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Multifocusing imaging over an irregular topography

Boris Gurevich∗, Shemer Keydar‡, and Evgeny Landa‡

ABSTRACT

If seismic data are acquired over an irregular
topography, standard elevation statics methods may be
inaccurate because the assumption of vertical raypaths
will no longer be valid. An effective solution to the prob-
lem of irregular topography can be found through the use
of the multifocusing method, in which large supergath-
ers of seismic traces are stacked, each of which can span
many common midpoint (CMP) gathers. This can be
done by extending the multifocusing moveout formula
to explicitly account for nonzero elevations of the source
and receiver, as well as their horizontal coordinates.
Implementation of this formula into the multifocusing
algorithm is straightforward because estimating the nec-
essary raypath information (i.e., emergence angles) is an
integral part of the algorithm. The extended multifocus-
ing moveout correction can be applied directly to the
data acquired in areas of irregular topography without
the need for prior elevation static corrections. Synthetic
tests on such data show that the proposed technique
results in a better alignment of reflection events.

INTRODUCTION

Many seismic processing algorithms assume the data were
recorded on a flat surface. When data are acquired over an ir-
regular topography, elevation static corrections are often used
to bring the data to a flat datum plane before NMO correc-
tion. However, raypaths are assumed to be vertical in static
processes; the elevation corrections are imprecise and may in-
troduce significant errors for large source–receiver offsets in
areas with complex structure and large elevation variations.

Various approaches have been made to this problem, includ-
ing wave equation datuming (Berryhill, 1984; Shtivelman and
Canning 1984; Fowler and Schroeder, 2000) and prestack mi-
gration directly from irregular surfaces (Wiggins, 1984; Reshef,
1991; Beasley and Lynn, 1992). However, these methods are
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often computationally expensive and require prior knowledge
of the velocity–depth model.

Thus, a simple ray-based procedure that could be used
in the context of NMO/dip moveout (DMO)/stacking would
be desirable. However, if the effects of nonvertical raypaths
are significant, the time shifts caused by the elevation effect
are no longer the same for the whole trace (static), but they are
dependent on the emergence angles of the rays for individual
reflections. Since raypaths are unknown beforehand, the cor-
rection for the elevation effect cannot be performed before,
and independently of, any other processing. Dai and Cheadle
(1995) propose a simple extension of the standard NMO equa-
tion to account for arbitrary source–receiver elevations. But
since dip/emergence angle information is unavailable during
the conventional NMO process, this procedure requires a spe-
cial angle estimation algorithm.

An appealing alternative solution to the irregular topog-
raphy problem can be obtained through the use of a mul-
tifocusing method (Gelchinsky et al., 1999a,b; Landa et al.,
1999). The multifocusing method proposed by Gelchinsky et al.
(1999a, b) belongs to a group of methods that can be charac-
terized as macromodel-independent imaging methods. These
methods, which also include the common-reflection-surface
method (Mann et al., 1999; Jäger et al., 2001) and optical stack
(de Bazelaire, 1988), are described in a collection of papers
edited by Hubral (1999). Macromodel-independent imaging
methods represent a new alternative to the classical processing
sequence of NMO, DMO, and stacking. They represent a new
transformation of 2-D multicoverage prestack data into a simu-
lated zero-offset stacked section. This transformation involves
stacking large supergathers of seismic traces, each of which can
span many CMP gathers. Stacking is made possible by using a
generalized moveout correction. For a given source–receiver
pair this correction depends on three parameters: wave-front
curvatures of the normal wave and the normal-incidence-point
(NIP) wave (Hubral, 1983) and the emergence angle of the
central ray. For each supergather and each zero-offset time T0,
these parameters are obtained through a coherence analysis
of the moveout-corrected supergather. Because estimation of
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the emergence angle is an integral part of the multifocusing
algorithm, its extension to areas of irregular topography is
straightforward and can be achieved without additional cost.

MULTIFOCUSING MOVEOUT FOR A FLAT
ACQUISITION SURFACE

Let us first consider acquisition on a flat surface (Figure 1).
The central ray starts at C (the central point) with an angle β to
the downward vertical (measured clockwise). It hits reflector
6 at the normal-incidence point N and returns to C. A paraxial
ray from the source S hits 6 at R, intersects the central ray at
P, and arrives back at the surface at the receiver location G.
These two rays define a fictitious focusing wave which initially
has the wavefront6S, is reflected by the reflector6, focuses at
P, and emerges again at C with the wavefront 6G. The travel-
time difference between the paraxial ray SRGand the central
ray CNC (the so-called multifocusing moveout) can be written
(Gelchinsky et al., 1999a; Landa et al., 1999)

1τ = 1τ+ +1τ−, (1)

where

1τ+ =
√

(R+)2 + 2R+XS sinβ + X2
S− R+

V0
(2)

is the traveltime difference between the SRPsection of the
paraxial ray and the corresponding C N P section of the central
ray. The equation

1τ− =
√

(R−)2 + 2R−XG sinβ + X2
G − R−

V0
(3)

solves the traveltime difference between the PG section of the
paraxial ray and the corresponding PC section of the central
ray. Here,

R+ = 1+ σ
1

RN
+ σ

RNIP

, (4)

R− = 1− σ
1

RN
− σ

RNIP

, (5)

and σ is the so-called focusing parameter, given by

σ = XS− XG

XS+ XG + 2
XSXG

RNIP
sinβ

. (6)

FIG. 1. Ray diagram of multifocusing moveout correction for
a flat surface.

In equations (2)–(6), XS and XG are the source and receiver
offsets for a given ray with respect to the central ray; R+ and
R− are the radii of curvature of the fictitious wavefronts6S and
6G in the vertical plane, respectively; and V0 is the near-surface
velocity, which is assumed to be constant along the surface. Fi-
nally, RN and RNIP denote the radii of curvature of the two fun-
damental wavefronts, corresponding to the normal (N) wave
and normal-incidence-point (NIP) wave, respectively (Hubral,
1983). The wavefront of the normal wave is formed by normal
rays emitted by different points on the reflector (as in an ex-
ploding reflector scenario). The NIP wavefront is formed by
a point source placed at the point where the zero-offset ray
emitted from the central point hits the reflector. The double
square root in equation (1) can be understood using the con-
cept of an auxiliary medium (Perroud et al., 1999; Cruz et al.,
2000), which can be defined as a homogeneous medium whose
velocity equals the near-surface velocity V0. In the auxiliary
medium both the central and paraxial rays are represented by
combinations of straight-line segments.

Quantities R+ and R− are radii of curvature of the fictitious
wavefronts 6S and 6G, respectively. It is clear from Figure 1
that, for a given central ray, the radii R+ and R− depend upon
the position of point P where the paraxial ray intersects the
central ray and thus upon the position of the source and re-
ceiver that define the paraxial ray. Equations (4) and (5) give
the radii of curvature of these fictitious wavefronts R+ and R−

in terms of the fundamental radii of curvature RN and RNIP,
which are defined by the central ray only and are the same
for all source–receiver pairs in the vicinity of the central ray.
The dependence of the radii R+ and R− on the position of
the source and receiver (or on the position of P on the cen-
tral ray) is contained in the focusing parameter σ , which has
a very clear physical interpretation. In particular, σ = 0 means
that R+ = R− = RN , which implies that P coincides with the
center of curvature of the normal wavefront (or of the reflec-
tor) and corresponds to the case of coinciding source and re-
ceiver (zero-offset configuration). The case σ = 1 (σ =−1) im-
plies R− = 0 (R+ = 0) and corresponds to the situation where
the central point coincides with the source (receiver) location.
When σ =∞, then R+ = R− = RNIP—the situation where P co-
incides with N.

EXTENSION TO AN ACQUISITION SURFACE WITH
TOPOGRAPHIC RELIEF

To apply the multifocusing method to seismic data acquired
on an irregular surface, equations for the multifocusing move-
out correction need to be extended to the situations where the
source, receiver, and central point have different vertical co-
ordinates. The derivations of the corresponding equations for
the moveout correction and the focusing parameter are given
below. For better clarity, the derivation is performed for a flat
dipping reflector under a homogeneous overburden (Figure 2).
For an inhomogeneous overburden this corresponds to an
experiment in the auxiliary medium.

Moveout correction

The extension of equations (2) and (3) to an irregular to-
pography is straightforward. Let x0, y0 be the horizontal and
vertical coordinates of the central point C and let xS, yS and
xG, yG be the coordinates of the source S and the receiver G,
respectively, with rightward and upward positive directions for
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the x- and y-axes. The x-coordinate of the point of intersec-
tion of the reflector and the datum y= y0 is assumed to be
zero. Let YG= yG− y0 be the receiver elevation from the da-
tum, XG= xG− x0 the receiver offset from the central trace, and
l =

√
Y2

G + X2
G. From the triangle CPG we get

1τ− = 1
v0

[PG− PC]

= 1
v0

[
√

(R−)2 + l 2 + 2R−l sin(β + φ)− R−],

where φ is the angle between the CG vector and the positive
x-axis, such that it is positive for positive XG and YG. We write

sin(β + φ) = sinβ cosφ + cosβ sinφ

= XG

l
sinβ + YG

l
cosβ.

Thus,

1τ− = 1
v0

× [√(R−)2 + (Y2
G + X2

G

)+2(XG sinβ +YG cosβ)R− − R−
]
.

(7)

Similarly,

1τ+ = 1
v0

× [√(R+)2 + (Y2
S + X2

S

)+ 2(XS sinβ+YS cosβ)R+−R+
]
.

(8)

xp = − y0x1 − y0xG − x0(cotβ)x1 + x0(cotβ)xG + xG y1 − yGx1

−y1 + yG + (cotβ)x1 − (cotβ)xG
,

yp = − (cotβ)xG y1 − (cotβ)yGx1 + y0 y1 − y0 yG − x0(cotβ)y1 + x0(cotβ)yG

−y1 + yG + (cotβ)x1 − (cotβ)xG
.

Focusing parameter

In general, the focusing parameter is a means of obtaining
R+ and R−. Conversely, if we know R+ and R−, we can obtain
σ from equations (4) and (5). For a flat dipping reflector the
normal-wave radius RN is infinite. Thus,σ can be obtained from
just one of these equations. In particular, equation (5) for a flat
reflector (RN =∞) has the form

R− = σ − 1
σ

RNIP,

σ = XS− XG − (YS− YG) tanβ

XS+ XG − (YS+ YG) tanβ + 2(XSXG − YSYG)+ (XSYG + XGYS)(cos2 β − sin2 β)
RNIP

sinβ

. (13)

where RNIP =CN and R− =PC (P is the focusing point). Solv-
ing for σ yields

σ = − RNIP

R− − RNIP
. (9)

To find σ , we need to determine the coordinates of P, which is
the point of intersection of the normal ray CN and the reflected
ray RG, originating from the imaginary source S∗.

The location of S∗ is defined by the location of the source
S(xs, ys) and the reflector6, the coordinates of which are given
by the equation

y6(x) = y0 − (x − x0) tanβ − RNIP

cosβ
.

To find the coordinates x1, y1 of the imaginary source S∗, we
first calculate the distance d= AS from the source S to the
reflector:

d = (yS− y6(xS)) cosβ = (yS− y0) cosβ

+ (xS− x0) sinβ + RNIP.

The coordinates x1, y1 can then be written as

x1 = xS− 2d sinβ,

y1 = yS− 2d cosβ.

Point P is defined as the intersection point of the ray S
∗
G,

x − xG

x1 − xG
= y− yG

y1 − yG
, (10)

with the normal ray C N passing through the central point,

y = y0 + (x − x0) cotβ. (11)

Solving the system of equations (10) and (11) for x and y yields

The radius R− can be found as the distance PC between the
intersection point P and the central point C:

R− = y0 − yp

cosβ

= y0x1 − y0xG + xG y1 − yGx1 − x0 y1 + x0 yG

−y1 sinβ + yG sinβ + (cosβ)x1 − (cosβ)xG
.

(12)

Finally, substituting R− into equation (9) yields
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Note that for a flat datum YS=YG= 0, equation (13) reduces
to equation (6).

IMPLEMENTATION

To use multifocusing stacking for a flat topography for each
T0 on each zero-offset trace, it is necessary to determine three
imaging parameters:β, RNIP, and RN . In the conventional NMO
stack, only a single parameter, the stacking velocity, must be
determined. Implementation of the multifocusing method is
based on a coherence analysis of the signal on the observed
seismic traces. The data are moveout corrected along differ-
ent traveltime curves according to equations (1)–(6) to find
the curve closest to the traveltime curve for the signal. The
unknown parameters β, RNIP, and RN are estimated by find-
ing a set of parameters that maximizes the semblance function.
Semblance is calculated over the supergather in a specified time
window along trial traveltime curves. Maximization of the sem-
blance is achieved by a nonlinear optimization method. This
correlation procedure is repeated for each central point and for
each time sample, forming a multifocusing time section. Each
sample on this section represents the optimal stacked value cor-
responding to the optimal values of the moveout parameters
β, RNIP, and RN . Multifocusing parameter estimation requires
global maximization of the semblance as a function of the three
multifocusing parameters. In the presence of noise, this func-
tion may have many maxima; thus, the search for a global max-
imum poses a global optimization problem. A systematic ap-
proach to this problem that utilizes unique properties of the
objective function has been proposed by Jäger et al. (2001).

The multifocusing stacking of data acquired in areas with an
irregular topography is performed in exactly the same way as
for a flat topography, except that equations (7), (8), and (13) are
used in place of equations (2), (3), and (6). Since the topogra-
phy is assumed to be known, multifocusing parameter estima-
tion requires searching for the same triplet of parameters—β,
RNIP, and RN—as in the case of a flat surface. One parameter

FIG. 2. Ray diagram of multifocusing moveout from
topography.

FIG. 3. Velocity–depth model with topographic variation.

that must be fixed is the elevation of the central point y0. To ob-
tain a stacked section for a flat datum, this parameter should be
set the same for all central traces, i.e., y0= constant. However,
one can also choose to construct a stacked section from the ac-
tual acquisition surface, or from a floating datum, by choosing
an appropriate datum elevation curve y0(x0). Practical expe-
rience has shown that multifocusing parameter estimation is
more stable when the elevation of the central point is closer to
the actual acquisition surface. From this perspective, the use of
a floating datum is probably the most practical.

EXAMPLES

To illustrate how the multifocusing algorithm could handle
data from an area of irregular topography, a synthetic wave-
field was developed. The model was a simple three-layer case
(Figure 3) with an irregular topography, and it was computed

FIG.4. Synthetic CMP gathers for the model shown in Figure 3.
(Top) Original gathers. (Middle) Gathers after elevation statics
and NMO correction. (Bottom) Gathers after multifocusing
moveout correction.

FIG. 5. Velocity–depth model with rough topography simu-
lating a foothills environment. Velocities vary from 2000 m/s
(blue) to 6000 ms/s (red).
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FIG. 6. Synthetic CMP gather for the model shown in Fig-
ure 5. (Left) Original gather. (Center) After elevation statics
and NMO correction. (Right) After multifocusing moveout
correction.

using a simple ray-tracing algorithm. The data were processed
using two processing flows. In the first flow, the data were
moved to a flat datum by applying elevation statics. The re-
sulting flat-datum data were subjected to the standard veloc-
ity analysis followed by NMO correction. In the second flow,
the data were analyzed with the automatic multifocusing pa-
rameter estimation extended to handle irregular topography.
The process used supergathers each containing 15 common
midpoint (CMP) gathers. Then, the multifocusing moveout
correction with the estimated multifocusing parameters was
applied to the original prestack data. Figure 4 shows three
CMP gathers. The original CMP gathers are shown at the top,
the NMO-corrected gathers are in the middle, and the gathers
after multifocusing are at the bottom. It is clear that the multifo-
cusing moveout correction aligns the reflections at large offsets
more satisfactorily than the conventional approach based on
elevation statics and NMO correction.

For a more realistic example, a synthetic data set was com-
puted using a finite-difference method for a complex model
with a rough topography simulating a foothills environment
(Figure 5). Figure 6 shows one of the CMP gathers from this
data set. As a result of the rough topography, the reflection
moveouts in the original CMP gather (left) are quite compli-
cated. The central panel shows the same gather after applying
elevation statics, velocity analysis, and NMO correction. The
right panel shows the same gather after automatic multifocus-
ing parameter estimation, and application of the multifocusing
moveout correction. Again, we see that the multifocusing
method improves the alignment of the reflected events.

CONCLUSIONS

The multifocusing method can be extended to account for the
irregular topography of the acquisition surface. This is done by

extending the multifocusing moveout correction formula for
an irregular acquisition surface. The extended multifocusing
moveout correction depends explicitly on the elevations of the
source and receiver as well as their horizontal coordinates. Im-
plementation of this formula into the multifocusing algorithm
is straightforward because estimation of the necessary raypath
information (i.e., emergence angles) is an integral part of the
algorithm.

Extended multifocusing moveout corrections can be applied
directly to the data acquired in areas with irregular topogra-
phy without the need for prior elevation static corrections. Our
results show a better alignment of reflection events in two ex-
amples where the assumption of vertical raypaths, on which
the elevation statics approach is based, is no longer valid.
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2000, The common reflecting element (CRE) method revisited:
Geophysics, 65, 979–993.

Dai, N., and Cheadle, S., 1995, Two-parameter NMO processes from
surface: Ann. Mtg., Can. Soc. Expl. Geophys., Extended Abstracts,
135–136.

de Bazelaire, E., 1988, Normal moveout revisited—Iingomogeneous
media and curved interfaces: Geophysics, 53, 143–157.

Fowler, P., and Schroeder, S., 2000, An accurate and efficient hybrid
method for poststack topographic datuming: 70th Ann. Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2036–2039.

Gelchinsky, B., Berkovitch, A., and Keydar, S., 1999a, Multifocusing
homeomorphic imaging, part 1—Basic concepts and formulae: J.
Appl. Geophys., 42, 229–242.

——— 1999b, Multifocusing homeomorphic imaging, part 2—
Multifold data set and multifocusing: J. Appl. Geophys., 42, 243–260.

Hubral, P., 1983, Computing true amplitude reflections in a laterally
inhomogeneous earth: Geophysics, 48, 1051–1062.

——— Ed., 1999, Macro-model independent seismic reflection imag-
ing: J. Appl. Geoph., 42, 137–348.
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