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New results in impulse-free
continuous-time cheap LQ optimal control

Augusto Ferrante and Lorenzo Ntogramatzidis

Abstract— In this paper, we provide conditions for the solv- equation — which is defined by substitution of the inverse
ability of LQ (linear-quadratic) optimal control problems in  of R with the pseudo-inverse in the standard algebraic
which the input function is not penalised in the performance Riccati equation — and the solution of the singular LQ

index. In particular, we focus our attention on regular input timal trol bl In th it is sh .
functions, i.e., on the control functions that do not invohe opumal control problem. In these papers i IS shown In

distributions, which in general appear in the solution of shgular ~ Particular that whenever the generalised Riccati equation
problems. admits a symmetric solution, the corresponding singular LQ

problem admits an impulse-free optimal control from any

l. INTRODUCTION initial condition of the system. Moreover, such control can

It is well known that the solvability of the classic finite always be expressed as a state-feedback, where the gain
and infinite-horizon LQ optimal control problem stronglycan be obtained from the solution of the generalised Riccati
depends on the matrix weighting the input in the cosgquation. A very interesting question, which remained open
function, traditionally denoted byR. When R is positive in these contributions, is the following: when the singulx
definite, the problem is said to begular (see e.g. [1], problem admits a regular solution for all initial statesttie
[14]), whereas wherR is positive semidefinite, the problem generalised Riccati equation guaranteed to admit at legst o
is calledsingular. In the particular case in whicR is the symmetric positive semidefinite solution? In this paper, we
zero matrix, the corresponding LQ problem is caltb&ap. provide an affirmative answer to this question for the cheap
This subject has been dealt with by using the theory of thease. Indeed, the first aim of this paper is to show that a cheap
geometric approach (see for example [12], [24], [18] andQ problem has an impulse-free optimal control from all
references therein). In particular, in [12] and [24] it hasnitial condition if and only if the corresponding genesaid
been shown that an optimal solution to the singular problemiccati equation (which in the cheap case reduces to a
always exists if the class of allowable controls is extendegdyapunov equation) has a symmetric positive semidefinite
to include distributions. A geometric algorithm is used tosolution.
isolate the regular (i.e., impulse-free) part of the optima The second main result of this paper is another geometric

control, which can be calculated resorting to a reducedrordgesult related to the solvability of a cheap LQ problem in
algebraic Riccati equation. The approach presented in [1frms of impulse-free optimal controls.
is based on an analysis of the structure of both singular and

cheap problems (where the latter is treated as the limiting Notation. The image and the kernel of matrid are
case of the former), by the exploitation of the so-calle@denoted by inM and kerM, respectively, while the transpose
special coordinate basis. Valuable results on this subject haveand the Moore-Penrose pseudo-inversdloére denoted by
also been presented in [19], [21], [20], which are based o™ andMT, respectively.

linear matrix inequalities.

A different approach for the cheap LQ problem was intro- Il. THE CHEAPLQ PROBLEM

duced in [16], where geometric techniques were used to Let n,me N with m < n. Consider the standard linear
recast the cheap control problem as a perfect decouplifighe-invariant state differential equation

problem, to the end of characterising in strict geometric )

terms the subspace of initial conditions for which the opim X(t) = AX(t) +Bu(t),  x(0)=x €R" 1)
control is non-impulsive. where, for allt > 0, x(t) € R" represents the state an@) €

The recent papers [9], [10], have investigated the conRym represents the input function, and wheke R™" and
nection of the generalised continuous-time algebraic &icc g c RXm,
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It was shown in [9, Theorem 4.1] and in [10, Theorem 3.2]
Consider for example the scalar dynamical sysi¢th=  that if the generalised algebraic Riccati equation
u(t) with initial condition x(0) = xg # 0, along with the
pEar)formance index (2) with‘f} ()equal t? the ide|$tity matrix. XA+ATX —(S+XB) Al (S+B™X)+Q=0, (6)
By using a control inpuu(t) = —ax(t), the value of the supject to the additional constraint
performance index can be made arbitrarily close to zero by
choosing a sufficiently large value of. But it is clear that kerR C ker(S+XB), )

no regular controls can annihilate the cost. This ex"’m]pleadmits a symmetric positive semidefinite solution, this sin

shows that in singular and cheap cases a solution may rlﬂjlar LQ problem admits a regular optimal control for any

eX'Sft' since '.t ('js |ms|ot0?s:jblje_ﬁto atttlaln ttI;]e 'nf'mumaﬁ;th%itial condition. The cheap LQ problem introduced in this
performance index. Stated difierently, in these cases v aper is a particular case of this problem in whigh= 0.

of the performance index can be infimised but not minimise ndeed, ifR— 0, condition (5) impliesS— 0. In this case,

Nevgrthgless, for the smgullar and (;h_gap LQ P“’b'em' fAking into account that iR= 0, the Moore-Penrose pseudo-
;olu'uon is guaranteed to exist for a!l initial cond|t|on_|sly) inverseR' is the zero matrix, (6) reduces to (3), and the
if the class of allowable controls is extended to 'ncmd%ondition (7) reduces tXB =0
distributions. A fairly complete distributional framewowas '
developed in [12] and [24]. In particular, in these papers
was established that in general Problem 2.1 is solvable f
any initial conditionxg if the control involves a regular part
(which can always be written as a static state feedback as
the regular LQ problem), plus a linear combination of Dira
deltas with its derivatives in the sense of distributions. -
In this paper we are interested in the characterisation J(Xo, ) :/ yT(t)y(t)dt,
of the cases in which the cheap LQ problem is solvable 0
from any initial condition with a control function that doeswherey(t) = Cx(t) can be thought of as a system output.
not involve impulses. In other words, we characterise th8ince it is assumed that the LQ problem admits non-
situations in which the optimal control can be sought withinmpulsive solutions for any initial condition, [24] guataes
the class of static state feedback inputs, so that optimtilat for anyxp the optimal control function can be written
solutions containing distributions are ruled out. as a static state feedback

u*(t) = —Kx(t)

.. It remains to show that the converse is also true, i.e., if
the cheap LQ problem admits non-impulsive solutions for
glﬁy initial condition, then (3) admits a symmetric positive
semi-definite solutionsX such thatXB = 0. Consider a
f'e(‘ctorisationQ: CTC, so that the performance index can
be re-written as

In this paper, we make the following standing assumption.
and the closed-loop system is
Assumption 2.1: For every initial conditiornkg there exists (1) — (A_BK
an input functionu(t) € R™, with t > 0, such thatl(xo, u) { X(t) B é —BK)x(t)
in (2) is finite. y(t) = Cx(t)
) . ~ LetAx £ A—BK denote the closed-loop matrix. The optimal
The following theorem provides a necessary and sufficiefate isx(t) = e*txo, and therefore the optimal cost is
condition for the solvability of Problem 2.1 without the

need of distributions. J=x] Um AR QeAtht] X0
0

~ Theorem2.1: The cheap LQ problem admits non-Now, considemo € imB. Thus,x = Bz for somez Since in

impulsive solutions for allxo € R" if and only if the this case with the impulsive contralt) = —5(t)z we can

Lyapunov equation obtainx(0") = 0, and consequently the cost becomes zero,
XA+ATX+Q=0 3) even withu* the value of the cost must be zero. Thus

. . . o _ xoeker/ At QeMktdt
admits a symmetric positive semi-definite solutiotsuch 0

thatXB =0. for all xg € imB, which also implies
Proof: Consider a singular LQ optimal control problem,

which consists in the minimisation of the performance index imB C ker/ At Qefxlt.
JO

3 (x,u) = /W[XT(t) uT(t)][g EHX(?} dt (4) Thus,Ce!B=0 for allt > 0. This means that the transfer
0 u(t) function C(sln—AK)*lB is zero, and therefore also the

subject to (1), wher® € R™", S¢ R™™ andRe R™™ are transfer function matrixC (sl, — A)~1B is equal to zero.
such that , , This proves that

s S| _pr "l T
n:[g R}:n >0 (5) | e¥iQettar = ["eQetat



We defineX = [3° eAT‘QeAt dt. We show thakX satisfies (3). only if its orthogonal complement is afA, C)-conditioned

Indeed, invariant subspace containing Bn see e.g. [2, p.209].
. ® ATy ‘ Recall that, given a friené of ¥*, i.e. a matrix such that
XA+AX+Q :/0 Qe Adt (A+BF)¥*Cv¥*, the eigenvalues ofA+BF restricted

o T ATt oA to ¥* are split into two sets. The eigenvalues Af-BF
+/0 A QeTdi+Q which are restricted toy*N.* are all freely assignable

by a suitable choice of. The eigenvalues of the mapping
induced byA+BF on the quotienty™/¥*N.* are fixed
XA+ATX+0Q= /°° ﬂ (eATthAt) dt + Q. for any friend of ¥*. The subspace?* £ ¥*N.7* can be
o dt interpreted as the subspace of states that can be reached
Since the cost is finite,]g’eAT‘QeAt dt is finite, so that from the origin with state trajectories all contained ¥

Ty t (hence invisible at the output), so that it is often refered
e 1QeM — 0 ast — . Thus, the latter becomes as thereachability subspace on ¥*. For a detailed analysis

XA+ATX+Q= |:eATthAt}:+Q:07 of the internal and external eigenstructure of a controlled

invariant subspace we refer to [2, pp.217-222] and [22,
which proves the claim. B pp.89-96].

As a direct consequence of the proof of the previous
result, we have the following. It is easy to see that there holds
*
Corollary 2.1: If a cheap LQ problem admits an impulse- [ F?Ran)x(m'/’/(A+ BF,C).
freeI solution for fimy initial conditiomp € R", the zero input Indeed, ./ (A+ BF,C) is the largest(A + BF )-invariant
IS always optimal. subspace contained in Kerfor all F € R™™. This means
IIl. A GEOMETRIC CHARACTERISATION that .#/(A+BF,C) is an output-nulling subspace af for

nxm i _
In this section we provide a simple characterisation fo?"lr €R ; ' HOWGerI‘r,;//* IS geBlacr:gest arf‘:wong all output
the solvability of the cheap LQ problem by means of afuling subspaces of the triplé\, B, C), so that

i.e.,

impulse-free control. C
We first recall some definitions that will be used in C(A+BF)
this second part of the paper. The reachable subspace is ™ 2 ker : VF e R™M, (8)
denoted byZ(A,B). It equals the image of the matrix a1
[B AB ... A"1B], and it also coincides with the smallest C(A+BF)

A-invariant subspace containing the subspace spanned by {g only need to show that there exists Bne R™™ for
columns ofB. Dually, the unobservable subspace i(S: denoteghich the inclusion (8) holds as an equality. This is the case

by 4 (A,C). It equals the null-space of the matrix CEA , for a friend of 7*. Indeed, ifF is a friend of »*, there holds
n-1 * *
and it also coincides with the largeAtinvariant s(fﬁ)space (A+BF)77 C 7" CkerC,

contained in the null-space €. so that C¥* = {0}, and C(A + BF)ky/* C CA+
The geometric setting developed here requires the foIIovBF)kfly/* C...cC7*={0}, and we get

ing definitions: 7* stands for the largedtA, B)-controlled

invariant subspace contained in the null-spac&€oRecall c

that 7™ is the subspace of all initial states < R" of (1) for C(A+BF)

which an input function exists such that the corresponding :

output is identically zero. For this reasofi; is also referred C(A+BF)"1

to as the largest output-nulling subspace of the system | i , ) i

described by the triplgA,B,C) (where an output-nulling Dualising this argument, one easily sees that the identity

subspace ofA, B,C) is defined as afA, B)-controlled invari- S* = min %Z(A+GC,B)

ant subspace contained in KJr The symbol¥* stands for GeRPXN

the smallestA, C)-conditioned invariant subspace containingalso holds. We use the tools introduced in this section to

the image ofB, and it is also referred to as the smallesprove the second main result of this contribution.

input-containing subspace of the trip{é,B,C) (where an

input-containing subspace is &A,C)-conditioned invariant  Theorem 3.1: Let the cheap LQ problem admit non-

subspace containing iB). For a detailed discussion onimpulsive solutions for alky € R". Then

controlled and conditioned invariant subspaces we refer to . .

the textbooks [2], [22], [25]. ST=A" )
Controlled and conditioned invariance are dual conceptBroof: Suppose that the cheap LQ problem admits non-

in the sense that, given a triplé\,B,C), a subspace is an impulsive solutions for alky € R". We must show that (9)

(A, B)-controlled invariant subspace contained in®érand  holds. As already recalled?* coincides with the intersection

¥* = {0}.



of ¥* and.”*. Thus, (9) is equivalent to saying that* C  sinceCA'B=0 for all | € N. |
¥*. Thus, we need to show that the inclusion

Z#(A+GC,B) C 4/ (A+BF,C)
holds. This can be proved by showing that

IV. CONCLUDING REMARKS

In this paper, we have shown that a fundamental question
that remained open in [9], [10] on the connection between

C the generalised Riccati equation and the singular LQ proble
C(A+BF) o1 has an affirmative answer, at least in the cheap case. In a
: [ B (A+GC)B... (A+GC) B} =0. forthcoming paper, it is shown that this result holds under a
C(A+BF)™1 more general framework.
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