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1 Introduction

Many real-life systems operate by switching between different subsystems or
modes. Such systems are called switched systems. An example of a switched
system is a switched-capacitor DC-DC power converter, which operates by
periodically changing its circuit topology [6,14]. Other examples of switched
systems include robots [2], locomotives [7,8], hybrid power generators [19],
and biochemical reactors [3,4].

In some switched systems, changing mode causes an instantaneous change
in the system’s state—a so-called state jump. For example, changing the
circuit topology of a switched-capacitor DC-DC power converter causes a
sudden voltage drop in the power converter’s capacitors. Switched systems
of this type, in which subsystem switches are accompanied by state jumps,
are called impulsive systems.

In this paper, we consider an impulsive system whose subsystems are
described by nonlinear ordinary differential equations. The state jumps in
this system can be controlled through a set of system parameters. Our goal
is to choose values for these system parameters and the subsystem switching
times to minimize a given cost function.

This type of dynamic optimization problem is a major computational
challenge. There are two reasons for this:
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(i) The governing impulsive system is difficult to integrate numerically
because its switching times are variable.

(ii) The partial derivatives of the cost function with respect to the switching
times are not well-defined.

In this paper, we overcome these difficulties by introducing an equivalent
optimization problem that is governed by an impulsive system with fixed
switching times. This new problem is much easier to solve than the original,
and its solution can be used to obtain the optimal parameters and optimal
switching times for the original impulsive system.

This approach is inspired by the so-called time-scaling transformation,
which was first introduced in [10] to compute optimal switching times for
bang-bang control problems. Under this transformation, the switching times
are mapped to fixed points in a new time horizon. The time-scaling transfor-
mation has already been applied to a variety of optimization and optimal con-
trol problems involving switched and impulsive systems (see [11-13,17,20,21]).
Typically, the transformation works by introducing a new time variable 𝑠 and
relating 𝑠 to the original time variable 𝑡 through the dynamic equations

𝑑𝑡(𝑠)

𝑑𝑠
= 𝑣(𝑠), (1)

𝑡(0) = 0, (2)

where 𝑣 is a non-negative piecewise constant function. In this paper, we
describe a new way of applying the time-scaling transformation that does
not use equations (1)-(2).

The other main contribution of this paper is a novel method for com-
puting the gradient of the cost function. This method can be used in con-
junction with a standard nonlinear programming algorithm (see [15,16]) to
optimize the switching times and system parameters. Unlike the methods
in [11,12,20], which involve integrating a costate system backwards in time,
our new method involves integrating an auxiliary system forward in time.
Thus, since both the state and auxiliary systems are integrated in the same
direction, our new method is very convenient to implement.

2 Problem Statement

Consider the following impulsive system with 𝑚 ≥ 2 subsystems:

�̇�(𝑡) = 𝒇 𝑖
(
𝒙(𝑡), 𝜻

)
, 𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖), 𝑖 = 1, . . . ,𝑚, (3)

and

𝒙(𝜏𝑖) = 𝒙(𝜏
+
𝑖 ) =

{
𝒙0, if 𝑖 = 0, (4a)

𝒉𝑖
(
𝒙(𝜏−𝑖 ), 𝜻

)
, if 𝑖 = 1, . . . ,𝑚, (4b)
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where 𝜏0 ≜ 0, 𝜏𝑚 ≜ 𝑇 , and 𝑇 > 0 is a given final time; 𝜏𝑖, 𝑖 = 1, . . . ,𝑚− 1,
are the subsystem switching times; 𝒙(𝑡) ∈ ℝ𝑛 is the system’s state at time 𝑡;
𝒙0 ∈ ℝ𝑛 is the system’s given initial state; 𝜻 ∈ ℝ𝑟 is a vector of system
parameters; and 𝒇 𝑖 : ℝ𝑛 × ℝ𝑟 → ℝ𝑛, 𝑖 = 1, . . . ,𝑚, and 𝒉𝑖 : ℝ𝑛 × ℝ𝑟 → ℝ𝑛,
𝑖 = 1, . . . ,𝑚, are given functions.

The subsystem switching times are decision variables chosen by the sys-
tem designer. They must satisfy the following constraints:

𝜏𝑖 − 𝜏𝑖−1 ≥ Δ𝑖, 𝑖 = 1, . . . ,𝑚, (5)

where Δ𝑖 > 0 is the minimum duration of subsystem 𝑖. Clearly,

Δ1 + ⋅ ⋅ ⋅+Δ𝑚 ≤ 𝑇.

Let 𝒯 denote the set of all 𝝉 ∈ ℝ𝑚−1 satisfying (5).
The system parameters are also chosen by the system designer. They are

subject to the following constraints:

𝑎𝑗 ≤ 𝜁𝑗 ≤ 𝑏𝑗 , 𝑗 = 1, . . . , 𝑟, (6)

where 𝑎𝑗 and 𝑏𝑗 are given real numbers such that 𝑎𝑗 < 𝑏𝑗 . Let 𝒲 denote the
set of all 𝜻 ∈ ℝ𝑟 satisfying (6).

We make the following assumptions.

Assumption 1. The functions 𝒇 𝑖 and 𝒉𝑖, 𝑖 = 1, . . . ,𝑚, are continuously
differentiable.

Assumption 2. There exists a real number 𝐿1 > 0 such that

∥𝒇 𝑖(𝒗,𝒘)∥ ≤ 𝐿1(1 + ∥𝒗∥), (𝒗,𝒘) ∈ ℝ𝑛 ×𝒲, 𝑖 = 1, . . . ,𝑚,

where ∥ ⋅ ∥ denotes the Euclidean norm.

Assumptions 1-2 ensure that the impulsive system (3)-(4) has a unique solu-
tion 𝒙(⋅∣𝝉 , 𝜻) corresponding to each pair (𝝉 , 𝜻) ∈ 𝒯 ×𝒲 (see Theorem 3.1.6
of [1]).

We assume that the system’s operating cost depends on the state imme-
diately before and after each switch. Accordingly, we define a cost function
as follows:

𝐽(𝝉 , 𝜻) ≜
𝑚∑
𝑖=1

Ψ𝑖

(
𝜻,𝒙(𝜏−𝑖 ∣𝝉 , 𝜻),𝒙(𝜏+𝑖 ∣𝝉 , 𝜻)), (𝝉 , 𝜻) ∈ 𝒯 ×𝒲, (7)

where Ψ𝑖 : ℝ𝑟 × ℝ𝑛 × ℝ𝑛 → ℝ, 𝑖 = 1, . . . ,𝑚, are given continuously dif-
ferentiable functions. Note that we can easily incorporate an integral term
into (7) by introducing a dummy state variable. For example, consider the
following integral term:

𝑚∑
𝑖=1

∫ 𝜏𝑖

𝜏𝑖−1

ℒ𝑖

(
𝒙(𝑡∣𝝉 , 𝜻), 𝜻)𝑑𝑡.
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It is clear that this term can be replaced by 𝑣(𝜏−𝑚), where 𝑣 satisfies the
dynamics

�̇�(𝑡) = ℒ𝑖

(
𝒙(𝑡), 𝜻

)
, 𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖), 𝑖 = 1, . . . ,𝑚,

and

𝑣(𝜏+𝑖 ) =

{
0, 𝑖 = 0,

𝑣(𝜏−𝑖 ), 𝑖 = 1, . . . ,𝑚.

We want to choose the switching times 𝜏1, . . . , 𝜏𝑚−1 and the system parame-
ters 𝜁1, . . . , 𝜁𝑟 to minimize the cost function (7) subject to the constraints (5)
and (6). We state this problem formally below.

Problem P. Find a pair (𝝉 ∗, 𝜻∗) ∈ 𝒯 ×𝒲 such that

𝐽(𝝉 ∗, 𝜻∗) = inf
(𝝉 ,𝜻)∈𝒯 ×𝒲

𝐽(𝝉 , 𝜻).

3 An Equivalent Problem

The decision variables in Problem P are the subsystem switching times
𝜏1, . . . , 𝜏𝑚−1 and the system parameters 𝜁1, . . . , 𝜁𝑟. As we mentioned in the
introduction, the partial derivatives of the cost function with respect to the
switching times are not well-defined (see [10]). Hence, nonlinear program-
ming techniques, which use the cost function’s partial derivatives to compute
search directions, cannot solve Problem P directly. In this section, we trans-
form Problem P into an equivalent problem that is easier to solve.

3.1 Problem Statement

Let
Θ ≜

{
𝜽 ∈ ℝ𝑚 : 𝜃𝑖 ≥ Δ𝑖, 𝑖 = 1, . . . ,𝑚; 𝜃1 + ⋅ ⋅ ⋅+ 𝜃𝑚 = 𝑇

}
.

Consider the following impulsive system:

�̇�(𝑠) = 𝜃𝑖𝒇
𝑖
(
𝒚(𝑠), 𝜻

)
, 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚, (8)

and

𝒚(𝑖) = 𝒚(𝑖+) =

{
𝒙0, if 𝑖 = 0, (9a)

𝒉𝑖
(
𝒚(𝑖−), 𝜻

)
, if 𝑖 = 1, . . . ,𝑚, (9b)

where (𝜽, 𝜻) ∈ Θ×𝒲. Let 𝒚(⋅∣𝜽, 𝜻) denote the solution of (8)-(9) correspond-
ing to the pair (𝜽, 𝜻) ∈ Θ×𝒲. Note that subsystem switches in (8)-(9) occur
at the fixed times 𝑠 = 1, . . . ,𝑚− 1.

Define a new cost function 𝐽 as follows:

𝐽(𝜽, 𝜻) ≜
𝑚∑
𝑖=1

Ψ𝑖

(
𝜻,𝒚(𝑖−∣𝜽, 𝜻),𝒚(𝑖+∣𝜽, 𝜻)), (𝜽, 𝜻) ∈ Θ×𝒲.

Consider the following optimization problem.
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Problem P̃. Find a pair (𝜽∗, 𝜻∗) ∈ Θ×𝒲 such that

𝐽(𝜽∗, 𝜻∗) = inf
(𝜽,𝜻)∈Θ×𝒲

𝐽(𝜽, 𝜻).

In the next subsection, we will show that Problem P̃ is equivalent to Prob-
lem P. This means that a solution of Problem P can be obtained from a
solution of Problem P̃, and vice versa.

3.2 Equivalence of Problems P and P̃

For each 𝜽 ∈ Θ, define a corresponding function 𝜇(⋅∣𝜽) : [0,𝑚] → ℝ as
follows:

𝜇(𝑠∣𝜽) ≜

⎧⎨⎩
⌊𝑠⌋∑
𝑘=1

𝜃𝑘 + 𝜃⌊𝑠⌋+1(𝑠− ⌊𝑠⌋), if 𝑠 ∈ [0,𝑚),

𝑇, if 𝑠 = 𝑚,

where ⌊⋅⌋ denotes the floor function. It is easy to see that 𝜇(⋅∣𝜽) is continuous,
non-negative, and strictly increasing. Furthermore,

𝜇(𝑖∣𝜽)− 𝜇(𝑖− 1∣𝜽) = 𝜃𝑖 ≥ Δ𝑖, 𝑖 = 1, . . . ,𝑚. (10)

Now, for each 𝜽 ∈ Θ, define

𝝉 (𝜽) ≜
[
𝜇(1∣𝜽), 𝜇(2∣𝜽), . . . , 𝜇(𝑚− 1∣𝜽)]𝑇 ∈ ℝ𝑚−1.

It follows from (10) that 𝝉 (𝜽) ∈ 𝒯 . Thus, the components of 𝝉 (𝜽) can be
used as the switching times in (3)-(4). Our first result links the solution
of (3)-(4) with the solution of (8)-(9).

Theorem 1. For each pair (𝜽, 𝜻) ∈ Θ×𝒲,

𝒚(𝑠∣𝜽, 𝜻) = 𝒙(𝜇(𝑠∣𝜽)∣𝝉 (𝜽), 𝜻), 𝑠 ∈ [0,𝑚].

Proof. Let (𝜽, 𝜻) ∈ Θ×𝒲 be arbitrary but fixed. For simplicity, we write 𝜇
instead of 𝜇(⋅∣𝜽), 𝒙 instead of 𝒙(⋅∣𝝉 (𝜽), 𝜻), and 𝒚 instead of 𝒚(⋅∣𝜽, 𝜻). This
notation will not cause confusion because both 𝜽 and 𝜻 are fixed.

Clearly,

�̇�(𝑠) = 𝜃𝑖, 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚. (11)

Furthermore, since 𝜇 is strictly increasing,

𝜇(𝑖− 1) < 𝜇(𝑠) < 𝜇(𝑖), 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚. (12)

Define

�̃�(𝑠) ≜ 𝒙(𝜇(𝑠)∣𝝉 (𝜽), 𝜻), 𝑠 ∈ [0,𝑚].
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By virtue of (3), (11), and (12), we have

˙̃𝒙(𝑠) = �̇�(𝑠)𝒇 𝑖
(
�̃�(𝑠), 𝜻

)
= 𝜃𝑖𝒇

𝑖
(
�̃�(𝑠), 𝜻

)
, 𝑠 ∈ (𝑖−1, 𝑖), 𝑖 = 1, . . . ,𝑚. (13)

Since 𝜇 is continuous and strictly increasing,

�̃�(𝑖−) = lim
𝑠→𝑖−

𝒙(𝜇(𝑠)) = lim
𝑡→𝜇(𝑖)−

𝒙(𝑡) = 𝒙(𝜇(𝑖)−), 𝑖 = 1, . . . ,𝑚. (14)

Similarly,
�̃�(𝑖+) = 𝒙(𝜇(𝑖)+), 𝑖 = 1, . . . ,𝑚. (15)

It follows from (4b), (14), and (15) that

�̃�(𝑖+) = 𝒙(𝜇(𝑖)+) = 𝒉𝑖
(
𝒙(𝜇(𝑖)−), 𝜻

)
= 𝒉𝑖

(
�̃�(𝑖−), 𝜻

)
, 𝑖 = 1, . . . ,𝑚. (16)

Furthermore,
�̃�(0) = 𝒙(0) = 𝒙0. (17)

Equations (13), (16), and (17) show that �̃� is the unique solution of (8)-(9).
Thus,

𝒚(𝑠) = �̃�(𝑠) = 𝒙(𝜇(𝑠)), 𝑠 ∈ [0,𝑚],

as required.

We now use Theorem 1 to prove the following important result.

Theorem 2. For each pair (𝜽, 𝜻) ∈ Θ×𝒲,

𝐽(𝜽, 𝜻) = 𝐽(𝝉 (𝜽), 𝜻).

Proof. Let (𝜽, 𝜻) ∈ Θ×𝒲 be arbitrary but fixed. Furthermore, let 𝜇, 𝒙, and
𝒚 be as defined in the proof of Theorem 1.

Recall from Theorem 1 that

𝒚(𝑠) = 𝒙(𝜇(𝑠)), 𝑠 ∈ [0,𝑚].

Thus, since 𝜇 is continuous and increasing, for each 𝑖 = 1, . . . ,𝑚,

𝒚(𝑖−) = lim
𝑠→𝑖−

𝒚(𝑠) = lim
𝑠→𝑖−

𝒙(𝜇(𝑠)) = lim
𝑡→𝜇(𝑖)−

𝒙(𝑡) = 𝒙(𝜇(𝑖)−). (18)

Similarly,
𝒚(𝑖+) = 𝒙(𝜇(𝑖)+), 𝑖 = 1, . . . ,𝑚. (19)

From (18) and (19) we obtain

𝐽(𝜽, 𝜻) =

𝑚∑
𝑖=1

Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
=

𝑚∑
𝑖=1

Ψ𝑖

(
𝜻,𝒙(𝜇(𝑖)−),𝒙(𝜇(𝑖)+)

)
= 𝐽(𝝉 (𝜽), 𝜻),

which completes the proof.
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We now prove our main result: that Problem P̃ is equivalent to Problem P.

Theorem 3. Let (𝜽∗, 𝜻∗) ∈ Θ×𝒲. Then (𝜽∗, 𝜻∗) is optimal for Problem P̃
if and only if (𝝉 (𝜽∗), 𝜻∗) is optimal for Problem P.

Proof. Suppose that (𝜽∗, 𝜻∗) ∈ Θ × 𝒲 is optimal for Problem P̃. Then
𝝉 (𝜽∗) ∈ 𝒯 and thus (𝝉 (𝜽∗), 𝜻∗) is feasible for Problem P. Let (𝝉 , 𝜻) ∈ 𝒯 ×𝒲
be arbitrary but fixed. Define

𝜃𝑖 ≜ 𝜏𝑖 − 𝜏𝑖−1, 𝑖 = 1, . . . ,𝑚.

Then
𝜃𝑖 ≥ Δ𝑖, 𝑖 = 1, . . . ,𝑚,

and
𝑚∑
𝑖=1

𝜃𝑖 =
𝑚∑
𝑖=1

(𝜏𝑖 − 𝜏𝑖−1) = 𝜏𝑚 − 𝜏0 = 𝑇.

Thus, 𝜽 ∈ Θ. Furthermore,

𝜇(𝑖∣𝜽) =
𝑖∑

𝑘=1

𝜃𝑘 =
𝑖∑

𝑘=1

(𝜏𝑘 − 𝜏𝑘−1) = 𝜏𝑖, 𝑖 = 1, . . . ,𝑚− 1.

This shows that 𝝉 (𝜽) = 𝝉 . Now, by Theorem 2,

𝐽(𝝉 (𝜽∗), 𝜻∗) = 𝐽(𝜽∗, 𝜻∗) ≤ 𝐽(𝜽, 𝜻) = 𝐽(𝝉 (𝜽), 𝜻) = 𝐽(𝝉 , 𝜻).

Since (𝝉 , 𝜻) was chosen arbitrarily, this inequality shows that (𝝉 (𝜽∗), 𝜻∗) is
an optimal solution for Problem P.

Conversely, suppose (𝝉 (𝜽∗), 𝜻∗) ∈ 𝒯 ×𝒲 is optimal for Problem P and
let (𝜽, 𝜻) ∈ Θ×𝒲 be arbitrary but fixed. Then (𝝉 (𝜽), 𝜻) ∈ 𝒯 ×𝒲. Hence,
by Theorem 2,

𝐽(𝜽∗, 𝜻∗) = 𝐽(𝝉 (𝜽∗), 𝜻∗) ≤ 𝐽(𝝉 (𝜽), 𝜻) = 𝐽(𝜽, 𝜻).

This shows that (𝜽∗, 𝜻∗) is optimal for Problem P̃.

4 Gradient Computation for Problem P̃

In this section, we develop an algorithm for computing the gradient of 𝐽 .
This algorithm can be combined with any nonlinear programming method—
for example, a conjugate gradient method (see [15,16])—to solve Problem P̃.

Let

𝛿𝑘,𝑖 ≜
{
1, if 𝑘 = 𝑖,

0, otherwise,

and

𝛿𝑘,𝑖 ≜
{
1, if 𝑘 ≤ 𝑖,

0, otherwise.
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For each 𝑘 = 1, . . . ,𝑚, define the following auxiliary system:

�̇�𝑘(𝑠) = 𝛿𝑘,𝑖𝜃𝑖
∂𝒇 𝑖

(
𝒚(𝑠∣𝜽, 𝜻), 𝜻)
∂𝒙

𝝍𝑘(𝑠)

+ 𝛿𝑘,𝑖𝒇
𝑖
(
𝒚(𝑠∣𝜽, 𝜻), 𝜻), 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚,

(20)

and

𝝍𝑘(𝑖) = 𝝍𝑘(𝑖+) =

⎧⎨⎩
0, if 𝑖 = 0, (21a)

∂𝒉𝑖
(
𝒚(𝑖−∣𝜽, 𝜻), 𝜻)

∂𝒙
𝝍𝑘(𝑖−), if 𝑖 = 1, . . . ,𝑚, (21b)

where (𝜽, 𝜻) ∈ Θ×𝒲. Let 𝝍𝑘(⋅∣𝜽, 𝜻) denote the solution of (20)-(21).
For each 𝑗 = 1, . . . , 𝑟, define another auxiliary system as follows:

�̇�𝑗(𝑠) = 𝜃𝑖
∂𝒇 𝑖

(
𝒚(𝑠∣𝜽, 𝜻), 𝜻)
∂𝒙

𝝓𝑗(𝑠)

+ 𝜃𝑖
∂𝒇 𝑖

(
𝒚(𝑠∣𝜽, 𝜻), 𝜻)
∂𝜁𝑗

, 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚,

(22)

and

𝝓𝑗(𝑖) = 𝝓𝑗(𝑖+) =

⎧⎨⎩

0, if 𝑖 = 0, (23a)

∂𝒉𝑖
(
𝒚(𝑖−∣𝜽, 𝜻), 𝜻)

∂𝒙
𝝓𝑗(𝑖−)

+
∂𝒉𝑖

(
𝒚(𝑖−∣𝜽, 𝜻), 𝜻)

∂𝜁𝑗
, if 𝑖 = 1, . . . ,𝑚, (23b)

where (𝜽, 𝜻) ∈ Θ×𝒲. Let 𝝓𝑗(⋅∣𝜽, 𝜻) denote the solution of (22)-(23).
We have the following important result.

Theorem 4. For each pair (𝜽, 𝜻) ∈ Θ×𝒲,

∂𝒚(𝑠∣𝜽, 𝜻)
∂𝜃𝑘

= 𝝍𝑘(𝑠∣𝜽, 𝜻), 𝑠 ∈ [0,𝑚], 𝑘 = 1, . . . ,𝑚, (24)

and
∂𝒚(𝑠∣𝜽, 𝜻)

∂𝜁𝑗
= 𝝓𝑗(𝑠∣𝜽, 𝜻), 𝑠 ∈ [0,𝑚], 𝑗 = 1, . . . , 𝑟. (25)

Proof. Let (𝜽, 𝜻) ∈ Θ ×𝒲, 𝑘 ∈ {1, . . . ,𝑚}, and 𝑗 ∈ {1, . . . , 𝑟} be arbitrary
but fixed. For simplicity, we write 𝒚 instead of 𝒚(⋅∣𝜽, 𝜻).

It is clear from (8)-(9) that 𝒚(𝑠) does not depend on 𝜃𝑘 for 𝑠 ∈ [0, 𝑘− 1).
Thus,

∂𝒚(𝑠)

∂𝜃𝑘
= 0, 𝑠 ∈ [0, 𝑘 − 1),

and
𝑑

𝑑𝑠

{
∂𝒚(𝑠)

∂𝜃𝑘

}
= 0, 𝑠 ∈ [0, 𝑘 − 1). (26)
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Furthermore, by (8),

𝒚(𝑠) = 𝒚(𝑖− 1) +

∫ 𝑠

𝑖−1

𝜃𝑖𝒇
𝑖
(
𝒚(𝜂), 𝜻

)
𝑑𝜂, 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚. (27)

When 𝑖 ≥ 𝑘, differentiating this equation with respect to 𝜃𝑘 yields

∂𝒚(𝑠)

∂𝜃𝑘
=

∂𝒚(𝑖− 1)

∂𝜃𝑘
+

∫ 𝑠

𝑖−1

𝜃𝑖
∂𝒇 𝑖

(
𝒚(𝜂), 𝜻

)
∂𝒙

∂𝒚(𝜂)

∂𝜃𝑘
𝑑𝜂

+

∫ 𝑠

𝑖−1

𝛿𝑘,𝑖𝒇
𝑖
(
𝒚(𝜂), 𝜻

)
𝑑𝜂, 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 𝑘, . . . ,𝑚.

Thus,

𝑑

𝑑𝑠

{
∂𝒚(𝑠)

∂𝜃𝑘

}
= 𝜃𝑖

∂𝒇 𝑖
(
𝒚(𝑠), 𝜻

)
∂𝒙

∂𝒚(𝑠)

∂𝜃𝑘

+ 𝛿𝑘,𝑖𝒇
𝑖
(
𝒚(𝑠), 𝜻

)
, 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 𝑘, . . . ,𝑚.

(28)

Combining equations (26) and (28) gives

𝑑

𝑑𝑠

{
∂𝒚(𝑠)

∂𝜃𝑘

}
= 𝛿𝑘,𝑖𝜃𝑖

∂𝒇 𝑖
(
𝒚(𝑠), 𝜻

)
∂𝒙

∂𝒚(𝑠)

∂𝜃𝑘

+ 𝛿𝑘,𝑖𝒇
𝑖
(
𝒚(𝑠), 𝜻

)
, 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚.

(29)

Now, differentiating (9) with respect to 𝜃𝑘 gives

∂𝒚(𝑖)

∂𝜃𝑘
=

∂𝒚(𝑖+)

∂𝜃𝑘
=

⎧⎨⎩0, if 𝑖 = 0,

∂𝒉𝑖
(
𝒚(𝑖−), 𝜻

)
∂𝒙

∂𝒚(𝑖−)
∂𝜃𝑘

, if 𝑖 = 1, . . . ,𝑚.
(30)

Equations (29) and (30) show that ∂𝒚/∂𝜃𝑘 is the unique solution of (20)-(21).
Thus, (24) must hold.

We can prove equation (25) in a similar way. First, differentiating (27)
with respect to 𝜁𝑗 gives

∂𝒚(𝑠)

∂𝜁𝑗
=
∂𝒚(𝑖− 1)

∂𝜁𝑗
+

∫ 𝑠

𝑖−1

𝜃𝑖
∂𝒇 𝑖

(
𝒚(𝜂), 𝜻

)
∂𝒙

∂𝒚(𝜂)

∂𝜁𝑗
𝑑𝜂

+

∫ 𝑠

𝑖−1

𝜃𝑖
∂𝒇 𝑖

(
𝒚(𝜂), 𝜻

)
∂𝜁𝑗

𝑑𝜂, 𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚.

Hence,

𝑑

𝑑𝑠

{
∂𝒚(𝑠)

∂𝜁𝑗

}
= 𝜃𝑖

∂𝒇 𝑖
(
𝒚(𝑠), 𝜻

)
∂𝒙

∂𝒚(𝑠)

∂𝜁𝑗
+ 𝜃𝑖

∂𝒇 𝑖
(
𝒚(𝑠), 𝜻

)
∂𝜁𝑗

,

𝑠 ∈ (𝑖− 1, 𝑖), 𝑖 = 1, . . . ,𝑚.

(31)



68 Q. Lin, R. Loxton, K.L. Teo, and Y.H. Wu

Furthermore, differentiating (9) with respect to 𝜁𝑗 gives

∂𝒚(𝑖)

∂𝜁𝑗
=

⎧⎨⎩
0, if 𝑖 = 0,

∂𝒉𝑖
(
𝒚(𝑖−), 𝜻

)
∂𝒙

∂𝒚(𝑖−)
∂𝜁𝑗

+
∂𝒉𝑖

(
𝒚(𝑖−), 𝜻

)
∂𝜁𝑗

, if 𝑖 = 1, . . . ,𝑚.
(32)

Equations (31) and (32) show that ∂𝒚/∂𝜁𝑗 is the solution of (22)-(23), which
proves (25).

We now derive formulae for the partial derivatives of 𝐽 . By Theorem 4 and
the chain rule,

∂𝐽(𝜽, 𝜻)

∂𝜃𝑘
=

𝑚∑
𝑖=1

{
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝒙−

∂𝒚(𝑖−)
∂𝜃𝑘

+
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝒙+

∂𝒚(𝑖+)

∂𝜃𝑘

}
=

𝑚∑
𝑖=1

{
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝒙− 𝝍𝑘(𝑖−)

+
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝒙+

𝝍𝑘(𝑖+)

}
, (33)

where 𝒚 ≜ 𝒚(⋅∣𝜽, 𝜻), 𝝍𝑘 ≜ 𝝍𝑘(⋅∣𝜽, 𝜻), and ∂/∂𝒙− and ∂/∂𝒙+ denote differen-
tiation with respect to the state before and after the 𝑖th switch, respectively.

Similarly,

∂𝐽(𝜽, 𝜻)

∂𝜁𝑗
=

𝑚∑
𝑖=1

{
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝜁𝑗

+
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝒙−

∂𝒚(𝑖−)
∂𝜁𝑗

+
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝒙+

∂𝒚(𝑖+)

∂𝜁𝑗

}
=

𝑚∑
𝑖=1

{
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝜁𝑗

+
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝒙− 𝝓𝑗(𝑖−)

+
∂Ψ𝑖

(
𝜻,𝒚(𝑖−),𝒚(𝑖+)

)
∂𝒙+

𝝓𝑗(𝑖+)

}
. (34)

The following algorithm for computing 𝐽 and its partial derivatives is based
on equations (33) and (34).

Algorithm 1. Input a pair (𝜽, 𝜻) ∈ Θ×𝒲.

(i) Solve the impulsive systems (8)-(9), (20)-(21), and (22)-(23) to obtain
𝒚(⋅∣𝜽, 𝜻), 𝝍𝑘(⋅∣𝜽, 𝜻), and 𝝓𝑗(⋅∣𝜽, 𝜻).

(ii) Use 𝒚(⋅∣𝜽, 𝜻) to compute 𝐽 .

(iii) Use 𝒚(⋅∣𝜽, 𝜻), 𝝍𝑘(⋅∣𝜽, 𝜻), and 𝝓𝑗(⋅∣𝜽, 𝜻) to compute ∂𝐽(𝜽, 𝜻)/∂𝜃𝑘 and
∂𝐽(𝜽, 𝜻)/∂𝜁𝑗 according to equations (33) and (34).
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5 Examples

In this section, we consider two example problems. To solve these exam-
ples, we wrote a Fortran program that implements the approach described
in Sections 3 and 4. This program transforms Problem P into Problem P̃
and then solves Problem P̃ by combining Algorithm 1 with the optimization
subroutine NLPQLP [18] and the differential equation solver LSODA [5].

Example 5.1: A Nonlinear Impulsive System

Consider the following impulsive system:

�̇�1 =

{
0.01𝑥2

1 + 2.02𝑥1𝑥2 − 0.99𝑥2
2 − 2𝑥1 + 4𝑥2 + 1, if 0 < 𝑡 < 1.8,

1.01𝑥2
1 + 0.02𝑥1𝑥2 + 0.01𝑥2

2 − 2𝑥1 + 4𝑥2 + 1, if 1.8 < 𝑡 < 2,
(35a)

�̇�2 =

⎧⎨⎩
0.01𝑥1𝑥2 + 1.01𝑥2

2 + 1.01𝑥1𝑥3 − 0.99𝑥2𝑥3

−3𝑥1 − 𝑥2 + 2𝑥3 + 1, if 0 < 𝑡 < 1.8,

1.01𝑥1𝑥2 + 0.01𝑥2
2 + 0.01𝑥1𝑥3 + 0.01𝑥2𝑥3

−3𝑥1 − 𝑥2 + 2𝑥3 + 1, if 1.8 < 𝑡 < 2,

(35b)

�̇�3 =

{
0.01𝑥2

2 + 2.02𝑥2𝑥3 − 0.99𝑥2
3 − 6𝑥2 + 1, if 0 < 𝑡 < 1.8,

1.01𝑥2
2 + 0.02𝑥2𝑥3 + 0.01𝑥2

3 − 6𝑥2 + 1, if 1.8 < 𝑡 < 2,
(35c)

and

𝑥1(0) = 0.1, (36a)

𝑥2(0) = 0, (36b)

𝑥3(0) = 25. (36c)

Suppose that there are 𝑚− 1 switching times 𝜏1, . . . , 𝜏𝑚−1 satisfying

0 = 𝜏0 < 𝜏1 < ⋅ ⋅ ⋅ < 𝜏𝑚−1 = 1.8.

We impose the following state jump conditions:

𝑥1(𝜏𝑖) =

⎧⎨⎩
4𝑥1(𝜏

−
𝑖 ) + 𝑥1(𝜏

−
𝑖 )𝑥3(𝜏

−
𝑖 )− 𝑥2(𝜏

−
𝑖 )2

4𝑥1(𝜏
−
𝑖 )− 4𝑥2(𝜏

−
𝑖 ) + 𝑥3(𝜏

−
𝑖 ) + 4

, 𝑖 = 1, . . . ,𝑚− 2,

𝑥1(𝜏
−
𝑖 ), 𝑖 = 𝑚− 1,

(37a)

𝑥2(𝜏𝑖) =

⎧⎨⎩
4𝑥2(𝜏

−
𝑖 ) + 2𝑥1(𝜏

−
𝑖 )𝑥3(𝜏

−
𝑖 )− 2𝑥2(𝜏

−
𝑖 )2

4𝑥1(𝜏
−
𝑖 )− 4𝑥2(𝜏

−
𝑖 ) + 𝑥3(𝜏

−
𝑖 ) + 4

, 𝑖 = 1, . . . ,𝑚− 2,

𝑥2(𝜏
−
𝑖 ), 𝑖 = 𝑚− 1,

(37b)

𝑥3(𝜏𝑖) =

⎧⎨⎩
4𝑥3(𝜏

−
𝑖 ) + 𝑥1(𝜏

−
𝑖 )𝑥3(𝜏

−
𝑖 )− 𝑥2(𝜏

−
𝑖 )2

4𝑥1(𝜏
−
𝑖 )− 4𝑥2(𝜏

−
𝑖 ) + 𝑥3(𝜏

−
𝑖 ) + 4

, 𝑖 = 1, . . . ,𝑚− 2,

𝑥3(𝜏
−
𝑖 ), 𝑖 = 𝑚− 1.

(37c)
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Figure 1: Optimal state trajectories for Example 5.1 with 𝑚 = 3.

Furthermore, we assume

𝜏𝑖 − 𝜏𝑖−1 ≥ 0.1, 𝑖 = 1, . . . ,𝑚− 1. (38)

The problem is to choose the switching times 𝜏1, . . . , 𝜏𝑚−2 to minimize the
cost function

𝐽 = 𝑥1(2)
2 + 2𝑥2(2)

2 + 𝑥3(2)
2

subject to the dynamics (35)-(36), the state jump conditions (37), and the
constraints (38). This problem (for 𝑚 = 4) was solved in [12] using the
optimal control software MISER 3.2 [9]. MISER also uses NLPQLP; however,
MISER computes the cost function’s gradient by solving a costate system
backwards in time. This is quite different to our new method, which only
involves forward integration.

We solved this problem for 𝑚 = 3 and 𝑚 = 4. When 𝑚 = 3, the optimal
solution is

𝜏∗1 = 0.9252, 𝐽∗ = 1.2040.

When 𝑚 = 4, the optimal solution is

𝜏∗1 = 1.0972, 𝜏∗2 = 1.7000, 𝐽∗ = 0.6844.

The optimal state trajectories for 𝑚 = 3 and 𝑚 = 4 are shown in Figures 1
and 2, respectively.
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Figure 2: Optimal state trajectories for Example 5.1 with 𝑚 = 4.

Note that our results are superior to those given in [12] (for 𝑚 = 4).
Indeed, the optimal solution reported in [12] is

𝜏∗1 = 0.8141, 𝜏∗2 = 0.9634, 𝐽∗ = 1.1041.

Example 5.2: Optimal Shrimp Harvesting

In [22], the following model for shrimp population growth is discussed:

�̇�1(𝑡) = −0.03𝑥1(𝑡), (39a)

�̇�2(𝑡) = 3.5− 0.00001𝑥1(𝑡)𝑥2(𝑡), (39b)

and

𝑥1(0) = 40000, (40a)

𝑥2(0) = 1, (40b)

where 𝑡 is the time in weeks, 𝑥1(𝑡) is the number of shrimp at time 𝑡, and
𝑥2(𝑡) is the average weight of shrimp (in grams) at time 𝑡.

Shrimp are harvested at times 𝑡 = 𝜏𝑖, 𝑖 = 1, . . . ,𝑚. The number of shrimp
drops instantaneously at the harvest times, but the average weight doesn’t
change. Hence, we have the following state jump conditions:

𝑥1(𝜏
+
𝑖 ) = 𝑥1(𝜏

−
𝑖 )− 𝜁𝑖𝑥1(𝜏

−
𝑖 ), (41a)

𝑥2(𝜏
+
𝑖 ) = 𝑥2(𝜏

−
𝑖 ), (41b)
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Figure 3: Optimal shrimp population for 𝑚 = 2.

where 𝜁𝑖 denotes the fraction of total shrimp harvested at time 𝑡 = 𝜏𝑖.
At least 1% of the total shrimp stock must be harvested at each harvesting

time. Hence,
0.01 ≤ 𝜁𝑖 ≤ 1, 𝑖 = 1, . . . ,𝑚. (42)

The revenue obtained by harvesting a fraction 𝜁𝑖 of the total shrimp stock at
time 𝑡 = 𝜏𝑖 is

𝑝𝑥2(𝜏
−
𝑖 )𝜁𝑖𝑥1(𝜏

−
𝑖 )− ℎ,

where 𝑝 ≜ $0.008 is the price per gram of shrimp and ℎ ≜ $50 is the fixed
cost of harvesting.

We assume that the final harvesting time is 𝜏𝑚 = 𝑇 = 13.2. At this time,
all remaining shrimp are harvested. Hence, 𝜁𝑚 = 1. We also assume that

𝜏𝑖 − 𝜏𝑖−1 ≥ 0.01, 𝑖 = 1, . . . ,𝑚. (43)

The problem is to find 𝜏1, . . . , 𝜏𝑚−1 and 𝜁1, . . . , 𝜁𝑚−1 to maximize the revenue
function

𝐽 =
𝑚∑
𝑖=1

(
𝑝𝑥2(𝜏

−
𝑖 )𝜁𝑖𝑥1(𝜏

−
𝑖 )− ℎ

)
subject to the dynamics (39)-(40), the state jump conditions (41), and the
constraints (42) and (43).

The optimal solution for this problem with 𝑚 = 2 is

𝜏∗1 = 5.330, 𝜁∗1 = 0.584, 𝐽∗ = 3128.
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Figure 4: Optimal average weight for 𝑚 = 2.

This means that we can obtain a maximum revenue of $3128 by harvesting
58.4% of the shrimp stock at time 𝑡 = 5.33, and harvesting the remaining
shrimp stock at the final time 𝑡 = 13.2. The state variables corresponding to
this optimal solution are plotted in Figures 3 and 4.

When 𝑚 = 3, the optimal solution is

𝜏∗1 = 4.270, 𝜏∗2 = 7.810, 𝜁∗1 = 0.388, 𝜁∗2 = 0.454, 𝐽∗ = 3189.

The optimal state variables corresponding to this solution are shown in Fig-
ures 5 and 6. Note that the optimal revenue for 𝑚 = 3 is greater than the
optimal revenue for 𝑚 = 2. Hence, harvesting three times is more profitable
than harvesting two times.

The optimal solution for 𝑚 = 4 is

𝜏∗1 = 3.854, 𝜏∗2 = 6.120, 𝜏∗3 = 9.110,

𝜁∗1 = 0.289, 𝜁∗2 = 0.323, 𝜁∗3 = 0.374,

with optimal revenue
𝐽∗ = 3172.

Hence, harvesting four times results in a decrease in maximum revenue.
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Figure 5: Optimal shrimp population for 𝑚 = 3.
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Figure 6: Optimal average weight for 𝑚 = 3.
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