive Centers (DAAC). 

MODAPS does not produce the ocean color product, but this duty is covered by 

the Ocean Color Data Processing System (OCDPS).  
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MODIS sensors were built to contribute to, amongst other needs, fire 

detection and fire monitoring purposes. For this reason the existing sensors were 

planned to have special and specific characteristics regarding fire monitoring 

activities. MODIS is also able to detect burn scars or burnt areas because of its 

unique spatial and radiometric capabilities. These capabilities improved the fire 

assessment, which were previously achieved  by using the National Oceanic and 

Atmospheric Administration's - Advanced Very High Resolution Radiometer 

(NOAA-AVHRR) and the Geostationary Operational Environmental Satellite 

(GOES) systems (Li, Kaufman, et. al., 2000). From the first time of launching 

NOAA-AVHRR, the instrument performance characterization and the quality of 

the data produced in monitoring fires has been undergoing validation (Giglio et al., 

2003). Furthermore, by taking advantage of the capability of the MODIS sensor, 

there is potentially a greater opportunity to develop automatic procedures to detect 

burn scars, and this issue challenges researchers to develop and implement 

algorithms to lead the MODIS production stream. The products are available at full 

resolution and as spatial summaries and temporal composites.  

The MODIS instruments have 36 channels with spectral bands from 0.405 to 

14.385µm, and they acquire data at three spatial resolutions: 250m (bands 1-2), 

500m (bands 3-7), and 1,000m (bands 8-36). The multispectral sensors on the 

MODIS instruments span the visible, NIR, and TIR bandwidths.. Details of 

MODIS instrument specifications and characteristics are given in Appendix 1. 

The MODIS sensor scans the earth with 10 simultaneous 1 km wide stripes 

(or 20 and 40 stripes at the 500m and 250m resolution respectively). MODIS 

sensors have triangular spatial response characteristics as shown in Figure 2.6. This 

response characteristic allows the possibility to detect fires in one or two adjacent 

pixels in the MODIS data depending on where the fires are located in the scene and 

how big the fires are (Kaufman et al., 1998). 
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Figure 2.6.  MODIS response across track (Kaufman et al., 1998)  

2.3.1.2 MODIS Sensor Channel for Fire Detection 
In terms of fire detection using satellite MODIS data, not all 36 channels of 

the MODIS instrument are employed. MODIS fire products are processed by 

utilising only seven bands of the MODIS instrument (Justice et al., 2002). The 

channels’ specifications and purposes are given in Table 2.2.   

Table 2.2.  MODIS channels used for active-fire detection and characterization 
(Giglio et al., 2003) 

Channel Central λ 
(μm) Purpose 

1 0.65 Sunglint, coastal false alarm rejection, and cloud 
masking 

2 0.86 Bright surface, sunglint, coastal false alarm 
rejection, and cloud masking 

7 2.13 Sunglint and coastal false alarm rejection 

21 3.95 Fire detection and characterization (high-range) 

22 3.95 Fire detection and characterization (low-range) 

31 11 Fire detection, cloud masking 

32 12 Cloud masking 
 

The main channels which are related to fire identification are channels 21, 22, 

and 31 with central wavelengths at 3.95 μm and 11 μm. The spectral response 

function (SRF) of MODIS channels 21, 22, and 31 are shown in Figure 2.7. Figure 

2.7 (a) describes the spectral response of channel 21, ranging from 3.89 μm to 4.07 

μm and centred at 3.98 μm. The spectral response of channel 22 shown in Figure 

2.7 (b) ranges from 3.88 μm to 4.06 μm with centre at 3.97 μm. Channel 31 has a 

spectral response range from 10.5 μm to 11.6 μm. With respect to the wavelength 
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range of the spectral response curves, it is indicated that channel 21 and 22 

responses are more sensitive to the wavelength changing of electromagnetic 

radiation compared to channel 31.  

 

 
(a) (b) 

 
(c) 

Figure 2.7.  Spectral Response Function (SRF) of MODIS sensor 

channels (a) 21, (b) 22, and (c) 31 (Goessmann, 2007) 

Moreover, the 3.95 μm and 11 μm sensor channels also respond differently to 

the pixel temperature, as shown in Figure 2.8. for a fire temperature at 1000 K 

(Christopher et. al., 2006), the 3.95 μm channel displays a more sensitive response 

compared to the 11 μm channel. It is indicated by a higher measured radiance value 

for the  3.95 μm channel compared to the 11 μm channel. Also, the non-fire 

temperature curve (450K) shows similar radiance values in the wavelength regions 



 

27 
 

REVIEW OF LITERATURE Chapter  2 

of those two channels (3.95 μm and 11 μm). The different radiance values of fire 

and non-fire temperatures in the 3.95 μm channel is bigger than the difference of 

radiance values in the 11 μm channel. Thus, the remote sensing of fire detection by 

MODIS data uses the measured radiance of channel 31 as a background of the 

measured radiance in channel 21 or 22 (Goessmann, 2007). The brightness 

temperature’s difference of channel 21 and 31, converted from measured radiance 

by using the Planck function, is an essential requirement in the fire detection 

algorithm step (Giglio et al., 2003). 

 

 
Figure 2.8.  Planck function for blackbodies of different temperatures 

(Goessmann, 2007) 

The sensitivity of the 3.95 μm and 11 μm channels are also different for the 

smoldering and flaming radiation (Christopher et al., 2006). Christopher et al. 

(2006) found that sensor sensitivity to the temperature is inversely proportional to 

the fire radiation wavelength, as summarized in Table 2.3. The temperatures 600 K 

and 1000 K indicate  smoldering and  flame temperatures respectively. The 

sensitivity (ΔT/Δf) of the 3.95 μm channel is 800 when 5% of a MODIS pixel is 

covered by smoldering (at 600 K). Further, the sensitivity of this channel is 8300 
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when the pixel is only covered by 0.5% of active flame (1000 K). In contrast, the  

11 μm channel shows less sensitivity for both smoldering and active burning.   
Table 2.3.  Information of the MODIS bands sensitivity used for fire detection 
(Christopher et al., 2006). f is the fraction of pixel burning. 

Channel Spatial 
Resolution Saturation 

Fraction of pixel 
that saturates 
the channel 

Sensitivity 
(∆T/∆f) at 

600K 

Sensitivity 
(∆T/∆f) at 

1000K 1000K 600K 

3.95 µm 1000 m 500K 0.025 0.30 ∆T/∆f=800 
at f=0.05 

∆T/∆f=8300 
at f=0.005 

11 µm 1000 m 400K 0.07 0.25 ∆T/∆f=485 
at f=0.05 

∆T/∆f=1700 
at f=0.005 

Where: ∆ρ = change in the apparent surface reflectance 

 f = area covered by fire 

 ∆f = change of area covered by fire 

 ∆T = temperature change in Kelvin 

During the day, solar radiation interferes with the thermal radiation emitted 

from the earth’s surface and it increases the spectral response of the 3.95 μm 

sensor. The interference of those two radiations are represented by the overlapping 

area under each curve shown in Figure 2.9. However, during the night the sensor 

receives only the Earth’s radiant energy due to the lack of direct solar radiation. 

Therefore, the 3.95 μm band responds differently to day and night time hotspots. 

Figure 2.9 also shows that the solar radiance in the 11 μm region is close to zero. 

This means that solar radiation has negligible effect on the MODIS sensor in the 11 

μm band and it responds only to earth’s surface radiation at both day and night. 

These different responses play a significant role in the recognition of fire or other 

hotspots (Philip, 2007). 
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Figure 2.9.  Effect of solar radiation on the 3.9 μm waveband (Philip, 2007). 

The relationship between pixel temperature and  radiance values at the 4 μm 

band (4 µm rounding up from 3.95µm) and the 11μm band can be calculated by 

Equation 2.3. The curves of radiance values of the 4 μm band and the 11 μm band 

for a range temperatures between 300 K and 700 K is shown in Figure 2.10. 

Increasing temperature causes an exponential increase of radiance in the 4 μm band, 

but increasing radiance values in the 11 μm band is almost linear. It shows that the 

higher the observed temperature, the bigger the difference in radiance (∆rad) values 

between the 4 μm band and the 11μm band (drawn in continuous black line curve).  

 
Figure 2.10.  Plot of temperature and radiance for the 4μm and 11μm bands.
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Data Conversion 
The data captured by MODIS sensors are provided as raw data in 16-bit 

digital number (DN) format. These data are converted into appropriate physical 

values as required for fire detection such as reflectance and brightness temperature. 

Reflectance values in MODIS are obtained from channel 2 (0.86 µm). Converting 

the DN into a reflectance value is expressed by Equation 2.5. 

 Reflectance = Reflectance scale * (DN – Reflectance Offset) (2. 5) 

Reflectance scale and reflectance offset values are specific for every MODIS 

dataset. For example in the MODIS dataset MOD021KM.A2009022.0340.hdf, the 

reflectance scale and reflectance offset are 0.00003 and 0 respectively. By using 

Equation 2.5, the reflectance value of the pixel with DN 6681 is ρ0.86=0.00003 * 

(6681–0) = 0.2.  

Another important value which is used in the fire detection algorithm is the 

brightness temperature. This is captured from channels 21 and 22 for T4 (4 µm) and 

channel 31 for T11 (11µm). Unlike retrieving the reflectance value, generating the 

brightness temperature (T) refers to the Planck function (Equation 2.3). The 

brightness temperature value is obtained by inverting the Planck function to 

produce the inverse function expression. 

 ܶ = ௖మఒ ௟௡൫(௖భఒషఱ/௅)ାଵ൯ (2. 6) 

where T =  Brightness temperature of pixel (K) 

 c1 =  2hc2 =119106211.8 W/(m2 sr μm4) 

 c2 =  hc/k = 14387.86 (K μm) 

 L =  Spectral radiance (W m-2 sr -1 µm-1) 

 λ  =  wavelength (4µm for channel 21 and 22 and 11µm for channel 31). 

As with the reflectance value, the spectral radiance value is retrieved from 

MODIS data in the digital number format, and the dataset also contains the 

radiance scale and offset. The radiance scale and radiance offset values are specific 

to every MODIS dataset. For the MODIS dataset in the previous example, the 

value of radiance scale is 0.00315 and radiance offset is 2730.583496. Thus the 

radiance value (L) of the example dataset with DN 3363 is L=0.00315*(3363-
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2730.583496)=1.992. Then the brightness temperature is calculated by inputting 

the radiance value into Equation 2.6 and with 4 µm as the λ value for channel 21. 

The result (T4 =327.745K) represents the brightness temperature value of the pixel 

of MODIS data with the DN 3363 stated above.  

2.3.1.3 MOD14 Algorithm Assessment Steps in Fire Detection 
The MOD14 algorithm consists of two main strategies, namely absolute fire 

detection and relative detection. Absolute detection is reserved for a strong fire, 

characterized by a large or high temperature fire. The absolute detection only 

considers the brightness temperature value which is measured from the 4 µm 

channels, that is channel 21 or channel 22. The next strategy is relative detection 

which is used to accommodate the detection of weaker fires that have elevated 

values from the surrounding pixels (background). This method considers the 

brightness temperature value from the 4 µm channel and also considers the 

difference of emitted thermal radiation recorded from the 4 µm and 11 µm 

channels. It has also been described that solar radiation in the day time affects the 

measured radiation value, particularly in the 4 µm channel. Thus, the impacts of 

solar radiation should be considered with respect to the threshold values of both the 

absolute and relative detection strategies particularly in day time fire detection 

algorithms (Giglio et al., 2003).  

In order to reduce false fire detection, some additional pixel examinations are 

also included prior to the application of the fire detection algorithm. They are 

needed to exclude unwanted pixels such as missing data (null value), cloud pixels 

with a low temperature (cold) and high reflectance in visible wavelengths, water 

pixels with dark and cold characteristics, desert boundaries, and coastal edge pixels 

which look very bright but do not have a high temperature. Also, the strongly 

reflected solar radiation known as sunglint may cause false detection and the pixels 

affected must be removed from the assessment steps of the fire detection algorithm 

(Justice et al., 2002). Once the identification of pixels of cloud, water, sunglint, 

desert boundary, and coastal edge have been undertaken for the datasets, the fire 

pixels test algorithm is applied to the remaining pixels.  
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The MOD14 fire detection algorithm can be grouped into four tests—the 

preliminary test, absolute detection test, background pixels identification, and 

contextual test. The following sections describe each group of tests in determining 

the fire pixels. 

Preliminary test 
A preliminary test or prescreening stage is applied to obviously differentiate 

fire pixels or potential fire pixels from non-fire pixels. In this stage, imagery pixels 

are tested by the following algorithm (Giglio et al., 2003). Day time pixels are 

considered potential fire if T4 > 310 K, ΔT=T4 – T11 > 10 K, ρ0.86 < 0.3 or the 

reflection angle is within 40o, where sunglint may cause false detection (Justice et 

al., 2002), while night time pixels are tested using a reduced threshold, T4 > 305 K, 

ΔT=T4 – T11 > 10 K. The reflectance value from the 0.86 µm channel is not taken 

into account as there is no reflectance at night. All satisfied pixels are considered 

potential fire pixels and progress to further tests; otherwise they are classified as 

non-fire pixels. Once all appropriate pixel values are examined then the MOD14 

algorithm is applied to those values. Determining fire pixels from potential fire 

pixels that pass a preliminary test is performed in two categories, the absolute 

threshold test and the contextual test algorithm. 

Absolute detection test 
An absolute test is aimed to classify fire pixels with high brightness 

temperature. In the absolute fire algorithm, for day time imagery, pixels will be 

identified as fire pixels if the pixels fit the following conditions. 

(T4 > 360 K) or  

(T4 > 330 K and T4 – T11 > 25 K) 

For the night time the pixels will be classified as fire if: 

(T4 > 330 K) or  

(T4 > 315 K and T4 – T11 > 10 K). 

Note: Nighttime pixels are defined as the pixels with solar zenith angle ≥ 85o. 

All pixels that pass the absolute detection requirements are marked as fire 

pixels and they do not need to proceed to the next assessments. However, the pixels 

that fail this test must be assessed by the next step, background characterization. 
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Background pixels identification 
Background pixel identification is used to determine the relative threshold 

values in the contextual test. This assessment takes a window of increasing size 

until the condition is met. Assessing a valid background value commences with a 

3x3 window centered on a potential fire pixel. The size of the square window is 

increased up to 21x21 pixels. When there are at least 25% of the pixels in the tested 

window and at least eight pixels satisfy the valid background criteria, then the 

window size increment is stopped and the appropriate pixels are marked as valid 

background pixels.  

Pixels are considered a valid background if they meet four criteria: (1) made 

from usable observations, (2) must be land pixels, not water pixels, (3) are not 

identified as cloud, and (4) are not considered as fire pixels where T4 > 325 K, ΔT 

> 20 K for day time pixels and T4 > 310 K, ΔT > 10 K for night time pixels (Giglio 

et al., 2003). Once the number of valid background pixels in the tested window 

reaches the required criteria, then the “mean” and “standard deviation” is computed 

for the valid background pixels. After the background statistic values are 

computed, the contextual test is then applied to the window of pixels to define the 

fire pixels. 

Pixels which do not meet the required criteria until the window size reaches 

21x21 are flagged as unknown pixels. Because of the triangular MODIS sensor 

response along track (Kaufman et al., 1998), two adjacent along-track pixels 

identified as potential fire pixels (center of window) are not taken into account 

(Giglio et al., 2003). 

Contextual test 
It has been stated previously that statistical values of valid background pixels 

are needed in order to provide the required parameters in the contextual test. Detail 

of the required parameters are given in Table 2.4.  
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Table 2.4.  Parameters and definitions in contextual test (temperature in Kelvin) 

Parameters Definitions 
ΔT ସܶ௕ 

Temperature difference of T4 and T11 (ΔT= T4 – T11) 
Mean of valid background pixel temperatures from 4 µm channel ߜସ௕ Standard deviation of valid background pixels from 4 µm channel 

ଵܶଵ௕ Mean of valid background pixel temperatures from 11 µm channel ߜଵଵ௕ Standard deviation of valid background pixels from 11 µm channel∆ܶ௕ Mean of valid background pixel temperatures of T4 – T11 ߜ∆்௕ Standard deviation of valid background pixels of T4 – T11 

ସܶᇱ௕ Mean of background fire pixel temperatures from 4 µm channel ߜସᇱ௕ Standard deviation of background fire pixels from 4 µm channel 

In the contextual test, the potential fire pixels will be characterized as fire 

pixels if they agree with several requirements as stated in the expressions below 

(Giglio et al., 2003).  

a. The daytime pixels are considered as fire if the conditions below are met. 

Otherwise the pixels will be classified as non-fire. ൫∆ܶ > ∆ ௕ܶ + ܶ∆൯ and ൫್்∆ߜ 3.5  > ∆ ௕ܶ + ൯ and ൫ܭ 6  ସܶ > ସܶ௕ +  ସ௕൯ andߜ 3 

( ଵܶଵ > ଵܶଵ௕ + ଵଵ௕ߜ − ସ′௕ߜ  or  ܭ 4 >  (ܭ5

b. The nighttime pixels are classified as fire pixels if they satisfy the requirements:  ൫∆ܶ > ∆ ௕ܶ + ܶ∆൯ and ൫್்∆ߜ 3.5  > ∆ ௕ܶ + ൯ and ൫ܭ 6  ସܶ > ସܶ௕ +   ସ௕൯ߜ 3 

2.3.2 IndoFire algorithm 
Fire Watch Indonesia (FWI), otherwise known as the IndoFire system, was 

developed to fulfill the Indonesian government’s need for a fire monitoring system 

as a base system for forest fire control and forest management. This fire 
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monitoring system is used by three authorized agencies for fire monitoring in 

Indonesia: the Forestry Ministry, the Ministry of Environment, and LAPAN 

(Lembaga Antariksa dan Penerbangan Nasional). The IndoFire system was built in 

2007 as a collaborative project between the Indonesian government and the 

Australian Government, through AusAID and the Western Australian Government 

Department, Landgate (Indofire, 2007). 

The IndoFire system processes MODIS data from L0 to L1B using SeaDAS 

(SeaWIFS Data Analysis System). SeaDAS is a comprehensive image analysis 

package for the processing, display, analysis, and quality control of ocean color 

data. Generated radiance data are then remapped from a swath-based HDF file to 

separate flat binary grid files in the chosen map projection (geodetic projection and 

datum WGS84) (Steber, 2013). This step is performed using the MODIS swath to 

grid toolbox (MS2GT) (NASA, 2013). Those processes run automatically through 

a program created by a Satellite Remote Sensing Services (SRSS) research group 

of Western Australia Land Information Authority (Landgate), customized for 

Indonesian environmental conditions. 

Information is displayed as a constrained map for the area of Indonesia: 

latitude 6 N to 11 S and longitude 95 E to 141 E. Existing fire hotspots (FHS) and 

their images are also provided and can be downloaded freely from the IndoFire 

system website.6  

The IndoFire system uses an algorithm based on a contextual MOD14 

algorithm, with several modifications made at specific preprocessing steps and 

some threshold values. The preprocessing step changes include: remapping input 

data rather than satellite projected data; testing for saturation levels; testing for Not 

a Number (NaN) in bands 21 and 22; testing for false coastal FHS; marking cloud 

pixels; removing the classification scheme; and including the changeable 

parameters. 

The IndoFire algorithm has been modified by enhancing the contextual fire 

detection algorithm for MODIS (Giglio et al., 2003). The algorithm has been 

divided into several classification steps: preliminary test to eliminate obvious non-

                                                            
6 http://IndoFire.landgate.wa.gov.au/IndoFire.asp 
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fire pixel; background pixels identification, to assess pixels surrounding the 

potential fire pixels that are not classified as fire; a relative test to determine fire 

pixels in the background pixels window; and some additional rejection tests. The 

additional rejection tests are used to eliminate false detections caused by cloud and 

water pixels, sunglint, desert boundaries, and coastal pixels.  

A preliminary test of the MOD14 algorithm classifies pixels as either 

obvious non-fire pixels or those that may be fire pixels. The requirements applied 

in the IndoFire algorithm are similar to the MOD14 algorithm, but T4 threshold 

values applied to channel 21 on the MODIS instrument are different. The IndoFire 

algorithm uses a T4 threshold value of 316 K instead of 310 K. In other words, 

IndoFire considers pixels as potentially to be marked as fire if they have T4 > 316 

K, ΔT > 20 K, and ρ0.86 < 0.3.  

The next pixel examination steps include the classification of pixel imagery 

as fire or non-fire, as well as steps to reject false alarms (error). The pixel rejection 

steps in the IndoFire algorithm are the same as used in the MOD14 algorithm, in 

both method and required values. However, the IndoFire algorithm was not 

designed to identify a confidence level of detected fire as is included in the 

MOD14 algorithm. 

The detection results of the IndoFire algorithm have been cross-checked 

using NOAA-AVHRR datasets over Indonesia from 2006 to 2008. The datasets 

were acquired from the Darwin Station in Australia, and were processed using the 

NOAA fire detection algorithm. Even though the NOAA algorithm was only run 

on the nighttime data, it still gave a general indication as to where the fires were 

located; the algorithm could also confirm whether a fire picked up by the MODIS 

algorithm during the day was really a fire if a fire was picked up in exactly the 

same location by the nighttime algorithm. Some fire hot spots detected from a 

small number of scenes by the IndoFire system were checked on the ground to 

validate the results (Steber, 2013).  

2.4 Affected Parameters in Fire Detections 
The acquisition of remote sensing data for fire detection is affected by many 

parameters. Four of these parameters will be discussed here: cloud coverage, solar 
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zenith angle (which represents day and night time), vegetation cover, and seasons. 

The effect of cloud coverage on the number of detected FHS is described in 

Section 2.4.1. Day and nighttime are explored in Section 2.4.2, and vegetation 

cover related to fire activity is explained in Section 2.4.3. The final parameter, 

seasonality, will be introduced in Section 2.4.4. 

2.4.1 Cloud Coverage 
One of the factors affecting detection of fires using a remote sensing system 

is cloud cover. Seielstad (2002) stated that on average, 53% of fires in Alaska were 

not detected remotely by fire detection algorithms due to interference by clouds. 

Flannigan and Haar (1986) found similar results, reporting that 59% of fires in 

central Alberta were undetected by fire detection algorithms due to cloud cover. 

In addition, a high rate of false alarms in fire detection by remote sensing also 

occurs along cloud edges, especially in the application of contextual algorithms 

(Giglio et al., 1999). In the daytime clouds reflect the most solar radiation in the 

visible bands, which can elevate the measured T4 value. The low temperature value 

of clouds will reduce the radiance value captured by channel 31 (T11). This 

interference may lead to erroneous fire detection due to an increase of ΔT, the 

difference between T4 and T11. Giglio et al. (1999) suggest a method for cloud pixel 

detection, which produces only a small omission error for fire detection. 

Hawbaker et al. (2008) have examined how cloud cover affects fire detection 

rate. They used the MODIS active fire product (MOD14 product) applied to the 

MODIS data over the United States. FHS detected by MOD14 were compared to 

the fires observed with an area ≥18 ha from pre-fire and post-fire Landsat images. 

Fires observed by Landsat were used as reference in this assessment. From 361 

reference fires, Hawbaker et al. (2008) found that the MOD14 algorithm detected 

82% of all fire observations. This means that 296 of the 361 reference fires were 

detected by the MOD14 algorithm, derived from both Terra and Aqua MODIS. 

Omission error was due to cloud cover. 
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2.4.2 Diurnal Influence 
The solar zenith angle, which is defined as the angle between the sun and the 

vertical, has an important effect on thermal anomalies detected by a sensor. At a 

small solar zenith angle, the influence of solar radiation is very high in thermal 

band sensors. The thermal 4 μm band is sensitive to radiation from fire as well as 

solar radiation; the measured brightness and temperature on the 4μm band will 

increase as the solar zenith angle decreases. Increasing the solar zenith angle will 

increase a pixel’s solar-radiated area, thus the apparent brightness and temperature 

of pixels decreases. In the case of the changes in solar zenith angle, a fire would be 

more prominent than its background at a large solar zenith angle compared to a 

smaller solar zenith angle. 

Comparing the solar zenith angle effect to the two thermal bands (4 μm and 

11 μm) shows that the temperature of measured pixels decreases more in the 4 μm 

thermal band than in the 11 μm (Kaufman et al., 1998). The decrease is noticed 

mainly for small fires (<100 ha); in the case of large fires (>100 ha), the 

temperature of the 4 μm band remains constant and that of the 11 μm band 

decreases. An illustration of solar zenith angle which can determine the day and 

night time data is given in Figure 2.11. 

 
Figure 2.11.  An illustration of solar zenith which can determine the day and night 

time data in remote sensing. 

The investigation of diurnal fire patterns in this research is related to the solar 

zenith angle. The range of solar zenith angle values is used to classify the MODIS 

data as either day time or night time. Each pixel has a specific solar zenith angle 

value. Pixels with a solar zenith angle ≥85o are classified as night time; otherwise 
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pixels are grouped as day time pixels (Giglio et al., 2003). Classification of day and 

night time pixel has been embedded in the MOD14 algorithm. 

Observed fire activity during the day and at night shows different patterns 

(Cahoon et. al., 1992; Langaas, 1992) and the cycle tends to occur regularly on a 

daily basis (Prins and Menzel, 1992, 1994; Giglio, 2007; Roberts et. al., 2009). 

Many different sensors for fire detection give various results of diurnal fire cycles 

(Giglio, 2007). It is important for regional authorities and local governments to 

understand regional diurnal fire characteristics when monitoring and aiming to 

control fires. Some research related to diurnal fire characteristics contributes 

considerable knowledge to various methods for controlling fire (Prins and Menzel, 

1994; Prins et. al., 1998; Giglio, 2007; Roberts et al., 2009). 

Prins and Menzel (1992) have monitored day and night time patterns of fire 

activity using the Geostationary Operational Environmental Satellite (GOES) 

Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS). The 

monitoring was performed in South America during August 1983 in areas of 

deforestation and grasslands. Observation was conducted using day and night time 

satellite datasets from two important channels for fire detection: 3.9 μm with a 

spatial resolution 13.8 km x 13.8 km; and the 11.2 μm channel with a resolution of 

6.9 km x 6.9 km. Prins and Menzel (1992) found that the maximum number of fires 

detected occurred at 12:21 local time and the minimum number was detected at 

18:31 local time (note that local time is UTC -3 hours). 

Furthermore, Cahoon et al.(1992) published different findings, showing that 

many fires occurred at night time. They worked using Defense Meteorological 

Satellite Program (DSMP) data over Africa spanning 1986-1987. They concluded 

that a strong diurnal fire cycle occurred at night time.  

The day and night time fire pattern has also been studied in 1988 by Langaas 

(1992). Langaas observed the daily fire activity in Gambia over two weeks, finding 

that the peak number of fires occurred at 14:30 local time and the minimum 

number was found at 02:30 local time. In the following year, Langaas continued 

the same research for Senegal using NOAA-10 and NOAA-11 AVHRR data, as he 

used for Gambia. Observations for the Senegal region were shorter (8 days long). 

Langaas reported that more fires occurred in the evening. 
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Another investigation of diurnal fire cycles was performed by Prins and 

Menzel (1994) by adding average fire temperatures of instantaneous sub-pixel 

areas within fire pixels, using Matson and Dozier’s (1981) technique. The 

observation data were taken from GOES-7 VAS between 31 August and 7 

September 1993. They found the peak number of total fire areas were observed at 

12:30 local time (15:30 UTC). They had slightly different results when they 

obtained observation data from an instrument with a higher resolution (0.9 km) – 

the GOES-8 VAS – during the week of 5-11 September 1994. The peak of fire 

numbers was detected in the late afternoon at 15:00 local time (18:00 UTC) 

(Menzel and Prins., 1996). 

Moreover, Giglio (2007) monitored the diurnal fire cycle in 15 tropical 

regions around the world using VIRS and MODIS datasets. His method counted 

fire hotspots in VIRS images within a prescribed area and matched them to the 

local hour observations. The prescribed areas included Brazil, Southeast U.S.A., 

Sahel, Central Africa, South Africa, Southeast Asia, Borneo, Australia, and India. 

He observed that the distinct patterns of diurnal fire cycles occurred maximally 

between the early afternoon and late afternoon for all investigated areas. In general, 

fire activity has only one peak value during the day, except in Northern Australia 

and Eastern Sahel where there are two peak fire times, one in mid- morning (about 

9.00-10.00 local time) and one in the afternoon (15.00-18.00 local time). Giglio 

(2007) has also reported that the burning time period was observed to occur 

between 13:00 and 18:30 local time, but in the heavily forested regions the peak 

time of active fires occurred earlier.  

2.4.3 Vegetation Cover Types 
The relationship between fire occurrence and vegetation cover types has been 

studied by many researchers. The research areas of interest vary in vegetation cover 

types, and global location, such as Central Africa (Bucini and Lambin, 2002), 

Indonesia (Miettinen and Liew, 2005), and Central U.S.A. (Tulbure et al., 2011). 

Indonesia is a tropical area with diverse vegetation cover types, which often 

encounter fires. In some tropical habitats, a small fraction of vegetation is tree 

cover, while the greater proportion is comprised of herbaceous growth (Giglio, 
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2007). The low vegetation (herbaceous growth) dries faster and provides finer, 

lighter fuel for biomass burning. In the dry season, which is generally associated 

with higher temperatures, their availability is more abundant and lasts longer. Fire 

ignition in these conditions will increase very easily throughout the day. On the 

other hand, another extreme condition occurs when the land is covered mostly by 

trees, such as the tropical rainforest. Weather conditions in the tropics are primarily 

humid, which prevents the occurrence of fire ignition. If fires occur in the tropical 

rainforest, the fire is usually short lived (Kauffman and Uhl, 1990). 

Miettinen and Liew (2005) have investigated the relationship between 

vegetation cover change and fire activity in the Riau province of Indonesia in 1986, 

1998, 2000, and 2002. Research shows that change in primary vegetation in Riau 

province is strongly affected by fire, while change in secondary vegetation was less 

affected by fire. In some areas, fire is used to maintain vegetation cover types 

intentionally; for example, fire is used to change rubber-harvesting forest into palm 

oil plantations. The names and definitions of land classifications including 

vegetation cover types in Indonesia refer to the vegetation naming rules as given in 

Table 2.5. 

Table 2.5.  Names and definitions of land classifications (Anonymous, 2010a). 
Classification is divided into categories of vegetated (includes low 
vegetation and high vegetation categories) and non-vegetated areas.   

No Land 
classifications Definitions 

Low vegetation cover category 

1 Swamp bush Shrubs and former forest in inundated areas  

2 Shrubland Former Dry Forest, now dominated by Shrubs, 
dominated by low vegetation and no longer 
showing the former water flow/scar’s logging 

3 Dry land farming with 
mixed shrubland 

Agricultural land with fallow soils interspersed 
with shrubs and logged forest. 

4 Dry land farming Agricultural land in dry environments (formerly 
several vegetation types). 

5 Rice field Wetland agriculture characterized by patterns of 
embankments  
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No Land 
classifications Definitions 

6 Transmigration Cultivated land including agriculture and 
settlements  

7 Savanna / Grassland Few scattered trees over tussock grass  

High vegetation cover category 

8 Plantation The entire plantation area, planted or not 

9 Secondary swamp 
forest 

The whole appearance of forest in swampy areas 
that show previous logging 

10 Secondary dry land 
forest 

The whole appearance of forest that shows 
previous logging 

11 Secondary mangrove 
forest 

Mangrove forests and palm that has been cut and 
has groove patterns in it 

12 Harvesting forest The entire industrial forests area, either planted 
or not 

13 Primary dry land forest Forests that have not been logged, including 
vegetation naturally low-growing in the massive 
rock 

14 Primary swamp forest The whole appearance of forest in swampy areas, 
including peat swamp which do not exhibit 
logging signs 

15 Primary mangrove 
forest 

Mangrove forests and  palm located around the 
coast that have not been cut 

Non-vegetated category 

16 Clear land  The whole appearance of open land without 
vegetation 

17 Water body All the appearance of water, including the ocean, 
rivers, lakes, reservoirs, coral reefs and mud 
beach 

18 Fish pond The place for fishing activities or salting that 
appears with the pattern bund around the coast 

19 Swamp Swamp appearance that has not been forested  

20 Settlement area Urban settlement areas either in cities, rural 
areas, ports, airports, industrial areas, and so 
forth, which shows a dense pattern of grooves 

21 Mining Open land used for mining activities (coal, tin, 
copper, etc.) 
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No Land 
classifications Definitions 

22 Airport/Harbour The berthing place for aircraft or ships with 
passenger facilities and loading or unloading of 
goods 

2.4.4 Seasonal Parameters (Precipitation and SOI) 
Indonesia is a tropical area, located at the Equator. There are two seasons in 

Indonesia: the rainy (wet) season, and the dry season. The wet season generally has 

a high level of precipitation that can reduce the frequency of fire occurrence. Each 

of the two seasons lasts for approximately 6 months. Usually the dry season ranges 

from June to November and the wet season occurs from December to May 

(Yasunari, 1981; Kishore et. al., 2000; Langner et. al., 2007). The length of the two 

seasons may vary, and may be affected by climate parameters such as the El-Nino 

and La-Nina phenomenon. 

El-Nino and La-Nina might change the seasonal time period. A strong El-

Nino causes the occurrence of an early dry season or a delayed wet season (Irianto, 

2003). In contrast, the La-Nina effect induces a longer wet season, which leads to 

increased precipitation. 

The El-Nino and La-Nina can be indicated by the Southern Oscillation Index 

(SOI). The SOI is defined as the difference in sea level pressure at Tahiti and 

Darwin or SOI = P୘ୟ୦୧୲୧ − Pୈୟ୰୵୧୬. The SOI values can be a negative or positive 

number. The positive SOI values are usually associated with El-Nino phenomena 

and the negative SOI values are related to La-Nina phenomena (As-syakur, 2008). 

The relationship between fire, drought, and El-Nino in Borneo has been studied by 

Wooster, Perry, and Zoumas (2012) for two decades. They used detected FHS from 

1980 to 2000 by using NOAA AVHRR data, which passed over Borneo. They 

found that the rising magnitude of active fires occurred during an investigation 

period was caused by decreasing precipitation, a short term climatic factor, due to 

the impact of the El-Nino phenomenon.  
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2.5 Sensitivity of Fire Detection Algorithm 
MOD14, a fire detection algorithm, was created to use MODIS data instead 

of AVHRR data. The MODIS channels wavelength bands are relatively close to the 

AVHRR channels; therefore the design of the two algorithms is similar. Both 

AVHRR and MODIS use two infrared channels – 3.73 μm and 11 μm channels for 

AVHRR, and 4 μm and 11 μm channels for MODIS – that are notated by T4 and 

T11. MODIS sensors are sensitive to temperatures up to 450 K and 400 K for 

channels 4 and 11 μm respectively; this temperature is higher than the AVHRR 

saturation temperature (Kaufman et al., 1998). 

Indonesia has a large forest area, including rainforest and plantation forest. 

Plants absorb a high amount of incident solar energy to drive their photosynthesis 

process and the solar energy is re-emitted at night in the thermal wavelength range. 

During the day, plants tend to be cooler than their surroundings because extra 

energy is needed when plants transpire in releasing water vapor (Chuvieco and 

Huete, 2010). To obtain accurate fire detection data during daylight, lower 

threshold values should be used in these forest areas, compared to the threshold 

values of other regions. This indicates also that the threshold value for night fire 

detection in dense forests could be higher than other regions. 

A sensitivity assessment of a fire detection algorithm called “MODIS-like 

daytime active fire detection model” has been done using NOAA-AVHRR data 

over Alaska (Seielstad et al., 2002). In this assessment, Seielstad et al. (2002) 

related the false detection with the threshold value applied in the algorithm. They 

found that reducing the threshold value used in the assessed algorithm increases the 

false detection rate. Their results suggested that the threshold value utilized in the 

algorithm should be higher for Alaska compared to the MODIS fire algorithm 

threshold, which is 310K. Seielstad et al. (2002) proposed that the optimal 

threshold value is between 314K and 315K. 

Further research in assessing the MOD14 algorithm was conducted by Wang 

et al. (2007). They reported that the MOD14 algorithm was not sensitive to fires in 

the South-Eastern United States, as the fires were generally small and cool. Pixel 

brightness temperature in the investigated area is mostly less than 310K; as a result 

the MOD14 algorithm showed a lot of false detection. Wang suggested decreasing 
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the threshold value (293K) to elevate the sensitivity of the fire detection algorithm 

applied in the area of the South-Eastern United States. 

Based on both sensitivity assessments described above, the applied threshold 

value could be different for every different area. For example, the threshold value 

of 310K is too low to be applied in Alaska (Seielstad et al., 2002) but that value 

was too high for the South-Eastern United States region (Wang et al., 2007). The 

sensitivity assessment for the fire detection algorithm applied to MODIS data over 

Indonesia, particularly in Riau and Central Kalimantan provinces, is conducted in 

this research. 

2.6 Validation Activities 
The measurement of every physical object’s properties needs a validation 

process to ensure the given information is accurate. A validation process includes 

accuracy and sensitivity assessments of uncertainty calculations. Section 2.6.1 

describes the research conducted regarding the validation assessment of the fire 

detection algorithm; validation employed SPOT high resolution images. Further, 

Section 2.6.2 discusses the validation assessment by using collected ground data. 

2.6.1 Validation Using SPOT High Resolution Imageries 
The SPOT satellite does not have thermal infrared channels, which are 

considered essential in fire detection. The only SPOT band that could potentially 

detect a hot object is the Short Wave Infrared (SWIR) band, at 1.6 µm wavelength, 

onboard the SPOT 4 satellite. Unfortunately this band is dominated by solar 

radiation that cannot be involved in fire detection applications. However, the high-

resolution imagery products represent a benefit of the SPOT satellite; this high 

resolution imagery allows the visual detection of fires.  

CRISP (Center of Remote Imaging, Sensing, and Processing) has a receiver 

for SPOT satellite data; CRISP has used SPOT imagery for forest fire monitoring 

since 1997. The CRISP’s researchers use the high-resolution SPOT images to 

detect fires and measure the length of existing smoke plumes; the images also can 

be applied for recognizing location and vegetation cover types of the area where 

fires occur (CRISP, 2001). The high-resolution SPOT imagery covers a smaller 
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area compared to the moderate resolution MODIS data. However, the high-

resolution imagery can provide more accurate fire detection results, particularly for 

smaller fires.  

Liew et al. (2003) conducted active fire detection research using SPOT data. 

They used 17 SPOT images that were acquired over 10 days in August-September 

2002 and May-July 2003 to validate the MODIS fire product. The applied strategy 

was based on the visibility of smoke plumes produced by fire. However, not all fire 

ignitions produce smoke that can be detected by this method. If a fire is entirely a 

chemical reaction, smoke plumes will not rise as a combustion product, particularly 

in intense fires. However this condition is not common for tropical areas with high 

humidity; therefore the smoke plumes method is appropriate for a humid 

environment such as Indonesia’s (Liew et al., 2003). 

Liew et al. (2003) classified the detected fire from SPOT images into four 

classes based on smoke plume observations: fires with faint and mostly unseen 

smoke are classified as Class 1; Class 2 accommodates fire with smoke plumes less 

than 1 km long; Class 3 contains fires with 1 to 10 km smoke plumes; and finally 

Class 4 contains fires with more than 10 km smoke plumes long (Liew et al., 2003). 

From the 17 SPOT images acquired over 10 days, Liew et al. counted 275 existing 

fires, with 62 fires in Class 1, 78 fires in Class 2, 77 fires in Class 3, and 58 fires in 

Class 4.  

An error assessment was carried out using the proximity method by creating 1 

km radius circled areas around MODIS fire spots. Valid MODIS fires are marked if 

there are one or more fires identified in the SPOT image within 1 km radius from 

its point (Liew et al., 2003); otherwise the MODIS fire spot is considered a 

commission error. The opposite condition, omission error, is justified where there is 

no MODIS fire spot within a 1-km radius of an identified SPOT fire. As a research 

conclusion, the commission error rate was 26.8% while the omission error rate was 

34.2%. The omission and commission error described was analysed over Sumatra 

and Borneo.   

In addition, the commission error of 26.8% is potentially related to new burn 

scars with high temperatures that have not produced smoke yet. In contrast, the 

34.2% pixels not detected by the MOD14 algorithm but considered as fire in SPOT 
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images, are caused by the high reflectance value of MODIS channel 2 (0.86 µm). 

The high reflectance value (more than 0.3) is a result of smoke plume reflection, so 

they are rejected by the MOD14 algorithm in the preliminary test. 

2.6.2 Validation Using Ground Data 
Fire information from ground-based data is generally provided only in limited 

regions and time periods (Cardoso et. al., 2005). Remote sensing methods for fire 

detection can cover extended areas and time periods, but the accuracy of the 

detection results must be assessed. Comparing fire observed on foot and fire 

detected from MODIS data is used as a validation method (known as the data 

validation method) by Cardoso et al. (2005), Tanpipat et al. (2009), and Vetrita et 

al.  (2012). To enhance the interpretation of satellite fire data for the Amazonia 

region, Cardoso collected ground-based data on fires in 2001 and 2002 using a 

simple and passive method to compare with estimates from MODIS fire products 

using error matrices. The matrix data of Cardoso et. al (2005) showed that the 

number of fires observed on foot (ground data) was 138, while the number of 

hotspots detected by MODIS was 3, and only 1 fire matched the ground data. The 

data show that much of the fire observed on the ground cannot be detected by the 

MODIS fire product. It was suggested that the discrepancy was caused by time 

differences between ground observations and satellite overpasses.  

In addition, Tanpipat et al. (2009) validated FHS detected by the MODIS fire 

algorithm applied to MODIS datasets over Thailand. Ground observation data was 

utilized in the validation to assess detection accuracy of the fire algorithm. The 

observation was conducted based on MODIS hotspot locations, which consider area 

accessibility as an important site selection criteria. Tanpipat found one false alarm 

in the burned and ash-covered area; this was due to the latent heat of the burned 

area, which gives the area a high temperature although the fire has died. Overall, 

the research resulted in high detection accuracy (97.67%) of MODIS fire detection 

over Thailand. 

Similarly, Vetrita et al.  (2012) have used ground data to validate the detected 

FHS occurrence at Riau province in 2011 based on the IndoFire algorithm. They 

collected ground data based on the FHS location detected by IndoFire. They 
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considered the IndoFire detected FHS as valid if ground data indicated fires 

occurring within 2 or 3 days around the date of the detected FHS. The other valid 

fire pixel consideration is the distance of the in-situ fire observed, and the location 

of the detected FHS data points; if the distance is within 2 km radius, then the 

detected FHS from IndoFire is considered as a valid detection. Vetrita also found 

some small burned areas in the field but none of these areas were detected as fire by 

the IndoFire algorithm. Based on Vetrita’s validation, the detection’s accuracy of 

the Indofire algorithm over Riau was 43%. This is possibly caused by small burned 

area size; the minimum burned area size to possibly be determined as fire by the 

MODIS fire detection algorithm is suggested by Giglio et al. (2009) to be 120 ha, 

(MOD14). 

2.7 Summary 
In summary, in Section 2.1 we discussed the principles of remote sensing as 

the observation of the Earth’s surface from space. Explanation of remote sensing 

terms were focused on satellite remote sensing, as this research conducts analysis 

using satellite remote sensing data. Also described was the interaction of 

electromagnetic radiation with observed objects, and how the satellite sensors 

capture object properties from the Earth’s surface as a fundamental theory which is 

used in fire detections. In addition, Section 2.2 highlighted the physical principle of 

thermal electromagnetic radiation and its relationship to the surface temperature 

and brightness temperature. Formulas to covert the captured electromagnetic 

radiation energy into physical properties of objects are also given in this. The fire 

detection algorithm principle is described in Section 2.3; the emitted radiance of 

fire in thermal wavebands determines the band of the sensor to be used to detect 

fire. The different stages of fire with their specific temperature characteristic has 

also been introduced in this section. The MOD14 algorithm, as the most commonly 

applied fire algorithm and also as a basis of the IndoFire algorithm in Indonesia is 

further explained, including the pixel classification results, sensors sensitivity, 

solar radiation effects which have an impact on the strategy of day and night time 

fire detection. Section 2.4 described the parameters that impact the fire detection 

methods. The parameters introduced are cloud coverage, the time of observing data 
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(day and night time), vegetation cover types, and seasonal parameters such as 

precipitation and SOI. The cloud coverage impacts on the detected FHS number, 

day and night time relates to the applied threshold values, while vegetation cover 

types and seasonal parameters affect the fire occurrence patterns. The sensitivity of 

the fire detection algorithm applied to different regions has been described in 

Section 2.5. The reported research regarding the assessment of fire algorithm 

sensitivity suggested it was appropriate to apply different threshold values in the 

fire detection algorithm applied in different regions. Finally this chapter concluded 

with discussion on the validation processes, outlined in Section 2.6. Validation 

using SPOT data is applicable for fire detection results due to their high spatial 

resolution although they do not have a thermal band sensor. The applied technique 

is using visual analysis based on the smoke produced from fire. The other research 

approaches to validation of fire detection results is through the use of ground check 

data. Ground data validations have been reported for different areas such as the 

Amazonia region, Thailand, and Indonesia. Based on the ground data validation 

methods, the same fire detection algorithm, MOD14, showed different accuracies 

when it was applied in those different regions. 
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CHAPTER  3 
RESULTS AND ANALYSIS 

Chapter two has introduced the review of literature regarding fire detection 

using satellite remote sensing data starting with the principles of remote sensing of 

electromagnetic radiation with a focus on the thermal infrared region. Two fire 

algorithms (MOD14 and IndoFire) were also described in the previous chapter with 

a focus on their use in Indonesia and investigation into the key parameters which 

influence the accuracy of fire detection using remotely sensed data. This chapter 

presents a study of the trends of Fire Hotspot (FHS) activity during the decade 

2001-2010 and analyses the operation of the MOD14 algorithm when applied to 

MODIS datasets over Indonesia, with a focus on the provinces of Riau and Central 

Kalimantan (Kalteng). The term FHS refers to the number of fire affected pixels 

detected using remote sensing data. The decadal study is based largely on fire 

activity data generated by the IndoFire system (Landgate, 2007). The sensitivity of 

the fire data to perturbation of parameters in the MOD14 algorithm is investigated 

and the results are presented in the context of the decadal study. Factors affecting 

the operation of the algorithm include cloud cover, vegetation cover type, and 

seasons.  

This chapter is divided into six sections. Section 3.1, ‘Fire detection and 

cloud coverage’, describes the remote sensing-derived fire activity trends for a 

decade in Indonesia based on IndoFire data. The impact of cloud coverage is 

analysed, and there is a discussion regarding approaches to estimating the true 

number of fires based on extrapolation from the partial views of selected 

geographical regions most often available from satellite imagery. Section 3.2 

covers diurnal figures of fire activity in the chosen province area in respect to the 

Section 3.1 description. Section 3.3, ‘Fire activity and vegetation cover type 

relationships’, investigates the relationship between numbers of FHS and the 

different vegetation cover types over Riau and Kalteng province during 2009. 
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Section 3.4, ‘Precipitation, Southern Oscillation Index (SOI), and fire activity’, 

discusses the relationship between season’s parameters (precipitation and SOI) and 

the number of occurring FHS. Section 3.5, ‘Sensitivity analysis of the MOD14 

algorithm’, presents an analysis of the sensitivity of the MOD14 fire detection 

algorithm to the changes of the temperature threshold values, with reference to the 

changes in the operation of the algorithm in the wet and dry seasons. Finally, 

Section 3.6, ‘Validation of MOD14 algorithm results’, discusses how the detected 

FHS using the MOD14 algorithm may be validated using high resolution SPOT 

imagery and ground data, with Riau and Kalteng provinces as focus regions.  

3.1 Fire Detection and Cloud Coverage 
Indonesia is characterized as a country that deals with a lot of fire (Hoffmann 

et al., 1999; Page et al., 2002; Tacconi, 2003). Trends of fire occurrence based on 

IndoFire data are given in a time series for the decade 2001-2010 as shown in 

Figure 3.1. IndoFire-derived total FHS data for Indonesia were acquired within 

latitude 6oN to -11oS and longitude 95oE to 141oE. Figure 3.1 indicates that the 

highest number of FHS occurred in 2006 with approximately 120,000 FHS. 

 

 
Figure 3.1.  FHS trend in Indonesia for a decade. Yearly data is the sum of 

detected FHS by IndoFire for the whole Indonesian area. 

Indonesia has 33 provinces, as shown in Figure 3.2, which contain different 

geographic characteristics. The number of FHS data in every Indonesian province 

for the decade 2001-2010 detected by the IndoFire system is given in Appendix 3. 
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The order of data in Appendix 3 is sorted according to the total number of detected 

FHS for the decade per area (sq.km) in every province. The table indicates that 

detected FHS in Indonesia are not distributed evenly for every province; fire may 

occur more densely in some provinces than in others. The Riau province is the  

most prone to fire, followed by Kalteng province. The location of both provinces in 

the Indonesian map is displayed in the marked areas of Figure 3.2. 

 

 
Figure 3.2.  The location of Riau and Kalteng provinces within Indonesia. 

Coordinate positions of Riau province is in between latitude -1.3 S to 2.5 N and 
longitude 100.0 E to 104.0 E while Kalteng province is located in between latitudes 
1.0 N and -3.5 S and longitudes 110.5 E and 116.0 E. These coordinates are used to 

border the data searching related to those two province areas (Riau and Kalteng). 

In addition, an investigation of fire activity trends was conducted based on 

province area. Trends of fire activity in Indonesia for 10 years in every province 

are shown in Appendix 4. Most provinces show the peak of the fire season occurs 

between June and November every year, which is generally recognized as the dry 

season. Conversely, between December and May, which is recognized as the wet 

season, the number of fires tends to be relatively lower. However, there are some 

provinces where the peak fire season occurs in arbitrary months throughout the 10 

year time series. For example, signal peaks in the fire season in Riau occur in both 

dry and wet seasons over the ten year time series, while peaks in the fire season in 

Kalteng occur in the dry season only. 

Furthermore, the accuracy of detecting fire occurrence using satellite remote 

sensing data has been reported to be affected by cloud coverage, as described in 
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Section 2.4.1. The cloud cover potentially obscures the remote sensing 

observations of fire occurring on the Earth’s surface. This section presents a study 

of the relationship between patterns of fire activity and cloud coverage over the 

area of investigation in Indonesia. Cloud coverage data were obtained from NASA 

- GES DISC (Goddard Earth Science Data and Information Services Center) 

through the Giovanni GES DISC website7. The patterns of Monthly time series 

FHS numbers derived from IndoFire versus fraction of cloud cover derived from 

Giovanni- GES DISC for Indonesia over the decade 2001-2010 are displayed in 

Figure 3.3.  

 

 
Figure 3.3.  Monthly time series of number of FHS derived from IndoFire and 

fraction of cloud cover derived from Giovanni- GES DISC for Indonesia over the 
decade 2001-2010. 

The scatter plot of detected FHS and the fraction of cloud coverage for 

Indonesia over the decade 2001-2010 is shown in Figure 3.4. From the figure we 

can observe that the increasing fraction of cloud coverage tends to decrease the 

number of detected FHS.  

                                                            
7 http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=MODIS_MONTHLY_L3 
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Figure 3.4.  Scatter plot of the number of detected FHS and the fraction of cloud 
cover for Indonesia over the decade 2001-2010. 

In a 2-tailed test of correlation at 0.01 significance level the correlation 

coefficient for the data is -0.665. This suggests that there is strong negative 

correlation between the fraction of cloud coverage and the number of detected 

FHS. The high fraction of cloud coverage relates to the smaller number of detected 

FHS and vice versa. This phenomenon is also observed in Figure 3.3.  

Based on the monthly cloud cover data for Indonesia over a decade as 

displayed in Figure 3.3, the highest values of cloud cover are shown to occur 

around December to February every year, a period which is usually categorized as 

wet season months (Yasunari, 1981). Conversely, the cloud cover is commonly low 

in the months of July to September, and these months are classified as the dry 

season (Yasunari, 1981). The minimum monthly cloud cover value of 59.8% 

occurred during June 2003 and the maximum cloud cover value of 97.8% occurred 

during December 2010. 

An associated FHS pattern for the decade 2001-2010 over Indonesia can 

show a better description of the relationship between detected FHS and cloud cover 

seasonally. The monthly number of FHS detected using IndoFire, as shown in 

Figure 3.3, indicates that the highest number of FHS occurred around July to 

October (within the dry season) and the lowest number of FHS was detected 

around December to March, which are normally wet season months. These patterns 

give a reasonable relationship between cloud cover and the occurrence of fire. 

Increasing cloud cover, mostly occurring during the wet season, corresponds to a 

low frequency of fires and so the number of FHS is low. In contrast, the low 
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fraction of cloud cover mostly occurs within the dry season, which is associated 

with high numbers of detected FHS. 

Since cloud coverage obstructs the detection of FHS by satellite, the true 

number of fires within the area is potentially greater than the number of FHS 

detected by satellite alone. The true number of fires can be approximated by using 

an extrapolation technique. The approach adopted here is to estimate the number of 

FHS for the whole Indonesian area based on observations that are free from cloud. 

The extrapolation’s approach used in this research is described by Equation 3.1.  

 

࢔࢕࢏࢚ࢇ࢒࢕࢖ࢇ࢚࢘࢞ࡱࡿࡴࡲ  =  (3.1) ܍܏܉ܚ܍ܞܗ۱ ܌ܝܗܔ۱ ܎ܗ ܖܗܑܜ܋܉ܚ૚ି ۴܁۴۶ ܌܍ܜ܋܍ܜ܍܌ ܎ܗ ܚ܍܊ܕܝۼ

The actual number of fires (referred to here as extrapolated FHS data) 

potentially provides a more realistic overview of the year-to-year variability in fire 

occurrence; however, it is important to note that there is the potential for obtaining 

different results of occurring fire activity due to differences in the cyclic nature of 

variability in cloud cover. The extrapolated FHS numbers based on monthly cloud 

coverage data is shown in Figure 3.5.  

 
Figure 3.5.  Monthly time series of FHS detected by IndoFire and the extrapolated 
number of fires based on monthly cloud cover data, acquired from Giovanni-GES 

DISC (Goddard Earth Science Data and Information Services Center), over 
Indonesia for the decade 2001-2010. 

 

The cloud cover over Indonesia may also be considered in terms of annual 

averages, shown in Figure 3.6. The annual cloud fraction is derived from the 
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average of monthly cloud fraction data for every year. The figure shows a relatively 

high fraction of cloud coverage over Indonesia, between 70% and 90%.   

 
Figure 3.6.  Yearly time series cloud cover for Indonesia (Latitude 6N to 11S and 

Longitude 95E to 141E) for the decade 2001-2010. Data are derived from the 
average monthly cloud cover data every year from Giovanni GES DISC (Goddard 

Earth Science Data and Information Services Center). Error bars represent the 
standard deviations of cloud cover for the region selected. 

The extrapolated number of FHS based on the annual average data is shown 

in Figure 3.7. The yearly extrapolation data based on annual fraction of cloud 

coverage tends to be higher compared to the sum of monthly extrapolation data in a 

year. The difference between yearly and monthly FHS extrapolation was found to 

be 10.91%. Extrapolating the number of observed FHS based on cloud cover for a 

lower range of time will better describe actual fire activity, because an estimation 

of the number of FHS is made in almost real conditions of cloud coverage. For 

example, extrapolating the number of FHS based on yearly cloud coverage patterns 

will implicitly estimate the fire activity in the dry season (which normally has low 

cloud coverage) based on an average of dry and wet season cloud coverage. The 

yearly cloud coverage data is an average of cloud cover in a year, and the greatest 

contribution of cloud cover comes from the wet season. In contrast the average 

number of FHS in a year is mostly derived from fire in the dry season. It is possible 

to generate a false estimation of the number of FHS; however, predicting the 

number of FHS based on monthly cloud patterns will minimize the false estimation 

of fire activity in the dry season using cloud coverage of the wet season. Therefore, 
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monthly data of cloud coverage more accurately describes the pattern of cloud 

cover related to the seasons in Indonesia (dry and wet seasons). 

 

Figure 3.7.  Yearly patterns of IndoFire FHS and extrapolated FHS data of 
Indonesia for a decade (2001-2010). Yearly extrapolation data are derived in two 

ways: first, by extrapolating yearly FHS data referring to yearly cloud cover 
(dashed line); and second, by summing monthly extrapolation data in a year (black 

solid line). 

With respect to the previous discussion, the extrapolated number of FHS on a 

monthly basis gives a better description of fire activity and it gives a more accurate 

description of conditions of cloud cover to be used in the extrapolation of FHS. 

Hence, the extrapolation method based on monthly cloud coverage data is 

considered better than annual averages for extrapolating the yearly FHS number.  

3.2 Monthly Patterns in Fire Activity 
 

Section 3.1 discussed the importance of cloud coverage in estimating the 

actual number of FHS that occur, based on the number of FHS observed. In this 

section, firstly we discuss the temporal patterns of the number of FHS detected and 

the temporal patterns of cloud coverage over the areas investigated i.e. Kalteng and 

Riau Provinces. In 2009 there was a long drought as a result of the strongest El-

Nino in the decade 2001-2010 (Wang et. al., 2012); Riau and Kalteng shared a 

peak fire season during that year (see Figure 3.1). Monthly FHS patterns overlaid 

by cloud coverage (CC) patterns for the two provinces for the whole year of 2009 

are displayed in Figure 3.8. 
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Figure 3.8.  Plot of monthly FHS distribution overlaid by cloud coverage (CC) for 

Riau and Kalteng provinces during 2009 

Figure 3.8 shows different monthly patterns of FHS distribution in Riau and 

Kalteng provinces. A unimodal curve of peak fire season occurring once in the year 

is shown in Kalteng, while Riau has a bimodal curve pattern indicating that it has 

two peak fire seasons, i.e. in January and July, as displayed by the black solid line 

of Figure 3.8. Based on this figure, the peaks of fire frequency occurred in July 

2009 for Riau province and September 2009 for Kalteng province. Therefore, the 

months of July 2009 and September 2009 are the focus of analsyis for diurnal fire 

activity in Riau and Kalteng respectively. 

Patterns of cloud cover over Riau and Kalteng are also displayed in Figure 

3.8. By comparing the patterns of the number of fires and existing cloud cover 

shown in Figure 3.8, it can be seen that the decreasing fire numbers in Riau 

province during March and April are not solely impacted by cloud cover; the low 

or high number of FHS observed is not only due to cloud coverage but possibly 

describe the real pattern of fire activity. Fire activity in Riau province mainly 

affects human activities such as developing palm oil, timber, and conflict of 

logging companies (Sizer et. al., 2014).  

However, in terms of the number of FHS detected, cloud cover still affects 

the probability of the number of real fires on the ground. Estimation of the actual 

number of FHS in the whole province is approached by the extrapolation technique 

described in the previous section. The curves of both detected FHS and 
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extrapolated FHS in Riau and Kalteng during 2009 is shown in Figure 3.9 and 

Figure 3.10.  

 

Figure 3.9.  Detected number of FHS from IndoFire and the extrapolated estimate 
for Riau provinces during 2009 

 

Figure 3.10.  Detected number of FHS from IndoFire and the extrapolated estimate 
for Kalteng province during 2009. 

The detailed data of Figure 3.9 and Figure 3.10 are given in Table 3.3. The 

calculation data suggests that the number of detected FHS from IndoFire is on 

average only 11% of the estimated actual number of fires in Riau province, as 

displayed in column D of Table 3.3. For the Kalteng province, the IndoFire system 

on average only detects 15% FHS based on the extrapolated FHS values, as 

displayed in column H of Table 3.1.  
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Table 3.1.  Data of detected FHS numbers from IndoFire (column A and E) and the 
extrapolated estimate during 2009 over Riau and Kalteng provinces. 
The extrapolation FHS numbers (column C and G) are calculated based 
on monthly cloud coverage (column B and F) retrieved from Giovanni 
GES DISC website data. The ratio between the number of FHS 
detected by IndoFire and the extrapolated estimate is given in column 
D and H). 

Month 
Riau Province Kalteng Province 

A 
(FHSInd) 

B 
(cloud)

C 
(FHSExt)

D 
(A/C)

E 
(FHSInd)

F 
(cloud) 

G 
(FHSExt) 

H 
(E/G) 

January 1186 0.91 13477 0.09 17 0.99 1133 0.02 

February 961 0.94 16860 0.06 41 0.97 1323 0.03 

March 75 0.93 1027 0.07 19 0.91 213 0.09 

April 142 0.87 1068 0.13 37 0.88 301 0.12 

May 1177 0.81 6294 0.19 60 0.84 364 0.17 

June 1766 0.77 7515 0.24 138 0.73 507 0.27 

July 2482 0.83 14264 0.17 450 0.72 1590 0.28 

August 2164 0.89 18817 0.12 3073 0.68 9725 0.32 

September 396 0.90 3771 0.11 10715 0.70 36077 0.30 

October 241 0.93 3394 0.07 677 0.87 5129 0.13 

November 275 0.95 5392 0.05 184 0.94 3119 0.06 

December 41 0.96 1079 0.04 15 0.96 385 0.04 

Average 908.8 0.9 7746.6 0.11 1285.5 0.8 4988.8 0.15 

With respect to the Figure 3.9 and Figure 3.10, the trends of number of 

detected FHS and its extrapolated values are different for Riau and Kalteng 

provinces. In the month of February in Riau province, the number of FHS detected 

is lass than January but for the extrapolated value the FHS increases relative to 

January. A similar condition is also occurs in the month of August. This issue leads 

us to carry out further investigation into the extrapolation method based on the 

fraction of cloud coverage.  

3.2.1 Cloud cover and Land fraction 
Cloud cover possibly obscures the satellite’s sensor view of the Earth’s 

surface in both land and water areas. The presence of cloud cover in a satellite 

scene impacts on the appearance of the fraction of land and water. To describe that 
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matter, Figure 3.11 shows an example of a scene containing water, land, cloud, and 

fire pixels. This figure clearly shows that cloud not only obscures the view of the 

land but also obscures the water. 

 
Figure 3.11.  MODIS scene showing different fractions of land, water, cloud, fires, 

and unknown within a bordered area.  

However, fire only occurs on the land, therefore the land fraction issue is 

more important than just the cloud fraction itself. There is a relationship between 

cloud cover and the fraction of land which is viewed from satellites. The presence 

of cloud cover in a satellite scene impacts on the appearance of the earth’s surface, 

specifically the fraction of visible land. An increasing percentage of cloud cover 

will decrease the fraction of visible land and therefore decrease the chance of 

accurately detecting the number of FHS, as fires can only occur on land.  

The cloud fraction and land fraction appearance on MODIS data can be 

extracted from the fire mask of the MOD14 product. It has been stated that the fire 

mask has 9 pixel classifications. Water, Cloud, and Land pixels are noted by 

numbers 3, 4 and 5 respectively (see Table 2.1). In this discussion, the total number 

of a scene’s pixels within a rectangular border, which represent a province area, is 

termed the maximum pixels of the image. In the case where the whole province 
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area is covered in a scene, the maximum pixels of the scene are equal to the 

maximum number of pixels for the whole province. 

As noted above, percentage of cloud cover, fraction of appearance of land and 

water, and the number of FHS detected can be counted from the MOD14 fire mask 

data. This research determined the number of pixels in each class automatically 

using the MATLAB script as given in Appendix 5. The input data, which is 

processed by the MATLAB program, is the gridded fire mask obtained from the 

MOD14 products. The fraction of cloud cover is defined as the number of cloud 

pixels divided by the maximum number of the scene’s pixels. A similar calculation 

is applied to get the fraction of water pixels: the number of water pixels is divided 

by the maximum number of scene pixels. 

In addition, the missing data, which are flagged as “0” in the fire mask files, 

represent the area within a border not covered by the scene. This issue occurs when 

the scene only covers part of the province area. This is illustrated in Figure 3.12, 

which shows the missing data in the black area on the top-right corner of the image. 

The missing data describes the fraction of reduction of each scene’s coverage to the 

whole province area.  

 
Figure 3.12.  Image of MODIS scene for 20 September 2009 : 02.45 UTC. The 

scene does not cover all of the Kalteng province area. The figure shows the 
portions of land, water, cloud, and detected FHS. 
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If there are no images free from cloud cover, the assumption is made that the 

cloud has the same probability in covering land or water area. The proposed 

mathematical expression to calculate the number of cloud pixels over land is: 

 Cloud over land = (܌ܖ܉ܔା܍ܚܑ܎) ܛܔ܍ܠܑܘ(܌ܖ܉ܔା܍ܚܑ܎) ܛܔ܍ܠܑܘାܛܔ܍ܠܑܘ ܚ܍ܜ܉ܟ x cloud pixels (3.2) 

Hence the maximum number of land pixels in a province is the sum of land 

pixels, fire pixels and cloud pixels over the land area. The number of land pixels for 

the whole province in the image area is calculated by: 

 Land whole province = land + fire + Cloud over land   (3.3) 

The number of land pixels for the whole province is used as a basis for calculating 

the land fraction. 

However, the number of pixels in the scene is affected by the position of the 

bordered area, whether the pixels are located in the middle of scene or in the edge 

of scene. Thus, the fractional calculation of each classification of pixels in the fire 

mask is performed in the gridded MOD14 file product to ensure consistency of the 

number of pixels within the border area investigated. This consistency cannot be 

achieved when we use the un-gridded MOD14 files because of the warping of the 

view effect.  

3.2.2 Diurnal analysis of Cloud fraction 
Diurnal fire activity will be described in this section; the data used are daily 

MODIS datasets over two Indonesian provinces, Kalteng and Riau, covering the 

months of September 2009 for Kalteng and July 2009 for Riau.  

The Giovanni system does not provide daily cloud coverage, it only provides 

data on a monthly basis. Therefore, the diurnal analysis of the daily FHS uses the 

fire mask data from the MOD14 products flagged as cloud pixels. The MOD14 

product was processed by the MOD14 algorithm with a modified threshold value 

(refer to IndoFire threshold, i.e. 316 K). The algorithm also produces a file product 

called “fire mask” which consists of 9 classes of pixels, as displayed in Table 2.1. 

The data for this diurnal analysis are retrieved from the months of July 2009 

for Riau province and September 2009 for Kalteng province. The reason is that 

these two months have the biggest peak fire seasons in the associated provinces, as 
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shown in Figure 3.9 and Figure 3.10. The diurnal analysis is performed in the UTC 

time point of view for the whole period. The number of pixels for each class in the 

fire mask file’s product is counted within the given bordered area shown in Figure 

3.11 for Riau province and Figure 3.12 for Kalteng province. 

It has been discussed previously that the percentage of cloud cover affects the 

appearance of land and water in the Earth’s surface imagery. The relationship 

between the relative proportions of cloud, land, and water diurnally is shown in 

Figure 3.13 for Riau province and Figure 3.14 for Kalteng province. In Riau 

province, the average fraction of visible land, water, and cloud is 41.63%, 26.73%, 

and 31.64% respectively during July 2009. Kalteng data for September 2009 shows 

the average of land, water, and cloud is 65.53%, 8.22%, and 26.25% respectively. 

These data describe a higher average of cloud cover over Riau compared to 

Kalteng. Furthermore, the area of visible water in Riau is larger than Kalteng and 

consequently the land area shows an inverse trend.  

 
Figure 3.13.  Diurnal pattern of percentage of visible land, water and cloud 

coverage over Riau province for July 2009 



 

65 
 

RESULTS AND ANALYSIS Chapter  3 

 
Figure 3.14.  Diurnal pattern of percentage of visible land, water and cloud 

coverage over Kalteng province for September 2009 

Based on the data described above, we conclude that Riau province has a 

larger portion of water area than Kalteng province. Riau’s water area is almost a 

quarter, or 41840/185565 = 22.5%, of the province area. In comparison, the water 

area in Kalteng province is smaller: only 14809/306000 = 5% of the whole 

province area. The percentage of visible land area values in Riau vary around an 

average value of 41.8%, while in Kalteng the percentage land area is higher with an 

average visible land area of 68.5 %. Cloud cover in Kalteng affects the land area 

visibility more than the water area; therefore, the cloud cover is closely related to 

the number of FHS detected in Kalteng. In contrast, the cloud cover in Riau does 

not affect the land area visibility significantly; the fire activity pattern in Riau is 

less affected by the cloud cover pattern.  

3.2.3 Daily analysis of FHS and Land fraction 
Essentially the earth’s surface consists of land and water, so the high fraction 

of water appearance in the scene will reduce the fraction of land. The total land area 

in the scene, in terms of a cloudy image, can be calculated by an extrapolation 

method similar to that used to estimate the number of FHS.  

Since fire is only possible on land, the next extrapolation method for fires will 

consider the fraction of land observed in the scene. A fraction-based extrapolation 

calculation is considered a better way to describe the estimated number of FHS on 
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land. Let us say there are 10 FHS detected in the scene with 60% cloud cover. 80% 

of cloud cover is over the water area. This means the FHS extrapolation should be 

based on (20% x 60%) = 12% of cloud cover over land. Hence, an improved 

extrapolated number of FHS is 10/(100-12)% = 11.4 FHS. For the above 

illustration, extrapolating the number of FHS by considering only total cloud cover 

gives a result of 10/(100-60) = 25 FHS; there is an over extrapolated number by 15 

FHS. 

The land fraction calculation is performed by a different method to the 

calculations of cloud coverage and water fraction; the calculations only divide the 

pixel number of cloud or water by the maximum number of scene pixels. Land 

fraction is defined as the ratio of the number of land plus fire pixels to the 

maximum number of land pixels in the whole province area. The maximum number 

of land pixels in the whole province area is the number of land pixels, including fire 

pixels, observed when the cloud-free scene covers the whole province area.  

Based on the resulting land fraction value, the extrapolated number of FHS in the 

province area is obtained by the formula: 

 FHS extrapolation = FHS x ૚૙૙(3.4)  ܖܗܑܜ܋܉ܚ܎ ܌ܖ܉ۺ 

Where 

 Land fraction =  (܌ܖ܉ۺା۴ܑ܍ܚ) (3.5)  ܍܋ܖܑܞܗܚܘ ܉ ܖܑ ܛܔ܍ܠܑܘ ܌ܖ܉ܔ ܍ܔܗܐ܅ܛܔ܍ܠܑܘ 

For example, we take one scene for each of Riau and Kalteng provinces to get the 

number of land pixels as a reference for further calculations of the extrapolated 

number of FHS. A scene of MODIS data passing over Riau province on 30 July 

2009 at 18.30 UTC has 143,659 land pixels, 56 fire pixels, 41,837 water pixels, and 

13 cloud pixels. Based on equation 3.3, we assume that the number of cloud pixels 

over land is: 

 

 Cloud over land  = (܌ܖ܉ܔା܍ܚܑ܎) ܛܔ܍ܠܑܘ(܌ܖ܉ܔା܍ܚܑ܎) ܛܔ܍ܠܑܘାܛܔ܍ܠܑܘ ܚ܍ܜ܉ܟ x cloud pixels   

  = (૚૝૜૟૞ૢା૞૟)(૚૝૜૟૞ૢା૞૟) ା૝૚ૡ૜ૠ x 13 = 10 pixels (3.6) 

So the number of land pixels for the whole Riau province in the image area is: 
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 Land whole province  = land + fire + Cloud over land   

  = 142659 + 56 + 10 = 143,725 pixels (3.7) 

The second example of calculating land pixels takes a scene over Kalteng province 

on September 27th, 2009 at 18.10 UTC with 287,893 land pixels, 419 fire pixels, 

14,663 water pixels, and 3,025 cloud pixels. Using the approach described by 

Equation 3.7, the resulting number of cloud pixels over land in Kalteng is 2,879 

pixels; the number of land pixels for the whole Kalteng province area in the image 

is therefore 291,191 pixels. The number of land pixels, which are 143,725 for Riau 

and 291,191 for Kalteng, are then used as reference numbers to calculate the 

fraction of the land in every scene using the expression given in Equation 3.6. 

It has been mentioned that land fraction in every MODIS scene varies due to 

the 16 day cycle of MODIS. Therefore, the fire characteristics between scenes 

cannot be properly compared; instead we use the extrapolation method described. If 

there is 100% land fraction, meaning that the scene covers the whole province area 

and is free from cloud, then the extrapolated number of FHS is equal to the number 

of FHS detected. However, if the land fraction is less than 100%, the extrapolated 

number of FHS is calculated by the mathematical expression given in Equation 3.5. 

For example, the captured scene over Riau province on 1 July 2009 at 06.40 

UTC has 87,349 land pixels and 54 fire pixels. Based on Equation 3.6, and using 

the total number of land pixels as 143,725, the land fraction of the scene is:   

 Land fraction =  (ૡૠ૜૝ૢା૞૝)૚૝૜ૠ૛૞   = 60.8% (3.8) 

and so the extrapolation of FHS number is: 

 FHS extrapolation = 54 x ૚૙૙૟૙.ૡ  = 89 pixels (3.9) 

This calculation of extrapolation of FHS number is applied to the whole available 

scene for both Riau province during July 2009 and Kalteng province during 

September 2009. 

Those results affect the patterns of extrapolated estimates of FHS based on 

cloud coverage and land fraction in each province, as shown in Figure 3.15 and 

Figure 3.16. The Figures show that patterns of extrapolated numbers of FHS based 

on cloud coverage and land fraction are similar in Kalteng province but not in Riau 
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province. This result is used as a reference in the next discussion of the 

extrapolation method for detected number of FHS; performing extrapolation 

calculations is based on land fraction. 

 
Figure 3.15.  Diurnal pattern of Extrapolated estimate of FHS number based on 
cloud coverage and land fraction calculation over Riau province for July 2009 

 
Figure 3.16.  Diurnal pattern of Extrapolated estimate of FHS number based on 

cloud coverage and land fraction calculation over Kalteng province for September 
2009 

The diurnal characteristics of active fire have been reported by Giglio (2007) 

which showed that the peak fire time in Southeast Asia mostly occurred in the 

afternoon between 14.00 and 17.00 local time. In this research investigation, we 

apply MODIS data from the narrower area of Southeast Asia with a focus on 

Indonesia, specifically Riau province during July 2009 and Kalteng province during 

September 2009, to analyse the diurnal fire characteristics. Datasets have been 

obtained from LAADS web of NASA Goddard Space Flight Center for the months 

considered and have been processed using the MOD14 algorithm to produce a fire 
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mask showing FHS occurrence. Using the fire mask data, we can count the number 

of pixels classified as land, water, and cloud. 

As described earlier, the number of fires occurring in a province cannot be 

determined solely by detected fire from every scene of remote sensing imagery 

because the scenes cover a different fraction of area within the province; hence the 

given value is a partial estimation number. When the scene covers the complete 

province area, the number of detected FHS is a good approximation of the number 

of FHS over the whole province.  

The pattern of FHS numbers for Riau and Kalteng provinces are shown in 

Figure 3.17 and Figure 3.18. Uncertainty in estimation values for the number of 

actual FHS is represented by the error bars for each data point. Figure 3.17 shows 

the diurnal extrapolation of FHS pattern for Riau province with peak fire time 

occurring at 6:00 UTC (13:00 local time). The data points in Riau associated with 

14:00 UTC consisted of 2 scenes which were devoid of fires. Because in these 

cases no fires were detected at 14:00 UTC, no standard deviation value can be 

calculated. Thus, the error bars for this data point are not drawn. In general the 

average number of FHS detected is 842 pixels, which sits within uncertainty ranges 

calculated for every data point. The peak number of FHS occurring at 6:00 UTC is 

2,237 pixels or about 2.6 times bigger than the average number of FHS. 

 
Figure 3.17.  The pattern of diurnal extrapolation FHS for Riau province during 

July 2009 corrected by land fraction. 
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Figure 3.18.  The pattern of diurnal extrapolation FHS for Kalteng province during 

September 2009 corrected by land fraction. 

Further, the diurnal extrapolation of FHS pattern in Figure 3.17 for the 

Kalteng province shows that the peak fire time occurs at 5:00 UTC (13:00 local 

time). This time is similar to the peak fire local time in Riau province that is 14:00. 

The average number of FHS detected during September 2009 is 5,156 pixels and 

the detected number of FHS at 6:00 UTC is 12,822 pixels, or about 2.5 times bigger 

than the average number of FHS.  

This finding refers to the effect of thermal radiation from the sun, which is 

related to solar zenith angle. The smallest solar zenith angle occurred at midday, 

about 12:00 local time. There is a lag of time for the thermal radiation from the sun 

to increase the surface temperature, which is known as the thermal response 

(NOAA, 2014). This could be a reason the fire peak occurs at 13:00, or 1 PM local 

time. This peak time of thermal solar radiation at the Earth’s surface is in 

agreement with Lindsey’s (2013) statement. The hottest time of day occurs at 13:00 

local time, thus the fire susceptibility is also in the highest level at this time. These 

results are slightly different to the Giglio (2007) studies which reported that the 

peak fire time in Southeast Asia was at 14:00 local time. 
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Details of the statistical data for diurnal FHS number in both Kalteng and 

Riau provinces is displayed in Table 3.2. Comparison of the diurnal pattern of the 

number of FHS detected by the MOD14 algorithm, and the extrapolated FHS 

numbers, are shown in Figure 3.19 for Riau province and Figure 3.20 for Kalteng 

province. Those figures show that the pattern of both observed FHS numbers and 

their extrapolated numbers are similar. The curve’s representing the extrapolated 

number of FHS follow the pattern of the observed FHS. 

On average the original number of FHS detected by the MOD14 algorithm in 

Riau province is 44.8% of the extrapolated number of FHS, while in Kalteng 

province the original number of FHS from MOD14 is 56.4% of the extrapolated 

number of FHS. This difference is caused by the lower land fraction in Riau 

province (32.8%) compared to Kalteng province (43%). 

 
Figure 3.19.  Diurnal patterns of FHS number detected by MOD14 compared to 

the extrapolated number of FHS based on the land fraction over Riau province for 
July 2009 

 
Figure 3.20.  Diurnal patterns of FHS number detected by MOD14 compared to 

the extrapolated number of FHS based on the land fraction over Kalteng province 
for September 2009 
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3.2.4 Summary 
In conclusion, the diurnal FHS pattern analysis was conducted by considering 

land fractions. With regard to the daily MODIS data in July and September 2009, 

the land fraction in Riau is 32.8%. This number is lower compared to the land 

fraction of 43% in Kalteng province. Consequently, the extrapolated FHS number 

based on land fraction in Riau is also lower (44.8%) compared to extrapolated FHS 

numbers in Kalteng (56.4%). Diurnal FHS patterns in both Riau and Kalteng 

province show the same time of occurring peak fire time, which is 13:00 local time. 

This peak fire time is related to the peak time of solar thermal radiation.. This result 

is slightly different than that of Giglio’s (2007) research, which found the diurnal 

peak fire time for Southeast Asia to be between 14:00 and 16:00 local time. 

3.3 Fire Activity and Vegetation Cover Types  
Vegetation cover type is another parameter affecting fire characteristics 

detected from satellite remote sensing. This work links to the research previously 

introduced in Section 2.4.3 about vegetation cover affecting fire activity. It has 

been described that land surfaces covered by different vegetation have different 

characteristics; low vegetation dries faster and is longer lasting in the dry season 

(Giglio, 2007), while high vegetation may reduce fire risk due to its cooling and 

humid influence on the environment as a result of the leaf evapotranspiration 

(Kaufman et. al., 1990). The differences in vegetation cover characteristics have 

been investigated in respect to their relationship to fire activity patterns.  

In this research we want to determine the percentage of low and high 

vegetation cover in Kalteng and Riau provinces. It has been indicated in Section 

2.4.3 that low vegetation cover has a greater potential as a fuel for biomass 

burning. In theory, a greater percentage of low vegetation cover leads to increased 

risk of fire occurring. The relationship between fire density and the percentage area 

of low and high vegetation will be investigated and discussed in this section. The 

investigation was conducted in various vegetation cover classifications, which were 

created by the officer of the Forestry Ministry of Indonesia for Kalteng and Riau 

provinces. There are 22 classes of land classifications that include 7 classes of non-
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vegetated areas and 15 classes of vegetated areas. The details of the land 

classification data and their areas are given in Table 3.3.  

Table 3.3.  Land classifications and their proportions for Kalteng and Riau on 2009 

No Land Classifications 
Kalteng Area Riau Area 

Ha Fraction 
(%) Ha Fraction 

(%) 
Low vegetation categories 5460011 24.61 3153877 31.98
1 Swamp bush 2395639 10.80 847532 8.59
2 Shrublands 1700622 7.67 783877 7.95

3 
Dry land farming with 
mixed shrublands 816934 3.68 875260 8.87

4 Dry land farming 153538 0.69 398548 4.04
5 Rice field 347944 1.57 239541 2.43
6 Transmigration 45332 0.20 8544 0.09
7 Savanna / Grassland 2 0.00 574 0.01

High vegetation categories 15774765 71.13 5954437 60.36
8 Plantation 1097986 4.95 2655763 26.92
9 Secondary swamp forest 3476642 15.68 1222005 12.39
10 Secondary dry land forest 5116494 23.07 914573 9.27
11 Secondary mangrove forest 21846 0.10 167108 1.69
12 Harvesting forest 118773 0.54 414442 4.20
13 Primary dry land forest 5902416 26.61 230414 2.34
14 Primary swamp forest 37623 0.17 344619 3.49
15 Primary mangrove forest 2984 0.01 5514 0.06
Non-vegetated areas 944507 4.26 756519 7.68
16 Clear land 253127 1.14 456360 4.63
17 Water body 144302 0.65 123077 1.25
18 Fishpond 3436 0.02 3639 0.04
19 Swamp 418451 1.89 27510 0.28
20 Settlement 69408 0.31 111199 1.13
21 Mining 55681 0.25 33869 0.34
22 Airport/Harbour 103 0.00 865 0.01

Total 22179283 100.00 9864832 100.00
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This research is focused on biomass burning activities, so the non-vegetated 

areas with almost no potential to be burned will not be taken into account in further 

discussions. We are only concerned with the 15 classes of vegetated areas. 

Referring to the vegetated land cover definitions given in the previous chapter 

(Table 2.5), the 15 classes of vegetated areas are then divided into low vegetation 

and high vegetation (trees) categories. The first category, low vegetation cover, 

includes the classes of swamp bush, shrublands, dry land farming with mixed 

shrublands, dry land farming, rice field, transmigration, and savanna/grasslands. 

The vegetation cover types classified as high vegetation include plantations, 

secondary swamp forest, secondary dry land forest, secondary mangrove forest, 

harvesting forests, primary dry land forests, primary swamp forests, and primary 

mangrove forests. Three vegetation types in the high vegetation categories are 

considered as primary forests namely primary dry land forest, primary swamp 

forest, and primary mangrove forest. Primary forests have not experienced logging 

activity and are in their naturally grown condition. 
Data in Table 3.3 show that both Kalteng and Riau province areas were 

mostly (more than 90%) covered by vegetation in both low and high vegetation 

categories. The proportion of low vegetation in Kalteng was only about 1/4 of the 

land area, while vegetation cover classified as high vegetation occupied the 

majority of the land area (71%). Additionally in Riau province, the low vegetation 

portion was higher, almost 32%, and the percentage of high vegetation area was 

about 60%. This finding indicated that the fraction of low vegetation categories in 

Riau was larger than in Kalteng province. Among all low vegetation categories, 

swamp bush represented the biggest percentage (10.80%) of low vegetation in 

Kalteng province. However, the data for Riau province showed that swamp bush 

represents 8.59% (ranked second after dry land farming and shrublands area with 

8.87%) of low vegetation category areas. 

Furthermore, in the high vegetation cover category, the fraction of primary 

dry land forest was the largest area (26.62%) in Kalteng province; in Riau province 

the area of primary dry land forest was only 2.34% (the 7th rank). The largest area 

in Riau province in the high vegetation category was classified as plantation (which 

is defined as being unchanged plantation for at least 2 years). Plantation covered 



 

76 
 

RESULTS AND ANALYSIS Chapter  3 

more than a quarter (26.92%) of the total Riau province area. In contrast, 

plantations in Kalteng covered less than 5% of the province area.  

The other vegetation classes covering areas of more than 10% in Kalteng 

were secondary dry land forest, secondary swamp forest, and swamp bush, and the 

remaining 10 vegetated land classes occupy less than 10% area for each class 

within the Kalteng province area. Similarly, Riau province also showed an un-

balanced proportion of vegetation cover type areas, with only 5 of 15 vegetated 

land classes covering more than 5% fractional area for each class including 

plantations, which had the biggest portion. 

The fire activity in specific vegetation classes is analysed further in the 

following discussion. The analysis will be focused only on 2009 data because the 

available vegetation cover data is only for 2009. The occurring fires were counted 

in every vegetation cover type of 15 classes of vegetated area. To describe the ratio 

of occurring FHS and the vegetation cover area, we have calculated the FHS 

density as a representation of area per FHS. With respect to the data of Table 3.5, 

the data of occurring fire as well as the density of fire for every vegetation cover 

type are presented in Table 3.4. From those two tables (Table 3.3 and Table 3.4) we 

conclude that Kalteng province has an area of about a quarter (24.61%) under low 

vegetation cover with an average fire density of 588 ha per FHS. In this low 

vegetation cover area, swamp areas in Kalteng on average show 1 fire in every 343 

hectares and it is considered as the area most impacted by fire during 2009. The 

remaining 71.13% of the area in Kalteng has high vegetation cover with lower 

average fire density (4,162 ha for every fire). The plantation cover type areas are 

considered to be the most fire prone areas in the high vegetation category, with 938 

ha per FHS. 
Fire activity in Riau province showed similar patterns, but it had different 

proportions of high and low vegetation. The area under low vegetation cover was 

larger (31.98%) than the same low vegetation category in Kalteng. The bigger 

portion of low vegetation cover area in Riau leads to the greater fire density as 

shown in Table 3.4.  Fire density under low vegetation area in Riau was 529 ha per 

FHS. 
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Looking at a specific area of low vegetation cover, fire density in swamp 

bush areas of Riau showed the highest rate of fire occurrence, with 1 fire in every 

262 hectares on average. The data in Table 3.4 also shows that swamp bush areas in 

Kalteng have the highest density of occurring fire. This data indicates that swamp 

bush was the area that suffered the most fires in both Kalteng and Riau province. 

Swamp bush areas in Riau had a risk of fire 1.3 times higher compared to the same 

types of areas in Kalteng. In summary, Riau province was much more fire prone 

than Kalteng. This result confirms the Giglio (2007) report because Riau has a 

greater area of low vegetation cover types which dry easily and increases fire 

susceptibility. 

Table 3.4.  Land classifications and the related number of FHS for Kalteng and 
Riau for 2009. Density numbers represent the area (in hectares) per detected fire. 

No Land Classifications 
Kalteng Area Riau Area 

FHS Density FHS Density 
Low vegetation categories 9285 588 5958 529
1 Swamp bush 7020 341 3233 262
2 Shrublands 1001 1699 1513 518

3 
Dry land farming with mixed 
shrublands 666 522 39 6142

4 Dry land farming 477 1713 1061 825
5 Rice field 81 1896 107 3725
6 Transmigration 40 1133 4 2136
7 Savanna / Grassland 0 - 1 574

High vegetation categories 3790 4162 2552 2333
8 Plantation 2095 1659 850 1438
9 Secondary swamp forest 1170 938 959 2769
10 Secondary dry land forest 482 10615 318 2876
11 Secondary mangrove forest 32 3712 384 1079
12 Harvesting forest 4 5462 3 55703
13 Primary dry land forest 6 6271 23 14983
14 Primary swamp forest 1 5902416 14 16458
15 Primary mangrove forest 0 - 1 5514

Total 13075 1624 8510 1070
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Tansey et. al., 2008 state that fire must cover at least 15 hectares (ha) of a 

MODIS pixel to be detected. In contrast, rescribed burning areas (based on the 

information of local forestry officer) are typically less than 15 ha. We therefore 

conclude that the detected FHS  likely represent the larger wild fires. 

3.3.1 Wet and Dry season’s fires over vegetation cover classification 

The analysis of fire activity in different vegetation cover types has also been 

carried out for dry and wet season data. The dry season FHS data were taken from 

the months of June to November 2009, while wet season FHS data were chosen 

from the months of December to May 2009. Detected fire data for both dry and wet 

seasons over different vegetation classes are presented in Table 3.5 for Kalteng 

province and Table 3.6 for Riau province.  

Data of fire activity in Kalteng province show that 12947/13075 or 99% of 

fires occurred in the dry season during 2009 and only 1% of fires occured in the 

wet season. Meanwhile, 5873/8510 or about 69% of fires in Riau occurred in the 

dry season of 2009 and there was a relatively high number of fires (2637 or 31%) 

in the wet season. The higher number of fires occurring in the wet season in Riau 

province is possibly due to a lower fraction of high vegetation type compared to 

Kalteng province. Kaufman, Tucker, and Fung (1990) reported that high vegetation 

has a significant cooling and humidifying impact on the atmosphere. This cool and 

humid effect will decrease fire susceptibility. This finding confirms the Giglio 

(2007) statement that low vegetation cover dries fast and Riau province tends to be 

burned in both dry and wet seasons. 

A different type of fire pattern is shown in the Kalteng data. The data show 

that the dry season is the time of most dangerous fire hazard and the wet season is 

relatively safe from burning. The recorded number of FHS indicates that almost all 

fires in 2009 arise in the dry season, while fire in the wet season only represents 

1% of all fires during the year of 2009.  
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Table 3.5.  Density analysis of wet and dry season FHS numbers for different land 
classes in Kalteng province of Indonesia for 2009. Density = area (ha) per FHS. 

No Land Classifications 
Dry season Wet season 

FHS Density FHS Density 
Low vegetation categories 9216 592 69 79131
1 Swamp bush 6983 343 37 64747
2 Shrublands 990 1718 11 154602

3 
Dry land farming with 
mixed shrublands 660 527 6 57991

4 Dry land farming 466 1753 11 74267
5 Rice field 78 1968 3 51179
6 Transmigration 39 1162 1 45332
7 Savanna / Grassland 0 - 0 -

High vegetation categories 3731 4228 59 267369
8 Plantation 2082 1670 13 267434
9 Secondary swamp forest 1129 973 41 26780
10 Secondary dry land forest 479 10682 3 1705498
11 Secondary mangrove forest 30 3959 2 59386
12 Harvesting forest 4 5462 0 -
13 Primary dry land forest 6 6271 0 -
14 Primary swamp forest 1 5902416 0 -
15 Primary mangrove forest 0 - 0 -

Total 12947 4820 128 165897

Table 3.6.  Density analysis of wet and dry season FHS numbers for different land 
classes in Riau province of Indonesia for 2009. Density = area (ha) per FHS. 

No Land Classifications 
Dry season Wet season 

FHS Density FHS Density 
Low vegetation categories 4021 784 1937 1628
1 Swamp bush 2309 367 924 917
2 Shrublands 893 878 620 1264

3 
Dry land farming with 
mixed shrublands 12 19962 27 8872

4 Dry land farming 722 1212 339 2582
5 Rice field 80 4982 27 14761
6 Transmigration 4 2136 0 -
7 Savanna / Grassland 1 574 0 -
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No Land Classifications 
Dry season Wet season 

FHS Density FHS Density 
High vegetation categories 1852 3215 700 8506
8 Plantation 617 1981 233 5245
9 Secondary swamp forest 686 3871 273 9728
10 Secondary dry land forest 224 4083 94 9730
11 Secondary mangrove forest 307 1350 77 5382
12 Harvesting forest 2 83554 1 167108
13 Primary dry land forest 9 38291 14 24616
14 Primary swamp forest 7 32916 7 32916
15 Primary mangrove forest 0 - 1 5514

Total 5873 3999 2637 3454

3.3.2 Vegetation cover related to the diurnal fire patterns 
There is a relationship between diurnal fire characteristics and vegetation 

cover, as it has been reported by Giglio (2007). He wrote that fires in the tropical 

region mostly occurred during the day in the herbaceous (low vegetation cover) 

regions. The peak number of fires in the low vegetation cover increased in early to 

late afternoon. Meanwhile, the high vegetation cover tended to restrict fire ignition 

and therefore the occurring fires were mostly surface fires and short-lived.  

In this research, the investigation of diurnal fire activity related to the existing 

vegetation cover has been performed during 2009. The data are taken from the 

months of peak fires in 2009; July in Riau and September in Kalteng province. The 

fire data are associated with the vegetation cover types of occurring fires. The 

diurnal fire distribution associated with vegetation cover types in July 2009 is 

shown in Figure 3.21 and Figure 3.22 for Riau province; diurnal fire distributions 

for Kalteng province in September 2009 are shown in Figure 3.23 and Figure 3.. 

Graphs are grouped into low vegetation cover and high vegetation types as 

described earlier with regard to the works by Giglio (2007). 
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Low vegetation cover category in Riau 

i 

ii 

iii 

Figure 3.21.  Diurnal fire occurrence over various vegetation cover types for the low 
vegetation category for Riau province  for July 2009; the local  time equals UTC+7 
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Figure 3.21.  Diurnal fire occurrence over various vegetation cover types for low 
vegetation category for Riau province for July 2009; the local time equals  UTC+7 
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High vegetation (trees) cover category in Riau 

vii 

viii 
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Figure 3.22.  Diurnal fire occurrence over various vegetation cover types for 

high vegetation (trees) category for Riau province for July 2009; the local 
time equals UTC+7 
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Figure 3.22.  Diurnal fire occurrence over various vegetation cover types for high 
vegetation (trees) category for Riau province for July 2009; the local time equals 

UTC+7 
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Low vegetation cover category in Kalteng 
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Figure 3.23.  Diurnal fire occurrence over various vegetation cover types for the 
low vegetation category for Kalteng province for September 2009; the local time 

equals UTC+8 
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iv 
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Figure 3.23.  Diurnal fire occurrence over various vegetation cover types for the 
low vegetation category for Kalteng province for September 2009; the local time 

equals  UTC+8 
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High vegetation (trees) cover category in Kalteng 

vii 

viii 

ix 

Figure 3. 24.  Diurnal fire occurrence over various vegetation cover types for the 
high vegetation (trees) category for Kalteng province for September 2009; the 

local time equals UTC+8  
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Figure 3.24.  Diurnal fire occurrence over various vegetation cover types for the 
high vegetation (trees) category for Kalteng province for September 2009; the local 

time equals UTC+8 

The available MODIS data are morning and afternoon. The morning data for 

Riau are between 3 and 7 UTC and the afternoon data are between 15 and 19 UTC. 

Morning data for Kalteng are between 2 and 6 UTC and the afternoon data are 
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between 14 and 18 UTC. All of these times are associated with the local time of 10 

AM to 2 PM for the morning and 10 PM to 2 AM for the afternoon. There are no 

MODIS data between 2 PM and 10 PM local time because the satellites do not 

overpass the area. 

Based on the fire data in Riau province as shown in Figure 3.21 for the low 

vegetation category and Figure 3.22 for the high vegetation category, the maximum 

number of fires in all types of vegetation cover occurred at about 06:00 UTC(13:00 

local time). The greatest number of fires occurred in low vegetation cover, 

particularly in the shrublands classification. The exceptions occurred with a small 

number of fires such as in rice fields and transmigration areas. This single fire may 

have been a controlled fire because it was only a single fire (Crutzen and Andreae, 

(1990),. 

Similar fire patterns over various vegetation types in Kalteng are shown in 

Figure 3.23 for the low vegetation category and Figure 3. for the high vegetation 

category. Most fires occurred at 13:00 local time (5 AM UTC). In some vegetation 

areas such as swamp bush, rice field, and plantation, fires persisted until 14:00 

local time. These results confirm that in the day time (early and late afternoon) low 

vegetation cover is dry and easy to burn (Giglio, 2007).   

3.4 Precipitation, SOI, and Fire Activity 
In this section we discuss seasonal meteorological effects with respect to FHS 

occurrence in Riau and Kalteng provinces. Parameters which have an effect on the 

temporal distribution of FHS include climate variables such as precipitation and 

SOI (Giglio et. al., 2006; Dayamba et al., 2010; Savadogo, 2012). Dayamba et al. 

(2010) reported a strong correlation between the fire season, defined as high 

numbers of fire occurrences, and the dry season. Dayamba et al. (2010) researched 

the relationship between fire occurrence characteristics and the seasonal 

parameter’s patterns. They reported that the trends of occurring fires have a parallel 

relationship to the dry season periods. The dry season was divided into three ranges 

of time i.e. early, mid, and late dry season. The fire patterns followed the dry 

season division. The early fire season occurs in the early dry season, mid fire 

season was associated with the mid dry season, and the late fire season was also 
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related to the late dry season. This section discusses the impacts of wet and dry 

seasons on the number of FHS detected, focusing on the Riau and Kalteng 

provinces of Indonesia; these are the two biggest provinces in Indonesia prone to 

being burned.  

The focus of this work is assessing the time lag and correlation between time 

of rainfall and fire occurrence. Data for the decade 2001-2010 (time series datasets 

of FHS, SOI, and precipitation) have been obtained to analyse the relationships 

between FHS and climate variability. FHS data have been acquired from the 

IndoFire system, SOI data have been sourced from the Australian Government’s 

Bureau of Meteorology website8, and monthly precipitation data have been 

accessed from the TOVAS (TRMM Online Visualization and Analysis System) 

website9. The spatial extent for the study encompasses the focused provinces, 

which are the most prone to fires, based on the numbers of FHS detected as given 

in Appendix 3 (see the province’s location at Figure 3.2).  

Time series data analysis aims to recognise patterns in sequential data over 

time. Examining the relationships between multiple related parameters is another 

application of time series data analysis. In this manner, we want to examine the 

relationship of three parameters of the monthly time series research data (the 

number of FHS, SOI, and precipitation level) for the decade 2001-2010. Pallant 

(2011) reported that time-series data analyses are best extracted from datasets with 

50 or more data points; this time-series data analysis is considered fit to analyse the 

relationship of FHS, SOI, and precipitation level parameters because this research 

has 120 time-series data points for each stated parameter. The relationships in the 

data are determined using a cross correlation analysis method. The assessment is 

performed on the monthly time-series data with no time lag, lag+1 month, lag+2 

months, lag+3 months, and lag+4 months. This assessment aims to find the 

correlation of FHS and SOI and the correlation of FHS and precipitation level. The 

assessment results are presented in Table 3.7 and Table 3.8, which represent the 

assessment results for Riau and Kalteng respectively.  

                                                            
8 http://www.bom.gov.au/climate/current/soihtm1.shtml#top 
9 http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=TRMM_Monthly 



 

91 
 

RESULTS AND ANALYSIS Chapter  3 

The results of the assessment given in Table 3.7 show that correlation 

coefficients of FHS with both precipitation level and SOI in Riau province have 

peak values in the lag+2 month. The peak value of -0.34 is associated with fire and 

precipitation correlation, and the peak value of -0.28 is associated with fire and SOI 

correlation. This indicates that the precipitation and SOI level corresponds to the 

next two months of fire activity. For example, SOI and precipitation during January 

2009 will have the highest correlation with the fire activity during March 2009.  

Table 3.7.   Correlation coefficient between fire activity (FHS) and climate 
parameters (precipitation and SOI) in Riau province 

No Parameters Correlation coefficient  
1 FHS 1 
2 SOI lag 0 -0.24 
3 SOI lag +1 -0.22 
4 SOI lag +2 -0.28 
5 SOI lag +3 -0.19 
6 SOI lag +4 -0.14 
7 Rain lag 0 -0.17 
8 Rain lag +1 -0.26 
9 Rain lag +2 -0.34 
10 Rain lag +3 -0.28 
11 Rain lag +4 -0.20 

The above evaluation results of parameters’ correlation for a decade of data 

(2001-2010) shows that precipitation and SOI are most related to the following two 

months of fire occurrence in Riau province (Cahyono et. al., 2013). A negative sign 

in the coefficient values indicates that increasing SOI and precipitation causes a 

reduction in the fire occurrence in the Riau province.  

The same investigation of FHS and climate parameter correlation was also 

performed on the Kalteng data to determine whether the occurrence of fires are 

directly impacted by rainfall or whether the impacts are delayed. The results of the 

coefficient relationship assessment for Kalteng data are displayed in Table 3.8. It 

shows that the peak value of correlation coefficient for FHS and SOI value occurs 

in lag +2 month with -0.28; meanwhile the peak of coefficient relationship for FHS 
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and rainfall occurs in lag 0 with a value of -0.34. These results indicate that 

Kalteng province has slightly different characteristics compared to the Riau 

province. Rainfall in Kalteng province affects the fire occurrence in the same 

month of rain. These things implicitly suggest that the seasons, indicated by the 

rainfall rate, have the same pattern as fire activity. Decreasing rainfall rate in the 

beginning, middle, or end of a season directly affects the fire activity in that season. 

Table 3.8.  Correlation coefficient between fire activity (FHS) and climate 
parameters (precipitation and SOI) in Kalteng province 

No Parameters Correlation coefficient  
1 FHS 1 
2 SOI lag 0 -0.22 
3 SOI lag +1 -0.25 
4 SOI lag +2 -0.28 
5 SOI lag +3 -0.25 
6 SOI lag +4 -0.22 
7 Rain lag 0 -0.34 
8 Rain lag +1 -0.33 
9 Rain lag +2 -0.28 
10 Rain lag +3 -0.12 
11 Rain lag +4 0.07 

Finally, we conclude this section with the relationship between fire activity 

and rainfall. In Riau province, the occurrence of rainfall is correlated to the next 

two months of fire activity. A different trend is shown in the correlation of rainfall 

and fire activity for Kalteng province; this province is characterized by a direct 

impact of rainfall on fire activity. Comparing these results to the Dayamba et al. 

(2010) work, the Riau fire pattern does not show that early, mid, and late fire 

seasons are associated with early, mid, and late dry seasons respectively, because 

the occurrence of rainfall has a closer correlation with the next two months of fire 

activity. However, Kalteng province seems to agree with Dayamba’s (2010) work 

because the rainfall impacts the fire activity in the same month, which means that 

early, mid, and late fire seasons are associated with early, mid, and late dry seasons 

respectively. 
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3.5 Sensitivity of the MOD14 Algorithm in Wet and Dry Seasons 
It was introduced in Section 2.5 that the sensitivity of the MOD14 algorithm 

varies when applied to different regions. To enhance the understanding of how the 

MOD14 algorithm responds to the MODIS datasets over Indonesia, this section 

will discuss the analysis of sensitivity of the MOD14 algorithm applied to MODIS 

datasets over Riau and Kalteng provinces of Indonesia, the two regions of interest. 

The fire detection sensitivity in this section is defined as the change in number of 

detected FHS as the threshold value is changed, when the algorithm is applied to 

the MODIS data. Therefore, the sensitivity assessment in this section is based on 

threshold values changes. If the algorithm is sensitive to changes , this suggests it 

might be appropriate to vary the threshold values for different conditions. 

The sensitivity analysis is applied to the MODIS datasets over Indonesia for 

the two seasons, dry and wet, as described by Yasunari (1981). The dry season 

usually occurs between June to November, while the wet season usually occurs in 

the period of December to May (Yasunari, 1981; Kishore et al., 2000). The 

sensitivity analysis aims to describe and compare FHS detection sensitivity 

characteristics in the two seasons. Two months of MODIS data were examined in 

this research. Data acquired in August 2009 represent the dry season and data for 

February 2010 represent the wet season. For these two months there is a total of 93 

data points: that is, 50 data points for the dry season and 43 data points for the wet 

season. 

The analysis was performed on the seasonal MODIS data by modifying the 

threshold (T4). Essentially, this preliminary test filters or detects all pixels that may 

be considered fire pixels. When the pixels’ temperatures fall below the threshold 

value, these pixels are not classified as fire pixels. Consequently, decreasing or 

increasing threshold values will impact by increasing or decreasing the number of 

detected FHS respectively.  

The first experiment was performed to determine the lowest and highest 

temperatures of threshold values at which the maximum number of fires is detected 

and when no fires are detected. The lowest threshold value was considered to be 

the value which enabled the fire algorithm to detect the maximum FHS number. No 

additional numbers of FHS were detected when the threshold value was reduced 
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below this limit. Conversely, the highest threshold value is determined when the 

fire algorithm cannot detect any pixels as a fire or simply when no fire pixels are 

detected. Note, the threshold value used in the MOD14 algorithm is 310K . 

The assessment results showed that 300 K was the lowest threshold because 

reducing threshold value from this point did not impact on the additional number of 

detected FHS. In contrast, the highest threshold value was determined to be 350 K 

because fire pixels were still detected in some datasets by applying the threshold 

value above 350 K, but on average only 2% of total detected fire is found. This 

means that 98% of fires have been either detected or not by changing the threshold 

value from 300 K to 350 K. Thus the sensitivity assessment is applied in the 

threshold values changing from 300 K up to 350 K in one degree steps. The 

number of detected FHS is recorded in every changing step of threshold values. 

The plot of the distribution of detected FHS numbers for various threshold 

values applied to each MODIS dataset for both dry and wet seasons is shown in 

Figure 3.25 and Figure 3.26. Every curved line represents the FHS distribution 

pattern of each MODIS dataset. The dashed black lines in both figures represent the 

patterns of average value for all datasets in each season. The maximum number of 

FHS detected by the MOD14 algorithm varies for every assessed MODIS dataset; 

hence the shapes of the curves of response of the algorithm for each datasets, as 

well as the average value curves on these separate figures, cannot be compared 

directly.  Merging the average curve patterns of the FHS distribution for each 

season in one chart will help the pattern analysis. However, displaying the real 

number of average detected FHS still does not give a clear picture of fire 

distribution characteristics in terms of response of the fire detection algorithm for 

MODIS datasets applied. 
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Figure 3.25.  Detected FHS distribution in various threshold values for 50 datasets 

of dry season in August 2009. Each solid line represents the FHS distribution of 
each MODIS dataset. The average FHS distribution is drawn by the dashed line. 

 
Figure 3.26.  Detected FHS distribution in various threshold values for 43 datasets 
of wet season in February 2010. Each solid line represents the FHS distribution of 
each MODIS dataset. The average FHS distribution is drawn by the dashed line. 

Similar curve patterns are shown in both Figure 3.25 and Figure 3.26. They 

indicate the relatively constant number of FHS from 300 K to 310 K, then the 

number of FHS decreased steeply from a threshold of about 310 K to about  325 K, 

and then the change in the number of FHS gradually decreased from 325 K to 350 

K. This finding indicates that the sensitive threshold value in determining fire 

pixels ranges from 310 K to 325 K.  

The pattern of the normalized number of detected FHS gives a better 

description of how the fire algorithm responds to the changing threshold values. By 
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normalizing all the curves, the maximum numbers of detected FHS are indicated at 

the same value: that is, 1 or 100% in the normalized scales and the minimum 

numbers of detected FHS are placed at the same value, 0. The graphs of normalized 

number of detected FHS for the dry and wet seasons of MODIS datasets over 

Indonesia are displayed in Figure 3.27 and Figure 3.28. 

 
Figure 3.27.  Normalized detected FHS distribution for various threshold values 

for the dry season 

 
Figure 3.28.  Normalized detected FHS distribution for various threshold values 

for the wet season 

The trend of the normalised curves is analysed to compare the algorithm 

response and sensitivity between both dry and wet seasons. The normalized curves 
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of average fire distribution for the wet and dry seasons are shown in Figure 3.29. 

The wet season curve shows that the number of decreasing FHS is steeper 

compared to the number of decreasing FHS in the dry season, with the steepest 

curves in the threshold values ranging from 310 K to 325 K. This suggests that the 

MOD14 algorithm responses are more sensitive to the wet season data than those 

generated from the dry season in terms of variation of changing threshold value. 

Figure 3.29 also indicates that the application of the fire detection algorithm may 

need a lower threshold value for the wet season compared to the dry season. 

 
Figure 3.29.  Average patterns of normalised algorithm response for detected FHS 

distribution for various threshold values for both dry and wet seasons 

The “Mann-Whitney test” statistical analysis was used to show the 

characteristics of the reduction pattern of the assessed data (Pallant, 2011). 

Essentially, the Mann-Whitney test is used to compare median values of two 

independent groups, in this case normalised FHS distributions in both the dry and 

wet seasons. With respect to the fire algorithm response to the threshold values, the 

reduction number of FHS along with the increase of threshold value is related to 

the sensitivity response of the fire algorithm to the MODIS data. The results of the 

Mann-Whitney test applied to the dry and wet data suggest that the rate of 

reduction of FHS numbers in the wet season is larger than in the dry season, as 

displayed in Figure 3.30. It appears that wet season datasets have a more sensitive 

response to the threshold value compared to the dry season datasets. This result 
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supports the previous comment that the application of the fire detection algorithm 

may need a lower threshold value for the wet season compared to the dry season.  

 
Figure 3.30.  First reduction of normalised detected FHS distribution in both dry 

and wet season 

The comparison of results between dry and wet seasons of fire distribution 

patterns, as shown in Figure 3.29 and the Mann-Whitney test, indicates that the 

MOD14 algorithm responds differently to dry and wet season MODIS datasets. 

The statistical analysis test is employed to examine the significant difference of 

responses of the algorithm in both dry and wet seasons.  

Since the number of FHS detected in every season are not related to each 

other, the number of fires in the two seasons are regarded as independent variables, 

thus the t-student test is considered to be appropriate to examine the significance of 

the independent variables (Pallant, 2011). The t-student test is performed on the 

average of normalized data of the number of FHS detected in dry and wet seasons. 

There are 51 pairs of data, representing the data step of temperature changes from 

300 K to 350 K. The data were tested using a t-student test implemented in SPSS. 

The t-student test results, with a significance (2-tailed) of < .001, are shown in 

Table 3.9. Pallant (2011) makes the point that the significance (2-tailed) values less 

than 0.05 indicate that there is a significant difference between the two variables 

tested. The significance (2-tailed) value of the t-student test reported by SPSS was 
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< .001 for the dry and wet season data. This means that both curves are 

significantly different. 

Table 3.9.  T-student test of detected FHS in dry and wet seasons 

Season Number 
of data Mean Std. 

Deviation 
Std. Error 

Mean 
Sig 

(2-tailed) 
Dry 51 0.4055 0.39520 0.05534 0.000 

Wet 51 0.3692 0.39506 0.05532 0.000 
 

We have analysed the patterns of average detected FHS number distributions 

for the dry and wet season datasets, performed the Mann-Whitney test, and applied 

the t-student test, with the conclusion that the MOD14 algorithm responds 

differently in dry and wet season datasets over Indonesia. The results indicate that a 

lower threshold value may be more appropriate for the wet season MODIS datasets 

over Indonesia. This result leads to the importance of determining the best 

threshold value for fire algorithms that fit dry and wet season datasets. 

 
Figure 3.31.  Decrease of FHS number detected in dry and wet seasons for various 

threshold values 

However, the sensitivity of the fire detection algorithm has not been 

determined yet. Our approach of assessing algorithm sensitivity is analyzing the 

decreased number of FHS detected for every step of threshold value change. The 

pattern of the average decrease of the detected FHS number for dry and wet 

seasons in one-degree step threshold variation is shown in Figure 3.31. Based on 

the figure and the statistics data displayed in Table 3.10, the biggest decrease of 

detected FHS occurs in the most sensitive range of threshold values between 310 K 
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and 325 K. The biggest decrease value in the dry season occurs at 317 K, while in 

the wet season it occurs at 316 K. This indicates that the most sensitive MOD14 

algorithm response occurs at the threshold 317 K for dry season datasets and at 316 

K for wet season datasets. 

Table 3.10. Statistics for the average number of FHS detected and the average 
decreased number of FHS for dry and wet season datasets at various 
threshold values in 1 degree steps. 

Threshold 
values 

Dry Wet 

 Avg FHS Avg 
Decrease  Avg FHS Avg 

Decrease 
310 77.96 2.32 55.95 1.28 

311 75.64 3.14 54.67 1.51 

312 72.50 3.40 53.16 2.21 

313 69.10 4.26 50.95 2.51 

314 64.84 4.84 48.44 3.21 

315 60.00 5.12 45.23 3.19 

316 54.88 5.30 42.05 3.70 

317 49.58 5.70 38.35 3.51 

318 43.88 4.64 34.84 3.42 

319 39.24 3.64 31.42 3.07 

320 35.60 3.30 28.35 3.63 

321 32.30 3.12 24.72 3.07 

322 29.18 2.74 21.65 2.84 

323 26.44 2.70 18.81 2.60 

324 23.74 2.46 16.21 2.16 

325 21.28 1.72 14.05 2.26 

The result of the MOD14 algorithm response in terms of the decreased 

number of detected FHS implies that the threshold value of 317 K is recommended 

for the dry season and the threshold value of 316 K is suggested for the wet season. 

To see the impact of the misuse (not recommended usage) of threshold values in 

dry and wet seasons to the number of detected FHS number, we calculated the 
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percentage of the number of detected FHS between 316 K and 317 K threshold 

values by dividing the number of detected FHS in the associated threshold values 

(as recommended) in each of the dry and wet seasons. Based on the data shown in 

Table 3.10, the use of a higher threshold value (317 K) in the wet season on average 

gives (42.05-38.35)/42.05=8.8% lower FHS number from the detected FHS number 

with the recommended threshold value. On the other hand, the use of a lower 

threshold value (316 K) in the dry season gives an average of (54.88-

49.58)/49.58=10.7% higher on the detected FHS number compared to the detected 

FHS number by using the recommended threshold value 

As described in Chapter 2, the fire detection algorithm for the T4 threshold, 

which is used for examining potential fire pixels in the MOD14 algorithm, is 310 K 

and the threshold in the IndoFire algorithm is 316 K. Drawing on the previous 

results, we can justify that the threshold value applied to the IndoFire algorithm 

appears to be more appropriate for MODIS data over Indonesia. The data show that 

the average number of FHS from MODIS datasets for August 2009 decreases 

steeply within the threshold range 310 K to 325 K. The data were assessed using 

the MOD14 algorithm with various T4 threshold values in the potential fire pixels 

test. The MOD14 and IndoFire threshold values are linked to the average values of 

FHS numbers using solid black lines in Figure 3.32. 

 
Figure 3.32.  Distribution of average detected FHS numbers in the dry season 

during August 2009 using various T4 threshold values in the potential fire pixels 
test for the MOD14 algorithm. 
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The maximum number of the average detected FHS as shown in Figure 3.32, 

which occurs at a 300 K threshold value, is 82.26 pixels; the minimum FHS 

number, which takes place at a 350 K threshold, is 3.60 fire pixels. The number of 

detected FHS at the MOD14 threshold (310 K) is 77.96 fire pixels and the detected 

number of FHS at the IndoFire threshold (316 K) is 54.88 fire pixels. There are 

23.08 different FHS, or about 23.08/82.26=28.06% of the detected FHS, between 

the MOD14 and the IndoFire threshold applications. By applying the same 

calculation as given in the example, the percentage difference of the average of 

FHS differences in the wet season is about 23.71%. Thus on average, the 

application of the genuine MOD14 algorithm to MODIS datasets over Indonesia 

will overestimate by 28.06% the detected FHS number for dry season datasets and 

by 23.71% for wet season datasets. This result is based on the dry and wet season 

MODIS datasets, which were acquired in August 2009 and February 2010 

respectively. 

These findings give evidence that the MOD14 algorithm needs some 

adjustment with respect to the threshold value when the algorithm is applied to 

MODIS data over Indonesia. This research suggests utilizing the threshold value of 

316 K for the wet season and 317 K for the dry season. These threshold values are 

slightly higher than those applied for fire detection in Alaska (314 K to 315 K) by 

Seielstad et al. (2002). Moreover, they are largely different from threshold values 

applied to South-Eastern United States, i.e. 293 K. 

There are a number of possible reasons underlying the larger threshold values 

for the fire detection algorithm using MODIS data over Indonesia. In the land 

degradation area (that is, low vegetation cover) the average atmospheric 

temperature near the Earth’s surface will increase (Jarraud, 2005). As introduced in 

Chapter 1, massive transmigration, logging, and mega rice projects left a large 

forest area degraded (Roach et al., 2004; Riley, 2006) which led to a reduction of 

the cooling effect of evapotranspiration. Decreasing vegetation cover will increase 

open land area, which may lead to increasing the surface reflectance of solar 

radiation. Thermal solar energy will be emitted to the atmosphere and thus the 

temperature above the surface increases. 
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As reported by Nicholson, Davenport, and Malo (1990), rainfall has a strong 

relationship with seasonal NDVI. This indicates that the wet season, which has a 

lot of rainfall, leads to vegetation growth; the cooling effect of water vapour in the 

air as a result of evapotranspiration by vegetation increases and the average 

temperature decreases. The likelhood is that fire occurring in the wet season will 

also have a lower temperature compared to fire in the dry season 

It is also possible that vegetation cover changing in peat land forest 

degradation causes an increasing environmental temperature. Riau and Kalteng 

provinces, regarded as the most fire prone, are mostly comprised of peat land 

forests which have been converted to oil palm plantations (Miettinen et. al., 2012) 

and rice fields as a part of the mega rice project (Riley, 2006). The land use 

changes can produce green-house gases (CO2) as a result of vegetation changing 

(Strack, 2008). Miettinen et al. (2012) estimate that peat land forests in Kalimantan 

will decrease by 0.5 million hectares a year by 2020.  

The proportions of vegetation cover types in 2009 for Kalteng and Riau are 

shown in Table 3.3. The table shows that primary forest types represent nearly 27% 

of the vegetation cover in Kalteng and Plantation nearly 27% in Riau. Non-burning 

or non-vegetated areas (clear land, water, fishponds, swamp, settlement, mining, 

and airport/harbour) represent approximately 4% of the whole Kalteng province 

area. As described in Section 3.2, primary forest (including swamp forest and dry 

land forest) experiences very few fires compared to secondary forest and other 

vegetation cover types, especially bush and swamp bush. All other vegetation cover 

types may undergo seasonal changes due to either wet or dry season, as shown in 

Table 3.5 for Kalteng province and Table 3.6 for Riau province.  

Sensitivity of the fire detection algorithm is seasonally affected. Hence, some 

adjustments of the applied threshold values are needed for different seasons. The 

finding of this study reveals that the appropriate threshold values are 316 K for the 

wet season and 317 K for the dry season, based on each being the most sensitive 

threshold to changes in threshold. 
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3.6 Validation of the MOD14 and IndoFire Algorithms 
Methods for the validation of the MOD14 algorithm using SPOT imagery 

have been reported by Liew et al (2003). The validation research was performed on 

the FHS detected by the MOD14 algorithm and SPOT imagery data over Sumatra 

and Borneo. This section discusses the fire detection results of the MOD14 and 

IndoFire algorithms validated by high resolution SPOT images. This section also 

discusses validation using ground truth data provided by the local forestry agency 

in Kalteng province. The discussion consists of two sections: i) validation using 

SPOT data (Section 3.6.1); and ii) validation using ground truth data (Section 

3.6.2). 

3.6.1 Validation Using SPOT Data 
It has been described in the previous chapter, Section 2.6.1 that the SPOT 

sensor does not have a thermal infra red channel which is very essential in the fire 

detection work. The only relevant channel that SPOT has is a short wave infra red 

at about 1.6 µm wavelength (Anonymous, 2010b), but this is typically dominated 

by solar radiation which must be rejected in fire pixels classification (Giglio et al., 

2003). This is the basic reason why Liew et al. (2003) utilized SPOT data to detect 

fire visually. 

This section discusses a visual validation method using a SPOT high-

resolution image, which was compared to the FHS data detected by the MODIS 

sensor closest in observation time to the SPOT data.. The FHS data were collected 

from the results of the MOD14 and IndoFire algorithms. The FHS locations both 

from the MOD14 and IndoFire algorithms are overlaid on the associated SPOT 

images as shown in Figure 3.33 to Figure 3.38. The high resolution SPOT images 

constitute the SPOT quick look data accessed from either the CRISP10 or LAPAN11 

websites. The images are selected only for the data that have cloud coverage less 

than 25%. This value is regarded as the best value to choose among the provided 

cloud coverage values on the CRISP website, i.e. 0%, 10%, 25%, and 75%. The 

                                                            
10 http://www.crisp.nus.edu.sg/crisp_cat.html 
11 http://222.124.178.110/html/katalog.php?id=spot 
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lower cloud fraction in images will make the visual analysis easy to be 

administered. 

 As stated previously in Section 2.2, the SPOT satellite has temporal 

resolution of 26 days. This long repeat time for the SPOT satellite leads to 

difficulties in finding coincident SPOT and MODIS data. Good SPOT images with 

a small fraction of cloud cover, less than 25%, are also difficult to find. In this 

section we validate FHS detected using the MOD14 and IndoFire algorithms with 

two SPOT images. The MODIS data were acquired on 22 January 2009 at 03.40 

UTC (10.40 AM local time) and the SPOT images were acquired two minutes 

earlier on 22 January 2009 at 03.38 UTC.  

Figure 3.33 and Figure 3.34 show the SPOT images overlaid with FHS 

detected by the MOD14 and IndoFire algorithms respectively. The detected FHS 

resulted from the most overlaps with MODIS data acquired 2 minutes later. For 

these two figures, the two algorithms (MOD14 and IndoFire) have the same ability 

to detect the occurrence of fire. The number and places of FHS are exactly the 

same as those shown in the two figures. However, the omission error arises at the 

area within the drawn black circle because both fire detection algorithms cannot 

identify the existing active fire. We can confidently judge that the circled area 

contains active fires as we can see a thin smoke plume origination in that area.   

 
Figure 3.33.  Detected FHS from MOD14 on 22 Jan 2009 at 03:40 UTC overlaid 

on a SPOT image for 22 Jan 2009 at 03:38 UTC; image block number K-J=272350 
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Figure 3.34.  Detected FHS from IndoFire on 22 Jan 2009 at 03:40 UTC overlaid 

on a SPOT image for 22 Jan 2009 at 03:38 UTC; image block number K-J=272350 

The possible reason for the undetected fire by either the MOD14 or IndoFire 

algorithms is that the pixel temperature of the occurring fire is lower than the 

threshold values applied on those two algorithms. Therefore, the low pixel 

temperature cannot pass the preliminary test and is not detected as a fire pixel. We 

have retrieved two pixel temperatures within the circled area with a red dark colour 

from where the smoke plumes come. The two pixel temperatures were measured at 

303.5 K and 308.5 K (see Table 3.11 for pixel temperatures with no FHS detected). 

Pixel temperatures below 310 K are not possible to be flagged as fire by either the 

MOD14 or IndoFire algorithms. The conditions of fire existence with detected 

temperature below the threshold value, 310 K, may result in omission error. 

Table 3.11.  The statistics data properties of selected pixels referred to Figure 3.33 
and Figure 3.34. This data properties is derived from MODIS data 22 
January 2009 (MOD14.A2009022.0340.hdf) 

No 
Fire Position L1B manual data reading 

Lat Lon Row Col DN T4 
Pixels temperatures with no FHS detected 

1 0.186 102.303 600 677 2994 303.5 
2 0.188 102.306 1501 989 3050 308.5 

Pixels temperatures with shown FHS detected 
1 0.133 102.597 601 711 3169 317.2 
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No 
Fire Position L1B manual data reading 

Lat Lon Row Col DN T4 
2 0.169 102.230 603 670 3212 319.8 
3 0.178 102.232 602 670 3363 327.8 
4 0.066 102.300 613 680 3167 317.0 
5 0.068 102.292 613 679 3152 316.1 
6 0.078 102.284 612 678 3543 335.4 
7 0.087 102.285 611 678 3442 331.3 
8 0.094 102.365 609 686 3175 317.5 
9 0.103 102.366 608 686 5038 371.6 
10 0.112 102.367 607 686 3351 327.2 
11 0.121 102.369 606 686 3164 316.8 
12 -0.119 102.307 633 685 3273 323.2 

 

As a comparison, the temperatures of the other 12 pixels identified as fires in 

Figure 3.33 and Figure 3.34 are investigated. We found that the 12 pixel 

temperatures range from 316.1 K to 371.6 K; all of them are above the 316 K 

threshold. The detail of the data is shown in Table 3.11. Since the threshold values 

of the IndoFire algorithm and MOD14 algorithms are 316 K and 310 K 

respectively, all the 12 pixels can be classified as fire pixels by both the MOD14 

and IndoFire algorithms. 

In addition, different results are shown in different locations of detected FHS 

by the MOD14 algorithm using the same MODIS dataset (22 Jan 2009 at 03:40 

UTC) as shown in Figure 3.35. In the locations of detected FHS, no smoke plumes 

were detected, as shown in the SPOT high resolution image in Figure 3.35. There 

are 6 FHS locations detected from the MOD14 algorithm over the areas shown in 

Figure 3.35, but smoke plumes did not appear from any of the areas.  
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Figure 3.35.  Detected FHS from MOD14 for 22 Jan 2009 at 03:40 UTC overlaid 

on a SPOT image for 22 Jan 2009 at 03:38 UTC; image block number K-J=272348 

Extracting pixel temperature may potentially explain the reason that the 

MOD14 algorithm detected fire in the areas without smoke plumes. The pixel 

temperature data of circled areas for numbers 2 and 3 in Figure 3.35 can be seen in 

the row numbers 7 and 8 in Table 3.12. The data show that the temperature of the 

red dark pixel in the circled area for number 2 is 293.9 K, while the temperature of 

the red dark pixel in the circled area number 3 is 302 K. These results give 

evidence that the MOD14 algorithm cannot flag the two pixels as fire because the 

pixel temperatures are below the MOD14 threshold value, 310 K.  

Furthermore, the other pixel temperatures, which represent the FHS data 

points within circled areas numbered 1, 4, 5, 6, and 7, are presented in rows 1 to 6 

of Table 3.12. All of the pixels have temperatures above the MOD14 threshold, 310 

K, and therefore they have the possibility to be determined as fires by the MOD14 

algorithm. The pixel temperature value above the threshold is an essential 

requirement for fire pixel classification. The next requirement of the pixels is that 

they should pass the contextual test, as described in Section 2.3.1.3. 
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Table 3.12.  Details of selected pixels referred to in Figure 3.35. These data 
properties are derived from MODIS data for 22 January 2009 
(MOD14.A2009022.0340.hdf) 

No 
Circle 

number 
Fire Position L1B manual data reading 
Lat Lon Row Col DN T4 

Pixels temperatures with shown FHS detected 
1 1 1.024 102.182 511 645 3089 311.6 
2 1.022 102.191 511 646 3128 314.4 
3 4 1.059 102.256 506 652 3079 310.9 
4 5 1.032 102.380 507 666 3073 310.4 
5 6 0.852 102.350 527 667 3081 311.0 
6 7 0.791 102.263 535 659 3099 312.4 

Pixels temperatures with no FHS detected 
7 2 1.085 102.269 503 653 2909 293.9 
8 3 1.046 102.282 507 655 2979 302.0 

 

In a specific case, the pixels with a temperature more than the threshold value 

might not be classified as fire by the fire detection algorithm. This might occur 

because the contextual algorithm applied in the MOD14 algorithm compares the 

suspected pixel temperature with the surrounding pixel temperatures. The slight 

difference of temperature between the pixel suspected to be fire and the 

surrounding pixels may cause the potential fire pixel to not be classified as a fire 

pixel. To support this argument, we have found out that the MOD14 algorithm did 

not consider a pixel with temperature more than 310 K as a fire pixel. We took two 

pixels with temperatures that are close together but with different fire status. The 

first pixel was taken from data in row number 2 of Tale 3.12 with temperature of 

314.4 K. This pixel is classified as a fire pixel. The second pixel was taken from 

the neighbouring pixel at latitude 1.03 and longitude 102.19 with a temperature of 

313.0 K and it was classified as a non-fire clear land pixel.  

In the MOD14 algorithm, one requirement for the pixel to be flagged as fire 

is that a pixel has ସܶ > ସܶ +  ସ. The complete requirements have been describedߜ 3 

previously in Section 2.7.2 under the contextual test heading. In the case of a pixel 

with a temperature of 314.4 K, by taking a 5x5 pixel window size, we found that 
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the value of ସܶ +  ସ is equal to 314.1 K. This means that the pixel with aߜ 3 

temperature of 314.4 K meets this requirement and it is flagged as a fire pixel. On 

the other hand, we have assessed the second example of a pixel, 313.0 K, by taking 

also a 5x5 pixel window size surrounding the pixel. We found that the calculated 

value of ସܶ +  ସ is equal to 313.8 K. Therefore the assessed pixel is notߜ 3 

determined to be a fire pixel. Figure 3.36 shows the scatter plot of pixels 

temperatures surrounding the assessed pixel, with temperatures of 314.4 K (upper 

plot) and 313.0 K (lower plot). The detail of pixel temperatures for both scatter 

plots can be seen in Appendix 11. 

(a) 

 

(b) 

 
Figure 3.36.  Scatter plots of pixels’ temperatures within a 5x5 pixel window size 
surrounding the assessed pixel with a temperature of (a) 314.4K detected as fire by 
MOD14 and (b) 313.0K not detected as fire by MOD14. The temperature values 

are extracted from the MODIS dataset for 22 Jan 2009 at 03:40 UTC. 

The horizontal axis of the two charts represents the pixel’s number in a 

matrix order as displayed in Figure 3.37 (a). The centre pixel in the 5x5 window is 

indicated by red triangles in the plots of Figure 3.36. In each of the plots, and in 

grids (b) and (c) displayed in Figure 3.37, there are two pixels (other than the 

central pixel) with temperatures above 310 K.  
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1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 
(a) 

298.2 298.2 297.5 298.2 296.1   301.2 303.8 297.8 297.8 297.8

302.4 313.0 303.0 299.6 297.8   298.2 298.2 298.2 297.5 298.2

301.0 311.6 314.4 302.1 299.3   299.0 302.4 313.0 303.0 299.6

297.3 297.9 297.9 298.5 297.9   299.3 301.0 311.6 314.4 302.1

297.8 296.6 297.8 298.3 297.8   297.3 297.3 297.9 297.9 298.5
(b) (c) 

Figure 3.37.  The matrix of (a) the order of pixel’s number which represents 5x5 
window size and pixels temperature surrounding suspected fire pixel with 

temperature (b) 314.4K which is classified as a fire pixel and (c) 313K which is 
classified as a non-fire pixel 

The three pixels with temperatures above 310 K are adjacent pixels as 

illustrated in Figure 3.37 (b) and (c). The MOD14 algorithm failed to detect the 

313 K pixel as fire due to the high average temperature of the surrounding pixels. 

This pixel failed detection because the suspected fire pixel temperature is lower 

than the temperature mean (average) value of surrounding pixels plus 3 standard 

deviations (see the mean and standard deviation values in the last row of the second 

table of Appendix 11). 

Referring to the previous discussion, we can learn that validation of detected 

FHS using SPOT imagery data cannot only be done by visual analysis but it needs 

another supporting method, such as pixel temperature measurement. Figure 3.33 

and Figure 3.34 have shown false detection of the fire algorithms (MOD14 and 

IndoFire) due to low pixel temperatures measured, even though the burning area 

(within circled area) obviously produces smoke plumes. Conversely, Figure 3.35 

shows the occurring FHS detected in the areas which did not produce smoke 

plumes, and the measured pixel temperatures (Table 3.12) show values which are 

higher than the threshold value of the fire algorithm (MOD14).  
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When we look at Figure 3.35 carefully, the same land colour (dark red) can 

be seen on the SPOT image within circled areas; numbers 2, 3, 4, and 5 even 

though the areas do not represent the same fire status. The MOD14 algorithm only 

detects fire in the area within circles 4 and 5 but it does not detect fires within the 

circle areas 2 and 3. We cannot simply justify that the areas within circles 2 and 3 

are fires because they have the same colour as those within circles 4 and 5. Thus, 

we do not necessarily make a statement that the MOD14 algorithm has an omission 

error for the two circled areas (numbers 2 and 4).  

In the true colour satellite images (that is, SPOT images) the areas which 

have been burned in the last few days potentially show the same colour as those 

which are burned recently. We have investigated the occurrence of FHS detected 

from MODIS time series data. Five-day time series data acquired from 18 to 22 

January 2009 were examined. We have detected FHS from MODIS data captured 

on 20 January 2009 at 03:50 UTC (two days earlier than the acquired SPOT image) 

in the circled area number 3 of Figure 3.35. The locations of the detected FHS on 

20 January 2009 are displayed in Figure 3.38.  

 

Figure 3.38.  Detected FHS from the MODIS dataset of 20 Jan 2009 at 03:50 UTC  
using the MOD14 algorithm overlaid on the SPOT image for 22 Jan 2009 at 03:38 

UTC (two days later); image block number K-J =272348 

The fire pixel temperatures for all detected FHS shown in Figure 3.38 have 

been retrieved and shown in Table 3.13. With respect to the temperature data, we 
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observe that the pixel temperatures of the dark red land location identified in the 

circled area number 3 of Figure 3.35 was 310.1 K on 20 Jan 2009 at 03:50 UTC 

and 302 K on 22 Jan 2009 at 03:40 UTC. This data provides evidence that the fire 

had recently occurred in the circled area number 3 of Figure 3.35 on 20 Jan 2009 at 

03:50 UTC and it had extinguished by the time the satellite overpassed two days 

later on 22 Jan 2009 at 03:40 UTC.  

The SPOT true colour image shows the burning land areas as appearing a 

dark red colour. The other areas that have been burned recently also appear as a 

dark red colour when visually observed from the SPOT true colour image. 

Therefore, the true colour image analysis cannot obviously distinguish the 

occurrence of active fire. Other methods such as pixel temperature retrieval and 

time series analysis have supported the reliable analysis results. 

Table 3.13.  Data properties of fire pixels highlighted in Figure 3.38. These data 
properties are derived from MODIS data for 20 January 2009 
(MOD14.A2009020.0350.hdf). 

Fire No 
Fire Position L1B manual data reading 

Lat Lon Row Col DN T4 
1 0.924 102.167 1423 963 3129 314.5 
2 0.914 102.165 1424 963 3689 340.7 
3 1.050 102.286 1407 971 3069 310.1 
4 1.035 102.386 1407 980 3076 310.6 
5 0.855 102.359 1427 981 3126 314.3 

The above descriptions suggest that in the application stage, it is difficult to 

employ SPOT images as a visual validation of MODIS fire detection results.  The 

difficult method is related to the validation of fires with faint smoke or even no 

smoke plumes produced.  It appears that the visual area being burned and that was 

burned a few days ago cannot be distinguished clearly from the recent burned areas 

simply by land colour detection. 

However, it is easy to validate fires which produce smoke plumes because 

using SPOT images with the high spatial resolution can obviously show the 

occurring smoke plumes. Liew et al. (2003) reported that generally smoke plumes 

were produced by biomass burning in the tropical area. In contrast, this research 
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data shows that a SPOT image as shown in Figure 3.35 does not necessarily exhibit 

the occurrence of smoke plumes. However, the MOD14 algorithm, which was 

applied to the MODIS dataset of 22 January 2009 at 03.40 UTC over Riau 

province, detected FHS in the areas associated with the SPOT image, as displayed 

in Figure 3.35. This means that the findings of this study partly disagree with those 

of Liew et al. (2003). 

In conclusion, validation of the fire detection algorithm results using SPOT 

images is possible to be conducted through visual analysis only for fire burning 

areas which produce smoke plumes. The validation cannot be performed reliably by 

visual analysis of the fire areas that do not produce smoke plumes. The validation 

process in the non-smoke areas needs a further method such as pixel temperatures 

and time series data analysis to classify fire and non-fire pixels, instead of visual 

smoke plume observation only. Finally, validation of the MOD14 and IndoFire 

algorithms using SPOT data cannot work simply using a single method (visually) 

but it needs some quantitative methods to distinguish fire and non-fire pixels to 

gain reliable conclusions of accuracy detection. 

3.6.2 Validation Using Ground Data 
The perfect data for validation of satellite detected FHS are in-situ (ground) 

observational data because ground observation data confirm exactly that the fires 

are in a particular location at a specific time. In Indonesia, field data collection of 

fire occurrences is tasked to the Natural Resources Conservation Agency (BKSDA) 

officers as a local agency of the Indonesian Forestry Ministry. The ground data 

collection activities are typically conducted close to the suspected location of fire 

as indicated by the satellite data. Some fire location data are also recorded from 

public information or the district officer who passes through the fire locations. 

Given the varied data sources and no standard form of reports, the structure of the 

data records usually differ from any different sources and times. Some data even do 

not provide latitude and longitude coordinates but simply block and district 

locations which lead to difficulties in compiling comprehensive data. 

Generally, the ground data collection is only performed in easily accessible 

areas and other areas able to be reached by the officers. The isolated and un-
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touched areas are only able to be reached by helicopter or other aerial observation 

methods. However, fire observation using a helicopter is considered expensive and 

hence practically this method is rarely used. Another method, satellite observation, 

provides a much better choice in terms of costing. 

Furthermore, the data of the field observations are not generally archived 

properly and are typically formed in a single activity report which might be 

presented in a variety of different ways. There is no integrated information system 

which accommodates the ground observation data that can be easily accessed by 

researchers and other stakeholders, e.g. an environment conservator acting as an 

official reference.  

BKSDA staff in Kalteng province have collected fire ground data in the 

period of January to September in 2011. They attempted to provide data with a 

consistent format, as can be seen in Appendix 10. There are 202 recorded fire spots 

with various areas ranging from 0.5 to 116 hectares. The monthly distributed FHS 

ground data for Kalteng province are shown in Table 3.14. The data were collected 

from LAPAN and the copyright belongs to BKSDA of Kalteng. 

Table 3.14.  FHS number recorded from ground checked observation compared to 
its number detected by the IndoFire system in Kalteng province 
during 2011. 

Month 
FHS number Ground/IndoFire 

(%) Ground data IndoFire 
January 2 23 8.7 
February 2 23 8.7 
May 2 44 4.5 
June 16 410 3.9 
July 72 462 15.6 
August 106 3152 3.4 
September 2 2591 0.1 

 202 6705 6.4 
 

The recorded ground data for 2011 were only available for 7 months, while 

the remaining 5 months (March, April, October, November, and December) data 

were not available. The percentages of ground data number divided by the number 
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of FHS detected from IndoFire are shown in the last column of Table 3.14. The 

percentage data ranged from 0.1% to 15.6% with an average value of 6.4%. The 

lowest percentage value was achieved in September 2011 and the highest 

percentage value was recorded in July 2011. The 6.4% ground data available is 

considered insufficient to do validation for all detected FHS by IndoFire. In the 

case that all ground data are 100% in agreement with FHS detected, the validation 

result only represents less than 10% of fire activity characteristics. 

In addition to the lack of sufficient data availability, the existing ground data 

often do not match the FHS data detected from satellite images (Cardoso et al., 

2005) due to the small size of burned areas (Vetrita et al., 2012). Tansey et al. 

(2008) related the number of detected FHS to burned areas. They reported that each 

detected FHS by MODIS estimated a burned area of 15 to 16 hectares (ha) or 15% 

to 16% of a MODIS pixel area (100 ha). Burned areas observed on the ground by 

BKSDA Kalteng officers in 2011 are mostly less than 15 ha. Therefore, most 

ground data recorded (less than 15 ha) cannot be detected as fire by the MOD14 

algorithm and thus the data are not reliable to validate the results of the fire 

detection algorithm, which is applied on the MODIS data. 

Hence, we sorted the ground data to obtain only data with an area of at least 

15 ha. There are only 11 of 202 ground data points available with areas of more 

than or equal to 15 ha in Kalteng in the year of 2011. Based on the findings of 

Tansey et al. (2008), these 11 fire data points collected within three months (June, 

August, and September 2011) are likely to be detected as fire from MODIS data.  

The detail of the eleven data points can be seen in Appendix 8. The locations of the 

eleven fire ground data points are represented by black stars as shown in Figure 

3.39.  
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Figure 3.39.  The locations of recorded ground observation data (black stars) in 
Kalteng province with areas more than or equal to 15 hectares. None of the FHS 

detected by the MOD14 and IndoFire algorithms are associated with these ground 
data displayed. 

In this thesis, we define the ground data validation method as aligning the 

FHS data detected from the fire detection algorithm, such as MOD14 and IndoFire, 

with the observed ground data. By aligning and overlaying the 11 ground data 

points with the nearest and coincident FHS detected data, we find out that none of 

the FHS detected by either the MOD14 or IndoFire algorithms can be associated 

with the record of the ground data locations. 

Some possible reasons can be addressed to this research finding. Low 

brightness temperature of pixels would lead to exclusion of the pixels by the 

preliminary test of the MOD14 and IndofFire algorithms. To assess this, pixel 

temperature retrieval has been conducted for all 11 ground data points.  The 

temperature data for those 11 ground data points are shown in Appendix 9. The 

attributes of the ground data indicate that pixels temperatures range from 255.5 K 

to 306.3 K. These values, all below 310 K, will cause both the MOD14 and 

IndoFire algorithms to not detect the occurrence of fires in the positions indicated 

for the ground data.  

Further, the MOD14 algorithm considered the 11 pixels associated with the 

ground data point locations as either cloud or non-fire clear land pixels. Cloud and 
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clear land pixels are notated by digital number 4 and 5 respectively. There are 5 

pixels identified as cloud and 6 pixels are classified as clear land. When the 

MOD14 algorithm masked pixels as cloud, this means that the areas of potentially 

occurring fire were covered by cloud and therefore satellite sensors were not able 

to sense the fire radiance energy. 

The result of this study disagrees with the findings of Tansey et al. (2008) . 

That is, all ground data areas are greater than 15 ha and in fact there is even one 

ground data area of 116 ha which is actually larger than one MODIS pixel i.e. 1x1 

km = 100 ha. With reference to the findings of Tansey et al. (2008), this research 

result is interesting because all ground data cannot be recognized as fire even 

though the burning areas range from 15 ha to 116 ha. However, this result is in line 

with those of  Giglio et al. (2009).  According to Giglio et al. (2009) the minimum 

detectable burned size area for the MOD14 algorithm is 120 ha.  

Furthermore, investigation of fire detection by the MOD14 algorithm within 

5 days time of the observed fire supports the previous study of Vetrita, Haryani, 

and Komaruddin (2012). They report that fire pixels are regarded as valid if the fire 

pixels occur within 2 or 3 days around the date of ground data observation. Based 

on our investigated time series data for all 11 ground data locations, remote sensing 

data do not detect the fire pixels at any time in the series data, as shown in 

Appendix 12. This finding is consistent with the previous discussion, that is, no 

ground data match the FHS detected by IndoFire. 

 Drawing on the spatial buffering method as applied by Vetrita et al. (2012), 

we assess the the pixel data in a 3x3 window size around the ground data locations 

(see Appendix 13). The 3x3 window size represent a radius of approximately 2 km 

as a buffering area in the Vetrita ground validation method. As can be seen in 

Appendix 13, the data suggest that no pixels within a 2 km radius from the ground 

data points can be classified as fires as all pixel temperatures are below the 310 K 

threshold. 

The failure to show a positive match up of the collected ground data with the 

detected FHS by the fire detection algorithms could be caused by the time 

difference of acquiring ground data and the satellite overpassing times (Prins et al., 

1998; Cardoso et al., 2005; Giglio, 2007). In this case we cannot confirm that un-
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detected ground-observed fires is because of the time differences. The ground data  

obtained by BKSDA officers did not include observation time (see data in 

Appendix 8). In terms of fire with a short life time, the time difference of 

observation will contribute a significant impact on the validation method using 

ground data. The active fire observed on the ground might be extinguished or dying 

by the time of the satellite overpasses. But again, lack of time data associated with 

the ground observations cannot give a conclusive outcome on this matter. 

To summarize, we have attempted to use the ground data which were 

collected by BKSDA Kalteng officers for 7 months in 2011 for validating FHS 

detected from MODIS data. The findings suggest that no record of ground data 

matched the FHS detected from MODIS data generated by both the MOD14 and 

IndoFire algorithms. Based on the ground data area, our findings support those of  

Giglio et al. (2009). That is, fire cannot be detected by fire detection algorithms if 

the burnt/burning area is less than 120 ha. Thus, our finding disagrees with Tansey 

et al. (2008) who report that a minimum of 15 ha is able to be detected as fire by 

the MOD14 algorithm. Investigation of pixels’ temperature at the identified 

locations of ground data shows low temperatures (less than the 310 K MOD14 

threshold value). These low temperatures lead to exclusion by the MOD14 and 

IndoFire algorithms. The similarly low values of pixels’ temperatures are also 

found around ground data points within 3x3 pixel windows centred on the ground 

data pixels. We also found low temperature pixels within 5 day time series data for 

every ground data point, with temperature values ranging from 225.7 K to 305.9 K. 

3.7 Summary 
In summary, this chapter provides descriptions of cloud coverage which 

affects the accuracy of detecting fire occurence in Indonesia for the decade 2001-

2010. The average of yearly cloud cover over Indonesia in a decade was 80.4% ± 

9%. This cloud fraction caused low numbers of detected FHS by the IndoFire 

system. The cloud existence obstructs the fire detection from satellite remote 

sensing and so the actual number of occurring fires may not be detected exactly. 

There was only 19.6% of FHS detected by IndoFire compared to the estimated 

number of occurring FHS for the decade in Indonesia.  
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Further analysis of cloud cover impact has been performed using monthly 

cloud coverage data. The estimation of FHS numbers with respect to the cloud 

coverage has been carried out using monthly and yearly FHS IndoFire data. The 

results show that the estimated number of FHS from yearly data is higher than 

those estimated from monthly data. The estimation of FHS numbers derived from 

yearly data is shown to over estimate by 10.9 % compared to the estimation of FHS 

numbers derived from monthly data. We consider that the estimation which is 

based on the narrower range of time is better, so the estimation from yearly data 

leads to an over-estimate of extrapolated FHS number. 

Additionally, analysis of the impact of vegetation cover types on the fire 

detection shows that the area under low vegetation cover suffered more fire 

compared to the area under high vegetation cover. In Kalteng province, the fire 

density under low vegetation was 588 ha per fire and the fire density under high 

vegetation was 4162 ha per fire. On the other side in Riau province, fire density 

data showed 529 ha per fire for low vegetation and areas under high vegetation 

cover had a fire density of 2333 ha per fire. This data indicates that Kalteng 

province potentially has a higher risk of fire compared to Riau province. Focusing 

the investigation at low vegetation categories, we found that the swamp bush 

classification is identified as the category with the highest risk of fire. Thus, the 

extra awareness of fire risk should be given in this type of vegetation cover area. 

The fire risk of swamp bush area in Riau province is estimated to be 1.3 times 

higher compared to the risk in the same type of area in Kalteng province, based on 

fire density. 

The relationship between FHS number and climate parameters has been 

determined by calculating the correlation coefficients of the relationships. Time 

series data for a decade (2001-2010) were analysed to determine the coefficient 

relationship values for different time lags and then select the extreme value as the 

closest relationship between the two assessed parameters. The results show that the 

precipitation and FHS coefficient relationship in Riau province have an extreme 

value (-0.336) at the lag+2 which means that precipitation has a delayed effect on 

the fire activity in Riau, while in Kalteng province the extreme of coefficient 
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relationship (-0.344) has a lag of 0, or, the precipitation has no delay effect on the 

fire activity. 
Moreover, the effect of dry versus wet seasons showed significant impacts to 

the detection sensitivity. Dry and wet season analysis suggested that different 

threshold values needed to be applied for MODIS datasets over Indonesia. Dry 

season results indicated the need for a higher threshold value compared to the wet 

season threshold value. The result of analysing the change in number of detected 

FHS with change in threshold suggested a threshold application of 317 K for the 

dry season and 316 K for the wet season. Inappropriate usage of those suggested 

thresholds for each season (by exchanging the threshold of dry and wet season with 

each other) leads to an increase in the commission or omission error of about 10% 

for the detected FHS number.  

Finally, validation assessment has been conducted by comparing MODIS 

data to SPOT high spatial resolution images and ground data. Visual validation 

using SPOT imagery cannot distinguish clearly occurring active fires. This is due 

to the similarities in the colour of land areas which are burning and the areas which 

have been burned in the last few days. To support visual analysis using SPOT data, 

pixel temperature investigation and time series analysis is needed to confidently 

assess fire pixel locations. Furthermore, ground data validation methods are 

expected to overcome these issues, however, unsynchronized ground data 

collection methods with respect to the FHS detected by satellite makes the problem 

difficult to resolve. Our analysis using ground data from BKSDA Kalteng province 

indicated that the collected ground data were insufficient for accurate and robust 

validation. The available ground check data comprised 202 data points. These data 

were recorded by BKSDA officers in the Kalteng province for 7 months in 2011. 

All these ground data represent only 6.4% of the number of detected FHS by 

IndoFire. There are only 11 data points of those 202 ground data which have an 

area more than or equal to 15 ha, which potentially have an effect on the ability of 

the satellite sensors to detect the thermal radiance from such small fires. Not all 

those 11 data points can be associated with occurring FHS detected by the IndoFire 

algorithm in the associated date and positions of ground data. The reason is because 

5 pixels were covered by cloud and the other 6 pixels had low temperature and 
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were thus classified as non-fire clear land. The ground data fire area analysis 

indicated that, in Indonesia, the finding of Giglio et al. (2009) appears to be 

appropriate for the Kalteng province, that is, the minimum area able to be detected 

as fire is 120 ha.  
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CHAPTER  4 
CONCLUSIONS 

Fire monitoring is an important task for the Indonesian government as this 

country often deals with big fires which impact regionally on people and the 

environment. Providing accurate information of fire occurrence and fire activities 

represents significant contributions in controlling some of the negative effects of 

fire. Thus this research investigated and monitored the fire activity over Indonesia 

using freely accessible MODIS data. 

4.1 Review of Aims 
The investigation included the study of the form and sensitivity of the fire 

algorithms and some parameters that impacted the detection and monitoring of fire 

patterns. With respect to the statement in the first chapter of this thesis, the aims of 

this research are: 

• Analyse the impact of cloud cover on the reported FHS number, and design an 

approach to predict the actual number of FHS for the whole area of interest.  

• Investigate and analyse the impact of vegetation cover types on the fire activity 

based on the reported FHS number in various land cover classifications. 

• Determine the sensitivity of the MOD14 algorithm applied to MODIS data 

over Indonesia. 

• Analyse the relationship of detected FHS number and the seasonal factors, 

precipitation and Southern Oscillation Index (SOI), for a decadal time series.  

In brief, the following sections describe the outcomes and conclusions of this 

thesis with respect to the research aims stated above, including the effects of cloud 

coverage, vegetation cover types, and climate parameters (SOI and precipitation) 

and also the results of the sensitivity analysis. 
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4.1.1 Cloud Coverage Impact on The Reported FHS Number 

Cloud cover existence obscures fire monitoring because it blocks the viewing 

of land surfaces from space. The increasing cloud coverage leads to the decreasing 

possibility of observing clear land where fires may occur. Chapter 3 shows that, 

based on the Giovanni-GES DISC cloud fraction data, Indonesia has high cloud 

coverage, between 70% and 90% over a decade (2001-2010). This leads to 

reducing the number of FHS detected using the IndoFire system by 80.4% from the 

number of extrapolated FHS estimated as fire. From the investigated data, Riau was 

on average covered by cloud on average by about 33% during July 2009 while 

Kalteng was covered by cloud on average by about 24% for September 2009. From 

these cloud coverage values, the visible clear land in Kalteng was on average about 

71% and Riau land visibility was about 44%, smaller than Kalteng because Riau 

province has a water area of about 22% while Kalteng has only about 5% water 

area.   

4.1.2 The Impact of Vegetation Cover Types on The Reported FHS Number 

Fire activity in 15 various types of vegetation cover over two province areas 

of Indonesia was investigated. Vegetation cover type classifications refer to the 

data from the Forestry Ministry of Indonesia which was provided for the year 2009. 

The analysis was carried out by studying the intersection of detected FHS from 

IndoFire and the vegetation cover type classifications. The results show that the 

vegetation types which are most prone to be burned are the low vegetation 

category. In contrast, the areas which are covered by higher vegetation types 

(categorized as tree) or the areas which are not commonly accessed by people, 

termed as primary vegetation areas, are found to have low fire activity.  

This work showed that the swamp bush classification exhibited the highest 

fire density, and the highest proportion of vegetation cover area and fire, compared 

to other vegetation cover types. Swamp bush fires in Riau province have a risk of 

fire 1.3 times higher compared to the same type of area in Kalteng province. 

Furthermore, seasonal analysis shows that dry season fires in Kalteng province 

account for almost 99% of recorded FHS of this province during 2009. In addition, 
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dry season fire activity in Riau represents 2/3 of all detected FHS in this province 

for the whole year of 2009.  

4.1.3 Sensitivity of The Fire Algorithm 

Application of various values of thresholds in the MOD14 algorithm shows 

the highest response of detected FHS number occurs between 310K and 325K. This 

temperature range is then considered with respect to the sensitivity to threshold 

values. Seasons are considered as one of the factors affecting the operation of the 

algorithm in fire detection. Analysis of sensitivity in dry and wet seasons in 

Indonesia was carried out by analyzing data for the dry season in 2009 and the wet 

season in 2010. Separate assessments on dry and wet season datasets were 

performed to investigate seasonal effects on the detection sensitivity. The results 

showed that the FHS numbers from the wet season data decreased more rapidly in 

response to changes in the threshold compared to the dry season data. This 

indicates that changing the threshold value in the wet season displays a bigger 

effect on the number of detected FHS. The change in FHS values data analysis 

gives the most sensitive threshold for the dry season at 317 K while its value for the 

wet season is 316 K. The application of the threshold at 316 K in the dry season 

will lead to a 10.7% higher detected FHS number, and on the other side, the 

utilization of 317 K in the wet season gives 8.8% less of the number of detected 

FHS. These results suggest the need to adopt different thresholds values between 

dry and wet season data in which the wet season threshold value is lower than the 

dry season threshold value.  

4.1.4 The Effect of Precipitation and SOI on Fire Activity 

The relationship of precipitation, related to a season’s indicator, and Southern 

Oscillation Index (SOI) which can affect the wet and dry seasons patterns and thus 

impact the occurrence of fires has been investigated. This relationship is examined 

by a correlation coefficient test. The peak point, that is the time at which the 

correlation is highest, of FHS and SOI occurs at the lag of 2 months in both Riau 

and Kalteng provinces. It suggests the effect of SOI on the occurrence of fire is not 
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direct, but there is a two month delay. On the other hand, the peak of correlation 

coefficient of precipitation and FHS in Kalteng occurs at the same month, that is it 

has a lag of 0, while the peak of correlation coefficient of precipitation and FHS in 

Riau has a lag of 2 months. Vegetation responds to the soil water content but there 

is a delay between the time of rain and the response of plants in terms of their 

growth and greenness. This leads to the delay in the effect of rainfall on the fire 

activity trends. 

4.2 Conclusion 
Four affected parameters have been discussed in relation to detecting fire 

using MODIS data over Indonesia. Cloud coverage, vegetation cover types, 

seasons (wet and dry) and climate parameters (SOI and precipitation) have shown 

to impact the number of occurring FHS in different manners. All those parameters 

described impact the reported number of FHS detected by remote sensing fire 

algorithms. With respect to the results of this research, reporting the trend of fire 

activity needs accurate data, preferably those that have been validated. In this 

research we attempt to analyse the validation methods based on high resolution 

SPOT image data and ground data. SPOT data, as high spatial resolution remote 

sensing imagery, have the potential to be used in the validation method of MODIS 

fire detection products. However, the SPOT satellite does not have a thermal 

infrared band so it cannot detect the heat of fire pixels from its digital data. Instead, 

the recognition of active fire is made by visual investigation through the 

manipulation of image composition.  Liew et al. (2003) validated MOD14 results 

using SPOT data over Sumatra and Borneo based on exhibited smoke plumes 

coming from fires. Some fire may not produce obvious smoke plumes and this 

matter is difficult to overcome in validation. Observing land color visually is 

confusing and not reliable to detect fires occurring with no smoke plumes on them. 

Validation using ground data is considered as the best method to validate the 

results of remotely sensed fire detection activity. But often ground data checking is 

impractical, especially for the large areas and the difficult terrain encroached upon 

by people. This issue leads to limited ground data becoming available which 

constrains the reliability in the statistical consideration. Fire observation in-situ 
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data are not periodically and properly recorded by responsible agencies so when the 

data are needed they cannot provide them appropriately. As an example, in the year 

2011 there are only 7 months of recorded ground data from the local forestry 

agency of Central Kalimantan province, as shown in Table 3.14. Those data only 

contain 202 ground data points compared to 6705 detected FHS by the IndoFire 

system. In other words, the availability of ground validation data is about 6.4% of 

the occurring FHS which we desire to be validated, and this amount is not reliable 

to make a reasonable justification of the accuracy of detection based on available 

in-situ data. We have shown that none of the collected fire ground data points were 

able to be matched to the FHS locations detected by both the MOD14 and IndoFire 

algorithms. 

However, in this thesis we have undertaken several approaches to analyse 

and describe the fire activity characteristics. The activities which have been 

conducted are: 

• Analysed the patterns of detected FHS and cloud cover for a decade over 

Indonesia for both yearly and monthly data. We developed a method to estimate 

the number of fires under cloud cover which are not able to be directly detected. 

The estimation number is calculated by extrapolation from the FHS number 

related to the fraction of cloud cover. We found that the extrapolation numbers 

of yearly FHS which are derived from yearly FHS data are higher compared to 

the yearly FHS which are derived from the number of monthly FHS data. So the 

estimation FHS numbers from the monthly data is recommended as more 

reliable than referring to the yearly FHS data. 

• Investigated the fire activity over 16 different vegetation cover classes for the 

year 2009. The results show that the low vegetation types are prone to be burned 

more compared to the high vegetation classification; thus the awareness of fire 

management should be directed more at the low vegetation areas. 

• Determined the detection responses of the MOD14 algorithm applied to MODIS 

data over Indonesia for 2009, a period considered as impacted by a moderate El-

Nino effect. Seasonal investigations showed that the MOD14 algorithm applied 

to dry season data is more sensitive to changes in the threshold value at a higher 
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threshold value compared to changes in the threshold for the wet season MODIS 

data over Indonesia.  

• Calculated the correlation coefficient relationship between FHS number and 

precipitation level. The calculation of the coefficient relationship between FHS 

and SOI was also carried out. The coefficient relationship values indicated that 

precipitation and SOI have delayed effects to the fire activity, with a delay 

period of approximately 2 months. 

4.3 Further Work 
The work presented in this thesis has not been considered complete due to the 

time and financial limitations. We have estimated the FHS number with respect to 

the cloud cover existence, analysed the impact of vegetation cover on fire activity, 

analysed the sensitivity detection of the MOD14 algorithm, and related the 

precipitation level to the detected FHS number. All those aspects could be 

continued by the suggestions of further work as listed below. 

• Providing an accurate result of fire detection needs reliable and robust validation 

work for the accuracy of fire detection results. Improved validation will lead to a 

stronger justification for how reliable the reported fire activity patterns are. 

• Analyse the relationship of cloud cover and precipitation level so it contributes 

to the estimation of the reported FHS number extrapolation. Usually, frequent 

thick cloud occurrence indicates the potential of high precipitation levels. 

Rainfall will likely decrease the existing fire and reduce the number of occurring 

active fires. So the cloud cover-rainfall relationship will refine the estimation of 

reported FHS number. 

• Create a uniform and reliable information system of ground truth data of fire 

occurrences which will benefit a reliable fire detection validation method. 

• Perform coordinated and collaborated research between research agencies such 

as LAPAN and local forestry agencies to provide reliable data related to the fire 

monitoring and management (prevention and suppression). 
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• Integrate the information of a fire danger rating system (FDRS) with vegetation 

cover information and climate parameters (precipitation, cloud cover, and wind 

direction) to give people warning of possible fire hazards.  
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Appendix 1.  MODIS Spacecraft Characteristics 

Orbit: 705 km, 10:30 a.m. descending node (Terra) or 1:30 

p.m. ascending node (Aqua), sun-synchronous, 

near-polar, circular 

Scan Rate: 20.3 rpm, cross track 

Swath 
Dimensions: 

2330 km (cross track) by 10° of latitude (along track 

at nadir) 

Telescope: 17.78 cm diam. off-axis, afocal (collimated), with 

intermediate field stop 

Size: 1.0 x 1.6 x 1.0 m 

Weight: 228.7 kg 

Power: 162.5 W (single orbit average) 

Data Rate: 10.6 Mbps (peak daytime); 6.1 Mbps (orbital 

average) 

Quantization: 12 bits 

Spatial 
Resolution: 

250 m (bands 1-2) 

500 m (bands 3-7) 

1000 m (bands 8-36) 

Design Life: 6 years 

  



 

143 
 

Appendices 

MODIS Sensor Characteristics 

Primary Use Band Bandwidth1 Spectral 
Radiance2 

Required 
SNR3 

Land/Cloud/Aerosols 
Boundaries 

1 620 - 670 21.8 128 

2 841 - 876 24.7 201 

Land/Cloud/Aerosols 
Properties 

3 459 - 479 35.3 243 

4 545 - 565 29.0 228 

5 1230 - 1250 5.4 74 

6 1628 - 1652 7.3 275 

7 2105 - 2155 1.0 110 

Ocean Color 
Phytoplankton 
Biogeochemistry 

8 405 - 420 44.9 880 

9 438 - 448 41.9 838 

10 483 - 493 32.1 802 

11 526 - 536 27.9 754 

12 546 - 556 21.0 750 

13 662 - 672 9.5 910 

14 673 - 683 8.7 1087 

15 743 - 753 10.2 586 

16 862 - 877 6.2 516 

Atmospheric 
Water Vapor 

17 890 - 920 10.0 167 

18 931 - 941 3.6 57 

19 915 - 965 15.0 250 

Surface/Cloud 
Temperature 

20 3.660 - 3.840 0.45 (300K) 0.05 

21 3.929 - 3.989 2.38 (335K) 2.00 

22 3.929 - 3.989 0.67 (300K) 0.07 

23 4.020 - 4.080 0.79 (300K) 0.07 

Atmospheric 
Temperature 

24 4.433 - 4.498 0.17 (250K) 0.25 

25 4.482 - 4.549 0.59 (275K) 0.25 
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Cirrus Clouds 
Water Vapor 

26 1.360 - 1.390 6.00 150(SNR) 

27 6.535 - 6.895 1.16 (240K) 0.25 

28 7.175 - 7.475 2.18 (250K) 0.25 

Cloud Properties 29 8.400 - 8.700 9.58 (300K) 0.05 

Ozone 30 9.580 - 9.880 3.69 (250K) 0.25 

Surface/Cloud 
Temperature 

31 10.780 - 
11.280 9.55 (300K) 0.05 

32 11.770 - 
12.270 8.94 (300K) 0.05 

Cloud Top 
Altitude 

33 13.185 - 
13.485 4.52 (260K) 0.25 

34 13.485 - 
13.785 3.76 (250K) 0.25 

35 13.785 - 
14.085 3.11 (240K) 0.25 

36 14.085 - 
14.385 2.08 (220K) 0.35 

* Footnotes: 
1 Bands 1 to 19 are in nm; Bands 20 to 36 are in µm 
2 Spectral Radiance values are (W/m2 - µm-sr) 
3 SNR = Signal-to-noise ratio 
4 NE(delta)T = Noise-equivalent temperature difference 

Note: Performance goal is 30-40% better than required. 
Source link: http://modis.gsfc.nasa.gov/about/specifications.php 
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Appendix 2.  Monthly detected fire hotspots by IndoFire over Indonesia for a 
decade (2001-2010) 

Month 
FHS number in year 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
January 82 263 216 866 3620 1150 600 913 1430 420 

February 97 1820 276 673 7919 2015 1628 1766 1395 1672

March 607 1435 1345 779 6173 2544 1402 521 746 1266

April 176 195 309 630 1160 591 667 516 1178 744 

May 407 474 1775 2600 1018 1010 839 3263 2792 1076

June 124 583 4322 6128 3640 1615 1123 1750 4439 776 

July 2038 1263 3141 1768 2712 7547 2255 2814 8301 1104

August 3412 5742 8902 21067 10279 22938 5318 6620 17599 2441

September 2067 6635 9563 15167 10138 27419 9394 6440 27233 2055

October 523 13181 4860 19206 4319 38187 6181 2825 6127 3138

November 219 2904 1430 4586 901 9616 1410 938 2547 558 

December 130 592 236 569 322 1913 523 274 627 275 
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Appendix 3.  The number of FHS in each province of Indonesia for the decade 
2001-2010 detected by IndoFire system 

No Provinces ∑FHS  Area (sq.km) FHS/Area 
1 Riau 81744 87023 0.94 
2 Central Kalimantan (Kalteng) 105258 153564 0.69 
3 East Nusa Tenggara (NTT) 29983 48718 0.62 
4 South Kalimantan (Kalsel) 21952 38744 0.57 
5 South Sumatera (Sumsel) 50732 91592 0.55 
6 West Nusa Tenggara (NTB) 8044 18572 0.43 
7 West Kalimantan (Kalbar) 61476 147307 0.42 
8 Jambi 19956 50058 0.4 
9 Bangka-Belitung (Babel) 6060 16424 0.37 
10 South East Sulawesi (Sultra) 11429 38067 0.3 
11 Lampung 8754 34623 0.25 
12 South Sulawesi (Sulsel) 10370 46717 0.22 
13 North Sulawesi (Sulut) 3112 13851 0.22 
14 Riau Archipelago (Kepri) 1806 8201 0.22 
15 North Sumatera (Sumut) 15535 72981 0.21 
16 Gorontalo 2316 11257 0.21 
17 East Kalimantan (Kaltim) 27865 139462 0.2 
18 East Jawa (Jatim) 9705 47799 0.2 
19 Maluku 8739 46914 0.19 
20 West Jawa (Jabar) 6701 35377 0.19 
21 DKI Jakarta 114 664 0.17 
22 West Sumatera (Sumbar) 6580 42012 0.16 
23 Bengkulu 3024 19919 0.15 
24 Banten 1432 9662 0.15 
25 Central Sulawesi (Sulteng) 8433 61841 0.14 
26 West Sulawesi (Sulbar) 2308 16787 0.14 
27 DI Yogyakarta (DIY) 305 3133 0.1 
28 Aceh 5301 57956 0.09 
29 North Maluku (Malut) 2817 31982 0.09 
30 Papua 24750 319036 0.08 
31 Central Jawa (Jateng) 3310 40800 0.08 
32 West Papua (Irian Barat) 1485 97024 0.02 
33 Bali 120 5780 0.02 
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Appendix 4.  Monthly detected FHS by province for the decade 2001-2010 
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(vii) 

 

(viii) 

 

(ix) 

 

Monthly FHS number of Papua province
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(x) 

 

(xi) 

 

(xii) 

 

Monthly FHS number of Sumut province

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FH
S

 n
um

be
r

0

200

400

600

800

1000

2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 

Monthly FHS number of Sultra province

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FH
S

 n
um

be
r

0

200

400

600

800

1000

1200

1400
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 

Monthly FHS number of Sulsel province

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FH
S

 n
um

be
r

0

200

400

600

800

1000

1200

2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 



 

154 
 

Appendices 

(xiii) 

 

(xiv) 

 

(xv) 

 

Monthly FHS number of Jatim province
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(xvi) 

 

(xvii) 

 

(xviii) 

 

Monthly FHS number of Sulteng province
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(xix) 
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(xxii) 

 

(xxiii) 

 

(xxiv) 

 

Monthly FHS number of Jateng province
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(xxv) 

 

(xxvi) 

 

(xxvii) 

 

Monthly FHS number of Malut province
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(xxviii) 

 

(xxix) 

 

(xxx) 

 

Monthly FHS number of Kepri province

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FH
S

 n
um

be
r

0

20

40

60

80

100

120

140

160

180

2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 

Monthly FHS number of Irian Barat province

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FH
S

 n
um

be
r

0

50

100

150

200

250

300

2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 

Monthly FHS number of Banten province

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FH
S

 n
um

be
r

0

20

40

60

80

100

120

140

160

2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 



 

160 
 

Appendices 

(xxxi) 

 

(xxxii) 

 

(xxxiii) 
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Appendix 5.  Fire detection algorithm flowchart for NOAA AVHRR data 
(Kant et. al., 2000) 
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Appendix 6.  Perl script to process MODIS L1B datasets to MOD14 products 
and fire hotspots (FHS) shape files 

                                              
#!/usr/bin/perl 
 
print "It is Batch Processing script in Perl......!\n"; 
print "This script proccess L!A into Geolocation, L1B, MOD14 

and FHS shape file \n"; 
 
@files = </media/MODIS3/mixed/DATA/M*D021KM*>; 
 foreach $file (@files) { 
 
$sat=substr($file, 25, 3); 
$day = substr($file, 35, 7); 
$time = substr($file, 43, 4); 
$ID = substr($file, 34, 13); 
$lev="14"; 
$lgeo="03"; 
 
 
@geo = </media/MODIS3/mixed/DATA/$sat$lgeo.$ID.*>; 
@MOD14 = </media/MODIS3/mixed/MOD14/$sat$lev.$ID.hdf>; 
@lat = <$sat$lev.lat.$ID.txt>; 
@lon = <$sat$lev.lon.$ID.txt>; 
@conf = <$sat$lev.conf.$ID.txt>; 
@pwr = <$sat$lev.pwr.$ID.txt>; 
@mrg = <$sat$lev.mrg.$ID.txt>; 
 
system("./mod14 -tv $file @geo @MOD14"); 
system("hdp dumpsds -n FP_latitude -d -o 

/media/MODIS3/mixed/MOD14/@lat @MOD14"); 
system("hdp dumpsds -n FP_longitude -d -o 

/media/MODIS3/mixed/MOD14/@lon @MOD14"); 
system("hdp dumpsds -n FP_confidence -d -o 

/media/MODIS3/mixed/MOD14/@conf @MOD14"); 
system("hdp dumpsds -n FP_power -d -o 

/media/MODIS3/mixed/MOD14/@pwr @MOD14"); 
 
system("mergeasc /media/MODIS3/mixed/MOD14/@lon 

/media/MODIS3/mixed/MOD14/@lat 
/media/MODIS3/mixed/MOD14/@conf 
/media/MODIS3/mixed/MOD14/@pwr > 
/media/MODIS3/mixed/MOD14/@mrg");  

 
system("txt2shp_fhs Terra $ID $time $day Goddard 3 

/media/MODIS3/mixed/shp/$sat$lev.$ID  < 
/media/MODIS3/mixed/MOD14/@mrg"); 

system("rm /media/MODIS3/mixed/MOD14/*.txt"); 
 
 } 
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Appendix 7.  MATLAB script to pick up classified pixels from MOD14 
products 

%clean-up mathwork=========== 
close all; 
clear all; 
clc; 
disp('Progress is running....'); 
 
%=======file identification && Variable Definition ================ 
geofile=dir('M*D03*.hdf'); 
fileName = 'Kalteng_Cloud_Land_fire_pixels_number.txt'; 
delete(fileName); 
fid = fopen(fileName,'w'); %Create and open txt file ======== 
 
%=========write header in the file text ============== 
fprintf(fid,'%s\t','No'); 
fprintf(fid,'%s\t','Orbit'); 
fprintf(fid,'%s\t','Missing'); 
fprintf(fid,'%s\t','No-Proc'); 
fprintf(fid,'%s\t','Water'); 
fprintf(fid,'%s\t','cloud'); 
fprintf(fid,'%s\t','land'); 
fprintf(fid,'%s\t','Unknown'); 
fprintf(fid,'%s\t','fire-7'); 
fprintf(fid,'%s\t','fire-8'); 
fprintf(fid,'%s\t','fire-9'); 
fprintf(fid,'%s\r\n','Max pixels'); 
 
%############# INITIALIZE GEOFILE & L1BFILE #######################  
for k=1:length(geofile) 
    geoname=geofile(k).name; 
    geoinfo=hdfinfo(geoname);     
    AT=geoname(1:3); 
    ID=geoname(8:19); 
 
mod14name=strcat('E:\mixed\KaltengAT_Sept2009\MOD14\',AT,'14.A',ID,

'.hdf'); 
info=hdfinfo(mod14name); 
mod14=hdfread(info.SDS(1,1));  
    
%###############  START READING GEOFILE  ######################### 
%This step reads Row/Col of Geofile base on lat/lon value of MOD14  
 
lat=hdfread(geoinfo.Vgroup.Vgroup(1,1).SDS(1,1)); 
lon=hdfread(geoinfo.Vgroup.Vgroup(1,1).SDS(1,2)); 
[a,b]=find(lat>=-3.5 & lat<=1 & lon>=110.5 & lon<=116); 
 
%variable definition of row and colomn of pixels classifications ## 
[P0r,P0c]=find(mod14==0);  %Missing input class 
       q=length(P0r);        
       pix0=0; 
[P2r,P2c]=find(mod14==2); %Not processed class 
       r=length(P2r);        
       pix2=0;  



 

164 
 

Appendices 

[P3r,P3c]=find(mod14==3);  %Water class 
       s=length(P3r);        
       pix3=0; 
[Cr,Cc]=find(mod14==4);  %Cloud class 
       n=length(Cr);        
       cloud=0; 
[Lr,Lc]=find(mod14==5);  %Land class 
       l=length(Lr);        
       land=0; 
[P6r,P6c]=find(mod14==6); %Unknown class 
       t=length(P6r);        
       pix6=0;  
[F7r,F7c]=find(mod14==7);  %Low confidence fires class 
       m=length(F7r);        
       fire7=0; 
[F8r,F8c]=find(mod14==8);  %Nominal confidence fires class 
       o=length(F8r);        
       fire8=0; 
[F9r,F9c]=find(mod14==9);  %High confidence fires class 
       p=length(F9r);        
       fire9=0; 
 
%##looping process as much as geo files number in the directory ### 
%Constrain is given to pick up pixels in Kalteng square border only 
=================================================================== 
 
for i=1:q  %looping in the (k) file ##########            

if lat(P0r(i),P0c(i))>=-3.5 & lat(P0r(i),P0c(i))<=1 & 
lon(P0r(i),P0c(i))>=110.5 & lon(P0r(i),P0c(i))<=116    
pix0=pix0+1;             

else 
pix0=pix0; 

end 
end 
        
for i=1:r  %looping in the (k) file ##########            

if lat(P2r(i),P2c(i))>=-3.5 & lat(P2r(i),P2c(i))<=1 & 
lon(P2r(i),P2c(i))>=110.5 & lon(P2r(i),P2c(i))<=116    
pix2=pix2+1;             

else 
pix2=pix2; 

end 
end 
        
for i=1:s  %looping in the (k) file ##########            

if lat(P3r(i),P3c(i))>=-3.5 & lat(P3r(i),P3c(i))<=1 & 
lon(P3r(i),P3c(i))>=110.5 & lon(P3r(i),P3c(i))<=116    
pix3=pix3+1;             

else 
pix3=pix3; 

end 
end 
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for i=1:n  %looping in the (k) file ########## 
if  lat(Cr(i),Cc(i))>=-3.5 & lat(Cr(i),Cc(i))<=1 & 

lon(Cr(i),Cc(i))>=110.5 & lon(Cr(i),Cc(i))<=116    
cloud=cloud+1;             

else 
cloud=cloud; 

end 
end 
 
for i=1:l  %looping in the (k) file ##########            

if lat(Lr(i),Lc(i))>=-3.5 & lat(Lr(i),Lc(i))<=1 & 
lon(Lr(i),Lc(i))>=110.5 & lon(Lr(i),Lc(i))<=116    
land=land+1;             

else 
land=land; 

end 
end 
 
for i=1:t  %looping in the (k) file ##########            

if lat(P6r(i),P6c(i))>=-3.5 & lat(P6r(i),P6c(i))<=1 & 
lon(P6r(i),P6c(i))>=110.5 & lon(P6r(i),P6c(i))<=116    
pix6=pix6+1;             

else 
pix6=pix6; 

end 
end 

 
for i=1:m  %looping in the (k) file ##########            

if lat(F7r(i),F7c(i))>=-3.5 & lat(F7r(i),F7c(i))<=1 & 
lon(F7r(i),F7c(i))>=110.5 & lon(F7r(i),F7c(i))<=116    
fire7=fire7+1;             

else 
fire7=fire7; 

end 
end 
 
for i=1:o  %looping in the (k) file ##########            

if lat(F8r(i),F8c(i))>=-3.5 & lat(F8r(i),F8c(i))<=1 & 
lon(F8r(i),F8c(i))>=110.5 & lon(F8r(i),F8c(i))<=116    
fire8=fire8+1;             

else 
fire8=fire8; 

end 
end 
 
for i=1:p  %looping in the (k) file ##########            

if lat(F9r(i),F9c(i))>=-3.5 & lat(F9r(i),F9c(i))<=1 & 
lon(F9r(i),F9c(i))>=110.5 & lon(F9r(i),F9c(i))<=116    
fire9=fire9+1;             

else 
fire9=fire9; 

end 
end 
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% Print variable values in the stated txt file ==================== 
       fprintf(fid,'%s\t',num2str(k)); 
       fprintf(fid,'%s\t',geoname); 
       fprintf(fid,'%s\t',num2str(pix0)); 
       fprintf(fid,'%s\t',num2str(pix2)); 
       fprintf(fid,'%s\t',num2str(pix3)); 
       fprintf(fid,'%s\t',num2str(cloud));        
       fprintf(fid,'%s\t',num2str(land)); 
       fprintf(fid,'%s\t',num2str(pix6)); 
       fprintf(fid,'%s\t',num2str(fire7)); 
       fprintf(fid,'%s\t',num2str(fire8)); 
       fprintf(fid,'%s\t',num2str(fire9));        
       fprintf(fid,'%s\r\n',num2str(length(b))); 
end 
fclose all; 
clc; 
disp('Progress Completed !'); 
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Appendix 10.  Recorded ground check data by local forestry agency (BKSDA) 
Kalteng province in 2011 

No Lat Lon Date Location Vegetation 
types 

Area 
(ha) 

1 -2.79 111.23 4/06/11 SM. Lamandau Primary forest 116 
2 -2.82 111.25 3/06/11 Natai Sedawak Grass & Bush 72 
3 -2.74 111.63 12/06/11  Pasir panjang Reed & bush 42 
4 -2.99 114.26 19/09/11  Batuah kec.Basarang People plantation 30 
5 -3.10 114.47 8/08/11  Handil Marhanang Plantation 30 
6 -2.60 112.74 30/08/11 PT Agro Bukit Peat 30 
7 -2.91 111.64 11/06/11 Kubu Reed & bush 25 
8 -2.74 111.70 5/08/11 Sei Tendang Primary forest 20 
9 -3.10 114.47 12/08/11  Handil Marhanang People land  15 
10 -2.86 111.13 22/08/11 SM.Lamandau Grass 15 
11 -2.62 111.59 7/08/11 Raja Bush 15 
12 -2.66 111.83 5/08/11 Kumai hulu Reed 13 
13 -2.86 111.66 10/08/11 Kubu Primary forest 13 
14 -2.55 112.83 6/08/11 PT Agro Bukit Reed 11 
15 -2.77 111.55 7/08/11 Kumpai batu atas Reed and bush 10 
16 -2.62 111.60 7/08/11 Raja Reed 10 
17 -2.54 112.92 5/07/11 Baamang Hilir Bush 10 
18 -1.96 111.49 15/08/11 Nanga palikodan Reed 9 
19 -1.92 111.49 15/08/11 Nanga palikodan Reed 9 
20 -2.32 111.11 8/07/11 Jihing Reed 8 
21 -2.47 112.98 3/08/11 Baamang hulu Reed 8 
22 -2.54 111.69 6/08/11 Baru Bush 8 
23 -2.64 111.67 23/06/11  Baru Reed & bush 7 
24 -3.15 112.31 8/07/11 Tanjung Rengas Reed 6 
25 -2.30 111.37 8/07/11  Makarti Jaya Reed 6 
26 -2.65 111.73 7/08/11 Pasir panjang Reed and bush 6 
27 -1.90 111.07 16/08/11 Tanjung beringin Reed 6 
28 -2.74 111.62 16/06/11  Pasir panjang Peat 5 
29 -2.70 111.70 9/07/11 Sei Tendang Peat 5 
30 -2.67 111.18 9/07/11 Mendawai Reed 5 
31 -2.03 111.85 9/07/11 Pangkut Reed 5 
32 -2.85 111.63 18/07/11 Kubu Bush 5 
33 -1.79 111.51 30/07/11 Toka Bush 5 
34 -2.78 111.58 4/08/11 Kumpai batu atas Reed 5 
35 -2.65 111.73 5/08/11 Pasir panjang Reed 5 
36 -2.89 111.35 7/08/11 Tanjung putri Reed 5 
37 -2.74 111.70 7/08/11 Candi Bush 5 
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No Lat Lon Date Location Vegetation 
types 

Area 
(ha) 

38 -2.73 111.71 7/08/11 Candi Bush 5 
39 -2.73 111.70 7/08/11 Candi Bush 5 
40 -2.50 111.53 7/08/11 Kota waringin hilir Reed 5 
41 -1.75 111.17 16/08/11 Kinipan Reed 5 
42 -1.73 111.18 18/08/11 Ginih Bush 5 
43 -2.75 111.64 15/06/11  Pasir panjang Reed, Bush, field 4 
44 -2.74 111.63 18/06/11  Pasir panjang Reed & bush 4 
45 -2.71 111.63 18/06/11  Madurejo Bush, field 4 
46 -2.87 111.63 1/07/11 Kubu Peat 4 
47 -2.01 111.92 2/07/11 Pangkut Peat 4 
48 -2.87 111.54 6/07/11 Sebuai Reed 4 
49 -1.99 111.44 7/07/11 Nanga Bulik Peat 4 
50 -2.46 112.93 8/07/11 Batuah Bush 4 
51 -2.91 111.09 26/07/11 Sungai Damar Reed 4 
52 -2.25 111.39 26/07/11  Makarti Jaya Bush 4 
53 -2.76 111.53 27/07/11 Kumpai batu atas Reed 4 
54 -1.92 111.58 28/07/11 Mukti Manunggal Bush 4 
55 -0.98 111.73 28/07/11 Buntut Sapau Bush 4 
56 -2.67 111.70 29/07/11 Pasir panjang Bush 4 
57 -2.34 112.90 29/07/11 Simpur Bush 4 
58 -1.93 111.59 29/07/11 Malata Bush 4 
59 -3.05 112.90 30/07/11 Lampuyang Reed 4 
60 -2.91 112.90 30/07/11 Basirih Hilir Bush 4 
61 -3.33 112.51 31/07/11 Kuala Pembuang Satu Peat 4 
62 -2.63 111.63 5/08/11 Raja Peat 4 
63 -2.63 111.62 5/08/11 Raja Peat 4 
64 -2.87 111.66 6/08/11 Kubu Bush 4 
65 -2.88 111.35 7/08/11 Tanjung putri Reed 4 
66 -2.88 111.35 7/08/11 Tanjung putri Bush 4 
67 -2.85 111.49 7/08/11 Kumpai batu bawah Reed 4 
68 -2.51 111.54 7/08/11 Raja seberang Peat 4 
69 -2.24 111.42 7/08/11 Suka makmur Reed 4 
70 -2.23 111.42 7/08/11 Kondang Reed 4 
71 -1.96 111.48 15/08/11 Nanga palikodan Bush 4 
72 -1.94 111.17 16/08/11 Panopa Bush 4 
73 -1.61 111.40 16/08/11 Batu tunggal Bush 4 
74 -2.85 111.50 30/08/11 Kumpai batu bawah Reed 4 
75 -2.85 111.49 30/08/11 Kumpai batu bawah Reed 4 
76 -2.35 112.86 2/07/11 Simpur Reed 3.5 
77 -2.31 111.34 7/07/11  Suka Mulya Reed 3.5 
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No Lat Lon Date Location Vegetation 
types 

Area 
(ha) 

78 -2.55 111.17 8/07/11 Padang Reed 3.5 
79 -2.51 111.91 11/07/11 Pangkalan Banteng Reed 3.5 
80 -2.01 111.67 28/07/11 Pangkut Bush 3.5 
81 -2.73 111.64 21/01/11  Pasir panjang Bush 3 
82 -2.74 111.65 28/02/11  Pasir panjang Bush 3 
83 -3.17 112.90 3/07/11 Ujung Pandaran Reed 3 
84 -2.75 111.68 7/07/11 Sungai kapitan Bush 3 
85 -2.24 111.54 7/07/11 Kondang Bush 3 
86 -2.69 111.75 8/07/11 Candi Peat 3 
87 -2.67 112.88 8/07/11 Sumber Makmur Peat 3 
88 -2.63 111.62 8/07/11 Kampung Raja Peat 3 
89 -2.38 111.29 8/07/11 Suka Raja Peat 3 
90 -2.18 111.36 8/07/11  Makarti Jaya Bush 3 
91 -2.85 111.49 9/07/11 Kumpai batu bawah Bush 3 
92 -2.73 111.70 9/07/11 Candi Peat 3 
93 -2.72 111.16 9/07/11 Mendawai Reed 3 
94 -2.48 112.96 9/07/11 Baamang hulu Reed 3 
95 -2.13 112.45 9/07/11 Baampah Reed 3 
96 -2.48 111.92 11/07/11 Pangkalan Banteng Reed 3 
97 -1.63 111.65 11/07/11 Pandau Peat 3 
98 -2.39 112.10 12/07/11 Asam Baru Reed 3 
99 -2.82 111.45 26/07/11 Tanjung putri Bush 3 

100 -2.60 112.67 27/07/11 Pondok Damar Peat 3 
101 -2.65 111.13 28/07/11 Mendawai Bush 3 
102 -2.46 112.98 28/07/11 Baamang hulu Bush 3 
103 -2.37 111.71 28/07/11 Baru Reed 3 
104 -2.15 111.50 28/07/11 Kondang Bush 3 
105 -2.78 112.86 29/07/11 Bagendang Hilir Peat 3 
106 -2.66 111.86 29/07/11 Bumi Harjo Bush 3 
107 -2.60 111.92 29/07/11 Kumai Hulu Peat 3 
108 -2.02 111.61 29/07/11 Umpang Reed 3 
109 -2.02 112.83 29/07/11 Damar Makmur Peat 3 
110 -2.79 111.62 2/08/11 Sungai kapitan Peat 3 
111 -2.79 111.62 2/08/11 Sungai kapitan Peat 3 
112 -2.59 111.69 5/08/11 Baru Bush 3 
113 -2.59 111.68 5/08/11 Baru Peat 3 
114 -2.59 111.69 5/08/11 Baru Bush 3 
115 -2.92 111.48 6/08/11 Sebuai Peat 3 
116 -2.93 111.49 7/08/11 Sebuai Bush 3 
117 -2.91 111.49 7/08/11 Sebuai Bush 3 
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No Lat Lon Date Location Vegetation 
types 

Area 
(ha) 

118 -2.88 111.36 7/08/11 Tanjung putri Reed 3 
119 -2.85 111.49 7/08/11 Kumpai batu bawah Reed 3 
120 -2.74 111.63 7/08/11 Batu belaman Bush 3 
121 -2.73 111.68 7/08/11 Candi Peat 3 
122 -2.65 111.68 7/08/11 Madurejo Reed 3 
123 -2.35 111.70 7/08/11 Raja seberang Peat 3 
124 -2.32 111.42 7/08/11 Sukamulya Reed 3 
125 -2.27 111.51 7/08/11 Rungun Bush 3 
126 -2.25 111.44 7/08/11 Suka makmur Bush 3 
127 -2.23 111.44 7/08/11 Kondang Reed 3 
128 -2.23 111.42 7/08/11 Kondang Bush 3 
129 -1.71 111.11 18/08/11 Sepoyu Reed 3 
130 -2.91 111.48 24/08/11 Sebuai Bush 3 
131 -2.74 111.70 25/08/11 Candi Bush 3 
132 -2.72 111.70 25/08/11 Candi Peat 3 
133 -2.50 111.41 30/08/11 Kel.Sidorejo Peat 3 
134 -2.42 111.91 7/07/11 Pandu Sanjaya Reed 2.5 
135 -2.23 111.87 9/07/11 Sidomulyo Bush 2.5 
136 -2.14 111.40 9/07/11 Kenawan Reed 2.5 
137 -2.21 111.88 12/07/11 Sidomulyo Bush 2.5 
138 -2.77 111.63 27/07/11 Batu belaman Bush 2.5 
139 -2.39 112.87 27/07/11 Simpur Bush 2.5 
140 -2.73 111.18 28/07/11 Mendawai Reed 2.5 
141 -2.40 112.89 28/07/11 Simpur Reed 2.5 
142 -2.34 111.72 28/07/11 Raja seberang Bush 2.5 
143 -2.02 111.67 29/07/11 Pangkut Reed 2.5 
144 -1.96 111.60 29/07/11 Malata Reed 2.5 
145 -1.91 111.54 29/07/11 Sungkup Reed 2.5 
146 -1.01 111.82 31/07/11 Tumbang Sepan Bush 2.5 
147 -2.91 111.49 5/08/11 Sebuai Peat 2.5 
148 -2.24 111.43 7/08/11 Suka makmur Reed 2.5 
149 -2.78 111.23 23/01/11 Natai Sedawak Reed 2 
150 -2.75 111.64 20/05/11  Pasir panjang Reed & bush 2 
151 -2.74 111.63 25/05/11  Pasir panjang Reed 2 
152 -2.74 111.63 11/06/11  Pasir panjang Bush 2 
153 -2.75 111.64 14/06/11  Pasir panjang Bush, field 2 
154 -1.90 111.45 26/07/11 Tamiang Reed 2 
155 -2.92 111.48 5/08/11 Sebuai Bush 2 
156 -2.91 111.48 5/08/11 Sebuai Reed 2 
157 -2.85 111.50 5/08/11 Kumpai batu bawah Bush 2 
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No Lat Lon Date Location Vegetation 
types 

Area 
(ha) 

158 -2.74 111.67 5/08/11 Sungai kapitan Peat 2 
159 -2.74 111.69 5/08/11 Candi Peat 2 
160 -2.74 111.70 5/08/11 Candi Peat 2 
161 -2.93 111.49 6/08/11 Sebuai Peat 2 
162 -2.92 111.49 6/08/11 Sebuai Bush 2 
163 -2.77 111.55 6/08/11 Kampar batu atas Reed 2 
164 -2.67 111.59 6/08/11 Mendawai Peat 2 
165 -2.54 111.70 6/08/11 Baru Bush 2 
166 -2.54 111.70 6/08/11 Baru Peat 2 
167 -2.91 111.49 7/08/11 Sebuai Bush 2 
168 -2.88 111.55 7/08/11 Sebuai Peat 2 
169 -2.67 111.59 7/08/11 Mendawai Peat 2 
170 -2.59 111.70 7/08/11 Baru Peat 2 
171 -2.51 111.52 7/08/11 Kota waringin hilir Reed 2 
172 -2.25 111.44 7/08/11 Suka makmur Reed 2 
173 -2.25 111.44 7/08/11 Suka makmur Peat 2 
174 -2.25 111.44 7/08/11 Suka makmur Peat 2 
175 -2.24 111.44 7/08/11 Kondang Reed 2 
176 -2.23 111.45 7/08/11 Kondang Peat 2 
177 -2.23 111.45 7/08/11 Kondang Peat 2 
178 -2.23 111.43 7/08/11 Kondang Bush 2 
179 -2.07 111.45 15/08/11 Kujan Peat 2 
180 -1.88 111.11 15/08/11 Tanjung beringin Peat 2 
181 -2.74 111.70 24/08/11 Candi Bush 2 
182 -2.83 111.56 25/08/11 Sebuai Bush 2 
183 -2.74 111.70 25/08/11 Candi Peat 2 
184 -2.74 111.71 25/08/11 Candi Bush 2 
185 -2.74 111.62 17/06/11  Pasir panjang Peat 1.5 
186 -2.75 111.64 18/06/11  Pasir panjang Bush, field 1.5 
187 -2.71 111.63 22/06/11  Madurejo Bush, field 1.5 
188 -2.97 111.59 5/08/11 Teluk bogam Reed 1.5 
189 -2.73 111.70 5/08/11 Candi Bush 1.5 
190 -2.88 111.55 6/08/11 Sebuai Peat 1.5 
191 -2.92 111.50 7/08/11 Sebuai Peat 1.5 
192 -2.92 111.49 7/08/11 Sebuai Peat 1.5 
193 -2.50 111.54 7/08/11 Kota waringin hilir Peat 1.5 
194 -2.66 111.48 11/02/11 SM. lamandau Bush 1.2 
195 -2.71 111.64 17/06/11  Madurejo,  Bush 1 
196 -2.55 112.97 6/07/11 Ketapang Reed 1 
197 -2.44 111.38 14/08/11 Pasir panjang Bush 1 



 

174 
 

Appendices 

No Lat Lon Date Location Vegetation 
types 

Area 
(ha) 

198 -2.41 111.38 26/08/11 KP.Panggung Peat 1 
199 -2.98 114.39 9/09/11  Pulau Telo  People land 1 
200 -2.74 111.71 5/08/11 Sei Tendang Reed 1 
201 -2.75 111.62 20/06/11  Pasir panjang Reed & bush 0.5 
202 -2.95 114.33 25/08/11  Tambun Raya  People land 0.5 
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Appendix 11.  Data of scatter plots of pixels’ temperature from MODIS dataset 
on 22 Jan 2009 at 03:40 UTC with 5x5 window size surrounding 
the assessed pixel with 314.4K and 313.0K. 

Note:  Mask values 3 = water pixel, 4 = cloud pixel, 5 = non-fire clear land pixel, and 
8 = fire pixel 

No Lat Lon Row Col DN T4 Mask 
Pixels’ temperature surrounding central pixel 314.4K 

1 1.04 102.18 509 644 2944 298.2 5 
2 1.04 102.19 509 645 2944 298.2 5 
3 1.04 102.20 509 646 2938 297.5 5 
4 1.04 102.21 509 647 2944 298.2 5 
5 1.04 102.22 509 648 2926 296.1 3 
6 1.03 102.18 510 644 2983 302.4 5 
7 1.03 102.19 510 645 3108 313.0 5 
8 1.03 102.20 510 646 2989 303.0 5 
9 1.03 102.21 510 647 2956 299.6 5 
10 1.03 102.22 510 648 2940 297.8 3 
11 1.02 102.17 511 644 2969 301.0 5 
12 1.02 102.18 511 645 3089 311.6 8 
13 1.02 102.19 511 646 3128 314.4 8 
14 1.02 102.20 511 647 2980 302.1 5 
15 1.02 102.21 511 648 2953 299.3 3 
16 1.02 102.17 512 644 2936 297.3 5 
17 1.01 102.18 512 645 2941 297.9 5 
18 1.01 102.19 512 646 2941 297.9 5 
19 1.01 102.20 512 647 2946 298.5 5 
20 1.01 102.21 512 648 2941 297.9 5 
21 1.01 102.17 513 644 2940 297.8 5 
22 1.01 102.18 513 645 2930 296.6 5 
23 1.00 102.19 513 646 2940 297.8 5 
24 1.00 102.20 513 647 2945 298.3 5 
25 1.00 102.21 513 648 2940 297.8 5 
Mean = 300.3 Stdev = 4.6 mean+3 stdev = 314.1

 

No Lat Lon Row Col DN T4 Mask 
Pixels’ temperature surrounding central pixel 313.0K 

1 1.05 102.17 508 643 2971 301.2 5 
2 1.05 102.18 508 644 2997 303.8 5 
3 1.05 102.19 508 645 2940 297.8 5 
4 1.05 102.20 508 646 2940 297.8 5 
5 1.05 102.21 508 647 2940 297.8 3 
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No Lat Lon Row Col DN T4 Mask 
6 1.04 102.17 509 643 2944 298.2 5 
7 1.04 102.18 509 644 2944 298.2 5 
8 1.04 102.19 509 645 2944 298.2 5 
9 1.04 102.20 509 646 2938 297.5 5 
10 1.04 102.21 509 647 2944 298.2 5 
11 1.04 102.17 510 643 2951 299.0 5 
12 1.03 102.18 510 644 2983 302.4 5 
13 1.03 102.19 510 645 3108 313.0 5 
14 1.03 102.20 510 646 2989 303.0 5 
15 1.03 102.21 510 647 2956 299.6 5 
16 1.03 102.16 511 643 2953 299.3 5 
17 1.02 102.17 511 644 2969 301.0 5 
18 1.02 102.18 511 645 3089 311.6 8 
19 1.02 102.19 511 646 3128 314.4 8 
20 1.02 102.20 511 647 2980 302.1 5 
21 1.02 102.16 512 643 2936 297.3 5 
22 1.02 102.17 512 644 2936 297.3 5 
23 1.01 102.18 512 645 2941 297.9 5 
24 1.01 102.19 512 646 2941 297.9 5 
25 1.01 102.20 512 647 2946 298.5 5 
Mean = 300.9 Stdev = 4.3 mean+3 stdev = 313.8
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Appendix 12.  Five day time series of pixel temperatures of ground data 
locations described in Appendix 8 (from 2 days before until 2 
days after the reported acquisition date of the ground data, 
shown by shaded rows). 

Note: Time in UTC, Mask values 4 = cloud pixel and 5 = non-fire clear land pixel 
No Date Time Lat Lon Row Col DN T4 Mask
Fire data number  1 

1 1/6/2011 02.25 -2.82 111.24 953 45 2826 279.6 4 
2 1/6/2011 14.45 -2.82 111.25 935 1118 2859 286.2 5 
3 2/6/2011 03.1 -2.82 111.25 65 866 2735 225.7 4 
4 2/6/2011 15.3 -2.82 111.25 57 168 2808 275.1 5 
5 3/6/2011 14.35 -2.82 111.26 22 1273 2916 294.8 5 
6 4/6/2011 02.55 -2.82 111.25 1182 537 2907 293.6 4 
7 4/6/2011 15.15 -2.82 111.25 1174 384 2760 256.1 4 
8 5/6/2011 03.4 -2.82 111.26 294 1325 2950 298.9 5 

Fire data number  2 
1 2/6/2011 03.1 -2.79 111.23 62 864 2736 228.6 4 
2 2/6/2011 15.3 -2.79 111.23 60 169 2821 278.4 4 
3 3/6/2011 14.35 -2.79 111.23 24 1274 2907 293.6 5 
4 4/6/2011 02.55 -2.79 111.23 1179 534 3019 305.9 5 
5 4/6/2011 15.15 -2.79 111.23 1178 385 2781 266.4 4 
6 5/6/2011 03.4 -2.79 111.23 288 1324 2966 300.7 5 
7 6/6/2011 02.45 -2.79 111.23 255 263 2982 302.3 5 
8 6/6/2011 15.05 -2.79 111.23 252 700 2888 290.9 5 

Fire data number  3 
1 9/6/2011 03.15 -2.91 111.64 483 1039 2960 300.0 5 
2 9/6/2011 15.35 -2.92 111.64 450 84 2932 296.8 5 
3 10/6/2011 02.2 -2.90 111.64 450 13 2772 262.5 5 
4 10/6/2011 14.4 -2.91 111.64 416 1189 2955 299.5 5 
5 11/6/2011 03. -2.91 111.64 1596 744 2785 267.9 5 
6 11/6/2011 15.2 -2.90 111.64 1568 239 2931 296.7 5 
7 12/6/2011 14.25 -2.92 111.64 1526 1314 2895 291.9 5 
8 13/6/2011 02.5 -2.91 111.64 669 421 2976 301.7 5 
1 13/6/2011 15.1 -2.91 111.64 641 498 2893 291.6 5 

Fire data number  4 
1 10/6/2011 02.2 -2.74 111.63 436 12 2883 290.1 5 
2 10/6/2011 14.4 -2.74 111.63 435 1188 2915 294.7 5 
3 11/6/2011 03. -2.74 111.63 1578 739 2832 280.9 5 
4 11/6/2011 15.2 -2.73 111.63 1587 237 2931 296.7 4 
5 12/6/2011 14.25 -2.73 111.63 1546 1313 2751 249.7 4 
6 13/6/2011 02.5 -2.74 111.63 651 417 2944 298.2 5 
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No Date Time Lat Lon Row Col DN T4 Mask
7 13/6/2011 15.1 -2.74 111.63 659 495 2947 298.6 5 
8 14/6/2011 03.3 -2.74 111.63 1802 1287 2766 259.6 5 

Fire data number  5 
1 3/8/2011 03.2 -2.73 111.60 994 1145 2949 298.8 4 
2 3/8/2011 15.4 -2.74 111.60 1004 32 2753 251.3 4 
3 4/8/2011 02.25 -2.74 111.59 958 56 2922 295.6 5 
4 4/8/2011 14.45 -2.74 111.60 964 1091 2941 297.9 5 
5 5/8/2011 03.1 -2.74 111.60 77 902 2763 257.9 4 
6 5/8/2011 15.3 -2.74 111.60 88 148 2951 299.0 5 
7 6/8/2011 14.35 -2.75 111.59 55 1258 2755 252.8 5 
8 7/8/2011 02.55 -2.74 111.60 1201 576 2974 301.5 5 
9 7/8/2011 15.15 -2.74 111.60 1214 349 2735 225.7 5 

Fire data number  6 
1 5/8/2011 03.1 -2.62 111.59 65 899 2929 296.4 4 
2 5/8/2011 15.3 -2.63 111.59 100 147 2748 246.9 5 
3 6/8/2011 14.35 -2.62 111.58 71 1257 2942 298.0 5 
4 7/8/2011 02.55 -2.62 111.59 1188 572 2938 297.5 5 
5 7/8/2011 15.15 -2.63 111.59 1226 348 2803 273.7 5 
6 8/8/2011 03.4 -2.62 111.58 310 1334 2740 236.9 5 
7 8/8/2011 14.2 -2.61 111.60 1183 1352 2907 293.6 5 
8 9/8/2011 02.45 -2.62 111.59 273 289 2873 288.6 5 
9 9/8/2011 15.05 -2.62 111.59 309 652 2935 297.2 4 

Fire data number  7 
1 6/8/2011 02.15 -3.10 114.47 51 52 2868 287.7 5 
2 6/8/2011 14.3 -3.10 114.47 2003 1111 2982 302.3 5 
3 7/8/2011 02.55 -3.10 114.47 1195 888 2933 296.9 5 
4 7/8/2011 15.15 -3.10 114.47 1127 163 2940 297.8 5 
5 8/8/2011 14.2 -3.10 114.47 1084 1269 2908 293.7 5 
6 9/8/2011 02.45 -3.10 114.47 278 560 2963 300.4 5 
7 9/8/2011 15.05 -3.10 114.47 212 374 2959 299.9 5 
8 10/8/2011 03.25 -3.11 114.46 1430 1331 2773 263.0 5 

Fire data number  8 
1 10/8/2011 03.25 -3.11 114.46 1430 1331 2949 298.8 5 
2 11/8/2011 02.3 -3.10 114.47 1400 281 2931 296.7 5 
3 11/8/2011 14.5 -3.10 114.47 1333 686 2905 293.3 5 
4 12/8/2011 03.15 -3.10 114.47 524 1220 2727 285.6 5 
5 12/8/2011 15.35 -3.10 114.47 448 1 2934 297.1 5 
6 13/8/2011 02.2 -3.09 114.47 485 108 2943 298.1 5 
7 13/8/2011 14.4 -3.10 114.48 413 994 2933 296.9 5 
8 14/8/2011 03. -3.10 114.47 1634 1026 2940 297.8 5 
9 14/8/2011 15.2 -3.10 114.48 1566 93 2754 252.1 5 
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No Date Time Lat Lon Row Col DN T4 Mask
Fire data number  9 

1 20/8/2011 02.25 -2.86 111.12 957 42 2889 291.0 5 
2 20/8/2011 14.45 -2.87 111.13 935 1125 2906 293.5 5 
3 21/8/2011 03.1 -2.86 111.13 64 857 2740 236.9 5 
4 21/8/2011 15.3 -2.86 111.13 49 174 2779 265.6 5 
5 22/8/2011 14.35 -2.86 111.13 14 1277 2914 294.5 5 
6 23/8/2011 02.55 -2.86 111.13 1184 528 2996 303.7 5 
7 23/8/2011 15.15 -2.86 111.13 1170 393 2771 262.1 5 
8 24/8/2011 03.4 -2.86 111.14 311 1323 2884 290.3 5 

Fire data number  10 
1 28/8/2011 03.15 -2.60 112.74 448 1116 2855 285.5 5 
2 28/8/2011 15.35 -2.60 112.75 487 43 2880 289.7 4 
3 29/8/2011 02.2 -2.60 112.74 409 42 2948 298.7 5 
4 29/8/2011 14.4 -2.60 112.74 445 1118 2838 282.2 5 
5 30/8/2011 03. -2.60 112.74 1556 857 2837 282.0 5 
6 30/8/2011 15.2 -2.60 112.74 1597 168 2930 296.6 4 
7 31/8/2011 14.25 -2.60 112.74 1562 1273 2910 294.0 4 
8 1/9/2011 02.50 -2.60 112.74 644 528 3090 311.7 5 
9 1/9/2011 15.50 -2.60 112.74 685 383 2899 292.5 5 

Fire data number  11 
1 17/9/2011 02.5 -2.99 114.26 567 695 2970 301.1 5 
2 17/9/2011 15.1 -2.98 114.26 523 272 2937 297.4 5 
3 18/9/2011 14.15 -2.99 114.26 467 1328 2933 296.9 5 
4 19/9/2011 02.35 -2.98 114.26 1667 380 2737 231.1 4 
5 19/9/2011 14.55 -2.99 114.26 1621 548 2849 284.3 4 
6 20/9/2011 03.2 -3.00 114.26 785 1272 2937 297.4 5 
7 21/9/2011 02.25 -2.99 114.26 747 166 2920 295.3 5 
8 21/9/2011 14.45 -2.99 114.26 697 877 2853 285.1 5 
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Appendix 13.  Pixels temperature in 3x3 window size which are centred on 
every ground data locations which are referred to Appendix 8. 

Note: Time in UTC, Mask values 4 = cloud pixel and 5 = non-fire clear land pixel 
No Date Time Lat Lon Row Col DN T4 Mask
Fire number 1 
1 03/06/2011 14.35 -2.83 111.29 21 1272 2771 262.1 5 
2 03/06/2011 14.35 -2.83 111.26 21 1273 2763 257.9 5 
3 03/06/2011 14.35 -2.84 111.23 21 1274 2763 257.9 5 
4 03/06/2011 14.35 -2.81 111.28 22 1272 2765 259.0 5 
5 03/06/2011 14.35 -2.82 111.26 22 1273 2760 256.1 5 
6 03/06/2011 14.35 -2.82 111.23 22 1274 2755 252.8 5 
7 03/06/2011 14.35 -2.80 111.28 23 1272 2764 258.5 5 
8 03/06/2011 14.35 -2.80 111.26 23 1273 2759 255.5 5 
9 03/06/2011 14.35 -2.81 111.23 23 1274 2754 252.1 5 

Fire number 2. 
1 04/06/2011 15.15 -2.79 111.24 1177 384 2959 299.9 4 
2 04/06/2011 15.15 -2.80 111.23 1177 385 2953 299.3 4 
3 04/06/2011 15.15 -2.80 111.22 1177 386 2959 299.9 4 
4 04/06/2011 15.15 -2.78 111.24 1178 384 2952 299.1 4 
5 04/06/2011 15.15 -2.79 111.23 1178 385 2958 299.8 4 
6 04/06/2011 15.15 -2.79 111.22 1178 386 2952 299.1 4 
7 04/06/2011 15.15 -2.77 111.24 1179 384 2957 299.7 4 
8 04/06/2011 15.15 -2.78 111.23 1179 385 2964 300.5 4 
9 04/06/2011 15.15 -2.78 111.22 1179 386 2964 300.5 4 

Fire number 3. 
1 11/06/2011 03.00 -2.90 111.63 1595 743 2889 291.0 5 
2 11/06/2011 03.00 -2.90 111.64 1595 744 2869 287.9 5 
3 11/06/2011 03.00 -2.90 111.65 1595 745 2858 286.0 5 
4 11/06/2011 03.00 -2.91 111.63 1596 743 2872 288.4 5 
5 11/06/2011 03.00 -2.91 111.64 1596 744 2851 284.7 5 
6 11/06/2011 03.00 -2.91 111.65 1596 745 2856 285.6 5 
7 11/06/2011 03.00 -2.92 111.63 1597 743 2865 287.2 5 
8 11/06/2011 03.00 -2.92 111.64 1597 744 2854 285.3 5 
9 11/06/2011 03.00 -2.92 111.65 1597 745 2844 283.4 5 

Fire number 4 
1 12/06/2011 14.25 -2.75 111.67 1545 1312 2910 294.0 4 
2 12/06/2011 14.25 -2.75 111.64 1545 1313 2915 294.7 4 
3 12/06/2011 14.25 -2.75 111.60 1545 1314 2920 295.3 5 
4 12/06/2011 14.25 -2.73 111.67 1546 1312 2914 294.5 4 
5 12/06/2011 14.25 -2.73 111.63 1546 1313 2919 295.2 4 
6 12/06/2011 14.25 -2.74 111.60 1546 1314 2919 295.2 5 
7 12/06/2011 14.25 -2.71 111.66 1547 1312 2912 294.3 4 
8 12/06/2011 14.25 -2.72 111.63 1547 1313 2918 295.1 4 
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No Date Time Lat Lon Row Col DN T4 Mask
9 12/06/2011 14.25 -2.72 111.60 1547 1314 2918 295.1 5 

Fire number 5 
1 05/08/2011 03.1 -2.72 111.59 76 901 2909 293.9 4 
2 05/08/2011 03.1 -2.73 111.60 76 902 2920 295.3 4 
3 05/08/2011 03.1 -2.73 111.61 76 903 2914 294.5 5 
4 05/08/2011 03.1 -2.73 111.59 77 901 2914 294.5 4 
5 05/08/2011 03.1 -2.74 111.60 77 902 2920 295.3 4 
6 05/08/2011 03.1 -2.74 111.61 77 903 2909 293.9 4 
7 05/08/2011 03.1 -2.74 111.59 78 901 2919 295.2 4 
8 05/08/2011 03.1 -2.75 111.60 78 902 2919 295.2 4 
9 05/08/2011 03.1 -2.75 111.61 78 903 2914 294.5 4 

Fire number 6 
1 07/08/2011 02.55 -2.61 111.59 1187 571 2922 295.6 5 
2 07/08/2011 02.55 -2.61 111.59 1187 572 2927 296.2 5 
3 07/08/2011 02.55 -2.61 111.60 1187 573 2916 294.8 5 
4 07/08/2011 02.55 -2.61 111.58 1188 571 2926 296.1 5 
5 07/08/2011 02.55 -2.62 111.59 1188 572 2921 295.4 5 
6 07/08/2011 02.55 -2.62 111.60 1188 573 2921 295.4 5 
7 07/08/2011 02.55 -2.62 111.58 1189 571 2944 298.2 5 
8 07/08/2011 02.55 -2.63 111.59 1189 572 2937 297.4 5 
9 07/08/2011 02.55 -2.63 111.60 1189 573 2931 296.7 5 

Fire number 7 
1 08/08/2011 14.2 -3.11 114.50 1083 1268 2751 249.7 5 
2 08/08/2011 14.2 -3.11 114.47 1083 1269 2746 244.9 5 
3 08/08/2011 14.2 -3.12 114.45 1083 1270 2741 238.5 5 
4 08/08/2011 14.2 -3.10 114.50 1084 1268 2749 247.9 5 
5 08/08/2011 14.2 -3.10 114.47 1084 1269 2739 235.2 5 
6 08/08/2011 14.2 -3.10 114.44 1084 1270 2749 247.9 5 
7 08/08/2011 14.2 -3.08 114.49 1085 1268 2740 236.9 5 
8 08/08/2011 14.2 -3.08 114.47 1085 1269 2745 243.8 5 
9 08/08/2011 14.2 -3.09 114.44 1085 1270 2745 243.8 5 

Fire number 8 
1 12/08/2011 03.15 -3.08 114.45 523 1219 2932 296.8 5 
2 12/08/2011 03.15 -3.09 114.47 523 1220 2927 296.2 5 
3 12/08/2011 03.15 -3.09 114.49 523 1221 2932 296.8 5 
4 12/08/2011 03.15 -3.10 114.45 524 1219 2936 297.3 5 
5 12/08/2011 03.15 -3.10 114.47 524 1220 2936 297.3 5 
6 12/08/2011 03.15 -3.10 114.49 524 1221 2931 296.7 5 
7 12/08/2011 03.15 -3.11 114.45 525 1219 2931 296.7 5 
8 12/08/2011 03.15 -3.11 114.47 525 1220 2931 296.7 5 
9 12/08/2011 03.15 -3.12 114.49 525 1221 2931 296.7 5 
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No Date Time Lat Lon Row Col DN T4 Mask
Fire number 9 
1 22/08/2011 14.35 -2.87 111.16 13 1276 2783 267.1 5 
2 22/08/2011 14.35 -2.88 111.13 13 1277 2772 262.5 5 
3 22/08/2011 14.35 -2.88 111.10 13 1278 2767 260.1 5 
4 22/08/2011 14.35 -2.86 111.16 14 1276 2779 265.6 5 
5 22/08/2011 14.35 -2.86 111.13 14 1277 2774 263.5 5 
6 22/08/2011 14.35 -2.86 111.10 14 1278 2774 263.5 5 
7 22/08/2011 14.35 -2.84 111.15 15 1276 2780 266.0 5 
8 22/08/2011 14.35 -2.85 111.13 15 1277 2780 266.0 5 
9 22/08/2011 14.35 -2.85 111.10 15 1278 2775 263.9 5 

Fire number 10 
1 30/08/2011 15.2 -2.61 112.76 1596 167 2801 273.1 4 
2 30/08/2011 15.2 -2.62 112.74 1596 168 2796 271.6 4 
3 30/08/2011 15.2 -2.62 112.72 1596 169 2796 271.6 4 
4 30/08/2011 15.2 -2.60 112.76 1597 167 2816 277.2 4 
5 30/08/2011 15.2 -2.60 112.74 1597 168 2789 269.3 4 
6 30/08/2011 15.2 -2.61 112.72 1597 169 2789 269.3 4 
7 30/08/2011 15.2 -2.59 112.75 1598 167 2811 275.9 4 
8 30/08/2011 15.2 -2.59 112.74 1598 168 2800 272.8 4 
9 30/08/2011 15.2 -2.59 112.72 1598 169 2784 267.5 4 

Fire number 11 
1 19/11/2013 14.55 -3.00 114.27 1620 547 2952 299.1 4 
2 19/11/2013 14.55 -3.00 114.26 1620 548 2957 299.7 4 
3 19/11/2013 14.55 -3.00 114.26 1620 549 2957 299.7 4 
4 19/11/2013 14.55 -2.99 114.27 1621 547 2950 298.9 4 
5 19/11/2013 14.55 -2.99 114.26 1621 548 2950 298.9 4 
6 19/11/2013 14.55 -2.99 114.25 1621 549 2958 299.8 4 
7 19/11/2013 14.55 -2.98 114.27 1622 547 2948 298.7 4 
8 19/11/2013 14.55 -2.98 114.26 1622 548 2958 299.8 4 
9 19/11/2013 14.55 -2.98 114.25 1622 549 2953 299.3 4 

 

 

 

 




