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Abstract

This paper considers a class of optimal control problems for general nonlinear time-delay systems with free
terminal time. We first show that for this class of problems, the well-known time-scaling transformation
for mapping the free time horizon into a fixed time interval yields a new time-delay system in which the
time-delays are variable. Then, we introduce a control parameterization scheme to approximate the control
variables in the new system by piecewise-constant functions. This yields an approximate finite-dimensional
optimization problem with three types of decision variables: the control heights, the control switching times,
and the terminal time in the original system (which influences the variable time-delays in the new system).
We develop a gradient-based optimization approach for solving this approximate problem. Simulation results
are also provided to demonstrate the effectiveness of the proposed approach.
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1. Introduction

The terminal time in an optimal control prob-
lem can be either fixed or variable. For optimal
control problems with variable terminal time, there
are two main categories: problems in which the ter-
minal time is a free decision parameter [1, 2]; and
problems in which the terminal time varies accord-
ing to some stopping criterion [3, 4, 5]. This paper
is concerned with problems in the first category.

For such problems, a well-known time-scaling
transformation is available for mapping the free ter-
minal time into a fixed time point [3, 6]. This
transformation is very useful because it converts
an optimal control problem with free terminal time
into a standard optimal control problem with fixed
terminal time, which can (in principle) be solved
using conventional methods. However, when ap-
plied to time-delay optimal control problems, the
time-scaling transformation results in unexpected
difficulties. In particular, as we will show in this
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paper, applying the time-scaling transformation to
a time-delay system yields a new system in which
the time-delays are variable and actually depend on
the terminal time. Consequently, time-delay opti-
mal control problems with free terminal time are a
major computational challenge.

We are only aware of one reference (reference
[7]) that tackles this class of problems. This ref-
erence describes a two-stage optimization approach
in which the terminal time is optimized in the outer
stage, and the control function is optimized in the
inner stage. The advantage of this approach is that
the inner stage only requires solving optimal con-
trol problems with fixed terminal time—a task that
can be readily implemented using existing numeri-
cal techniques such as control parameterization [8]
or state discretization [9]. However, this approach
also has two disadvantages: (i) a sequence of opti-
mal control problems must be solved, not just one;
and (ii) the time-delays in the governing dynamic
system must be commensurate with each other.

The purpose of this paper is to develop an alter-
native method that does not suffer from these lim-
itations. Our approach involves applying the con-
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trol parameterization method, in which the control
is approximated by a piecewise-constant function,
to the equivalent problem obtained via the time-
scaling transformation. This yields an approximate
finite-dimensional optimization problem, whose de-
cision variables are the heights for the approximate
control, the switching times for the approximate
control, and the terminal time in the original sys-
tem (which influences the variable time-delays in
the transformed system). The main contribution of
this paper is an algorithm for computing the gradi-
ents of the cost and constraint functionals with re-
spect to these decision variables. By exploiting this
algorithm, the approximate problem can be solved
efficiently using gradient-based optimization tech-
niques. We conclude the paper by validating this
approach on a numerical example involving the har-
vesting of a renewable resource.

2. Problem formulation

2.1. Optimal control problem

Consider the following nonlinear control system
with m time-delays:

ẋ(t) = f(t, x(t− α0), . . . , x(t− αm), u(t)),

t ∈ [0, T ], (1a)

x(t) = φ(t), t ≤ 0, (1b)

where x(t) ∈ Rn is the state vector ; u(t) ∈ Rr is the
control vector ; T > 0 is a free terminal time; α0 = 0
and αi > 0, i = 1, . . . ,m, are given time-delays ; and
f : R × R(m+1)n × Rr → Rn and φ : R → Rn are
given functions.

The terminal time T in system (1a) is a free de-
cision variable. Define

T := {γ ∈ R : Tmin ≤ γ ≤ Tmax}, (2)

where Tmin and Tmax are the lower and upper
bounds for the terminal time, respectively. Any
T ∈ T is called an admissible terminal time.

Furthermore, define

U := {v ∈ Rr : aj ≤ vj ≤ bj, j = 1, . . . , r}, (3)

where aj and bj , j = 1, . . . , r, are the lower and up-
per bounds for the jth control variable, respectively.
Any measurable function u : [0,∞) → Rr such that
u(t) ∈ U for almost all t ≥ 0 is called an admissible
control. Let U denote the class of all such admissi-
ble controls. Accordingly, any pair (T, u) ∈ T × U
is called an admissible pair for system (1).

We assume throughout this paper that the fol-
lowing conditions are satisfied.

Assumption 1. The functions f and φ are con-
tinuously differentiable.

Assumption 2. There exists a real number L >
0 such that for all η ∈ [0, Tmax], y

i ∈ Rn, i =
0, . . . ,m, and v ∈ U ,

|f(η, y0, . . . , ym, v)| ≤ L(1 + |y0| + · · · + |ym|),

where | · | denotes the Euclidean norm.

Assumptions 1 and 2 ensure that system (1) has a
unique solution x(·|u) corresponding to each u ∈ U
[10]. This solution is called the state trajectory.

We suppose that system (1) is subject to the fol-
lowing canonical constraints:

gk(T, u) = Φk(T, x(T |u))

{

= 0, k ∈ E ,

≥ 0, k ∈ I,
(4)

where E is the index set for the equality constraints;
I is the index set for the inequality constraints; and
Φk : R×Rn → R, k ∈ E ∪I, are given continuously
differentiable functions. Note that we can easily
transform integral constraints into the form of (4)
by introducing additional state variables. For ex-
ample, consider the following integral term:

∫ T

0

L(t, x(t − α0), . . . , x(t− αm), u(t))dt,

where L : R × R(m+1)n × Rr → R is a given con-
tinuously differentiable function. Clearly, this term
can be replaced by xn+1(T ), where xn+1 is a new
state variable satisfying the dynamics

ẋn+1(t) = L(t, x(t − α0), . . . , x(t− αm), u(t)),

t ∈ [0, T ],

xn+1(t) = 0, t ≤ 0.

Thus, there is no loss of generality in ignoring inte-
gral terms in the constraint functions (4).

We now state our optimal control problem as fol-
lows.

Problem (P). Find an admissible pair (T, u) ∈
T × U such that the cost functional

g0(T, u) = Φ0(T, x(T |u)) (5)

is minimized subject to the canonical constraints
(4), where Φ0 : R × Rn → R is a given continu-
ously differentiable function.
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2.2. Problem transformation

Problem (P) is difficult to solve numerically be-
cause the time-delay system (1) must be integrated
over a variable time horizon. For non-delay sys-
tems, this difficulty can be overcome by applying
the following time-scaling transformation to map
the variable interval [0, T ] into the fixed interval
[0, 1]:

t = t(s) = Ts, (6)

where s ∈ [0, 1] is a new time variable. Clearly,
s = 0 corresponds to t = 0, and s = 1 corresponds
to t = T . This transformation is well-known in
the optimal control of non-delay systems. We now
investigate its use for the time-delay system (1).
Let x̃(s) = x(t(s)) and ũ(s) = u(t(s)). Then

˙̃x(s) =
d

ds

{

x(t(s))
}

=
dx(t(s))

dt

dt(s)

ds
= Tf(Ts, x(Ts− α0), . . . , x(Ts− αm), u(Ts))

= Tf(Ts, x̃(s− α0T
−1), . . . , x̃(s− αmT

−1), ũ(s)).

The initial condition (1b) becomes

x̃(s) = φ(Ts), s ≤ 0.

Thus, the original control system (1) can be trans-
formed into the following form:

˙̃x(s) = Tf(Ts, x̃(s− α0T
−1),

. . . , x̃(s− αmT
−1), ũ(s)), s ∈ [0, 1], (7a)

x̃(s) = φ(Ts), s ≤ 0. (7b)

Let Ũ be the class of all measurable functions
ũ : [0, 1] → Rr such that ũ(s) ∈ U for almost all
s ∈ [0, 1]. Any pair (T, ũ) ∈ T × Ũ is called an
admissible pair. Let x̃(·|T, ũ) denote the solution of
system (7) corresponding to a given admissible pair
(T, ũ) ∈ T × Ũ . Then the canonical constraints (4)
become

g̃k(T, ũ) = Φk(T, x̃(1|T, ũ))

{

= 0, k ∈ E ,

≥ 0, k ∈ I.
(8)

Thus, Problem (P) is equivalent to the following
optimal control problem with fixed terminal time.

Problem (EP). Find an admissible pair (T, ũ) ∈
T × Ũ such that the cost functional

g̃0(T, ũ) = Φ0(T, x̃(1|T, ũ)) (9)

is minimized subject to the canonical con-
straints (8).

Note that the time-delays in system (7a) depend
on the decision parameter T . Thus, when applied
to time-delay systems, the time-scaling transfor-
mation (6) yields a non-standard optimal control
problem with variable time-delays. This is quite
different from the situation for non-delay systems,
in which the time-scaling transformation (6) yields
a standard optimal control problem that can be
solved using conventional techniques. Neverthe-
less, despite the complications caused by the vari-
able time-delays, we will show in the next section
that Problem (EP) can be solved using a combina-
tion of the control parameterization technique and
gradient-based optimization methods.

3. Numerical algorithm

3.1. Control parameterization

To solve Problem (EP), we apply the control pa-
rameterization scheme [8]. This involves approxi-
mating the control by a piecewise-constant function
with a finite number of discontinuities.

For a given integer q ≥ 1, let τ0 = 0 and τq+1 = 1.
Within the interval [0, 1], we allow the approximate
piecewise-constant control to switch value at the
intermediate time points τl, l = 1, . . . , q. These
switching times satisfy the constraints

τl − τl−1 ≥ ∆, l = 1, . . . , q + 1, (10)

where ∆ > 0 is the minimum switching duration.
Thus, the approximate control can be expressed as

ũq(s) =

q+1
∑

l=1

σlχ[τl−1,τl)(s), (11)

where, for a given interval I, χI : R → R denotes
the indicator function of I defined by

χI(s) =

{

1, if s ∈ I,

0, otherwise.
(12)

For ũq to be an admissible control, we must have
σl = (σl

1, . . . , σ
l
r)

⊤ ∈ U for each l = 1, . . . , q+1. Let
Ξ denote the set of all σ = ((σ1)⊤, . . . , (σq+1)⊤)⊤ ∈
R(q+1)r satisfying this requirement. Furthermore,
let Γ denote the set of all τ = (τ1, . . . , τq)

⊤ ∈ Rq

satisfying constraint (10). Clearly, for each (σ, τ) ∈
Ξ×Γ, the corresponding piecewise-constant control
ũq is admissible for Problem (EP), i.e., ũq ∈ Ũ .
Accordingly, any triple (T, σ, τ) ∈ T × Ξ × Γ is
called an admissible triple.
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After applying the control approximation (11),
the dynamic system (7) becomes

˙̃x(s) = Tf(Ts, x̃(s− α0T
−1), . . . , x̃(s− αmT

−1), σl),

s ∈ [τl−1, τl), l = 1, . . . , q + 1, (13a)

x̃(s) = φ(Ts), s ≤ 0. (13b)

Let x̃q(·|T, σ, τ) denote the solution of system (13).
Then, the canonical constraints (8) become

g̃q
k(T, σ, τ)

= Φk(T, x̃q(1|T, σ, τ))

{

= 0, k ∈ E ,

≥ 0, k ∈ I.
(14)

On this basis, we obtain the following finite-
dimensional approximate problem.

Problem (EP(q)). Find an admissible triple
(T, σ, τ) ∈ T × Ξ × Γ such that the cost functional

g̃q
0(T, σ, τ) = Φ0(T, x̃

q(1|T, σ, τ)) (15)

is minimized subject to the canonical con-
straints (14).

Problem (EP(q)) is a finite-dimensional opti-
mization problem whose decision variables are the
heights of the approximate control, the switching
times of the approximate control and the termi-
nal time in the original system. It is well known
that variable switching times pose a significant chal-
lenge for conventional numerical optimization tech-
niques [11, 12, 13]. To overcome this challenge,
an extended version of the time-scaling transfor-
mation (6) is typically used to map the variable
switching times to fixed time points in a new time
horizon [11]. However, as discussed in [8], this ex-
tended time-scaling transformation is not applica-
ble to time-delay systems. Indeed, the transfor-
mation fails even for time-delay systems with fixed
time-delays, let alone time-delay systems with vari-
able time-delays such as system (13). Thus, a new
approach is needed to solve Problem (EP(q)).

3.2. Gradient computation

Problem (EP) can be approximated by a se-
quence of finite-dimensional optimization problems
in the form of Problem (EP(q)). In essence, each
Problem (EP(q)) is a constrained mathematical
programming problem that can be solved using
gradient-based optimization techniques [14]. How-
ever, to do this, the gradients of the cost and con-
straint functionals are required.

Note that the cost functional (15) is in a similar
form to the canonical constraints (14). Hence, the
gradients of the cost and constraint functionals can
be computed in a unified fashion. Define

f̂ l(s|T, σ, τ)

= Tf(Ts, x̃q(s− α0T
−1), . . . , x̃q(s− αmT

−1), σl),

where x̃q(·) = x̃q(·|T, σ, τ). Furthermore, define

ψ(s|T, σ, τ) =

{

T φ̇(Ts), if s < 0,

f̂ l(s|T, σ, τ), if s ∈ [τl−1, τl).

In the following, we use the notation ∂xi to denote
differentiation with respect to the ith delayed state
in f . Accordingly, let

∂f̂ l(s|T, σ, τ)

∂t

= T
∂f(Ts, x̃q(s− α0T

−1), . . . , x̃q(s− αmT
−1), σl)

∂t
,

∂f̂ l(s|T, σ, τ)

∂xi

= T
∂f(Ts, x̃q(s− α0T

−1), . . . , x̃q(s− αmT
−1), σl)

∂xi
,

∂f̂ l(s|T, σ, τ)

∂u

= T
∂f(Ts, x̃q(s− α0T

−1), . . . , x̃q(s− αmT
−1), σl)

∂u
,

where x̃q(·) = x̃q(·|T, σ, τ). Furthermore, define

Si
l (T, τ) = [τl−1 − αiT

−1, τl − αiT
−1).

For each k ∈ {0} ∪ E ∪ I, consider the following
costate system:

λ̇k(s) = −

q+1
∑

l=1

m
∑

i=0

(

∂f̂ l(s+ αiT
−1|T, σ, τ)

∂xi

)⊤

× λk(s+ αiT
−1)χSi

l
(T,τ)(s), s ∈ [0, 1), (16)

with the terminal conditions

λk(1) =

(

∂Φk(T, x̃q(1|T, σ, τ))

∂x

)⊤

, (17)

λk(s) = 0, s > 1, (18)

where χSi
l
(T,τ) is as defined in (12). Note that,

if s > 1 − αiT
−1, then s + αiT

−1 > 1, and
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thus the value of ∂f̂ l(s+ αiT
−1)/∂xi is undefined.

However, this value has no effect on the costate
dynamics (16) because λk(s + αiT

−1) = 0 when
s > 1 − αiT

−1 (see equation (18)).

Let λq
k(·|T, σ, τ) denote the solution of the costate

system (16)-(18) corresponding to the given triple
(T, σ, τ) ∈ T ×Ξ×Γ. We now express the gradients
of (14) and (15) with respect to the terminal time
T in terms of λq

k(·|T, σ, τ).

Theorem 1. Let k ∈ {0} ∪ E ∪ I. Then

∂g̃q
k(T, σ, τ)

∂T
=
∂Φk(T, x̃q(1))

∂T
+

q+1
∑

l=1

∫ τl

τl−1

L̄l(s)ds

+

q+1
∑

l=1

m
∑

i=1

∫ τl−αiT
−1

τl−1−αiT−1

L̂i
l(s)ds, (19)

where x̃q(·) = x̃q(·|T, σ, τ),

L̄l(s) = λq
k(s|T, σ, τ)⊤

(

s
∂f̂ l(s|T, σ, τ)

∂t

+

m
∑

i=1

αi

T 2

∂f̂ l(s|T, σ, τ)

∂xi
ψ(s− αiT

−1|T, σ, τ)

+ T−1f̂ l(s|T, σ, τ)

)

(20)

and

L̂i
l(s) = λq

k(s+ αiT
−1|T, σ, τ)⊤

× s
∂f̂ l(s+ αiT

−1|T, σ, τ)

∂xi
φ̇(Ts)χ(−∞,0)(s). (21)

Proof. Let w : [0,∞) → Rn be an arbitrary func-
tion that is continuous and differentiable almost ev-
erywhere. Then we may express g̃q

k as follows:

g̃q
k(T, σ, τ)

= Φk(T, x̃q(1)) +

q+1
∑

l=1

∫ τl

τl−1

w(s)⊤(f̂ l(s) − ˙̃xq(s))ds

= Φk(T, x̃q(1)) +

q+1
∑

l=1

∫ τl

τl−1

w(s)⊤ f̂ l(s)ds

−

∫ 1

0

w(s)⊤ ˙̃xq(s)ds,

where we have omitted the arguments T , σ and τ
in x̃q(·|T, σ, τ) and f̂ l(·|T, σ, τ) for simplicity.

Applying integration by parts to the last integral
term gives

g̃q
k(T, σ, τ) = Φk(T, x̃q(1)) − w(1)⊤x̃q(1) + w(0)⊤φ(0)

+

∫ 1

0

ẇ(s)⊤x̃q(s)ds+

q+1
∑

l=1

∫ τl

τl−1

w(s)⊤f̂ l(s)ds.

(22)

Differentiating (22) with respect to T gives

∂g̃q
k(T, σ, τ)

∂T
=

(

∂Φk(T, x̃q(1))

∂x
− w(1)⊤

)

∂x̃q(1)

∂T

+
∂Φk(T, x̃q(1))

∂T
+

∫ 1

0

ẇ(s)⊤
∂x̃q(s)

∂T
ds

+

q+1
∑

l=1

∫ τl

τl−1

w(s)⊤
{

s
∂f̂ l(s)

∂t
+

m
∑

i=1

(

αi

T 2

∂f̂ l(s)

∂xi

× ψ(s− αiT
−1)

)

+ T−1f̂ l(s)

}

ds

+

q+1
∑

l=1

m
∑

i=0

∫ τl

τl−1

w(s)⊤
∂f̂ l(s)

∂xi

∂x̃q(s− αiT
−1)

∂T
ds,

(23)

where we have omitted the arguments T , σ and τ
in ψ(s − αiT

−1|T, σ, τ). Performing a change of
variable in the last term on the right-hand side of
(23) yields

q+1
∑

l=1

m
∑

i=0

∫ τl

τl−1

w(s)⊤
∂f̂ l(s)

∂xi

∂x̃q(s− αiT
−1)

∂T
ds

=

q+1
∑

l=1

m
∑

i=0

∫ τl−αiT
−1

τl−1−αiT−1

(

w(s+ αiT
−1)⊤

×
∂f̂ l(s+ αiT

−1)

∂xi

∂x̃q(s)

∂T

)

ds. (24)

Since x̃q(s) = φ(Ts) for all s ≤ 0, equation (24) can
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be rewritten as

q+1
∑

l=1

m
∑

i=0

∫ τl

τl−1

w(s)⊤
∂f̂ l(s)

∂xi

∂x̃q(s− αiT
−1)

∂T
ds

=

q+1
∑

l=1

m
∑

i=0

∫ τl−αiT
−1

τl−1−αiT−1

(

w(s+ αiT
−1)⊤

×
∂f̂ l(s+ αiT

−1)

∂xi

∂x̃q(s)

∂T
χ[0,+∞)(s)

)

ds

+

q+1
∑

l=1

m
∑

i=1

∫ τl−αiT
−1

τl−1−αiT−1

(

w(s+ αiT
−1)⊤

× s
∂f̂ l(s+ αiT

−1)

∂xi
φ̇(Ts)χ(−∞,0)(s)

)

ds, (25)

where χ[0,+∞) and χ(−∞,0) are as defined in (12).
Choosing w(·) = λq

k(·|T, σ, τ) and substituting (25)
into (23) yields

∂g̃q
k(T, σ, τ)

∂T
=

(

∂Φk(T, x̃q(1))

∂x
− λq

k(1)⊤
)

∂x̃q(1)

∂T

+
∂Φk(T, x̃q(1))

∂T
+

q+1
∑

l=1

∫ τl

τl−1

L̄l(s)ds

+

∫ 1

0

{

λ̇q
k(s)⊤ +

q+1
∑

l=1

m
∑

i=0

(

λq
k(s+ αiT

−1)⊤

×
∂f̂ l(s+ αiT

−1)

∂xi
χSi

l
(T,τ)(s)

)}

∂x̃q(s)

∂T
ds

+

q+1
∑

l=1

m
∑

i=1

∫ τl−αiT
−1

τl−1−αiT−1

L̂i
l(s)ds, (26)

where we have omitted the arguments T , σ and τ
in λq

k(·|T, σ, τ), and L̄l and L̂i
l are as defined in (20)

and (21), respectively. Substituting (16)-(18) into
(26) completes the proof.

The next theorem gives the gradients of (14) and
(15) with respect to σ.

Theorem 2. Let k ∈ {0}∪E∪I and l ∈ {1, . . . , q+
1}. Then

∂g̃q
k(T, σ, τ)

∂σl
=

∫ τl

τl−1

λq
k(s|T, σ, τ)⊤

∂f̂ l(s|T, σ, τ)

∂u
ds.

Proof. Let w(·) be as defined in the proof of Theo-
rem 1. Recall from (22) that

g̃q
k(T, σ, τ) = Φk(T, x̃q(1)) − w(1)⊤x̃q(1) + w(0)⊤φ(0)

+

∫ 1

0

ẇ(s)⊤x̃q(s)ds+

q+1
∑

ρ=1

∫ τρ

τρ−1

w(s)⊤f̂ρ(s)ds,

where, as in the proof of Theorem 1, we have omit-
ted the arguments T , σ and τ for clarity.

Differentiating this equation with respect to σl

gives

∂g̃q
k(T, σ, τ)

∂σl
=

(

∂Φk(T, x̃q(1))

∂x
− w(1)⊤

)

∂x̃q(1)

∂σl

+

∫ 1

0

ẇ(s)⊤
∂x̃q(s)

∂σl
ds+

∫ τl

τl−1

w(s)⊤
∂f̂ l(s)

∂u
ds

+

q+1
∑

ρ=1

m
∑

i=0

∫ τρ

τρ−1

w(s)⊤
∂f̂ρ(s)

∂xi

∂x̃q(s− αiT
−1)

∂σl
ds.

(27)

Performing a change of variable in the last term on
the right-hand side of (27) yields

q+1
∑

ρ=1

m
∑

i=0

∫ τρ

τρ−1

w(s)⊤
∂f̂ρ(s)

∂xi

∂x̃q(s− αiT
−1)

∂σl
ds

=

q+1
∑

ρ=1

m
∑

i=0

∫ τρ−αiT
−1

τρ−1−αiT−1

(

w(s+ αiT
−1)⊤

×
∂f̂ρ(s+ αiT

−1)

∂xi

∂x̃q(s)

∂σl

)

ds. (28)

Since x̃q(s) = φ(Ts) for all s ≤ 0, it is clear that
∂x̃q(s)/∂σl = 0 for all s ≤ 0. Thus, (28) can be
rewritten as

q+1
∑

ρ=1

m
∑

i=0

∫ τρ

τρ−1

w(s)⊤
∂f̂ρ(s)

∂xi

∂x̃q(s− αiT
−1)

∂σl
ds

=

q+1
∑

ρ=1

m
∑

i=0

∫ τρ−αiT
−1

τρ−1−αiT−1

(

w(s+ αiT
−1)⊤

×
∂f̂ρ(s+ αiT

−1)

∂xi

∂x̃q(s)

∂σl
χ[0,+∞)(s)

)

ds, (29)

where χ[0,+∞) is as defined in (12). Substituting
(29) into (27) yields

∂g̃q
k(T, σ, τ)

∂σl
=

(

∂Φk(T, x̃q(1))

∂x
− w(1)⊤

)

∂x̃q(1)

∂σl

+

∫ τl

τl−1

w(s)⊤
∂f̂ l(s)

∂u
ds+

∫ 1

0

{

ẇ(s)⊤

+

q+1
∑

ρ=1

m
∑

i=0

(

w(s+ αiT
−1)⊤

∂f̂ρ(s+ αiT
−1)

∂xi

× χSi
ρ(T,τ)(s)

)}

∂x̃q(s)

∂σl
ds.

Choosing w(·) = λq
k(·|T, σ, τ) and applying (16)-

(18) completes the proof.
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The final theorem gives the gradients of (14) and
(15) with respect to τ .

Theorem 3. Let k ∈ {0}∪E∪I and l ∈ {1, . . . , q}.
Then

∂g̃q
k(T, σ, τ)

∂τl
= λq

k(τl|T, σ, τ)
⊤f̂ l(τl|T, σ, τ)

− λq
k(τl|T, σ, τ)

⊤f̂ l+1(τl|T, σ, τ). (30)

Proof. Let w(·) be as defined in the proof of Theo-
rems 1 and 2. Recall from (22) that

g̃q
k(T, σ, τ) = Φk(T, x̃q(1)) − w(1)⊤x̃q(1) + w(0)⊤φ(0)

+

∫ 1

0

ẇ(s)⊤x̃q(s)ds+

q+1
∑

ρ=1

∫ τρ

τρ−1

w(s)⊤f̂ρ(s)ds,

where, as in the proof of Theorems 1 and 2, we have
omitted the arguments T , σ and τ for clarity.

Differentiating this equation with respect to τl
gives

∂g̃q
k(T, σ, τ)

∂τl
=

(

∂Φk(T, x̃q(1))

∂x
− w(1)⊤

)

∂x̃q(1)

∂τl

+

∫ 1

0

ẇ(s)⊤
∂x̃q(s)

∂τl
ds

+ w(τl)
⊤f̂ l(τl) − w(τl)

⊤f̂ l+1(τl)

+

q+1
∑

ρ=1

m
∑

i=0

∫ τρ

τρ−1

(

w(s)⊤
∂f̂ρ(s)

∂xi

∂x̃q(s− αiT
−1)

∂τl

)

ds.

(31)

Performing a change of variable in the last term on
the right-hand side of (31) yields

q+1
∑

ρ=1

m
∑

i=0

∫ τρ

τρ−1

w(s)⊤
∂f̂ρ(s)

∂xi

∂x̃q(s− αiT
−1)

∂τl
ds

=

q+1
∑

ρ=1

m
∑

i=0

∫ τρ−αiT
−1

τρ−1−αiT−1

(

w(s+ αiT
−1)⊤

×
∂f̂ρ(s+ αiT

−1)

∂xi

∂x̃q(s)

∂τl

)

ds. (32)

Clearly, since x̃q(s) = φ(Ts) for all s ≤ 0, equation
(32) can be rewritten as

q+1
∑

ρ=1

m
∑

i=0

∫ τρ

τρ−1

w(s)⊤
∂f̂ρ(s)

∂xi

∂x̃q(s− αiT
−1)

∂τl
ds

=

q+1
∑

ρ=1

m
∑

i=0

∫ τρ−αiT
−1

τρ−1−αiT−1

(

w(s + αiT
−1)⊤

×
∂f̂ρ(s+ αiT

−1)

∂xi

∂x̃q(s)

∂τl
χ[0,+∞)(s)

)

ds, (33)

where χ[0,+∞) is as defined in (12). Substituting
(33) into (31) yields

∂g̃q
k(T, σ, τ)

∂τl
=

(

∂Φk(T, x̃q(1))

∂x
− w(1)⊤

)

∂x̃q(1)

∂τl

+ w(τl)
⊤f̂ l(τl) − w(τl)

⊤f̂ l+1(τl)

+

∫ 1

0

{ q+1
∑

ρ=1

m
∑

i=0

(

w(s + αiT
−1)⊤

∂f̂ρ(s+ αiT
−1)

∂xi

× χSi
ρ(T,τ)(s)

)

+ ẇ(s)⊤
}

∂x̃q(s)

∂τl
ds.

Choosing w(·) = λq
k(·|T, σ, τ) and applying (16)-

(18) completes the proof.

On the basis of Theorems 1-3, we now propose
the following numerical procedure for computing
the gradients of the cost and constraint function-
als in Problem (EP(q)).

Step 0. Input an integer q ≥ 1 and a given triple
(T, σ, τ) ∈ T × Ξ × Γ.

Step 1. Solve the system (13) from s = 0 to s = 1
to obtain x̃q(·|T, σ, τ).

Step 2. Using x̃q(·|T, σ, τ), compute g̃q
k(T, σ, τ),

k ∈ {0} ∪ E ∪ I.

Step 3. Using x̃q(·|T, σ, τ), solve the costate sys-
tems (16)-(18) from s = 1 to s = 0 to obtain
λq

k(·|T, σ, τ), k ∈ {0} ∪ E ∪ I.

Step 4. Using x̃q(·|T, σ, τ) and λq
k(·|T, σ, τ), com-

pute ∂g̃q
k(T, σ, τ)/∂T , ∂g̃q

k(T, σ, τ)/∂σ, and
∂g̃q

k(T, σ, τ)/∂τ via the formulae in Theorems
1-3.

This procedure for calculating the gradients can
be integrated with a standard nonlinear optimiza-
tion method—e.g., sequential quadratic program-
ming [14]—to solve Problem (EP(q)) as a nonlinear
programming problem.

4. Numerical simulations

To illustrate the solution procedure outlined in
Section 3, we consider two versions of the renew-
able resource problem in [7]. To solve these prob-
lems, we wrote a Fortran program that combines
the gradient computation procedure in Section 3
with the optimization software NLPQLP [15]. This
program uses the 6th order Runge-Kutta method to
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solve the state and costate systems. Lagrange in-
terpolation [16] is used whenever the Runge-Kutta
method requires the value of the state or costate
at an intermediate time between two adjacent knot
points.

4.1. Version 1

Consider the following model of a renewable re-
source as given in [7]:

ẋ(t) = 3x(t)(1 − 0.2x(t− 0.5)) − u(t),

t ∈ [0, T ], (34)

x(t) = 2, t ≤ 0, (35)

where x(t) is the biomass population and u(t) is the
harvesting effort. The cost functional is

0.1T 2 +

∫ T

0

exp(−0.05t)(0.2x(t)−1u(t)3 − 2u(t))dt.

(36)
The following state constraint is imposed:

x(t) ≥ 2, t ∈ [0, T ]. (37)

Moreover, the control function and terminal time
satisfy, respectively, the following bound con-
straints:

u(t) ≥ 0, t ∈ [0, T ], (38)

and
T ∈ [0.6, 20]. (39)

The problem is to minimize (36) subject to the dy-
namic system (34)-(35) and the constraints (37),
(38) and (39). This problem is identical to the prob-
lem considered in [7].

Note that constraint (37) is a continuous state
inequality constraint. Using the ǫ–γ approximation
method [8], we approximate (37) by the following
integral constraint:

γ +

∫ T

0

Lǫ(x(t) − 2)dt ≥ 0, (40)

where ǫ > 0 and γ > 0 are adjustable parameters
and

Lǫ(ϑ) =















ϑ, if ϑ < −ǫ,

−
(ϑ− ǫ)2

4ǫ , if − ǫ ≤ ϑ ≤ ǫ,

0, if ϑ > ǫ.

(41)

Note that this integral constraint can be trans-
formed into the canonical form (4) by introducing
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Figure 1: The optimal piecewise-constant control for Ver-
sion 1.

an additional state variable; see Section 2 for de-
tails.

By running our program for q = 9 and ∆ = 0.02,
we obtained an optimal terminal time of T =
12.172181 and an optimal cost functional value of
−26.068641. These results are similar to the results
obtained in [7]. The optimal piecewise-constant
control is shown in Figure 1. Furthermore, the op-
timal state trajectory and the optimal costate tra-
jectory are shown in Figures 2 and 3, respectively.
In the computation process, we took ǫ = 1.0×10−2

and γ = 2.5 × 10−3 as the initial values for the
approximation parameters, adjusting them at each
step according to the ǫ–γ process. This process,
which is described fully in [8] and the references
cited therein, involves reducing γ by a factor of 2 if
the optimal solution satisfies (37), or reducing both
ǫ and γ by a factor of 10 if the solution does not
satisfy (37). We terminated the ǫ–γ process when
ǫ ≤ 1.0 × 10−8.

4.2. Version 2

Figure 2 shows that constraint (37) is never ac-
tive at the optimal solution. This is consistent with
the results in [7]. Thus, we modify the renewable
resource problem by replacing (37) with the follow-
ing continuous inequality constraint:

x(t) ≤ 4, t ∈ [0, T ]. (42)

Furthermore, we assume that the control function
and terminal time satisfy, respectively, the following
bound constraints:

u(t) ∈ [0, 3.5], t ∈ [0, T ], (43)
8
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Figure 2: The optimal state trajectory for Version 1.
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Figure 3: The optimal costate trajectory for Version 1.

and
T ∈ [0.1, 100]. (44)

Thus, our new optimal control problem is to choose
the control function u(t) such that the cost function
(36) is minimized subject to the dynamic system
(34)-(35) and the constraints (42), (43) and (44).

Using the ǫ–γ approximation method [8], we ap-
proximate (42) by the following integral constraint:

γ +

∫ T

0

Lǫ(4 − x(t))dt ≥ 0, (45)

where ǫ > 0 and γ > 0 are adjustable parameters,
and Lǫ is as defined in (41).

By running the program for q = 9 and ∆ = 0.02,
we obtained an optimal terminal time of T =
12.15657 and an optimal cost functional value of
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Figure 4: The optimal piecewise-constant control for Ver-
sion 2.
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Figure 5: The optimal state trajectory for Version 2.

−25.972427. The optimal piecewise-constant con-
trol is shown in Figure 4. The optimal state tra-
jectory is shown in Figure 5. In the computation
process, we took ǫ = 1.0× 10−2 and γ = 2.5× 10−3

as the initial values for the approximation parame-
ters, adjusting them at each step according to the
same ǫ–γ process as in Version 1. From Figure 5,
we immediately see that the continuous inequality
constraint (42) is always satisfied, and is active at
one point.

5. Conclusion

In this paper, the time-delay optimal control
problem with free terminal time was investigated.
Using the well-known time-scaling transformation,
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we transformed this optimal control problem into
an equivalent problem with fixed terminal time
and variable time-delays. We then applied the
control parameterization method to yield a finite-
dimensional approximate problem, for which a
gradient-based optimization algorithm was pro-
posed. Numerical results show that this algorithm
is highly effective at solving time-delay optimal con-
trol problems with free terminal time. It is worth
noting that the piecewise-constant control approxi-
mation method used in this paper can be extended
to piecewise-linear or piecewise-quadratic approxi-
mation schemes if a continuous control is required
(see [8]).
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