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Abstract— It is shown that the necessary optimality condi-
tions, which arise from a variational analysis of the linear
quadratic regulator (LQR) problem for two-dimensional (2-
D) Roesser models, are also sufficient. An expression for the
optimal performance index is also provided.

I. INTRODUCTION

Two-dimensional (2-D) systems arise naturally in the mod-

elling of processes where the variables are defined over space

rather than time. The most widespread latent variable models

for linear shift-invariant 2-D systems are the Roesser [1] and

Fornasini-Marchesini [2] models. Optimal control problems

for Fornasini-Marchesini models are addressed, over an

infinite frame, in [3] and [4]. The optimal control of 2-D

systems over a finite frame is studied in [5], within the

context of Roesser models. There, a variational approach

is used to obtain necessary conditions for optimality. In

this paper, it is shown that the corresponding conditions

are also sufficient for the linear quadratic regulator (LQR)

problem. The solution of the equations which characterise

the optimality condition is discussed and an expression for

the optimal value of the performance index is provided.

Notation. Given a region A of N × N and a signal s :
N × N −→ R

n, we denote by s|A the restriction of s to the

region A.

II. PROBLEM STATEMENT

Consider a linear shift-invariant Roesser model
[

hi+1,j

vi,j+1

]

=

[

A1 A2

A3 A4

] [

hi,j

vi,j

]

+

[

B1

B2

]

ui,j (1)

where, for all i, j ∈N, hi,j ∈R
nh is the horizontal semistate,

vi,j ∈R
nv is the vertical semistate and ui,j ∈R

m is the

control input. The matrices Ah, h ∈ {1, . . . , 4}, and Bk,

k ∈ {1, 2} are of suitable dimensions. By specifying the

input ui,j over a bounded frame Q , [0, N ] × [0,M ], and

(south-west) boundary conditions

h0,j = aj ∈ R
nh , j ∈ [0,M ],

(2)
vi,0 = bi ∈ R

nv , i ∈ [0, N ]

on the horizontal and vertical semistates, respectively, the

model (1) produces a unique value for hi,j over H , [0, N +
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1] × [0,M ] and vi,j over V , [0, N ] × [0,M + 1]. Let

J(h|H, v|V , u|Q) , h
⊤
N+1H hN+1 + v

⊤
M+1V vM+1 (3)

+
∑

(i,j)∈Q

[

h⊤
i,j v⊤

i,j u⊤
i,j

]





Qh Qhv Sh

Q⊤
hv Qv Sv

S⊤
h S⊤

v R









hi,j

vi,j

ui,j



 ,

where hN+1 ,
[

h⊤
N+1,0 . . . h⊤

N+1,M

]⊤
, vM+1 ,

[

v⊤
0,M+1 . . . v⊤N,M+1

]⊤
and the matrices H = H⊤ ≥ 0

and V = V ⊤ ≥ 0 penalise the (north-east) boundary values

of the horizontal and vertical semistates, respectively. It is

assumed that with

Q ,

[

Qh Qhv

Q⊤
hv Qv

]

, S ,

[

Sh

Sv

]

, Π ,

[

Q S

S⊤ R

]

,

the matrix Π is symmetric and positive semidefinite. Note

that here it is not assumed that R is non-singular. It is

now possible to formally define the optimal control problem

considered in this paper.

Problem 1: Find a control input ui,j , for (i, j)∈Q,

the corresponding horizontal semistate hi,j , for (i, j)∈H
and vertical semistate vi,j , for (i, j)∈V , to minimize the

quadratic performance index (3) under the constraints (1)

and (2).

III. MAIN RESULTS

In [5], necessary optimality conditions for Problem 1

are obtained as a special case of a necessary optimality

condition established therein for a non-linear version of the

constraint (1), via a variational analysis of (3), augmented

with the product of Lagrange multipliers and the constraints.

The question of sufficiency remained unanswered in [5].

Below, it is established that the optimality condition is in

fact also sufficient for the LQR Problem 1. The approach

taken is similar in nature to that in [6], where the continuous

1-D problem is considered, and convexity is exploited to

demonstrate sufficiency. Situations in which it is possible

to express the equations that characterise the optimality

condition more explicitly are also discussed.

Theorem 1: If hi,j , vi,j and ui,j are optimal for Problem

1, then λi,j ∈R
nh , (i, j)∈H and µi,j ∈ R

nv , (i, j) ∈ V
exist such that hi,j , vi,j , λi,j , µi,j and ui,j satisfy the set of
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equations

λN+1 = H hN+1, (4)

µM+1 = V vM+1, (5)
[

λi,j

µi,j

]

= Q

[

hi,j

vi,j

]

+S ui,j +A⊤

[

λi+1,j

µi,j+1

]

, (i, j) ∈ Q (6)

0 = R ui,j +S⊤

[

hi,j

vi,j

]

+B⊤

[

λi+1,j

µi,j+1

]

, (i, j) ∈ Q (7)

[

hi+1,j

vi,j+1

]

= A

[

hi,j

vi,j

]

+Bui,j , (i, j) ∈ Q (8)

h0 = a (9)

v0 = b (10)

where we have defined λN+1 ,
[

λ⊤
N+1,0 . . . λ⊤

N+1,M

]⊤
,

µM+1 ,
[

µ⊤
0,M+1 . . . µ⊤

N,M+1

]⊤
, h0 ,

[

h⊤
0,0 . . . h⊤

0,M

]⊤
,

v0 ,
[

v⊤
0,0 . . . v⊤N,0

]⊤
, a ,

[

a⊤
0 . . . a⊤

M

]⊤
and b ,

[

b⊤0 . . . b⊤N
]⊤

. Conversely, if equations (4-10) admit solu-

tions hi,j , vi,j , λi,j , µi,j and ui,j , then the corresponding

hi,j , vi,j and ui,j minimize J(h|H, v|V , u|Q) subject to the

constraints (1-2).

Proof: As aforementioned, the necessity of the conditions

(4-10) for an optimum was established in [5]. Here we are

interested in proving sufficiency. Let hi,j , vi,j , ui,j , λi,j , µi,j

be such that equations (4-10) hold. Let ĥi,j , v̂i,j , ûi,j be such

that all the constraints of the optimal control problem are

satisfied, i.e.

[

ĥi+1,j

v̂i,j+1

]

= A

[

ĥi,j

v̂i,j

]

+ B ûi,j ∀ (i, j) ∈ Q (11)

ĥ0,j = aj j ∈ [0, N ], v̂i,0 = bi i ∈ [0,M ]. (12)

The aim here is to show that

J(h|H, v|V , u|Q) ≤ J(ĥ|H, v̂|V , û|Q). By defining

pi,j ,
[

h⊤
i,j v⊤

i,j u⊤
i,j

]⊤
, p̂i,j ,

[

ĥ⊤
i,j v̂⊤

i,j û⊤
i,j

]⊤

,

ĥN+1 ,

[

ĥ⊤
N+1,0 . . . ĥ⊤

N+1,M

]⊤

and

v̂M+1 ,
[

v̂⊤
0,M+1 . . . v̂⊤

N,M+1

]⊤
, one obtains

J(ĥ|H, v̂|V , û|Q)−J(h|H, v|V , u|Q) = ĥ
⊤
N+1HĥN+1

+v̂
⊤
M+1V v̂M+1

−h
⊤
N+1HhN+1 − v

⊤
M+1V vM+1

+
∑

(i,j)∈Q

(

p̂⊤i,jΠp̂i,j − p⊤i,jΠpi,j

)

.

The positive semidefiniteness of the quadratic forms

(hN+1 − ĥN+1)
⊤H(hN+1 − ĥN+1)

and

(vM+1 − v̂M+1)
⊤V (vM+1 − v̂M+1)

implies that

ĥ
⊤
N+1HĥN+1 − h

⊤
N+1HhN+1 ≥ 2h⊤

N+1H(ĥN+1 − hN+1),

v̂
⊤
M+1V v̂M+1 − v

⊤
M+1V vM+1 ≥ 2v⊤

M+1V (v̂M+1 − vM+1).

Likewise p̂⊤i,jΠp̂i,j − p⊤i,jΠpi,j ≥ 2p⊤i,jΠ(p̂i,j − pi,j) for all

(i, j) ∈ Q, so that

J(ĥ|H, v̂|V , û|Q)−J(h|H, v|V , u|Q) ≥

2h⊤
N+1H(ĥN+1 − hN+1)

+2v⊤
M+1V (v̂M+1 − vM+1)

+
∑

(i,j)∈Q

2p⊤i,jΠ(p̂i,j − pi,j).

By virtue of (6) it follows that for any (i, j) ∈ Q,

Π pi,j =





λi,j−A⊤
1λi+1,j−A⊤

3µi,j+1

µi,j−A⊤
2λi+1,j−A⊤

4µi,j+1

−B⊤
1 λi+1,j−B⊤

2 µi,j+1





As such,

p⊤i,jΠ(p̂i,j−pi,j) = λ⊤
i+1,jhi+1,j − λ⊤

i+1,j ĥi+1,j

+µ⊤
i,j+1vi,j+1 − µ⊤

i,j+1v̂i,j+1

+λ⊤
i,j(ĥi,j−hi,j) + µ⊤

i,j(v̂i,j−vi,j)

where equation (8) has been used. By (4) it follows that
∑

(i,j)∈Q

λ⊤
i+1,j (hi+1,j−ĥi+1,j) − λ⊤

i,j(hi,j − ĥi,j)

=
M
∑

j=0

λ⊤
N+1,j(hN+1,j − ĥN+1,j)

−

M
∑

j=0

λ⊤
0,j(h0,j − ĥ0,j)

= −λ⊤
N+1(ĥN+1 − hN+1)

−

M
∑

j=0

λ⊤
0,j(h0,j − ĥ0,j)

= −h
⊤
N+1H(ĥN+1 − hN+1)

−
M
∑

j=0

λ⊤
0,j(h0,j − ĥ0,j)

and, similarly,
∑

(i,j)∈Q

µ⊤
i,j+1 (vi,j+1−v̂i,j+1) − µ⊤

i,j(vi,j − v̂i,j)

= −v
⊤
M+1V (v̂M+1 − vM+1)

−
N

∑

i=0

µ⊤
i,0(vi,0 − v̂i,0),

so that

J(ĥ|H, v̂|V , û|Q)−J(h|H, v|V , u|Q)

≥ −

M
∑

j=0

λ⊤
0,j(h0,j − ĥ0,j) −

N
∑

i=0

µ⊤
i,0(vi,0 − v̂i,0),

the right hand-side of which is zero in view of (9-10).

Equations (4–10) constitute a two-dimensional two-point

boundary value problem, and in general this is difficult to

solve. On the other hand, in many cases of interest an explicit

solution can be obtained. For example, when R is positive
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definite, (7) can be solved for ui,j , so that (6) and (8) can

be written together as

[

I BR−1B⊤

0 A⊤−SR−1B⊤

]









hi+1,j

vi,j+1

λi+1,j

µi,j+1









=

[

A−B R−1S⊤ 0
SR−1S⊤−Q I

]









hi,j

vi,j

λi,j

µi,j









Note that the matrices appearing in the former are in-

vertible if and only if A − B R−1 S⊤ is invertible. In

this case, by using the general response formula given in

[1], a matrix Φi,j can be explicitly determined yielding
[

h⊤
i,j v⊤

i,j λ⊤
i,j µ⊤

i,j

]⊤
= Φi,j C, where C is a constant

vector that can be computed by imposing the boundary

conditions (4–5) and (9–10).

If Q = S R−1 S⊤, or in the even more particular case of

minimum energy control as considered in [5, Section IV],

where Q and S are both zero, the costate dynamic equation

(6) can be solved backwards as described in [5], to obtain

the same solution to this problem found for the first time in

[7] by resorting to different techniques.

A. Optimal cost

For 1-D LQR optimal control problem, it is well-known

that the optimal value of the performance index can be

expressed as the difference x⊤(0)λ(0)−x⊤(N)λ(N), where

x denotes the system state, λ denotes the costate and N is

the length of the time horizon (i.e. frame of interest). In the

following theorem it is shown that a similar result holds for

2-D Roesser models.

Theorem 2: Let h, v, u, λ and µ satisfy equations (4-10).

The optimal cost J⋆ is given by

J⋆ = h
⊤
N+1H hN+1 + v

⊤
M+1V vM+1

+

M
∑

j=0

(

h⊤
0,jλ0,j − h⊤

N+1,jλN+1,j

)

+

N
∑

i=0

(

v⊤
i,0µi,0 − v⊤

i,M+1µi,M+1

)

Proof: Let xi,j ,
[

h⊤
i,j v⊤

i,j

]⊤
and

c ,
∑

(i,j)∈Q

[

x⊤
i,j u⊤

i,j

]

Π

[

xi,j

ui,j

]

.

By (7), (6) and (8) we get

c =
∑

(i,j)∈Q

x⊤
i,jQxi,j + x⊤

i,j S ui,j − u⊤
i,j B⊤

[

λi+1,j

µi,j+1

]

=
∑

(i,j)∈Q

x⊤
i,j

([

λi,j

µi,j

]

−A⊤

[

λi+1,j

µi,j+1

])

− u⊤
i,j B⊤

[

λi+1,j

µi,j+1

]

=
∑

(i,j)∈Q

x⊤
i,j

[

λi,j

µi,j

]

− (Axi,j + B ui,j)
⊤

[

λi+1,j

µi,j+1

]

=
∑

(i,j)∈Q

[

h⊤
i,j v⊤

i,j

]

[

λi,j

µi,j

]

−
[

h⊤
i+1,j v⊤

i,j+1

]

[

λi+1,j

µi,j+1

]

Since
∑

(i,j)∈Q

(

h⊤
i,jλi,j − h⊤

i+1,jλi+1,j

)

=

M
∑

j=0

h⊤
0,jλ0,j − h⊤

N+1,jλN+1,j

and
∑

(i,j)∈Q

(

v⊤
i,jµi,j − v⊤

i+1,jµi+1,j

)

=

N
∑

i=0

v⊤
i,0µi,0 − v⊤

i,M+1µi,M+1,

the expression of the optimal cost readily follows.
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