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Abstract

The Earth experienced global magmatic events correlated with the presence of supercontinents,
suggesting that the distribution of continental pieces at the surface is fundamental. In most cases, the
plume model is invoked to explain the presence of these large igneous provinces although some do not
clearly show evidence for such mechanism. The aggregation of continent is known to have a significant
effect on mantle convection and thermal evolution below continents, mostly enlarging the wave-length of
convection and insulating the underlying mantle. Both processes tend to increase the temperature below
the continental lithosphere, eventually triggering melting even without plume. This model, called mantle
global warming, has been tested with convection models (Coltice et al., 2007). This paper questions the
validity of this model in the past comparing predictions from numerical simulations to geological
observations for continental flood basalts back to the Archean. The simulations predict the mantle global
warming model could be an efficient mechanism to account for the peculiarities of magmatic provinces

on Pangea, Rodinia and proposed Archean supercontinents like Kenorland and ZimVaalbara.
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1. Introduction

The growth of the continental crust is an episodic process (Moorbath, 1978). One way to
identify pulses of continent formation is through the record of ages of zircons that carry the
informations about the generation of juvenile granites. In the available data, major growth
events are dated at 2.7, 2.5, 1.9, 1.1, 0.48, 0.28 and 0.1Ga, corresponding to mantle magmatism
and orogenic activity (Condie, 2004). Although no rock has been preserved from the Hadean,
4.1Gy old zircons of Jack Hills in the Ylgarn cratons suggest the presence of early continents
(Harrison et al., 2005).

Some of the major events, correlating with mantle volcanism, occurred when supercontinents
were aggregating or breaking up (Yale and Carpenter, 1998; Condie, 2004). Rodinia was
breaking up at 1.1Ga, Gondwana at 0.48Ga and Pangea was stable between 0.28 and 0.2Ga
before disrupting into the continents we see today. There are suggestions of Archean
supercontinents especillay between 2750-2650Ga (Aspler and Chiarenzelli, 1998) in a period of
rapid and worldwide formation of juvenile continental crust. The temporal coincidence between
supercontinents and widespread magmatism questions role of the distribution of continents in
trigerring large-scale mantle melting. Mantle convection studies have shown that continents can
impose their wavelength to the flow (Guilou and Jaupart, 1995; Phillips and Bunge, 2005)
which can lead to an increase in mantle subcontinental temperature (Grigné et al., 2007). Indeed
changing the wavelength changes the efficiency of heat removal as well. Another effect is to
insulate the subcontinental mantle and reduce the heat loss to very low values. Indeed, mantle
heat flow can be as low as 12mW m™ within cratons (Jaupart et al., 2007), which impedes the
cooling of the underlying mantle. A consequence of insulation and wavelength change is that
continental aggregation leads to an increase in subcontinental temperature even without mantle
plumes. Numerical simulations of mantle convection suggest it could be as high as 100°C,
triggering melting in the asthenosphere and eventually the lithosphere on a very widespread
area, as it is called the mantle global warming model (Coltice et al., 2007).

However, when plume exist they tend to start and focus below continents because it is a
naturally hot region (Gurnis, 1988; Zhong and Gurnis, 1993; Guilou and Jaupart, 1995; Phillips
and Bunge, 2005; Phillips and Bunge, 2007). For now, only the (super)plume model as been
invoked to explain the magmatic activity during continental growth pulses. In most cases, plume
evidence is very limited and some ambiguous geological proxies are used (Courtillot et al.,

1998). To account for a plume origin, several observations have to be made in the framework of
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a plume paradigm: hotspot tracks, domal uplift, deep mantle isotopic fingerprint, restricted
geometry of magmatism, temperature excess (Sleep, 1990). Although, convection simulations
that take into account the dynamical effects of chemical heterogeneities in the source of plumes
show that this paradigm could be revised and a wide variety of thermo-chemical plumes could

exist within the mantle (Farnetani et al., 2005).

Some of the largest CFB on Earth do not display evidence for the plume model, even taking into
account some of the complexities of the thermo-chemical plumes. Off course, for most of the
geological record, the only traces of CFBs left are giant dikes or large-scale basaltic eruptions
from which recognition of a plume pattern is very difficult (Ernst and Buchan, 2002). It is only
fwith rocks of ages younger than 200My that the emplacement of CFBs can be more accurately
documented. But even in the recent record, some CFBs hardly match any plume criteria. One of
the best examples is the Central Atlantic Magmatic Province (CAMP): there is no hotspot track,
no geochemical fingerprint for deep mantle sources, no domal uplift, and it is so large-scale
(>10° km?) that a plume origin cannot be accounted for. In this case, the global warming model
fits well the observations (Coltice et al., 2007) and suggests that other CFBs in the past could be
too.

In this paper, we investigate the role of the mantle global warming model in generating
continental flood basalts on supercontinents over the Earth's history. We first explicit the model
and show 3D spherical simulations describing how the temperature changes in the
subcontinental mantle for variable continental covers that correspond to situations in the past.
These results allow us to propose some continental flood basalts over Earth's history that could

be explained by this model instead of plume models.

2. The model

2.1. Physics and phenomenology
There is a strong feedback between mantle convection and the evolution of the continental
distribution at the surface of the Earth. Cold downwellings draw continents by focusing
convergence while hot upwellings push them away. At the same time, the strength and insulating
power of continents strongly impede the presence of downwellings below them so they tend to
create hot regions. It has led Anderson (1982) to suggest that the geoid high within the Atlantic

is a remnant of hot mantle generated below Pangea for instance. Hence continental rafts play an



O©CoO~NOUTAWNPE

92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

11

12

113

114

115

116

117

118

119

120

121

122

123

important role in the convective organization since they constitute mechanical and thermal
heterogeneities within the top boundary layer that drives most of the dynamics since heat from
the core probably does not exceed 25% of the global heat budget (Hernlund and Labrosse,
2007).

Aggregation and dispersal of continents are then fundamental in modifying the temperature
field in the mantle. A supercontinent has a pronounced insulating power and can force the flow
towards longer wavelength than with separate smaller continents. As a consequence, aggregated
continents have hotter sublithospheric temperature than when they are dispersed theoretically,
and this even if there is no heat coming from the core i.e. without hot plumes. In principle, a
mantle only heated from within (cooling and radiogenic heat) can display subcontinental
thermal excursions when continents aggregate and disperse. Coltice et al. (2007) used 2D and
3D mantle convection models with continental rafts to show the existence of such mechanism.
In their framework, they showed continental aggregation would generate a temperature increase
greater than 70°C in 100My when continents aggregate (with moving continents in 2D) in the
absence of heat from the core. However, the simulations contain simplifications like rigidity of
continents, linear rheology, and fixed continents for the 3D case. It is extremely challenging
today to use realistic rheologies (temperature, depth and stress dependent) in spherical models
that generate self-consistently a plate like behaviour (Tackley, 2000). The viscosity used in
numerical models could be crucial since there is a feedback between temperature, stress and the
flow through viscosity. In the following, we explore in simple spherical models the effects of
the size and distribution of continents to investigate how the mantle global warming model

could have worked in the past.

2.2. Numerical models
Modelling the thermal evolution of the convective mantle with continents involves several
ingredients. First, a physical and numerical model of mantle convection has to be used. Then a
physical formulation of continents has to be inserted consistently with the physical framework.
Interaction between mantle flow and continents has to be implemented without violating the
conditions of free convection in which self-organization is crucial. Hence, we solve the Navier-
Stokes equations for incompressible material with the code TERRA in 3D spherical geometry

(Bunge and Baumgardner, 1995). The viscosity is laterally constant but increases by a factor of
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30 at the 660km boundary, as suggested by geoid and post-glacial rebound studies (Ricard et al.,
1993). A temperature and stress-dependent rheology is beyond the capabilities of present-day
numerical models for highly vigorous convection in spherical geometry. It is not worth to use
only temperature-dependence in the models since it would freeze the cold surface and generate
a stagnant lid that is not realistic to study the Earth (Christensen, 1984). The calculations involve
85% of heat from within (radioactivity) and 15% from the core. The Rayleigh number based on
the upper mantle viscosity is 10" here, which is supposed to be close to present-day convective

vigor.

The continents are simulated by rigid lids. Their thickness is 220km thick, consistently with the
thickness of stable continental lithosphere determined by geophysical observations (Artemieva
and Mooney, 2001). In this study, the lids are fixed and hence have a zero velocity, acting like
undeformable lithosphere. It is a rather crude model but more advanced representation of
deformable continental lithosphere involves numerical complexities (Lenardic et al., 2003)
which are sufficiently difficult that no spherical 3D model of deformable continent has been
published up to now. However, rigid continents simulate the first-order effects of thermal
insulation and mechanical strength on mantle convection, as in many other studies (Gurnis,

1988; Guilou and Jaupart, 1995, Lowman and Jarvis, 1999).

2.3 Simulations
The goal of the calculations with fixed continents is to explore the potential of the mantle global
warming model for a planet with smaller continents. Indeed, Archean and Proterozoic
continents could have been smaller than today and melting caused by subcontinental warming
after aggregation could be questioned. Models are run for several convective overturns in order
to obtain statistically steady-state values for the subcontinental temperature. The total
continental covers is varied between 10% and 30% of the Earth's surface with dispersed and

aggregated lids.

The temperature beneath supercontinents is always larger than beneath dispersed continents
whatever the total continental cover in the models. A widespread zone develops below the
continent because of insulation and long wavelength of the flow (Fig.1). Even with 15% basal

heating, plumes don't necessarily occur below the continents. We compute a temperature
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difference between the supercontinent case and dispersed case and present a value which is
normalized to the average temperature at the base of the boundary layer (i.e. temperature at the
base of the oceanic lithosphere would be the equivalent). The temperature at statistically steady
state beneath a supercontinent is 5% larger for small continental cover (10% of the Earth's
surface), 10% for intermediate continental cover (20%) and up to 15% for a present-day
continental cover (see Fig.2). The larger the continental cover, the larger the temperature
difference between aggregated and dispersed case is. These numbers are not very dependent on
the Rayleigh number in our calculations. Increasing the size of continents increases both
insulation and flow wavelength which consequently increase the temperature. In our models, the
“oceanic” area (area without continent) is not influenced by the distribution of the continents
since the temperature at the base of the boundary layer is similar in the aggregated and
dispersed states.

Even if 5% temperature difference seems small, considering the temperature difference over the
boundary layer being around 1500K during the Archean (Jaupart et al., 2007), the warming up
would already be 75K which is significantly high to melt the mantle. With the continents
growing while the mantle is slowly cooling, the expected temperature increase after continental
aggregation increased sligthly with time and probably remained between 50 to 150K since the

Archean according to our calculations.

2.2.1.Global warming provinces: case studies

The results of the models can be confronted to observations on various large igneous provinces

in the past that can difficultly be explained by the plume mode.

2.3. Pangea provinces
Pangea provides the best example to test the global warming versus mantle plume models,
because it is the last supercontinent, which assembly and break-up stories are relatively well
constrained. Its final stages of assembly occurred between 320 and 250 Ma (Cawood and
Buchan, 2007), while its dispersal progressively spread out from ca. 190 Ma (Sahabi et al.,
2004) and is still in progress. The characteristics of the CFBs associated with the break-up of

the Pangean supercontinent are better constrained, compared to those associated to previous
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supercontinents, providing the best opportunity to test the global warming model as Pangea
evolves from a supercontinent configuration to the present-day continental dispersal.

Six CFBs were emplaced after the complete aggregation of Pangea and are therefore directly
linked to its break-up, recording a 170 My-long story of continental dismemberment: the Central
Atlantic Magmatic Province (CAMP) at 200 Ma, the Karoo at 180 Ma, the Parana-Etendeka at
130 Ma, the Deccan at 65 Ma, the North Atlantic Province at 60 Ma and the Ethiopia-Yemen at
30 Ma (Courtillot et al., 1999). It is generally accepted that the four youngest CFBs (Parana-
Etendeka, Deccan, North Atlantic, Ethiopia-Yemen) were emplaced in response to a mantle
plume head activity, while Pangea was already more or less largely dismembered. On the other
hand, the plume model has been questioned for the two oldest CFBs (CAMP and Karoo)
emplaced while Pangea was still a supercontinent, corresponding to a geodynamic setting more
favorable to the global warming model.

Hereafter, some key-points considered as critical for the plume versus global warming models
will be (re)-examined for the CAMP and Karoo CFBs. These points concem mainly the size and
shape of the CFB province and the volume of erupted magmas, the presence or absence of a
hot-spot track, the geometry of the dyke swarms, the timing of magmatism, the chemical

composition of the magmas.

3.1.1 The CAMP case (200Ma)

The CAMP is the largest CFB on Earth, now extending on four continents (Europe, Africa,
North America and South America) and covering ca. 10" km?* (Fig.3). It consists of a) huge sills
and some layered intrusions, mainly developed in West Africa and Brazil (Deckart et al., 1997,
Marzoli et al., 1999), b) elongated isolated dykes (up to 800 km long) mainly occurring in North
Africa, Europe and Canada (Bertrand, 1991; McHone et al., 2005) and dense dyke swarmes,
along Eastern North America margin, in West Africa and Guyana (Dupuy et al., 1988; Deckart
et al., 1997; Verati et al., 2005; McHone et al., 2005), c) some lava flows remnants preserved in
Triassic basins in Portugal, Morocco, Eastern North America, Brazil and Bolivia (Bertrand et
al., 1982; Puffer, 1992; Marzoli et al., 1999, 2004; Bertrand et al., 2005; Verati et al., 2007). The
lava piles are 10 to 450 meters thick. The CAMP CFB mainly extends over the peri-cratonic
panafrican to hercynian belts and intra-cratonic basins (brazilian et west-african cratons).

All the volcanics and intrusive bodies are basaltic to gabbroic, respectively, except a few

ultramafic cumulates. The rocks are dominantly low-Ti tholeiites (Bertrand, 1991), except a few
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high-Ti tholeiites restricted to a limited area in Liberia, Guyana and Brazil (Dupuy et al., 1988;
De Min et al., 2003; Deckart et al., 2005).

The CAMP is the oldest CFB which postdates by several tens million years the ultimate
aggregation of Pangea. It is associated with the earliest disruption of the supercontinent,
initiating the central Atlantic Ocean as far as ~190 Ma ago (Sahabi et al. 2004). The peak
igneous activity, established by recent “’Ar/°Ar dating (~70 reliable plateau ages), is around
199-200 Ma and coincides with the Triassic-Jurassic boundary (Marzoli et al., 1999, 2004;
Hames et al., 2000; Knight et al., 2004; Verati et al., 2007), taking into account ~1% bias
between “°Ar/*’Ar and U/Pb chronometers (Schaltegger et al., 2008). Late minor activity seems
to persist up to 190 Ma (Deckart et al., 1997; Marzoli et al., 1999; Nomade et al., 2007).

The origin of the CAMP has been assigned by several authors to a mantle plume head
impingement beneath the lithosphere (Hill, 1991; Wilson, 1997; Oyarzun et al., 1997; Leitch et
al., 1998; Courtillot et al., 1999; Janney and Castillo, 2001; Ernst and Buchan, 2002), yet this
model has been refuted by others (McHone, 2000; De Min et al., 2003; Beutel et al., 2005;
Deckart et al., 2005; McHone et al., 2005; Verati et al., 2005) who favor a shallow mantle
origin. Several lines of evidence challenge the plume model:

- No hotspot tracks have been recorded on the Atlantic ocean floor as it was opening (McHone,
2000; McHone etal., 2005).

- The geometry of the CAMP is not consistent with the plume head model which predicts a
radial spreading over an equant area 2000-2500 km across (Campbell and Griffiths, 1990),
whereas the CAMP is much more extended (Fig...) along a ~8000 km area elongated from
Brittany, France (Jourdan et al., 2003) to Bolivia (Bertrand et al., 2005). This distribution is
more likely controlled by pre-existing lithospheric heterogeneities and weakness zones.

- To account for the elongated geometry, a northward channeling of the plume head has been
invoked, starting from the center of the hypothetical plume head inferred to be located close to
the Blake Plateau (Wilson, 1997; Oyarzun et al., 1997), yet this scenario is invalidated by the
absence of northward age propagation. On the contrary, if any migration of the magmatic
activity exists, it would rather propagate southward (Baksi, 2003; Nomade et al., 2007).

- Contrasting to its wide surface, the CAMP is characterized by a relatively low rate of magma
supply (mean thickness of volcanic sequences of 100-300 m) compared to the much thicker lava

piles observed in plume-related CFBs, such as Deccan or Ethiopian traps. The preservation of
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thin lava units interstratified into sedimentary levels precludes that important volumes of lavas
might have been removed by erosion.

- The area near the Blake Plateau does not show evidence of uplift that would be expected if a
plume head had impinged the lithosphere (McBride, 1991; McHone, 2000).

- The apparent radial pattern of feeder dyke swarms first shown by May (1971), that would
account for the impingement of a plume head (Hill, 1991; Wilson, 1997; Leitch et al., 1998;
Ernst and Buchan, 2002), is a misleading oversimplification that ignores the regional geology:
a) Some dykes do not exist, e.g. the ENE-WSW dyke swarm repeatedly reported in SE
Mauritania (Hill, 1991; Leitch et al., 1998; Ernst and Buchan, 2002) corresponds to faults, not to
dykes (1:1000000 geological map of Mauritania, 1975). In addition, the subsurface dyke swarm
displaying the same trend in Senegal is hypothesized from magnetic survey, yet its existence and
“a fortior1” its age are unknown. Therefore, this ENE-WSW to E-W branch of the radial dyke
pattern is not constrained.

b) Some dykes that would fit the radial pattern (e.g. NE-SW dykes in northern CAMP) display
inherited trends reactivated during the CAMP event rather than neo-formed trends imposed by a
plume head impact. Other dyke swarms (e.g. in Guyana-Surinam) include both Proterozoic and
CAMP dykes (Deckart et al., 1997, 2005). On the other hand, the dyke swarm intruding the
Reguibat shield in NW Mauritania is poorly dated, but provided so far only Proterozoic ages
(Dosso, 1975).

c¢) Some dyke swarms are much more complex than shown on the “radial pattern”. For exemple,
the Taoudenni dyke swarm in northern Mali comprises more than 800 dykes among which only
a few fit the NE-SW trend that would be expected in this area in a radial pattern (Verati et al.,
2005). Similarly, the eastern North America coastal dykes cannot be reduced to those which fit
the radial pattern, as they show multiple orientations and cross-cutting relationships which
reflect a changing regional stress field (Beutel et al., 2005; McHone et al., 2005)

- The chemical and isotopic compositions of CAMP basalts are diagnostic of shallow-mantle
sources and do not bear a deep plume composition. The predominating low-Ti group is
characterized by negative Nb-Ta anomalies, enrichment in large ion lithophile elements (LILE)
relative to high field strength elements (HFSE) and Nd-Sr isotopic compositions diagnostic of
lithospheric sources formerly enriched by ancient subduction processes (Bertrand et al., 1982;
Bertrand 1991; Pegram 1990; Puffer, 2001; Cebria et al., 2003; De Min et al., 2003; Deckart et
al., 2005; Verati et al., 2005). The subordinate high-Ti group, chemically and isotopically
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distinct, indicates the contribution of the asthenospheric mantle (Dupuy et al., 1988; Deckart et
al., 2005).

None of the CAMP areas on which Nd-Sr-Pb isotopes were investigated so far (Pegram, 1990;
Jourdan et al., 2003; Cebria et al., 2003; Deckart et al., 2005) bear the HIMU signature
diagnostic of the mantle plumes (Cape Verde, Fernando do Noronha, Asuncion) which might
have been in a favorable position in late Triassic times to trigger the CAMP magmatism

(Morgan, 1983).

3.1.2 The Karoo case (180Ma)

The Karoo CFB extends over more than 3x10° km?, from southern South Africa to Malawi and
from western Namibia to Mozambique, with minor outcrops in Antarctica (Fig.4). It postdated
the CAMP by about 20 My and is associated to the second phase of the Pangea fragmentation,
corresponding to the break-up of southern Gondwana leading to the opening of the SW Indian
Ocean and Southern Ocean. The Karoo CFB consists of a vast cover of lava flows and sills,
giant dyke swarms and more localized intrusive centers, intruding the Archean Kaapvaal-
Zimbabwe cratons, the Proterozoic Limpopo belt and the Permian-Jurassic Karoo sedimentary
basins.

Karoo lavas remnants consist of: a) tholeiitic basalt lava piles in Lesotho (Marsh et al., 1997), in
Botswana and adjacent Zambia-Zimbabwe (Wigley, 1995; Jones et al., 2001; Jourdan et al.,
2005) and in central Namibia (Duncan et al., 1997); b) the ~ 10 km-thick Lebombo lava pile
(Cox, 1992; Watkeys, 2002) comprising an upward succession of nephelinites, picrites, tholeiitic
basalts and rhyolites (Sweeney et al., 1994). Picrites and basalts also occur in the Tuli and
Mwenezi basins (Cox, 1992). Several gabbroic to granitic intrusive complexes also intrude the
latter basin (Jourdan et al., 2007a). Vast tholeiitic dolerite sills are intruded at various
stratigraphic levels in several Karoo basins, particularly in South Africa (Jourdan et al., 2008),
but also in south-eastern Namibia, in southern Botswana and in Mozambique. The main dyke
systems are the N110° Okavango dyke swarm, the N70° Save-Limpopo dyke swarm and the N-S
Lebombo and Rooi Rand dyke swarms, forming, together with the associated rifts, a pseudo-
radiating system (Fig.), i.e. the so-called Karoo triple junction (Burke and Dewey, 1972;
Campbell and Griffiths, 1990; Ernst and Buchan, 2002).

A comprehensive “’Ar/*’Ar dating campaign (~90 reliable plateau ages) shows that the main

volume of the basaltic sequence was emplaced over 3 to 4.5 Ma around 180 Ma, whereas the
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entire province sustained activity over a total of ~10 Ma, from 184 to 174 Ma (Jourdan et al.,
2005, 2007a, 2007b). The increase of magmatic activity seems to coincide with the
Pliensbachian-Toarcian minor biotic crisis (Jourdan et al., 2008).

Since the pioneering work of Burke and Dewey (1972), the Karoo CFB is repeatedly referred to
as an example of plume related CFB (e.g. Campbell and Griffiths, 1990; Courtillot et al., 1999;
Ernst and Buchan, 2002). One of the main argument supporting this plume model was the
presence of the so-called triple junction supposed to have been triggered by the impact of a
mantle plume head beneath the southern Africa lithosphere in Jurassic times, despite the lack of
dating on the related dyke swarms. Recent “°Ar/*’Ar dating performed on the N110° Okavango,
N70° Save-Limpopo and N-S Lebombo dyke swarms (forming the “triple junction’), combined
to geochemical analyses, reveal that these dyke swarms unambiguously include Proterozoic
dykes (Jourdan et al., 2004, 2006). For instance, the N110° Okavango dyke swarm includes 12%
of Proterozoic dykes (Jourdan et al., 2004). In addition, a structural analysis strongly suggests
that Karoo dyke orientations are largely controlled by pre-existing structures that also controlled
emplacement of Precambrian dykes (Jourdan et al., 2006). The apparent triple junction
geometry was not induced by the arrival of a mantle Karoo plume head but is inherited from
previous history of the Kaapvaal and Zimbabwe cratons. Therefore, this “triple junction” should
no longer be used as an argument for demonstrating (although it does not exclude) the existence
of a Karoo mantle plume.

Another reason why the Karoo mantle plume may be questioned is the lack of volcanic track
linking the Karoo CFB with a present day hot spot, which position vary (Crozet, Marion,
Bouvet ...) depending of the authors (Morgan, 1981; Richards et al., 1989; Hawkesworth et al.,
1999).

The involvement of a deep mantle plume in the genesis of Karoo CFB is also questioned on the
basis of geochemical arguments. Only a few geochemical studies conclude that a mantle plume
does contribute to the chemical composition of the Karoo magmas (Ellam and Cox, 1992).
Based on isotopes and trace elements patterns (LILE/HFSE enrichment), most geochemical
investigations argue for melting of heterogeneous old sub-continental lithospheric mantle
(SCLM) (Duncan et al., 1984; Hawkesworth et al., 1984; Ellam and Cox, 1989; Sweeney and
Watkeys, 1990; Elburg and Goldberg, 2000) or mixing between lithospheric and asthenospheric
mantle sources (Sweeney et al., 1991; Ellam and Cox, 1991; Sweeney et al., 1994). More

recently, two scenarios have been proposed, involving either the polybaric melting of SCLM or
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mixing between SCLM and an asthenospheric or deeper OIB-like mantle plume (Jourdan et al.
2007c). Regardless of which of the two scenarios is invoked, the spatial distribution of the low-
and high-Ti magmas matches the relative positioning of the cratons and the Limpopo belt in
such a way that strong control of the lithosphere on magma composition and distribution is pre-
requisite of any petrogenetic model applied to the Karoo CFB (Sweeney and Watkeys, 1990;
Jourdan et al., 2007¢).

2.4. Rodinia provinces

Similarly to Pangaea, the assembly and breakup of the Proterozoic mega continent Rodinia was
accompanied by the emplacement of major LIPs and dyke swarms (e.g. Ernst and Buchan,
2001; Ernst et al., 2005, 2008). Most of these LIPs are only scarce remnant occurring as sills
and dyke swarms as the lava flow components have been in most cases eroded. Furthermore,
Proterozoic LIPs is challenging because of significant alteration and anchizone up to green shist
fascies metamorphism affecting the samples.

From 1.3Ga until its final assembly (~900 Ma; Li et al., 2008) and subsequent breakup, Rodinia
have been the witness of many LIP events (e.g. Ernst et al., 2008). Of particular interest, is a
cluster of LIPs around 1.1 Ga (Fig. 5) as the surface covered by each of the provinces remnants
is of several 10° km2. This makes these provinces equivalent in size to the Pangean provinces
mentioned previously.

Hereafter, we will focus on three major provinces (Umkondo, Keweenawan and Warakurna)
emplaced sub-synchronously at ~1.1 Ga during the assembly of Rodinia (Fig. 5). According to
recent paleocontinent reconstructions, Rodinia was not complete before ca 900 Ma (e.g. Li et
al., 2008) and the 1.1-Ga configuration allow us to test our model further on a partially

assembled mega continent (Fig. 5).

3.2.1. The Umkondo case (1.1Ga)
Paleomagnetical and geochronological (mainly zircons U/Pb analyses) investigations permit to
attribute a common origin to Proterozoic tholeiitic rocks occurring throughout northern South
Africa, Botswana, Zimbabwe and possibly Antarctica (Hanson et al., 2004). This province is
now called Umkondo based on the name of Umkondo Zimbabwe dolerite formation of the same
age. (Hanson et al., 1998). This province consists of tholeiitic mafic intrusions (sills and dykes

swarms, e.g. Jourdan et al., submitted) and scarce remnants of eroded basaltic lava-flows
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emplaced over an estimated paleo-surface of ~2.510° km? (Hanson et al., 2004). Robust ages
clustering around 1108 + 3 Ma have been obtained using zircon and baddeleyite U/Pb TIMS
technique suggesting a relatively short duration of the magmatism. Umkondo LIP is therefore
synchronous with the Rodinia mega-continent formation (Hanson et al., 1998; Dalziel et al.,
2000) and in particular the Laurentia and Kalahari craton collisions (Kibaran Grenville-Llano
and Namaqua-Natal Orogenies; 1.4-1.0 Ga). The “Kibaran” (Namaqua-Natal) Mesoproterozoic
belt that occurs over 3000 km long through central and southern Africa. Between 1.4 and 1.0
Ga, Kibaran metasedimentary and igneous rocks were involved into two compression events
(Johnson & Oliver, 2000) including an active continental margin followed by a continental
collision.

The majority of the rocks underwent green schist metamorphose and alteration, but their
composition is not modified beyond the point they can be used to study petrogenetic processes
(Munyanyiwa, 1999). The UIP dolerites are not well studied, but studies carried out so far shat
that they mostly consist of low-Ti basaltic rocks, as commonly found in many LIPs. Umkondo
dolerites have a strong lithospheric signature as shown by a strong Nb anomaly (Nb/Nb*=0.2-
0.4) and low Ce/Pb (2 to 7) ratios (Jourdan et al., submitted). The province is not associated
with any hot spot track. No evidence of magmatic contribution from a mantle plume is
recognized in the samples analyzed so far (e.g. Hanson et al., 2006; Jourdan et al., submitted).
Similar composition with the spatially overlapping 180-Ma Karoo province suggest that both
provinces are likely to originate from a very similar mantle source. The source have been only
slightly modified since the extraction of the Umkondo basalts and Jourdan et al. (submitted)
proposed that the source should be “attached” to the African plate and therefore preferentially

located in subduction-metasomatised sub-continental lithospheric mantle.

3.2.2 The Laurantian large igneous provinces (1.1-1.07 Ga)
The Laurantian provinces as defined hereafter includes the Keweenawan *“mid-continental rift”
(~2x10° km?2, Cannon, 1992) and the South Western U.S. diabase (~0.4x10° km2 Ernst et al.,
2008) provinces.
Both provinces have been emplaced sub-synchronously with still scarce U/Pb ages ranging
from ca 1.11 to 1.09 Ga for the former (e.g. Vervoort et al., 2007) and from ca 1.10 Ga to 1.07 Ga
(e.g. Heaman and Grotzinger, 1992; Ernst and Buchan, 2001 and reference therein) for the latter.

The Keweenawan province is the best studied of the two Laurantian provinces and is a bimodal
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province including mafic (typically olivine tholeiites; Paces and Bell, 1989) and minor silicic
(Vervoort and Green, 1997; Vervoort et al., 2007) rocks. Element and Sr-Nd-Pb isotope
geochemistry studies done so far indicate that the magma is derived from enriched mantle
reservoirs (Shirey et al., 1994) and share common features with LIPs like Umkondo and Karoo.
For example, both Karoo and Keweenawan eruptive sequence have an early activity represented
by picrites with a strong lithospheric signature (Shirey et al., 1994; Jourdan et al., 2007). The
mantle sources proposed to explain the origin of this problem comprise a variety of scenario
ranging from astenospheric/subasthenospheric mantle plume to enriched lithospheric mantle (or
a combination of both), altogether with variable degree of crustal contamination (e.g. Paces and
Bell, 1989; Nicholson and Shirey, 1990; Vervoort et al., 2007 and references therein). Crustal
contamination affects mostly the silicic rocks that derive partially from the fusion of the
Archean crust (Vervoort et al., 2007). The South Western U.S. diabase are much less studied
and mostly geochronology and paleomagnetic data are available (e.g. Shastri et al., 1991;
Heaman and Grotzinger, 1992; Ernst & Buchan, 2001; Ernst et al., 2008). This province consists
mostly of up to 450m-thick doleritic sills and no chemical data has been published to our

knowledge. This currently makes it difficult to correlate with other LIPs.

3.2.3 The Warakurna large igneous province (1.05Ga)

This province regroups coeval magmatism distributed over ~2.510° km? and distributed mostly
over Western and northern Australia (Wingate et al., 2004). It is represented mostly by silicic
and basaltic lava flows and mafic and ultramafic intrusions. The age of the province has been
determined using zircon SHRIMP U/Pb technique and yielded a mean age of 1076 £ 3 Ma
although minor magmatism intrusion continue until ~1050 Ma. Investigation using the more
robust CA-TIMS analysis would be desirable to obtain a more accurate estimate of the age along
with a better estimation of the magmatism duration. Nevertheless, an age of ~1080 Ma makes
the Warakurna province synchronous with the Pinjarra orogen, Western Australia (Wingate et
al., 2004; Bruguier et al., 1999; Cobb et al., 2001) and may indicate a causal relationship
between the Pinjarra subduction and emplacement of the Warakurna magmatic province.

The rocks consist of dolerite with sericitized plagioclase and amphibolitized pyroxene and show
an enriched tholeiitic composition with SiO, ranging from 48 to 55 wt%. They are enriched in
LILE and show strong Nb anomaly that Zhao and McCulloch (1993) and Glikson et al. (1996)

attributed to the melting of subduction-modified lithospheric mantle. Zhao and McCulloch
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(1993) invoked a rising mantle plume to explain the thermal anomaly required to melt the
SCLM. No mantle plume track has been found suggesting that the role of a mantle plume, if

any, was confined as heat purveyor.

2.5. Archean provinces
Looking for CFBs caused by global warming beneath supercontinents is a difficult task because
of the intrinsic difficulties of working on such old rocks. Although, the magmatic evolution of
the mantle within the first couple of billion years involved sudden and violent crises, possibly
mantle overturns and/or superplume events (Stein & Hofmann, 1994; Breuer & Spohn, 1995;
Barley et al., 1998; Condie, 2001), that punctuated periods of relative quietness. In this context,
the period between 2.75 and 2.65 Ga is one of the most dramatic in the Earth’s history. In that
period, most Archaean cratons were covered by 5 to 15 km thick, komatiite-bearing, basalt
dominated, greenstone covers (Nelson, 1998), while isotopic age distribution of detrital zircons
point to a major peak production of juvenile continental crust (Gastil, 1960; Condie, 2001; Rino,
2004). In many cratons, this event preceded and overlapped with a profound episode of crustal
anatexis and differentiation (Rey et al., 2003). Although partial of melting of volatile-rich
mantle above a subduction zone can generate komattites, the geochemistry of most late
Archaean komatiites demand a deep source origin and request either a large melt fraction (50%)
or the partial melt of a depleted mantle source (Arndt, 2003). Considering the global character
of the late Archaean crisis, a superplume event is indeed very appealing (Isley and Abbott,
1999; Condie 2004; Barley et al., 1998), however, it is not without problems. In this section, we
review the extent of the late Archaean volcanism and the problems linking this volcanism to

superplumes.

3.3.1. Surface extent of the 2.75-2.65 Ga magmatic crisis
In the Kaapvaal Craton, the up to 8 km thick Ventersdorp extents over 3e5 km? (van der
Westhuizen et al. 1991, Eriksson et al., 2002) and includes 2.72 Ga to 2.69 Ga old subaerial
continental komatiitic basalts, tholeiitic basalts and sedimentary rocks (Armstrong et al, 1991),
that precedes and overlaps with crustal melting, plutonism and coeval sedimentation (Schmidz
and Bowring, 2003).
In the Zimbabwe craton, the base of the 2.7 Ga old craton wide Ngezi Group includes the

Zeederberg continental flood basalt, which covers an area over 2.5e¢5 km* (Prendergast, 2001).
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Its base is made of the submarine Reliance formation, which includes up to 2km thick
interlinked komatiite sills extending over 100 km intercalated within sandstones and pillowed
basalts (Prendergast, 2001). This event precedes and overlaps with Sesombi-Wedza granitoids
emplaced between 2.7 and 2.65 Ga.

The evolution of the Superior Province culminated between 2.75 and 2.7 Ga with the
emplacement of submarine magmatism involving komatiites before craton-scale crustal anatexis
and plutonism, the bulk of which occurred between 2.71 and 2.66 Ga.

In the Slave Province, the 2.74 to 2.69 Ga Yellowknife greenstone belt includes up to 6 km thick
pillowed and massive flow of tholeiitic basalts, minor komatiites and rhyolitic tuff intercalations
(Bleeker, 2005). This volcanic event, which covers > 10° km? (Bleeker, 2005), was followed
from 2.69 to 2.66 Ga by calc-alkaline volcanism and Tonalite-Trondhjemite-Granodiorite
plutonism (Bleeker, 2005).

In the East goldfield province of the Yilgarn Craton, a 12+2km thick package (>10° km?) of 2.72
to 2.70 Ga marine tholeiite—komatiite and tholeiite—calc-alkaline associations (Barley, et al.,
1998) is followed by episodic deep-water volcaniclastic sedimentation from to 2.70 to 2.66 Ga
coeval with craton-scale crustal anatexis.

In the Pilbara craton, all the older units are unconformably overlain by the mainly subaerial
Fortescue Group (2.765-2.687 Ga) (Nelson et al., 1992; Blake, 1993; Arndt et al., 2001; Blake,
2001). The Fortescue, which covers at least 1.8e5 km? (Eriksson et al., 2002), is made of ca. 7
km thick volcanics which includes a series of tholeiitic basalts, minor komatiites, felsic
volcanics and clastics rocks (Hickman, 1983; Thorne and Tyler, 1997; Thorne and Hickman,
1998; Blake, 2001).

Greenstones emplaced at 2.7 Ga have also been described in the Wyoming craton (e.g.
Stillwater intrusion), Dharwar craton (e.g. Ramagiri-Hungund composite greenstone belt,

Gadwal greenstone belt)

3.3.2. Models for the 2.75-2.65 Ga magmatic crisis
In all the above cratons, 1/ the synchronicity of bimodal volcanism, felsic plutonism and
sedimentation, 2/ the calc-alkaline composition of some basalts, despite minor komattites, and
3/ the syn- to late-contractional deformation, have lead to interpretative models involving
multiple subduction zones and discrete back-arc basins between micro-plates. The collisional

aggregation these micro-plates finally led to the formation of late Archaean cratons. This model
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has been proposed for the late Archaean of the Yilgarn craton (Myers, 1993; Swager et al., 1997,
Barley et al., 1989, 1998); the Superior Province (Corfu, 1987; Percival and Williams, 1989;
Card, 1990; Ludden et al., 1993; Wyman et al., 2002); the Slave Province (Kusky, 1989; 1990);
the Zimbabwe craton (Dirks and Jelsma, 1998; Jelsma and Dirks, 2002; Horstwood et al., 1999);
and the Kaapvaal craton (REF). Yet, in all the above cratons, detailed field studies have noted
the strong coherence of the greenstone stratigraphy across so-called terrane boundaries as well
as the lack of crustal scale features validating collisional tectonics. This prompted the
proposition of an alternative model based on the emplacement of craton-scale continental flood
basalts, a model which has been proposed in the Slave province (Bleeker et al., 1999a, 1999b),
Zimbabwe (Prendergast, 2001; Wilson, 1979), in the Superior Provice (Heather et al., 1995;
Heather, 1998; Ayer et al., 1999, 2002; Thurston, 2002; Benn, 2006), and the Yilgarn (Rey et al.,
2003). The profound phase of crustal anatexis that overlapped and post-dated continental flood
basalts in many cratons could be linked to the thermal insulation effect associated with the
emplacement the thick greenstones cover on a radiogenic crust (Rey et al., 2003). It is worth
noting that recent Hafnium isotopes data on zircon show that, contrarily to the 3.3 Ga and 1.9
Ga events, the large anomaly in the isotopic age distribution of zircons is not accompanied with
the formation of juvenile crust (Kemp et al., 2006). Intra-crustal anatexie alone, rather than the
formation of juvenile crust in a subduction zones, could explain the isotopic age distribution of
detrital zircons as well as the change of the average composition of emerged landmasses

recorded in black shales (Taylor and McLennan, 1985; Rey and Coltice, 2008).

3.3.3. The cause of the 2.75-2.65 Ga volcanic crisis: Plume vs mantle golbal warming
Hitherto, only mantle plumes were considered a viable setting of deep mantle partial melting.
The application of the superplume model in the late Archaean is not without problem.

1/ Most plume-related Phanaerozoic continental flood basalts were emplaced over a very short
periods typically less than a few Myr. In contrast, the late Archaean continental flood basalts
were emplaced over a few tens of Myr.

2/ Subduction-related calc-alkaline volcanism is often spatially and temporarily associated with
komatiites. Although, models have been proposed to explain the production of komatiitic
magma in a subduction setting, most late Archaean komatiites did not form in a subduction zone
(Arndt, 2003). This leads to very complex tectonic models involving coeval upwelling flow

(plume) and downwelling mantle flow (subduction), both in the same location.
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3/ Komatiite in Archaecan CFB are generally less than 5% (Viljoen & Viljoen 1969 de Wit &
Ashwal 1997) and the bulk of continental flood basalt are made of basalt involving lower
degrees of melting. On that argument, large partial melt of a deep fertile plume could be ruled
out in favor of a smaller melt fraction in a refractory upper mantle source.

4/ In the Yilgarn, the geochemistry of 2.72-2.68 Ga basalts indicates extraction from a depleted
mantle with evolution from residual-plagioclase to residual-garnet. This suggests that
komatiites and basalts in the Eastern goldfield province derived from melting that took place at
progressively greater depths (Bateman et al., 2001). Interestingly, the same conclusion was
proposed in the Pilbara to explain the increase in FeO and incompatible elements in
progressively younger terms of the Fortescue Group (Arndt, 2001). In the context of a rising

plume, the downward migration of the melting source is not clear.

Mantle global warming above aggregating continents could provide a viable alternative to
surperplume events. Williams et al. (1991) proposed that a supercontinent, Kenorland, formed
at around the 2.7 Ga via the aggregation of the North American shields (the Slave Province,
Superior Province, Wyoming craton), joined perhaps by the Baltic and Siberian shields
(Bleeker, 2005). A possible second supercontinent, the Zimvaalbara, may have included the
Yilgarn craton, the Pilbara craton, The Gawler craton, the Zimbabwe craton, the Kaapvaal
craton, the Congo craton, the Sao Francisco craton, and possibly the Dharwar craton (Aspler
and Chiarenzelli, 1998). It is not clear how mantle plumes could have dominated the mantle
flow beneath supercontinents at the stage of their aggregation. In contrast, we showed that the
formation of such supercontinents could trigger the progressive warming of the sub-continental
mantle. The mantle global warming model involves a mantle scale upwelling to explain the
occurrence of komatiite. Therefore, there is no need to invoke complicated models involving
mantle plumes impinges on a subducting slabs to explain the intercalation of komatiites with

basalts.

Although most late Archaean continental flood basalts emplaced onto flooded continents, the
Pilbara and the Kaapvaal cratons were largely emerged at the time of volcanism. Therefore,
although continental emergence was not yet the rule, global high sea level is not expected in the

mantle warming model as mantle warming doesn’t affect oceanic areas.

Due to the progressive warming of the sub-supercontinental mantle, the mantle geotherm would

cross the mantle solidus at a progressively increasing depth. This could explain the progressive
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deepening of the melting source as recorded by the Komatiites from the Yilgarn cratons

(Bateman et al., 2001) and the Pilbara craton (Amdt, 1999).

Finally, the process of mantle warming and melting underneath insulating supercontinent is
similar to crustal warming and anatexie due to thermal insulation of the craton under greenstone
cover proposed in the Yilgarn (see Fig.6) by Rey et al. (2003). Therefore, the late Archaean

volcanic crisis and plutonic crisis can be seen in a broad context of nested insulation processes.

2.5.1.Conclusions

The presence of a supercontinent at the surface of the Earth has a major impact on the
convective flow within the mantle, as shown by our 3D spherical convection simulations. As a
consequence, the subcontinental temperature is 5-15% higher than for cases with dispersed
continents. The smaller the continental cover, the smaller is the temperature increase with
aggregation. For a continental cover larger than 10% of the Earth's surface, it is expected that
the subcontinental mantle could warm by more than 70K over an area comparable to the size of
the supercontinent. The mechanism of mantle global warming, alternative to mantle plumes, is

then a viable hypothesis for the origin of some continental flood basalts since the Archean.

The numerical models are used to explore realistic physical mechanism from which quantitative
predictions can be made and tested against data. In the framework of the mantle global warming

model, the models predict that

- the temperature increase causing melting does not exceed more than 100K

- heating occurs over an area comparable to the supercontinent

- magmatic sources are mostly asthenosphere and continental lithosphere

- melt extraction is controlled by tectonics.

The mantle global warming model is consistent with the observations made on some CFBs in
the geological record. The best example is the CAMP (200Ma), the largest magmatic province
on Earth in area, but more and more evidence point also to the Karoo (180Ma). On the basis of

geochronology, geochemistry and tectonics, we suggest that during the Proterozoic, the
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Umkondo, Laurentian and Warakurna CFBs are derived from mantle global warming beneath
the Rodinia supercontinent around 1.1Ga. The global magmatic crisis around 2.7Ga in the
Archean could also be explained by heating below the formation of Kenorland and Zimvaalbara

supercontinents, for which plumes are difficult to invoke.
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Fig.1: Snapshots of temperature for six spherical convection models. The temperature range
spans nondimensional values of 0.013 (blue) to 0.036 (red). Gray caps indicate the surface
location of fixed continents. The models contain A) two antipodal continents, each of which
covers 5% of the surface, B) one continent covering 10% of the surface, C) two continents with
10% coverage, D) one continent with 20% coverage, E) two continents with 15% coverage, and
F) one continent with 30% coverage. Respective pairs from left to right give a sense for the
impact on the mantle due to the aggregation of two smaller continents into a single large
continent. An apparent impact on subcontinental temperature occurs only once the size of an
individual continent reaches 20% coverage. The full supercontinent of F) is unique in promoting
a strong hemispheric scale hot anomaly shown by the far reaching extent of warm colors,

indicative of global mantle warming.

Fig.2: Subcontinental nondimensional temperature excess of the aggregated state relative to the
two continent dispersed state as a function of total continental coverage and Rayleigh number.

The Ra = 107 values correspond to the models shown in Fig. 1.
Fig.3: Extension of the Central Atlantic Magmatic Province at 200Ma.
Fig.4: Extension of the Karoo Province at 180Ma.

Fig.5: Estimated extension of the Umkondo, Warakurna and Keweenawan provinces at the time

of Rodinia aggregation.

Fig.6: Continental warming following the emplacementof a 6 km thick CFB on a 2.75 Ga old
continental crust (heat production of 10° W m™, mantle heat flow of 0.025 W m™, : 1000 J mol
!, thermal diffusivity of 0.9 10° m? s-1, continental crust thickness of 40 km). a/ Geotherm at to,
to+5my, to+25 my, to+50 my, to+100 my, to+250 my and b/ evolution of the Moho temperature
after emplacement of a 6 and 12 km thick CFB. Continental warming and anatexy is

inescapable and does not require the direct heat input from a mantle plume.
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