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Abstract—In this paper, the uplink and downlink sum mean-
squared error (MSE) duality for multi-hop amplify-and-for ward
(AF) multiple-input multiple-output (MIMO) relay channel s is
established, which is a generalization of several sum-MSEuality
results. Unlike the previous results that prove the duality by
calculating the MSEs for each stream directly, we introducean
interesting perspective to the relation of the uplink-dowrink
duality based on the Karush-Kuhn-Tucker (KKT) conditions Fig. 1.  Uplink multi-hop AF MIMO relay system.
associated with both uplink and downlink transceiver desig
optimization problems.

Index Terms—Amplify-and-forward, uplink-downlink duality,
MIMO relay.

we establish the uplink-downlink duality based on the
KKT conditions of the uplink and downlink transceiver
optimization problems, which is an interesting perspec-
tive to the relation of the uplink-downlink duality.

One of the key techniques to solve the downlink optimiza- 2) The duality result established in this paper generalizes
tion problems is to transform the downlink problem into an the results in [5] and [6], which also use KKT conditions
uplink problem via uplink-downlink duality relationshipnd to prove the sum-MSE duality for single-hop and two-
solve it in the uplink domain since the uplink channel has a hop MIMO channels, respectively.
simpler mathematical structure, and less coupling of ée= 3) The sum-MSE duality for multi-hop AF MIMO relay

The MSE duallty for a Single-hop was established under a Systems in [7] is established under the assumption
sum-power constraint when perfect channel state infoonati that receivers employ linear minimum MSE (MMSE)

(CSI) is available at all the nodes in the system in [1]-[2],  receivers, the sum-MSE duality result in this paper is
and for imperfect CSI in [3]-[5]. It has been shown that any applicable to any kind of linear receiver.

MSE point achievable in the uplink can also be achieved in

the_ downlink_ under the sum-power cpnstraint. Recently, tl&%d ()2 denote transpose and conjugate transpose, respec-
uplink-downlink sum-MSE duality for smgle-hpp systemg-[1 tively. E[], Iy and t(-) denote the statistical expectation,
[5] has been e_xtended to two-hop qnd multi-hop AF MlMQ\f x N identity matrix and trace, respectively. For matrices
relay systems in [6] and [7], respectivély. . ®1_c (A;) 2 A;...A,. For example ®3 (A,) 2
Due to the multi-hop topology, MSE is a complicated: A A:l 1 N i 2
. . . A1 A9 A3 and ®i:3 (Az) = A3A2A1. Hi:l (Al) =
function of the source, relay and receiver matrices, whic A, forl < k and is equal to identity matrix far>
makes both the proof of duality and the optimization protdem Lo K - q y '
associated with multi-hop MIMO relay networks much more Il. SYSTEM MODEL

challenging than the existing works with simpler network Similar to the system model in [7]-[8], we consider a

topology. As a direct application of the duality results #j,[ wireless communication system witki users,L — 1 (L > 2)

[8], the compllc_ated downlink MIMO mult hop transcelyerhalf-duplex AF relay nodes, and one base station (BS) node,
(source precoding, relay amplifying and receiver matjices d . . :

. . - .~ ““where each node is equipped with multiple antennas. The
design problems can be carried out efficiently by focusing on

. . N number of antennas at tlith relay node of the uplink system
an equivalent uplink MIMO multi-hop relay system. is N, | = 1,....L — 1 and the BS is equipped with;
A. Contributions of This Work antennas. Due to the path-loss in the wireless channels, we
1) MSE duality in [1]-[4] and [7] is established by calculat2SSUMe that the signal transmitted by fiie node can only
ing the MSE of each stream of all users directly. Herbe received by thél + 1)th node, so the signal transmitted

§tom the source node travel throudh hops to reach to its
INote that signal-to-interference-noise ratio (SINR) dyaior multi-hop deSt'na_t'on' Th.a'th use.r IS equped W'thMi antennas, and
AF MIMO relay systems has been established in [8]. transmits (receives)/; independent data streams.

I. INTRODUCTION

The notations used in this paper are as follows”



A. Uplink MIMO Relay System

The uplink MIMO multi-hop relay system is shown in
Fig. 1. The data streans$'’ € CM:*! is linearly precoded by
the ith user with the source precoding mati € CM:*M:
and theith user transmits the precoded signal veatgr=
B;sVL to the first relay node. We assume complex, zero mean,
independent and identically distributed (i.i.d.) dataeatns
with E [sZUL (sZUL)H} = I,;,. The received signal at the first
relay node is given by

Fig. 2. Downlink multi-hop AF MIMO relay system.

K
. UInH]
YW =3 GBs 4w @ EYF=E[(sF —sf") (s -87)"] =1, K can
i=1 be written as
whereG; € CN1*Mi i =1, ... K, is the channel between EUL =1, — W,A;.G,B; — BIGHAHWH
- . . .. J J JEALY D 7 7 L J
the first relay node and thigh user andv; is the Ny x 1 i.i.d. WA AVLAE & ¢ 1 WH g
additive white Gaussian noise (AWGN) vector at the firstyela + W [Ar L +Cr] W; (®)

The [th relay node,l = 1,...,L — 1, appliesF; 11 € \whereAUL — Zfil G,B,BI/GH.
C NN to amplify and forward the received signals, which is The transmission power consumed at ttrerelay node is

given by
o r(E x5 (x5)" )=t (Fros (A AVA +C) L))

x5 = Fraylk, l=1,...,L—1
. . . The uplink transceiver optimization problem is formulated
whereyL € CNi*1 is the signal thatth relay node receives, P P P

l=1,...,L—1. From (1) and (2), the received signal vector ) as UL
at the relay noded,= 1,...,L — 1, and the received signal Flg;f{,vj Ztr (Ej ) (10)
vector at the BSI(= L) can be written as . g=1
K H UL
s.t. tr(B;B") < P, 11
=AY GBs v, I=1...L (3 ; (B,By) < ™, (11)

i=1
, , _ _ tr (F; (A1 AVEAT ¢ ) FI) < PV vi(12
where A, is the equivalent channel matrix between the first (Fu (A -t G FiY) < B (12)
relay node and théth relay node, ands; is the equivalent where (11) and (12) are the total transmit power at the
noise vector given by users and transmission power constraints at each relay, node

2 (H respectively, and®’%, 1 = 1,..., L, are the power limit.
A {®i—l( Fi), 1=2,...,L
=

=1 (4} B. Downlink MIMO Relay System

. j The downlink communication system is shown in Fig. 2.
9= {Zj_Q ( i=1 (HiFi)Vj—l) tvi, =2, "L(5) The BS linearly precodes the data streams of usef’ €
Vi, 1=1. CMix1 with the matrix T; € CNexMi gnd transmits the
N, x 1 precoded signal vectoEl.K:1 T;sPL. We assume

HereH, € O >N, [ =2,... L, is the channel matrix at complex data streams with zero mean, i.i.d data streams with
the ith hop, andv; is the i.i.d. AWGN at the(l + 1)-th node [SDL (SDL)H _ 1,,. The signal vector received of size

of the uplink system] =1, ..., L. We assume that all noises . L * ' .
P Y / A . . Np_1 x 1 at the first relay node of the downlink system can
are complex signals with zero mean and unit variance. be written as

From (5), the covariance matrix &f; can be written as,

IN17

K
>, ( I (HF)QL, (FF Hgf)) yPr =HY S TisPh 4ny (13)
CIZE[\_’I\_QH}: + Iy, l=2,...,L, . =
Ty I=1 wheren; € CVt-1*1 js the AWGN vector at the first relay.
19 - =

The ith relay node in the downlink systerh=1,...,L —

. NNy ’
To estimate the data streams transmitted, the BS applie§ QpplleleH € ¢t to amplify and forward the

R H H DL __ DL _
linear receiver, i.e8VL = W;yYL, which is given by recelvedDilgnals],vLexllH =Zipyr o, L= 1., L—1,
wherey;”* € CVr=*4 | = 1,...,L — 1, is the received
UL K oL ' signal vector at théth relay node in the downlink channel
s;7 =W, |AL ZGiBiSi +ve|, j=1....,K(7) andis expressed as
=1
K

where W is the weight matrix of the linear receiver of size yPL — K, HY ZTiSsz T fy, I=1,...,L —1(14)

M; x Nr. From (3) and (7), the MSE matrix of thgh user,

=1



Here K; is the equivalent channel matrix between the firsthere (23) and (24) are the total transmit power at the
relay node and th&h relay node in the downlink channel andusers and transmission power constraints at each relay, node

n, is the equivalent noise vector given by respectively, and’>P%, [ =1,..., L, are the power limit.
K, — {@i o (HEZp i), 1=2,.. L ](15) [1l. UPLINK-DOWNLINK DUALITY
In, o, b=1 The optimization problems (10)-(12) and (22)-(24) are both
Z o L o1 (HEZp 1) 0y, non-convex, but the objective functions and constraintaein
i, = Ty, 1=2,... . [—1 (16) are continuously d?fferentiable. Thus the uplink-do_\/\_/hliﬂu-
n -1 ality can be established based on their KKT conditions [5].
1, =
wheren; is the i.i.d. AWGN vector at théth relay node, A The KKT Conditions of the Uplink Problem
[ =1,...,L—1. The received signal vector at thth user  The Lagrangian function of (10)-(12) can be written as
1=1,..., K can be expressed as
K K
vy =Gl ZryP" +n) £V =3t (BYY) + 0 | Dot (BBY) - P (29)
S (i = '
=Gl'Z, K, H{ Y TisPh +n) (17) L
i=1 + 3 N (tr (Fr (A AYFA + € FY) — BT
Whereﬁ(g) = GfIZLﬁL,1+n(L’) is the equivalent noise vector =2
at theith user. where); and);, [ = 2, ..., L, are the Lagrange multipliers of

From (16), the covariance matrix af;, CP”, at theith the power constraints in (11) and (12). The gradient fumctio
relay node,l = 2,...,L — 1 and the covariance matrix of of (25) with respect tdB;, F;, W}, is given by
ﬁ(L’), C( at thezth user can be written as

L
-1 L—k L—1+1 H A Hxz\7H _ HAH wH
cPL — Z ( ® (HEZ; 1) (zf ., H, )> Gy AL W (MIMk + g)\le AL FFA Gy
k=1 \m=L—I+1 m=L—k K
+1In, 0 l=2,...,L—-1, (18) + Z GkHAfWJHWjALGk By, (26)
cl) =GHzZ,CPLZI G, + 1y, (19) i=1
To estimate the data streamﬁL, jth user applies a linear . -
receiver matrixD; € CMi*M; je. Pl = D vy = ZHH H (FEHA) WHBHGH H (FHHI) =
1,..., K, which is written as et e s
K L k—1
sPL = D,GHZ K HY Y TisPL + Dnf). (20) ZHH [1 FInZ)ywiw,a, AVt ] (FER)
i=1 m=k+1 m=2
The MSE matrix of thejth user, j = 1,..., K, i.e, EPY = Kk L m
E {(SJDL - é.?L) (S.?L - éJDL)H} can be written as + e HkH l:er (FFHF) WfWJ @ (H,F;)
EDL k—1

FPH?) + M Fr (A1 AYEAY |+ Cyo
~ Ty, - D,GYZ, K, HIT, - THH, K 77G,DY < 1L )+ AF (A b1+ Cr1)

4D, [GHZLKL,lADLKH, ZHG-+C(j)} DI (21) L -1
J J L-17L ™) L J + Z Y H (FﬁHTIi) FfIFlAl—lAUL
whereAPL = HE S K T, TFH,. I=k+1 m= k+1
The transmission power consumed at ttierelay node kl:[ u H Z . ll_[l u H) "
X FI/HT)+ ) Hf F, H,)F'F
(B [xB% (B5)"]) = tr(Zees (KAPIKSCPRYZE) . S
The downlink transceiver optimization problem is formelat J At
P P x ) HF) [ (FIH]) (27)
i=l—1 m=j

K
. I¥inD Z tr (E?L) (22)
1, L5, = ’
- BYGIAY =W, (ALAY" AT +CL),  (28)

K
tr (T, TH) < PPL, (23) "
; ( I ) ' where we have used the identities from [9] tHA 1;; ) =

tr (2 (K APYKE | + CPE)ZH) < PPE vi24) A, 2B2) _ gr (2MAZT) 4 ouB2) BT ogng



@) — 1190G) 4 ;97| Herei = /—1. The other KKT

conditions associated with (10)-(12) are given below

K
Ztr (B;Bf) —pPIE | =0 (29)
A (tr (Fi (A1 AYFAL + Cy) B — PPE) =0 (30)
K
A\ >0, Ztr (B;B) < P/~ (31)

j=1
N >0, tr(F (A AYFAL + Cy) F) < PPE(32)
Lemma 1. [Relation between the Lagrange multipliers, and
the relay amplifying and receive matrices.]

For any solutions satisfying the KKT conditions (26)-(32),

the Lagrange multipliers are

2K (wiw)

AL PLUL (33)
tr (FY (B S WHWHL+ ALy, | )Fy)
AL71: UL (34)
P/t
1 L1 K
A= mtr Fﬁkl ® HﬂFfr{Hrle ZWijHL
l m=I+1 j=1
I+1
® Fm+1Hm+ Z )\k ® Hm m-+1
m=L—1 k=142 m=Il+1
I+1
®Fm+1Hm+)\l+11Nl> Fl+1> ,l=1,...,L-2.(35)
m=k—1
Proof: See Appendix A in [10]. |

B. The KKT Conditions of the Downlink Problem

The Lagrangian function of (22)-(24) can be written as

K K
=Y w(EP) 4o | Do (TyT) - PP (36)

L
+> o (tr (Z (Ki APPKF + CP
=2

) ZH) PlDL)

wherea; anday, [ =2, ..., L, are the Lagrange multipliers of

the power constraints in (23) and (24). The gradient fumctio
A —1+1

of (36) with respect tdl'y, Z;, Dy, is given by
H KY 727G, Df

L
= <o¢11Mk +> oH K 2/ 2K, HY
=2

127 G,DID;GHZ, K, 1H] | T, (37)

+ZHLK

ar—1

K
S xPa,pitin, v
j=1

K
=Y x{"G,DI'D,GIz, K APLY [V
j=1

k—1 L—c
ZX(L)G D,DIGIZ, <Z | L b

7j=1 c=1m=2

< Y() + arZi (K1 APPY (D + CPE)

L
+ > axz (KHADLY,§1>
I=k+1

k—1 L—n
+Z ® H,IiZLmHY;(Cn)),

n=1m=L—1+2

(38)

THH KY 728G,
- D, (GEZLKL,lADLKf,le’Gk + C<L’“>) .(39)

The other KKT conditions associated with the problem (22)-

(24) fori =2,..., L are given below
K
Ztr (T,T) - PP =0 (40)
(tr (Zy (Zi1 APPZ + CPh) z2f') — PPR) =0 (41)
K
ap >0, > tr(T;T) <PPr (42)
j=1
o >0, tr(Z, (2 APPZ + CPh) z[") < PPh.(43)
In (38), X\ and Y are defined as
x(© _ QL2 (H,Z | .,), otherwise (44)
=
IN]? k=c
L—k+2 :
YO — Q.72 (2, H,), otherwise 45)
INL—kJrl’ k=c+1

Lemma 2. For any solutions satisfying the KKT condi-
tions (37)-(43), the Lagrange multipliers are

Yopy tr (D«Df)
PDT
tr (zg (Zfi G,DID,GH + aLIM) zL)

= (47)
Pph

2
1
= PT (ZflJrZ ( ® Hizf—zﬂrz

L—I+1 i=l—1

(46)

oy =

-1
X ZG DX D; GH®ZL o HY

=1 1=2

+ZQL —j+2 ® H,Z]_ z+2®ZL i+2H

i=l—1

+ aL—l+2INL,1) Zi142), = 37 ooy L (48)



Proof: Similar to the proof of Lemma 1, Lemma 2 can 100 : ‘ :
also be proved easily. [ | '

C. SuUm-MSE Uplink-Downlink Duality

Theorem 1. Assume that the uplink transceiver matrices,
{Fi}, (B}, {W,}, satisfy the uplink KKT condi- 10 ]
tions (26)-(32). LetT; = /1/A.WH, D; = VA BY,
Z, = \/)\L_H_Q/)\L_l_‘_lFfflJrQ, l=2,...,L. Then, when
the power constraint of théh node of the downlink channel
is swapped with the power constraint of thié — [ + 1)-
th node of the uplink channel, i.eRPL = PUL | 1 = 102 ‘ ‘ ‘ ‘
1,..., L, sum-MSE achieved byF;}/,, {B; }J<,, {W;} /<, Y pwm

can also be achieved by the downlink transceiver matrices,

{Zi} o, {T;}<,,{D;},, which satisfy the downlink KKT Fig. 3. MSE versus. K =3, M =2, N = 10, PYL = PPL = 20dB,
conditions (37)-(43). Conversely, assume that the downlid?”" =P, =P =2, L.

transceiver matrice§Z;}/,, {T;}/<,,{D,}L, satisfy the

KKT conditions (37)-(43). LetB; = /1/a D}, W; = o _

JaTH and Fp_jp = \/WZzH I = 9 7. Figs. 3 that the curves overlap, indicating that both thénlpl
p - _ , yeuos L. ; ) )

Then, when the power constraint of théh node of the and downlink systems achieve the same sum-MSE.

uplink channel is swapped with the power constraint of V. CONCLUSION

tth(L - é;’ 1)-th node of the downlink chan_nel, €. We have established the uplink-downlink sum-MSE duality
1y . PL#}P l =1,...,L, the sum-MSE achieved by; 5 multi-hop AF MIMO relay system, which is a general-
{_Zz}zzza {Tq'}jzlv {Dj}jzl cLan also t}){e ach|eve£ by the UPization of several sum-MSE duality results. By analyzing th
link transceiver matrice§F:};_,, {B; };_, {W;};21, which w1 conditions of the uplink and downlink minimum sum-
satisfy the uplink KKT conditions (26)-(32). MSE transceiver optimization problems, it is shown thathbot

Proof: See Appendix B in [10]. m theuplink and the downlink systems share the same ach&vabl
Theorem 1 shows that sum-MSE achieved by a transceiwm-MSE region.
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