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New results in impulse-free
continuous-time cheap LQ optimal control

Augusto Ferrante and Lorenzo Ntogramatzidis

Abstract— In this paper, we provide conditions for the solv-
ability of LQ (linear-quadratic) optimal control problems in
which the input function is not penalised in the performance
index. In particular, we focus our attention on regular input
functions, i.e., on the control functions that do not involve
distributions, which in general appear in the solution of singular
problems.

I. INTRODUCTION

It is well known that the solvability of the classic finite
and infinite-horizon LQ optimal control problem strongly
depends on the matrix weighting the input in the cost
function, traditionally denoted byR. When R is positive
definite, the problem is said to beregular (see e.g. [1],
[14]), whereas whenR is positive semidefinite, the problem
is called singular. In the particular case in whichR is the
zero matrix, the corresponding LQ problem is calledcheap.
This subject has been dealt with by using the theory of the
geometric approach (see for example [12], [24], [18] and
references therein). In particular, in [12] and [24] it has
been shown that an optimal solution to the singular problem
always exists if the class of allowable controls is extended
to include distributions. A geometric algorithm is used to
isolate the regular (i.e., impulse-free) part of the optimal
control, which can be calculated resorting to a reduced order
algebraic Riccati equation. The approach presented in [18]
is based on an analysis of the structure of both singular and
cheap problems (where the latter is treated as the limiting
case of the former), by the exploitation of the so-called
special coordinate basis. Valuable results on this subject have
also been presented in [19], [21], [20], which are based on
linear matrix inequalities.
A different approach for the cheap LQ problem was intro-
duced in [16], where geometric techniques were used to
recast the cheap control problem as a perfect decoupling
problem, to the end of characterising in strict geometric
terms the subspace of initial conditions for which the optimal
control is non-impulsive.

The recent papers [9], [10], have investigated the con-
nection of the generalised continuous-time algebraic Riccati
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Università di Padova, via Gradenigo, 6/B – 35131 Padova, Italy.
augusto@dei.unipd.it

L. Ntogramatzidis is with the Department of Mathematics
and Statistics, Curtin University, Perth (WA), Australia.
L.Ntogramatzidis@curtin.edu.au

equation – which is defined by substitution of the inverse
of R with the pseudo-inverse in the standard algebraic
Riccati equation – and the solution of the singular LQ
optimal control problem. In these papers it is shown in
particular that whenever the generalised Riccati equation
admits a symmetric solution, the corresponding singular LQ
problem admits an impulse-free optimal control from any
initial condition of the system. Moreover, such control can
always be expressed as a state-feedback, where the gain
can be obtained from the solution of the generalised Riccati
equation. A very interesting question, which remained open
in these contributions, is the following: when the singularLQ
problem admits a regular solution for all initial states, isthe
generalised Riccati equation guaranteed to admit at least one
symmetric positive semidefinite solution? In this paper, we
provide an affirmative answer to this question for the cheap
case. Indeed, the first aim of this paper is to show that a cheap
LQ problem has an impulse-free optimal control from all
initial condition if and only if the corresponding generalised
Riccati equation (which in the cheap case reduces to a
Lyapunov equation) has a symmetric positive semidefinite
solution.

The second main result of this paper is another geometric
result related to the solvability of a cheap LQ problem in
terms of impulse-free optimal controls.

Notation. The image and the kernel of matrixM are
denoted by imM and kerM, respectively, while the transpose
and the Moore-Penrose pseudo-inverse ofM are denoted by
M T andM†, respectively.

II. T HE CHEAPLQ PROBLEM

Let n,m ∈ N with m ≤ n. Consider the standard linear
time-invariant state differential equation

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈R
n. (1)

where, for allt ≥ 0, x(t)∈R
n represents the state andu(t)∈

R
m represents the input function, and whereA ∈ R

n×n and
B ∈ R

n×m.
The cheap linear quadratic (LQ) problem can be formu-

lated as follows.
Problem 2.1: Find an input functionu(t) such that the

performance index

J(x0,u) =

∫ ∞

0
xT(t)Qx(t)dt, (2)

whereQ = QT ≥ 0, is minimised, subject to the constraint
given by (1).



Consider for example the scalar dynamical system ˙x(t) =
u(t) with initial condition x(0) = x0 6= 0, along with the
performance index (2) withQ equal to the identity matrix.
By using a control inputu(t) = −α x(t), the value of the
performance index can be made arbitrarily close to zero by
choosing a sufficiently large value ofα. But it is clear that
no regular controlu can annihilate the cost. This example
shows that in singular and cheap cases a solution may not
exist, since it is impossible to attain the infimum of the
performance index. Stated differently, in these cases the value
of the performance index can be infimised but not minimised.
Nevertheless, for the singular and cheap LQ problem, a
solution is guaranteed to exist for all initial conditions only
if the class of allowable controls is extended to include
distributions. A fairly complete distributional framework was
developed in [12] and [24]. In particular, in these papers it
was established that in general Problem 2.1 is solvable for
any initial conditionx0 if the control involves a regular part
(which can always be written as a static state feedback as in
the regular LQ problem), plus a linear combination of Dirac
deltas with its derivatives in the sense of distributions.

In this paper we are interested in the characterisation
of the cases in which the cheap LQ problem is solvable
from any initial condition with a control function that does
not involve impulses. In other words, we characterise the
situations in which the optimal control can be sought within
the class of static state feedback inputs, so that optimal
solutions containing distributions are ruled out.

In this paper, we make the following standing assumption.

Assumption 2.1: For every initial conditionx0 there exists
an input functionu(t) ∈ R

m, with t ≥ 0, such thatJ(x0,u)
in (2) is finite.

The following theorem provides a necessary and sufficient
condition for the solvability of Problem 2.1 without the
need of distributions.

Theorem 2.1: The cheap LQ problem admits non-
impulsive solutions for allx0 ∈ R

n if and only if the
Lyapunov equation

X A+AT X +Q = 0 (3)

admits a symmetric positive semi-definite solutionsX such
that X B = 0.
Proof: Consider a singular LQ optimal control problem,
which consists in the minimisation of the performance index

J′(x0,u) =

∫ ∞

0

[

xT(t) uT(t)
]

[

Q S
S T R

][

x(t)
u(t)

]

dt (4)

subject to (1), whereQ ∈R
n×n, S ∈R

n×m andR ∈R
m×m are

such that

Π ,

[

Q S
S T R

]

= ΠT ≥ 0. (5)

It was shown in [9, Theorem 4.1] and in [10, Theorem 3.2]
that if the generalised algebraic Riccati equation

X A+AT X − (S+X B)R† (S T+BTX)+Q = 0, (6)

subject to the additional constraint

kerR ⊆ ker(S+X B), (7)

admits a symmetric positive semidefinite solution, this sin-
gular LQ problem admits a regular optimal control for any
initial condition. The cheap LQ problem introduced in this
paper is a particular case of this problem in whichR = 0.
Indeed, if R = 0, condition (5) impliesS = 0. In this case,
taking into account that ifR= 0, the Moore-Penrose pseudo-
inverseR† is the zero matrix, (6) reduces to (3), and the
condition (7) reduces toX B = 0.

It remains to show that the converse is also true, i.e., if
the cheap LQ problem admits non-impulsive solutions for
any initial condition, then (3) admits a symmetric positive
semi-definite solutionsX such thatX B = 0. Consider a
factorisationQ = C T C, so that the performance index can
be re-written as

J(x0,u) =
∫ ∞

0
yT(t)y(t)dt,

where y(t) = C x(t) can be thought of as a system output.
Since it is assumed that the LQ problem admits non-
impulsive solutions for any initial condition, [24] guarantees
that for anyx0 the optimal control function can be written
as a static state feedback

u∗(t) =−K x(t)

and the closed-loop system is
{

ẋ(t) = (A−BK)x(t)
y(t) = C x(t)

Let AK , A−BK denote the closed-loop matrix. The optimal
state isx(t) = eAK t x0, and therefore the optimal cost is

J∗ = xT
0

[

∫ ∞

0
eA T

K t QeAK t dt

]

x0.

Now, considerx0 ∈ imB. Thus,x0 = Bz for somez. Since in
this case with the impulsive controlu(t) = −δ (t)z we can
obtain x(0+) = 0, and consequently the cost becomes zero,
even withu∗ the value of the cost must be zero. Thus

x0 ∈ ker
∫ ∞

0
eA T

K t QeAK t dt

for all x0 ∈ imB, which also implies

imB ⊆ ker
∫ ∞

0
eA T

K t QeAK t dt.

Thus,C eAK t B = 0 for all t ≥ 0. This means that the transfer
function C (sIn − AK)

−1 B is zero, and therefore also the
transfer function matrixC (sIn −A)−1B is equal to zero.

This proves that
∫ ∞

0
eA T

K t QeAK t dt =
∫ ∞

0
eA T t QeAt dt.



We defineX ,
∫ ∞

0 eA T t QeAt dt. We show thatX satisfies (3).
Indeed,

X A+AT X +Q =

∫ ∞

0
eA T t QeAt Adt

+

∫ ∞

0
A T eA T t QeAt dt +Q

i.e.,

X A+AT X +Q =
∫ ∞

0

d
dt

(

eA T t QeAt
)

dt +Q.

Since the cost is finite,
∫ ∞

0 eA T t QeAt dt is finite, so that
eA T t QeAt → 0 ast → ∞. Thus, the latter becomes

X A+AT X +Q =
[

eA T t QeAt
]∞

0
+Q = 0,

which proves the claim.
As a direct consequence of the proof of the previous

result, we have the following.

Corollary 2.1: If a cheap LQ problem admits an impulse-
free solution for any initial conditionx0 ∈R

n, the zero input
is always optimal.

III. A GEOMETRIC CHARACTERISATION

In this section we provide a simple characterisation for
the solvability of the cheap LQ problem by means of an
impulse-free control.

We first recall some definitions that will be used in
this second part of the paper. The reachable subspace is
denoted byR(A,B). It equals the image of the matrix
[B AB . . . An−1B ], and it also coincides with the smallest
A-invariant subspace containing the subspace spanned by the
columns ofB. Dually, the unobservable subspace is denoted

by N (A,C). It equals the null-space of the matrix

[

C
C A.

.

.

C An−1

]

,

and it also coincides with the largestA-invariant subspace
contained in the null-space ofC.

The geometric setting developed here requires the follow-
ing definitions:V ⋆ stands for the largest(A,B)-controlled
invariant subspace contained in the null-space ofC. Recall
thatV ⋆ is the subspace of all initial statesx0 ∈R

n of (1) for
which an input function exists such that the corresponding
output is identically zero. For this reason,V ⋆ is also referred
to as the largest output-nulling subspace of the system
described by the triple(A,B,C) (where an output-nulling
subspace of(A,B,C) is defined as an(A,B)-controlled invari-
ant subspace contained in kerC). The symbolS ⋆ stands for
the smallest(A,C)-conditioned invariant subspace containing
the image ofB, and it is also referred to as the smallest
input-containing subspace of the triple(A,B,C) (where an
input-containing subspace is an(A,C)-conditioned invariant
subspace containing imB). For a detailed discussion on
controlled and conditioned invariant subspaces we refer to
the textbooks [2], [22], [25].

Controlled and conditioned invariance are dual concepts,
in the sense that, given a triple(A,B,C), a subspace is an
(A,B)-controlled invariant subspace contained in kerC if and

only if its orthogonal complement is an(A,C)-conditioned
invariant subspace containing imB, see e.g. [2, p.209].
Recall that, given a friendF of V ⋆, i.e. a matrix such that
(A+BF)V ⋆⊆V

⋆, the eigenvalues ofA+BF restricted
to V ⋆ are split into two sets. The eigenvalues ofA+BF
which are restricted toV ⋆∩S ⋆ are all freely assignable
by a suitable choice ofF . The eigenvalues of the mapping
induced byA+BF on the quotientV ⋆/V ⋆∩S ⋆ are fixed
for any friend ofV ⋆. The subspaceR⋆ , V ⋆∩S ⋆ can be
interpreted as the subspace of states that can be reached
from the origin with state trajectories all contained inV ⋆

(hence invisible at the output), so that it is often referredto
as thereachability subspace on V ⋆. For a detailed analysis
of the internal and external eigenstructure of a controlled
invariant subspace we refer to [2, pp.217-222] and [22,
pp.89-96].

It is easy to see that there holds

V
⋆ = max

F ∈Rn×m
N (A+BF,C).

Indeed, N (A + BF,C) is the largest(A + BF)-invariant
subspace contained in kerC for all F ∈ R

n×m. This means
that N (A+BF,C) is an output-nulling subspace ofΣ for
all F ∈ R

n×m. However,V ⋆ is the largest among all output-
nulling subspaces of the triple(A,B,C), so that

V
⋆ ⊇ ker











C
C (A+BF)

...
C (A+BF)n−1











∀F ∈ R
n×m. (8)

We only need to show that there exists anF ∈ R
n×m for

which the inclusion (8) holds as an equality. This is the case
for a friend ofV ⋆. Indeed, ifF is a friend ofV ⋆, there holds

(A+BF)V ⋆ ⊆ V
⋆ ⊆ kerC,

so that CV ⋆ = {0}, and C (A + BF)k V ⋆ ⊆ C (A +
BF)k−1V ⋆ ⊆ . . .⊆CV ⋆ = {0}, and we get











C
C (A+BF)

...
C (A+BF)n−1











V
⋆ = {0}.

Dualising this argument, one easily sees that the identity

S
⋆ = min

G∈Rp×n
R(A+GC,B)

also holds. We use the tools introduced in this section to
prove the second main result of this contribution.

Theorem 3.1: Let the cheap LQ problem admit non-
impulsive solutions for allx0 ∈ R

n. Then

S
⋆ = R

⋆. (9)

Proof: Suppose that the cheap LQ problem admits non-
impulsive solutions for allx0 ∈ R

n. We must show that (9)
holds. As already recalled,R⋆ coincides with the intersection



of V
⋆ andS

⋆. Thus, (9) is equivalent to saying thatS
⋆ ⊆

V ⋆. Thus, we need to show that the inclusion

R(A+GC,B)⊆ N (A+BF,C)

holds. This can be proved by showing that










C
C (A+BF)

...
C (A+BF)n−1











[

B (A+GC)B . . . (A+GC)n−1B
]

= 0.

Every term of the matrix product can be written as

C (A+BF) j (A+GC)i B

for some i, j ∈ {0, . . . ,n − 1}. We show that ifC eAt B is
identically zero, as established in the proof of Theorem 3.1,
then each of these terms is zero. First, observe thatC eAt B
implies C Al B = 0 for all l ∈ N. Then, (A+GC)i can be
written as

(A+GC)i = Ai +Mi GC+
i−1

∑
h=1

Ni,h C Ah

for suitable matricesMi and Ni,1, . . . ,Ni,i−1. Indeed, by in-
duction we find

(A+GC)(A+GC)i = (A+GC)(Ai +MiGC+
i−1

∑
h=1

Ni,hCAh)

= Ai+1+AMi GC+
i−1

∑
h=1

ANi,h C Ah

+GCAi +GCMiGC+
i−1

∑
h=1

GCNi,hCAh.

Defining Mi+1 = AMi +GC Mi and

Ni+1,h =

{

ANi,h +GC Ni,h h ∈ {0, . . . , i−1}
G h = i

we have

(A+GC)i+1 = Ai+1+Mi+1 GC+
i

∑
h=1

Ni+1,h C Ah.

In a similar way, we can show that

(A+BF) j = A j +BF S j +
j−1

∑
k=1

Ak BTj,k

for suitable matricesS j andTj,1, . . . ,Tj, j−1. Hence,

C (A+BF) j (A+GC)i B

= C
(

A j+BFS j+
j−1

∑
k=1

AkBTj,k

)(

Ai+MiGC+
i−1

∑
h=1

Ni,hCAh
)

B

= C
(

A j+i +A j Mi GC+
i−1

∑
h=1

A j Ni,h C Ah

+BF S j Ai +BF S j Mi GC+
i−1

∑
h−1

BF S j Ni,h C Ah

+
j−1

∑
k=1

Ak BTj,k Ai +
j−1

∑
k=1

Ak BTj,k Mi GC

+
j−1

∑
k=1

Ak BTj,k

i−1

∑
h=1

Ni,h C Ah
)

B = 0,

sinceC Al B = 0 for all l ∈N.

IV. CONCLUDING REMARKS

In this paper, we have shown that a fundamental question
that remained open in [9], [10] on the connection between
the generalised Riccati equation and the singular LQ problem
has an affirmative answer, at least in the cheap case. In a
forthcoming paper, it is shown that this result holds under a
more general framework.
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