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Abstract 14 
Species distribution models (SDMs) can provide useful information for managing 15 
biological invasions, such as identification of priority areas for early detection or for 16 
determining containment boundaries.  However, prediction of invasive species using 17 
SDMs can be challenging because they typically violate the core assumption of being 18 
at equilibrium with their environment, which may lead to poorly guided management 19 
resulting from high levels of omission.  Our goal was to provide a suite of potential 20 
decision strategies (DSs) that weren’t reliant on the equilibrium assumption but rather 21 
could be chosen to better match the management application, which in this case was 22 
to ensure containment through adequate surveillance.  We used presence-only data 23 
and expert knowledge for model calibration and presence/absence data to evaluate the 24 
potential distribution of an introduced mesquite (Leguminoseae: Prosopis) invasion 25 
located in the Pilbara Region of northwest Western Australia.  Five different DSs with 26 
varying levels of conservatism/risk were applied to a weighted linear combination 27 
(WLC) model using ordered weighted averaging.  The performance of DSs over all 28 
possible thresholds was examined using receiver operating characteristic (ROC) 29 
analysis.  DSs not on the convex hull of the ROC curves were discarded. Two 30 
threshold determination methods (TDMs) were compared on the two remaining DSs, 31 
one that assumed equilibrium (by maximizing overall prediction success) and another 32 
that assumed the invasion was ongoing (using a 95% threshold for true positives).  33 
The most conservative DS fitted the validation data most closely but could only 34 
predict 75% of the presence data.  A more risk-taking DS could predict 95% of the 35 
presence data, which identified 8.5 times more area for surveillance, and better 36 
highlighted known populations that are still rapidly invading.  This DS and TDM 37 
coupling was considered to be the most appropriate for our management application.  38 
Our results show that predictive niche modeling was highly sensitive to risk levels, 39 
but that these can be tailored to match specified management objectives.  The 40 
methods implemented can be readily adapted to other invasive species or for 41 
conservation purposes.   42 
 43 
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1. Introduction 1 

Species distribution models generally proceed by first identifying environmental 2 
characteristics that are associated with a species occurrence and then extrapolating 3 
this information to detect other areas that possess similar characteristics (Underwood 4 
et al., 2004).  For invasive species, this information can then be used to develop 5 
management strategies, determine containment boundaries and identify priority areas 6 
for early detection and rapid response (Elith et al., 2006; Morisette et al., 2006; 7 
Jiménez-Valverde and Lobo, 2007).  However, such predictions can be challenging 8 
for introduced invasive species, which frequently have wide ecological niches and 9 
may not yet have reached equilibrium within their new environment (Sutherst and 10 
Bourne, 2009; van Klinken et al. 2009; Vávlavík and Meentemeyer, 2009).  Hence, 11 
the key challenge for predicting the potential ranges of an invasive species is handling 12 
the uncertainty inherent in distributional data where it has not yet reached the full 13 
extent of habitat that could support it.  How this uncertainty is handled will depend on 14 
management objectives (e.g. eradication, containment or impact reduction) and on the 15 
resources available to implement the management strategy.  In this paper we explicitly 16 
consider the relationship between uncertainty (considered within a risk framework) 17 
and management. In this approach, the model assuming equilibrium becomes just one 18 
of a suite of possible scenarios that are assessed to suit management objectives 19 
(Underwood et al., 2004; Jiménez-Valverde et al., 2008; Sutherst and Bourne, 2009).    20 
 21 
A number of techniques for species distribution modeling have been reviewed in the 22 
literature (c.f. Franklin, 1995; Guisan and Zimmermann, 2000).  Correlative models, 23 
for example, rely on the detection of a correlation between species distribution records 24 
and the environmental predictor variables used to make predictions (Beerling et al., 25 
1995; Robertson et al., 2003).  However, particularly with introduced species, there 26 
may not be an overt cause for the correlation (Beerling et al., 1995).  In addition, 27 
correlative models assume distribution records represent the entire range of sites that 28 
can be occupied by the target species (the equilibrium assumption) and thus, when 29 
used with accurate presence and absence records, approximates the actual or realized 30 
distribution (Jiménez-Valverde et al., 2008).  However, the equilibrium assumption is 31 
violated by actively expanding invasive species and, therefore, the actual distribution 32 
relating to a point in time may be a conservative representation (Franklin, 1995; 33 
Beerling et al., 1995; Austin, 2002; Hulme, 2003).  While a conservative modeling 34 
approach is likely to increase the likelihood of predicting sites where a species exists 35 
(few false positives), or may survive, it may severely underestimate areas where a 36 
species may potentially exist (Jiménez-Valverde et al., 2008) thereby misdirecting 37 
management action and policy development.  For example, underestimation may 38 
result in invasion going unnoticed until the species is well established (Robertson et 39 
al., 2004) and beyond successful eradication (Rejmánek and Pitcairn, 2002).  Instead, 40 
it can be argued that relaxing the level of conservatism (thereby increasing risk levels) 41 
to capture a greater number of known presence sites (potentially at the expense of a 42 
greater number of false positives) may be more desirable for providing an early 43 
warning for species that are still expanding. 44 
 45 
Recently, there has been a greater emphasis on identifying modeling approaches (e.g. 46 
Sutherst and Bourne, 2009), and alternative techniques (e.g. geographically weighted 47 
regression) for species that have not yet reached equilibrium (Austin, 2007).  A 48 
common approach has been to use profile techniques (e.g. Tsoar et al., 2007), which 49 
do not take into account data on a species absence and more commonly tend towards 50 
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approximating areas where a species could live (i.e., the potential distribution) rather 1 
than simply where it currently does live (i.e., the actual/realized distribution).  These 2 
techniques (and others) may also be dichotomized into predicted presence and 3 
absence by choosing a suitable threshold that decreases the false negative rate at the 4 
expense of an increased false positive rate (e.g. Fielding and Bell, 1997).  Our aim is 5 
to overcome the limitations of causality and under prediction by using a deductive 6 
approach within a geographical information  system (GIS) where the rules are derived 7 
from a combination of expert knowledge and empirically derived data as described in 8 
Eastman et al. (1993); Franklin (1995); and Robertson et al. (2004) and the level of 9 
conservatism (or risk) can be adjusted during the process of combining data layers 10 
(ecological variables) to suit prediction outcomes.  The use of such risk adjusting 11 
techniques to develop a range of scenarios (decision strategies) with varying levels of 12 
conservatism (or risk) has received very little attention to date.  Here we explore its 13 
utility in the context of modeling invasive organisms.   14 
 15 
This study adopts a standard, moderate risk-taking, multi-criteria evaluation tool 16 
(weighted linear combination (WLC)) (Jiang and Eastman, 2000) and couples it with 17 
a risk-adjusting technique known as ordered weighted averaging (OWA) to develop a 18 
series of alternative decision strategies.  We develop five alternative decision 19 
strategies (two more conservative than the WLC model, one equal in risk to the WLC 20 
model, and two more risk-taking) for identifying the distribution of an invasive 21 
mesquite (Leguminoseae: Prosopis spp.) population in the Pilbara Region of 22 
northwest Western Australia. The population is currently largely restricted to a single 23 
property, but is thought to have the potential to invade more widely. The primary 24 
focus of management is therefore containment of the core infestation, and eradication 25 
and surveillance outside of the core infestation. Mesquite presence and absence data 26 
were obtained from a previous airborne survey of the entire known population (ca. 27 
1,500 km2), which was in turn used to predict habitat suitability across 112,649 km2 of 28 
the Pilbara region (van Klinken et al. 2007).  Receiver operating characteristic (ROC) 29 
analysis and two threshold determination methods (Liu et al. 2005) were used to 30 
determine which models would best identify suitable habitat assuming that the 31 
population was at equilibrium, and assuming the population was still invading, 32 
respectively. Comparison of the alternative outputs is examined in the context of our 33 
management goal of identifying areas for early warning and surveillance.     34 
 35 
2. Methods 36 

2.1 Target Species 37 

Several mesquite species (together referred to as "mesquite") are recognized as being 38 
highly invasive, both in their native and introduced ranges (Archer, 1995; van Klinken 39 
et al., 2006).  They are leguminous shrubs or trees that can form dense thorn-forests, 40 
resulting in serious economic, environmental and social costs (Hennessy et al., 1983; 41 
Gibbens et al., 1992; Goslee et al., 2003).  Mesquite reproduces from seeds and 42 
typically has a high fecundity, producing one main crop per year.  In Australia, it is 43 
ranked nationally as one of the twenty most significant weeds (Thorp and Lynch, 44 
2000).   45 

The studied mesquite population is located in the northwest Pilbara region of Western 46 
Australia (centred on 21o11’18’’S, 115o56’67’’E) and is the result of an intentional 47 
introduction to the Mardie Pastoral Station in the 1930s to serve as a drought and 48 
fodder plant as well as for shade for livestock (Meadly, 1962).  It has since invaded 49 
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over 150,000 ha, principally on the delta of the Fortescue River where it was first 1 
introduced and where most of the approximately 32,500 ha of dense mesquite occurs. 2 
However, it is also spreading and increasing in density on adjacent catchments, 3 
especially in the Robe River delta to the southwest (van Klinken et al., 2007).  The 4 
population is described as a hybrid swarm of P. pallida, P. velutina and P. glandulosa 5 
var glandulosa (van Klinken and Campbell, 2009).  P. pallida belongs to the P. 6 
juliflora-P. pallida complex, which is native to southern Central America, while P. 7 
velutina and P. glandulosa are a complex native to the USA and Mexico (Pasiecznik 8 
et al., 2001).  The hybridization of these species obtained from diverse geographical 9 
areas in the northern hemisphere makes it difficult to extrapolate species-specific 10 
observations derived from native range populations to novel environments as has been 11 
done in other studies (e.g. De Meyer et al., 2007; Mgidi et al., 2007; Beaumont et al., 12 
2009). 13 

 14 
2.2 Validation and calibration data 15 
The entire known mesquite infestation was mapped as an 18.5 ha grid-matrix during a 16 
visual aerial survey in 2004 (van Klinken et al., 2007).  Mesquite was mapped as 17 
absent, isolated, moderate or dense, which we converted to categorical 18 
presence/absence data. To minimize the effects of spatial dependency we randomly 19 
sampled 500 presence data and 500 absence data for model validation.  This also 20 
avoided the potential bias caused by different levels of prevalence in presence/absence 21 
datasets (Manel et al., 2000).  An additional randomly sampled partition of 500 22 
presence data was also used as calibration data for standardizing the compound 23 
topographic index (see Section 2.3.3).  Calibration of the other criteria used in the 24 
model from this data was not possible as the aerial survey did not record data for 25 
some of the classes that were located beyond the boundary of the current infestation.  26 
These criteria were standardized using expert opinion.    27 
 28 
2.3 Criteria selection 29 
Criteria (environmental variables) were selected based on previous ground-based and 30 
remote sensing-based studies (van Klinken et al., 2006; van Klinken et al., 2007; 31 
Robinson et al., 2008) designed to determine the habitat preferences of the mesquite 32 
population under study.  Three criteria were chosen that we considered most 33 
influential on the current distribution and were available as GIS layers.     34 
 35 
2.3.1 Pastoral potential 36 

Pastoral potential, calculated as the number of hectares required to sustain the 37 
nutritional requirements of a unit of cattle (carrying capacity), has been mapped into 38 
five categories (very high, high, moderate, low and very low) according to the land 39 
system types across the Pilbara Region (Payne and Mitchell, 2002).  These land 40 
systems were mapped on the basis of their distinctive patterns of landforms, soils and 41 
vegetation types.  The overall pastoral potential for a given land system is derived 42 
from a weighted average of its component pastures (van Vreeswyk et al., 2004).  For 43 
example, pasture types within a land system that are considered to have a low carrying 44 
capacity will downgrade that land systems pastoral potential.  The 2004 aerial survey 45 
(Section 2.2) revealed a strong positive correlation between mesquite density and 46 
pasture potential (van Klinken et al., 2007).   47 
 48 
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2.3.2 Land use 1 

The introduction of livestock is considered to be responsible for the rapid spread of 2 
mesquite within its native range from riparian zones, where it had been previously 3 
restricted, into upland habitats as seed pods are actively sought after for feed, and 4 
excreted with enhanced germination capacity (Brown and Archer, 1987).  Cattle are 5 
generally considered the most effective herbivores for distributing mesquite since a 6 
large proportion of seeds (ca. 60%; Brown and Archer, 1987) survive through their 7 
digestive tract.  Hence, the potential distribution of mesquite is dependent, in part, on 8 
the presence of cattle.   9 
 10 
2.3.3 Soil moisture 11 

In a retrospective study using archival aerial photographs it was determined that rates 12 
of mesquite colonization were highest in the most mesic (wettest) parts of the 13 
landscape (Robinson et al., 2008).  Therefore, a steady state wetness index (the 14 
compound topographic index (CTI)) was derived from a digital elevation model to act 15 
as a surrogate for soil moisture, using Eq. 1 (Gessler et al., 1995): 16 
  17 
 CTI=ln(α/tan(β)) (1)  18 
 19 
where α = upstream area calculated as (flow accumulation +1)*(pixel area in m2) and 20 
β = slope expressed in radians.  Flow accumulation is calculated from a flow direction 21 
grid, which determines the water flow as the direction of steepest descent.  Flow 22 
accumulation then records the number of cells that drain into an individual cell in the 23 
grid and is thus measured in units of grid cells (Olivera et al., 2002).   24 
 25 
2.4 Multi-criteria evaluation (MCE) model 26 

The MCE model was constructed using a weighted linear combination with criteria 27 
standardized to a common numerical range (Section 2.4.1).  Weights were assigned 28 
using the analytic hierarchy process (AHP) (Section 2.4.2) (Saaty, 1987; Malczewski, 29 
1999).   30 
 31 
2.4.1 Standardization 32 

Categorical layers (pastoral potential and land use) were standardized using a ranking 33 
procedure, whereby each class is inversely ranked (the least important class = 1, next 34 
least important = 2, etc.) based on its perceived importance for facilitating mesquite 35 
invasion.  Once the ranking was established, standardization was based on the rank 36 
exponent method as described by Malczewski (1999).  In our application we squared 37 
the rank position and divided it by the value of the square of the most important class 38 
to derive a standardized score from 0 to 1.   The process of squaring the rank position 39 
produces a function that decays rapidly, thereby assigning a higher standardized value 40 
to the more important classes relative to the lesser important classes.    41 
 42 

The five categories of pastoral potential were ranked in sequential order with very 43 
high pastoral potential ranked first and very low pastoral potential being ranked fifth 44 
(Table 1).  Land uses were ranked according to their likelihood for promoting 45 
mesquite invasion, with the presence of cattle receiving the highest rank, based on the 46 
knowledge that mesquite populations can be dispersal-limited in their absence.  All 47 
other land uses were ranked equally, resulting in a standardized score of 0.25 (Table 48 



 6

1), to account for the presence of the more ubiquitous but less effective vectors such 1 
as wallaroos and emus.  2 
 3 
The continuous compound topographic index (CTI) layer was standardized using a 4 
fuzzy membership function (FMF).  FMFs assign a value between 0 and 1 to each 5 
pixel allowing the transition between non-membership (0) and complete membership 6 
(1) to be both continuous and gradual (Zadeh, 1965; Robertson et al., 2004).  The 7 
shape of the FMF is governed by a set of control points which can either be defined 8 
based on expert judgment or determined from calibration data.  To construct the FMF 9 
for the CTI layer a frequency histogram of the CTI values was constructed using the 10 
calibration dataset (see Section 2.2).  A right skewed distribution was found, with a 11 
minimum of 5.5, and a median of 9.4.  Following Burrough and McDonnell (1998) 12 
and Robertson et al. (2004) we applied a monotonically increasing s-shaped function, 13 
where the minimum marked the lower control point at which the membership function 14 
began to rise above 0, and the median marked the upper control point where all values 15 
greater than or equal to it were assigned a fuzzy membership value of 1 (Fig. 1).   16 
 17 

<approximate location of Fig. 1> 18 
 19 

2.4.2 Criteria Weights  20 

Criteria weights represent the influence of each criterion in the model on the 21 
distribution of mesquite.  The analytic hierarchy process (AHP) is one method of 22 
producing criteria weights.  The AHP requires the creation of a reciprocal pair-wise 23 
comparison matrix.  Entries into the matrix are found from comparison between each 24 
layer based on a 9-point rating scale as developed by Saaty (1977) where a value of 1 25 
is given to imply the criteria under comparison are of equal importance to the final 26 
solution and 9 expresses extreme importance of one criterion over another.  Values in 27 
between are used for expressing moderate importance of one criterion over another 28 
(3), strong importance (5) and very strong importance (7).  If the criteria being 29 
compared are deemed to be closer than indicated by this scale, one can use values in 30 
between.  For example, if one criterion is only slightly more important than another it 31 
can be indicated by a value of 2.  Comparisons are made by comparing the row 32 
criterion to the column criterion.  If the row criterion is of less importance to the 33 
column criterion the reciprocal is used (e.g., very strongly less important would be 34 
expressed as 1/7).  By definition the diagonal entries are all equal to 1 (criteria are 35 
equally important when compared to themselves) and the rating in any position i,j will 36 
be the reciprocal of that in position j,i (Lippitt et al., 2008).  The Principal Eigenvector 37 
of this matrix yields the weights applicable to each layer (Saaty, 1987; Malczewski, 38 
1999; Lippitt et al, 2008).  A consistency ratio (CR) can be computed from the matrix 39 
to express the degree to which pair-wise comparisons form a consistent set of 40 
relationships.  A matrix with a CR > 0.1 is considered inconsistent (Saaty, 1977).   41 
 42 
The pair-wise comparison matrix and derived weights used in this study are shown in 43 
Table 2.  Soil moisture (CTI) was considered slightly more important than pastoral 44 
potential based on the findings of Robinson et al. (2008) that showed that mesquite 45 
colonized and increased significantly more rapidly in the riparian zone than over the 46 
uplands, even though both had the same soil type (red loamy soils).  Soil moisture 47 
was deemed to be moderately more important than land use because, although 48 
mesquite is successfully dispersed via livestock, with poor soil moisture it is less 49 
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likely to survive.  Pastoral potential was deemed to be slightly more important than 1 
land use because while seeds may be widely dispersed by livestock, they are less 2 
likely to survive if the environment is poor. 3 
 4 
2.5 Ordered weighted averaging (OWA) 5 

OWA provides a tool for generating a wide range of decision strategies in decision 6 
strategy space (Fig. 2) by applying a set of order weights to criteria that are ranked in 7 
ascending order on a pixel-by-pixel basis.  The number of order weights is equal to 8 
the number of criteria and must sum to one.  The position of a set of order weights can 9 
be identified in a decision strategy space based on the concepts of trade-off and risk 10 
(Yager, 1988; Jiang and Eastman, 2000).  Trade-off indicates the degree to which a 11 
low standardized value on one layer can be compensated for by a high standardized 12 
value on other criteria under consideration.  Risk refers to how much each criterion 13 
affects the final solution (Jiang and Eastman, 2000; Malczewski, 2006).  For example, 14 
the most conservative set of order weights are given as [1, 0, 0] (Fig. 2) for three 15 
criteria, which assigns full importance to the lowest pixel value over three criteria, 16 
thus all coincident pixels of the three criteria need to be close to 1 to receive a high 17 
suitability rating.  However, if the first ranked criterion has a low pixel value, despite 18 
high coincident pixel values on other criteria, that pixel will be classified as relatively 19 
unsuitable.    20 

 21 
<approximate location of Fig. 2> 22 

 23 

We chose to manipulate the level of risk and trade-off of the MCE model using five 24 
different sets of order weights enabling the creation of five alternative decision 25 
strategies ranging from risk-averse (Minimum Risk with order weights = [1,0,0]), to 26 
highly risk-taking (Maximum Risk [0,0,1]) (Fig. 2).  The five different decision 27 
strategies can be defined by coefficients of risk and trade-off ranging from 0 to 1, 28 
where 0 indicates no risk and no trade-off (Minimum Risk; Fig. 2), and 1 indicates 29 
maximum risk (Maximum Risk; Fig. 2) and trade-off (Moderate Risk; Fig. 2) 30 
(Malczewski, 1999).   31 

 32 

2.6 Validation 33 

Predictions from the five alternative decision strategies were assessed using receiver 34 
operating characteristic (ROC) analysis based on our validation dataset.  For each 35 
strategy the favorability score (from 0 to 1) was extracted for both the presence and 36 
absence data and sorted in ascending order.  Thresholds were defined as half the 37 
distance between each successive pair.  At each threshold the true positive rate (TPR) 38 
and the false positive rate (FPR) was calculated using Eqs. 2 and 3, respectively 39 
(Fielding and Bell, 1997; Fawcett, 2006).   40 
 41 

nPP

nPP
TPR

i
         (2) 42 

nAP

nAP
FPR

i
         (3) 43 

 44 
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where nPPi is the cumulative number of presence points at threshold i, nPP is the total 1 
number of presence points (500), nAPi is the cumulative number of absence points at 2 
threshold i and nAP is the total number of absence points (500).    3 
 4 
ROC curves were constructed by plotting the coordinates of the TPR (y-axis) and the 5 
FPR (x-axis) for all thresholds, for each of the five decision strategies.  The 6 
trapezoidal rule (Pontius and Schneider, 2001) was used to generate the area under the 7 
curve (AUC) statistic, which is a commonly used summary statistic used to indicate 8 
model performance.  A model that perfectly discriminates between presence and 9 
absence records has an AUC of 1 (i.e., perfect discrimination between presence and 10 
absence records), while a model predicting mesquite presence and absences no better 11 
than by chance has an AUC of 0.5 (Fielding and Bell, 1997; Ayalew and Yamagishi, 12 
2005; Fawcett, 2006).   13 

 14 

2.6.1 Selecting decision strategies 15 

It is common practice to choose between alternative decision strategies and model 16 
types based on the magnitude of the AUC (Zweig and Campbell, 1993).  However, as 17 
the AUC summarizes performance over all thresholds it is possible for a particular 18 
strategy with the highest AUC to be inferior to another in a specific region of interest 19 
in ROC space (Fawcett, 2006; Lobo et al., 2008).  Therefore, the AUC was only used 20 
to identify the decision strategy with the best average performance.  Instead, 21 
identification of potentially optimal decision strategies was accomplished by 22 
identifying those that lie on the convex hull of the set of points in ROC space 23 
(Fawcett, 2006).  ROC curves that lie on the ROC convex hull have more efficient 24 
false positive and true positive rates than those that lie beneath them and thus, these 25 
sub-optimal decision strategies can be readily discarded, as was done in this study.  26 
Determining which of the remaining decision strategies is the most optimal is 27 
dependent on the perceived cost of false negatives (errors of omission) and false 28 
positives (errors of commission).   Two threshold determination methods (Liu et al., 29 
2005) were applied to the potentially optimal decision strategies on the ROC convex 30 
hull to explore the impact of these costs in more detail.     31 
 32 

2.6.2 Threshold determination methods 33 

The first threshold determination method (TDM) was used to identify the decision 34 
strategy that maximized overall prediction success (OPS).  This was achieved using 35 
the maximum efficiency (ME) statistic, which detects the threshold where the 36 
difference between the TPR and the FPR is largest (Lippitt et al., 2008).  This 37 
threshold was used to dichotomize between the predicted presence and predicted 38 
absence of mesquite.  The decision strategy with the highest OPS is the one out of all 39 
candidates that most accurately matches the validation data and provides a balanced 40 
trade-off between false negatives (omission errors) and false positives (commission 41 
errors) (Lobo et al., 2008).  It is therefore the strategy of choice if the species has 42 
invaded all possible niches (i.e., the equilibrium assumption).  However, in the 43 
process of balancing the omission and commission errors, this method may omit other 44 
potential locations, which, in the context of invasive species, is considered a critical 45 
limitation for surveillance programs.  Therefore, to minimize the exclusion of areas 46 
that may still be suitable for mesquite, a subjective, predetermined TDM was 47 
implemented to identify the decision strategy that could predict 95% of known 48 
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mesquite occurrences (i.e., TPR = 95%) with the lowest corresponding FPR (Cantor 1 
et al., 1999; Liu et al., 2005).  In addition to the AUC, FPR and TPR, we also 2 
calculated the area predicted by each potentially optimal decision strategy, grouped by 3 
TDM, to highlight the difference between the predicted distributions.   4 
 5 

3 Results 6 

3.1 Validation 7 

Four of the five decision strategies performed similarly according to the AUC statistic 8 
(0.52 for the Maximum Risk decision strategy) vs. 0.86-0.88 for the other four 9 
decision strategies).  The Maximum Risk decision strategy performed poorly, 10 
producing a result only slightly better than chance, and is not considered further.  11 
While the differences in the AUC were marginal, the Conservative decision strategy 12 
had the highest AUC (0.88), and thus has the best average performance.   13 
 14 

3.2 Selecting decision strategies 15 

Despite the very similar AUC statistics produced for four of the five decision 16 
strategies, there are distinct differences between them at various points in ROC space 17 
(Fig. 3).  For instance, the ROC curve of the Minimum Risk strategy rises quickly to a 18 
TPR of 0.75 (predicting 75% of known mesquite occurrences) whilst limiting the FPR 19 
to 0.1.  However, increasing the TPR to detect 5% more known occurrences increases 20 
the FPR to 0.35 (Fig. 3), which is less efficient than both the Conservative and the 21 
Moderate Risk strategies, as shown by their higher ROC curves over this range (Fig. 22 
3).  In comparison, the Risk Taking strategy performs worse than the three 23 
aforementioned strategies throughout this range, but is more efficient than all other 24 
strategies in the more liberal areas of ROC space, in particular, at and after (0.4, 0.92) 25 
(Fig. 3).  Both the Minimum Risk and Risk Taking strategies were identified as 26 
potentially optimal based on the ROC convex hull (Fig. 3) and all others are not 27 
considered further.   28 
 29 

<approximate location of Fig. 3> 30 
 31 
3.3 Threshold determination methods 32 

The TDM aimed at maximizing the OPS identified the Minimum Risk decision 33 
strategy as most optimal with an OPS of 82.5% (Table 3).  Maximum efficiency was 34 
realized at a threshold of 0.67 and identified 3,074 km2 (2.7% of the study area) of 35 
land as having similar characteristics (Fig. 4a).  This decision strategy represents the 36 
most accurate solution if it can be assumed that the validation data characterize the 37 
entire variance of the mesquite population (i.e., the population is at equilibrium).  38 
However, given that it was unable to predict 25% of the mesquite presence data (125 39 
out of 500 known presence points) (see TPR, Table 3) the prediction may be too 40 
conservative to predict new outbreaks arising from dispersal or range expansion.   41 
 42 
The Risk Taking strategy was the most accurate at correctly identifying 95% of the 43 
mesquite presence data (Table 3).  The lowest corresponding FPR (44%) was realized 44 
at a threshold of 0.77, which identified 23.2% of the study area as potentially suitable.  45 
This represents an additional 23,066 km2 that was not identified by maximizing OPS 46 
(Fig. 4a).  The remaining 5% of known presence locations (false negatives) that were 47 
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not identified by this TDM and decision strategy were all located on the peripheries of 1 
the main mesquite infestation in the Fortescue catchment (Fig. 4b).  False positives 2 
were most common in the Robe catchment (64%), compared with 21% in the 3 
Fortescue catchment and 15% in the Eramurra catchment (Fig. 4b). Both the Robe and 4 
Eramurra catchments have been invaded relatively recently, but the Robe catchment 5 
has isolated mesquite shrubs across ca. 34% of it while mesquite is still rare in the 6 
Eramurra catchment (ca. 2% of area surveyed) (van Klinken et al. 2007).   7 

 8 
<approximate location of Fig. 4a-b> 9 
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4. Discussion 11 

Predicting the potential distribution of invasive organisms that are not yet at 12 
equilibrium is difficult but nonetheless is critical for effective management.  In 13 
general, this difficulty is borne from the assumption that absence records represent 14 
poor habitat, which may not be the case for recently introduced and actively 15 
expanding species (Hirzel et al., 2001; Elith et al., 2006).  This is certainly true of the 16 
mesquite population studied here, which is approximately 70-80 years old, well within 17 
the life-span of mesquite plants, and still rapidly expanding (van Klinken et al., 2007; 18 
Robinson et al., 2008).  Ideally, regular surveys should be conducted to provide 19 
information on the spread of invasive species (Hulme, 2003; Underwood et al., 2004) 20 
to ensure that absence data actually represents conditions that preclude invasion, not 21 
simply that the species has not had sufficient time to invade there.  However, given 22 
rapid invasion rates, land managers require this information in advance to adopt pre-23 
emptive management strategies (e.g. sufficiently extensive surveillance programs) and 24 
therefore, models adopted for management need to be able to identify these potential 25 
areas.  In this paper, we have demonstrated that by incorporating different levels of 26 
risk in the decision strategy and choosing between them based on different threshold 27 
determination methods, we can expand our predictions to identify these potential 28 
areas and we can do so more accurately by comparing several strategies and 29 
eliminating sub-optimal ones that are not on the convex hull of the receiver operating 30 
characteristic (ROC) curves.   31 
 32 
Several decision strategies fitted our validation dataset similarly well (based on the 33 
area under the curve (AUC) statistic) but produced very different predicted spatial 34 
distributions.  Two of the decision strategies were considered potentially optimal 35 
based on the convex hull of the ROC curves.  However, the decision strategy that 36 
assumes the population is still invading (Risk Taking strategy) predicted 8.5 times 37 
more area than the decision strategy assuming the population is at equilibrium 38 
(Minimum Risk strategy).  The former decision strategy is consistent with 39 
observations of where mesquite is currently invading and posing the greatest threat 40 
within the Mardie Pastoral Lease.  It identified much of the Robe catchment as being 41 
highly suitable, and much of the Eramurra catchment as being unsuitable.  Although 42 
both are relatively recently invaded, invasions in the Robe catchment has been much 43 
more rapid, has already resulted in formation of dense patches, and is seen as the 44 
greatest threat by local land managers (van Klinken et al., 2007).  These contrasting 45 
predictions clearly have profound consequences for designing management strategies.  46 
However, the Risk Taking decision strategy is the method of choice where omission 47 
errors (false negatives) are costly to management and commission errors (false 48 
positives) can be tolerated; although, it does require considerably more management 49 



 11

resources (Lippitt et al., 2007).  While model adoption is always a compromise 1 
between accuracy and costs (Store and Kangas, 2001), this combination has the most 2 
applicability for our goal of providing an early warning for detecting new outbreaks 3 
and also avoids a high level of omissions that would otherwise put containment 4 
programs at risk.   5 
 6 
A prudent approach to ecological modeling has been to adopt several models and 7 
identify the relative advantages of each for specific management purposes (e.g. 8 
Loiselle et al., 2003; Lippitt et al., 2008) or to manipulate the weights given to criteria 9 
using sensitivity analysis (e.g. Store and Kangas, 2001).  In this paper we manipulate 10 
our set of chosen weights using OWA to identify a level of risk that more directly 11 
suits the application.  In our case we chose to increase risk levels to increase the 12 
number of known locations that were correctly predicted (true positives) at the cost of 13 
a larger number of false positives.  Such an approach may also be beneficial for a 14 
range of studies where failure to predict potential areas is more costly than 15 
overestimation (Fielding and Bell, 1997) such as designing areas for the protection of 16 
endangered species, or searching for new populations of rare species (e.g. de Siqueira 17 
et al., 2009).  We also demonstrate the ability to model populations that are at 18 
equilibrium.  Alternatively, this approach could be manipulated to minimize the 19 
number of false positives so as to identify only the most suitable areas for future 20 
invasion to match resource constraints or for defining areas for species reintroduction 21 
programs (e.g. Loiselle et al., 2003).  These are important considerations in the 22 
context of landscape ecological planning and hence we consider the manipulation of 23 
risk levels to suit desired purposes is likely to be a desirable quality for a range of 24 
users and applications.     25 

 26 
Most modeling applications in landscape ecology standardize criteria into binary 27 
responses (crisp standardization) using presence-only data (e.g. profile models).  28 
These types of models remain popular (e.g. Tsoar et al., 2007), primarily due to the 29 
historical availability and ease of collection of presence-only information.  However, 30 
unlike the standardization procedure used in this study, crisp standardization does not 31 
incorporate the notion that some conditions are more favorable than others and the 32 
differences are continuous (Heuvelink and Burrough, 1993) and yet continuous 33 
standardization using fuzzy membership functions (FMFs) does not require any more 34 
data (e.g. absence locations) than that used for profile models, for example.  While 35 
FMFs are not new, the search for improved methods for predicting species 36 
distributions from presence-only data is currently topical (e.g. Elith et al., 2006) and 37 
Robertson et al. (2004) have shown FMFs have the ability to improve model accuracy 38 
over crisp standardization.  Another attractive feature of continuous standardization, 39 
as shown in this study, is that it allows favorable criteria to compensate (trade-off) for 40 
less favorable criteria, which is not possible with crisp standardization where all 41 
criteria need to be 1 for the model to return a positive result.   42 
 43 
The AUC statistic obtained from ROC analysis is a current standard practice for 44 
assessing, comparing and selecting between different models or decision strategies 45 
(Zweig and Campbell, 1993; Austin, 2007).  This is primarily because it avoids the 46 
subjectivity in selecting one particular threshold by summarizing the overall model 47 
performance over all possible thresholds (Fielding and Bell, 1997).  However, the 48 
AUC has recently been scrutinized for its inability to be used as a comparative 49 
measure of accuracy (Termansen et al., 2006; Elith et al., 2006; Austin, 2007; Lobo et 50 
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al., 2008; Peterson et al., 2008).  In this study we found very similar AUC statistics 1 
between four of the five decision strategies implemented but obvious differences in 2 
their corresponding ROC curves and thus very different patterns of predicted 3 
suitability.  Despite the similar AUC statistics only two of the five decision strategies 4 
fitted our goals.  The decision strategy with the highest AUC (Conservative) was 5 
unable to achieve either of these goals.  Therefore, the most attractive feature of ROC 6 
analysis appears to be the ability to examine the true and false positive rates over all 7 
thresholds to assist selection of the most appropriate decision strategy, according to 8 
the user’s goals (Jiménez-Valverde and Lobo, 2007; Lobo et al., 2008).  Based on our 9 
results and those of others (e.g. Termansen et al., 2006) use of the AUC statistic for 10 
any other purpose than to summarize the performance over all thresholds should be 11 
discouraged.   12 
 13 
5. Conclusions 14 

Invasive species distribution modeling is challenging as these species have rarely 15 
reached equilibrium within their environment.  Therefore, absence records may not 16 
represent habitat that is unsuitable, but rather habitat that has yet to be invaded.  This 17 
research compared several different decision strategies that were developed by 18 
coupling ordered weighted averaging to a multi-criteria evaluation model.  Based on 19 
the area under the curve obtained from receiver operating characteristic (ROC) 20 
analyses, four out of five models could not be separated.  However, the decision 21 
strategies showed different patterns in ROC space and sub-optimal strategies could be 22 
selected based on the convex hull of the ROC curves.  Threshold determination 23 
methods could be used to further explore the applicability of the remaining strategies 24 
for management purposes.  We found that adopting the most statistically accurate 25 
decision strategy, which was also the decision strategy assuming the population was at 26 
equilibrium, would vastly underestimate the area requiring surveillance for the 27 
invasive mesquite population under study.  Instead, a decision strategy that was 28 
potentially optimal in the more liberal areas of ROC space was preferable for our 29 
management purposes.  The ability to test multiple decision strategies was found to be 30 
extremely valuable for our purposes and can be readily adapted to applications 31 
requiring similar flexibility.  For example, higher levels of risk may be more desirable 32 
for designing areas for the protection of endangered species, or searching for new 33 
populations of rare species (e.g. de Siqueira et al., 2009).  In contrast, the tools used 34 
here can also be used for modeling species at equilibrium (as shown) or to minimize 35 
risk for applications such as species reintroduction programs.   36 
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 1 
Criterion Class Standardized Score 
Pastoral Potential Very high 1
 High 0.64 
 Moderate 0.36 
 Low 0.16
 Very low 0.04 
Land Use Livestock grazing (cattle) 1 
 Managed resource protection 0.25 
 Minimum intervention use 0.25
 Species management area 0.25 
 Traditional indigenous use 0.25 
 National park 0.25 
 Strict nature reserves 0.25 

 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
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 CTI Pastoral potential Land use Weight 
CTI 1 2 3 0.54 
Pastoral potential 1/2 1 2 0.30 
Land use 1/3 1/2 1 0.16 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
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Threshold 
Determination 
Method 

Decision 
Strategy 

TPR1 
(%) 

FPR2 
(%) 

OPS (%)3 ME 
Statistic 
(%)4 

Threshold 
value 

Area 
predicted 
(km2)5 

Maximize OPS Minimum Risk 75 10 82.5 65 ≥0.67 3074 
 Risk Taking 65 8 78.8 57 ≥0.92 13,141 

TPR = 95% Minimum Risk 95 54 70.5 41 ≥0.25 13,122 

 Risk Taking 95 44 80.5 51 ≥0.77 26,140 
1True positive rate (TPR) is the number of known presence locations that were identified by the decision strategy, divided by the 1 
total number of known presence locations in the validation data set. 2 
2False positive rate (FPR) is the number of known absence points that were identified by the decision strategy to be suitable 3 
divided by the total number of known absence locations in the validation data set.   4 
3Overall Prediction Success (OPS) is the sum of the number of correctly identified presence locations to the number of correctly 5 
identified absence locations divided by the number of points in the validation dataset (1000), expressed as a percentage. 6 
4The Maximum efficiency (ME) statistic maximizes the difference between the TPR and the FPR.   7 
5The total area identified as suitable for each decision strategy based on the threshold value.    8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 


