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Abstract — The Western Australian resources boom has created 
a  demand  for  a  large  amount  of  domestic  accommodations, 
known  as  mining  camps.  However,  due  to  the  absent 
infrastructure within the remote regions of Australia, the energy 
supply of these mining camps is expensive. In order to reduce the 
electricity consumption of the mining camps, the Smart Camp 
project  was  initiated.  The  system  infrastructure  consists of  a 
home  automation  based  controller,  placed  in  each  mining 
accommodation  unit  to  reduce  energy  consumption,  and  a 
centralized management unit, coordinating the controllers. Due 
to the fact that the size and complexity of mining camps may 
grow over time, the provided infrastructure of the management 
unit has to be able to evolve. One possible solution is to design a 
system  in  the  context  of  high  availability  and  horizontal 
scalability. This paper proposes a horizontally scalable and high 
availability infrastructural concept, in the context of the Smart 
Camp  project.  This  concept  also  utilizes  cost  effective  open 
source  solutions  running  on commodity  hardware.  Within  the 
context  of  horizontal  scalability  and  reliability,  this  paper 
provides an applied research outline of some of the real world 
considerations, such as open source based high availability, load 
balancing, and distributed database solutions. 

Keywords:  Smart  Camp,  Scalability,  High  Availability,  Load  
Balancing, Distributed Database, Infrastructure.

I. INTRODUCTION

The purpose of the Smart Camp project was the need for a 
reduction  of  the  electricity  costs  within  mining  camps  in 
Australia. To resolve high energy costs issues within mining 
camps, the Smart Camp project comprises the development of 
an intelligent controller, here referred to as the Smart Home 
Controller (SHC) and a management unit, here referred to as 
the Smart Camp Management Unit (SCMU). Within the scope 
of the Smart Camp project, the SHC's will be installed within 
each  mining  accommodation  unit  of  the  camp  and  hence 
aiming to transform it into a Smart Home. In order to reduce 
the  overall  energy  costs,  the  SHC will  observe  and  control 
certain  electrical  devices  within  Smart  Home’s.  Since  air 
conditioners  represent  the  main electricity  consumers  within 
mining camps,  the particular  controllers,  first  of  all,  will  be 
able  to  control  the  air  conditioner  and  with  it  the  main 
electricity consumption in each Smart Home. Each SHC will 
act  considering  residents  presence,  the  working  hours,  and 
further  preferences.  To obtain  the required preferences,  the 
controller will send specific requests to the SCMU, which will 
contain all required information for every controller within the 
mining camp.  The management  unit  will  be central  in  each 

mining camp, in order to monitor the state of each controller 
and to provide them with specific services (Figure 1).

Within the context of the Smart Camp project, a prototype 
has already been developed and deployed within the mining 
camp in Karratha,  Western  Australia.  The initially  proposed 
prototype  infrastructure  revealed  multiple  weaknesses;  It 
provided single points of failure and was not capable to keep 
up with the growing number of SHC requests.  According to 
mining camp setup, the final Smart Camp system will consist 
of about 1.500 SHC's,  which have to be coordinated by the 
central  SCMU within  the  camp.  Additionally,  the  particular 
mining camp may be extended after time, in terms of adding 
more Smart Homes’s and Smart Home Controllers to the camp, 
thus significantly increasing network demands. Therefore, the 
management unit will have to be able to process all incoming 
requests  and  provide  required  information  to  all  controllers 
within the mining camp, independent of the number of Smart 
Homes. In case of a mining camp expansion, the management 
unit must not cause a bottleneck and it has to be able to cope 
with  the  increased  number  of  requests.  Consequently,  as 
individual mining camps may grow over time both the Smart 
Camp  Management  Unit  and  its  infrastructure  must  be 
designed in such a way to be able to be easily scalable. 

Above  design  requirement  is  in  line  with  today's  key 
requirement  for  system architectures  and infrastructures,  that 
they have to be designed with foresight in terms of scalability, 
availability,  and  evolvability.  Provided  services  within 
infrastructures must remain available, even in case of one or 
more  hardware  and/or  software  outages.  Single  points  of 
failure  may  lead  to  serious  and  in  particular  expensive 
consequences,  such  as  breakdown  of  all  available  services. 
Moreover, infrastructures must avoid potential bottlenecks by 
being  easily  expandable,  considering  costs  of  required 
components.  For  this  reason,  this  paper  deals  with  the 
reasonable question: “how to build cost effective scalable and 
highly available IT infrastructures?”. In brief, highly available 

Figure 1: The Smart Camp System



systems  eliminate  single  points  of  failure  by  implementing 
redundant components. Scalable systems enable easy adaption 
of the particular system to the growing demands. Our research 
implies the analysis and familiarization of scalable and reliable 
mechanisms based on open source solutions and their adoption 
within  the  Smart  Camp  context.  In  the  end,  the  aim  is  to 
develop a highly scalable and highly available infrastructural 
concept for the SCMU, which will be able to be adapted easily 
and without expensive hardware to the growing services and 
network  requirements  of  a  mining  camp,  or  another  Smart 
Home based infrastructure.

II. RELATED WORK

Most  systems  are  developed  to  meet  only  the  current 
requirements of a particular problem. However,  requirements 
on systems change regularly over time. Within the Smart Camp 
context, requirements on mining camps, such as the number of 
Smart  Home  Controller  requests,  may  grow  over  time.  As 
consumer demands grow, the need for more system resources 
increases.  Obviously, if the demand shrinks, using too many 
resources  in  order  to  solve  the  need  would  be  a  waste  of 
money. In both cases the system will either not work properly 
or waste a lot of system resources. In order to adapt the system 
to  the  changed  requirements,  the  system  has  to  be  either 
extended  or  reduced.  Adaption  of  a  non-scalable  system to 
changed requirements  often leads to complete infrastructural 
redesign,  inducing  high  costs,  and  thus  operational  loss. 
Additionally,  a  complete  infrastructural  redesign  cannot  be 
performed without significant time investments. On the other 
hand, a scalable system ideally can be adapted cost effectively 
to the changed requirements within a short period of time and 
without the need for a complete infrastructural redesign. 

According to Theo Schlossnagle,  scalability means “how 
well does a particular solution fit a problem as the scope of that 
problem increases”[1] or decreases. In this context, to scale up 
or to scale out a system means to extend the systems resources. 
In  contrast,  to  scale  down  a  system  means  to  reduce  the 
systems resources. In general, scalability is about the adaption 
of a system to variable needs of a problem, by increasing or 
reducing its system resource capacity. This is required e.g. in 
order to provide services to a much higher number of clients. A 
distinction is made between vertical and horizontal scalability:

• A system is vertically scalable if the capacity of this 
system can be increased by replacing internal hardware 
components with more high performance components, 
such as RAM, processors, storage, etc.[1] 

• A  system  is  horizontally  scalable  if  the  resource 
capacity of this particular system can be increased by 
adding  additional  hardware  and/or  software 
components of the same type[1]. 

While a vertically scalable system is both very expensive 
and limited in its performance enhancement, which can be led 
back to Moore's Law[2], a horizontally scalable system is often 
a much more cost effective solution,  performing better as its 
counterpart.  On  the  other  hand,  additional  components  in 
horizontal scalable systems create a distributed system, which 
is not easy to deal with. Nevertheless, the vertical scalability 
approach should be considered only if solving problems using 
the  horizontal  scalability  approach  is  not  an  option,  as  the 

achieved performance enhancement is both too limited and too 
expensive[1].

In order to develop scalable and highly available systems, a 
combination  of  the  following  methodologies  must  be 
considered:

• High availability mechanisms

• Load balancing mechanisms

• Database distribution mechanisms

• Caching mechanisms

Although the individual methodologies do not present new 
solutions, their combination opens doors to innovative highly 
scalable system possibilities, required by a growing number of 
companies. A detailed introduction of the used approaches and 
their combination for Smart Camp follows.

In  his  book,  Theo  Schlossnagle  describes  a  variety  of 
potential possibilities of how to create scalable systems[1]. He 
conveys  a  fundamental  understanding  and  possible 
configurations of the above mentioned mechanisms including 
their  advantages  and  difficulties.  Additionally,  Willy  Tareau 
covers  load balancing fundamentals,  representing one of  the 
central elements of scalable systems[6]. In order to understand 
advantages, difficulties, and limits of database distribution, it is 
essential  to  internalize  the  concepts  of  Eric  Brewer's  CAP 
Theorem[4]. Additionally, Christof Strauch presents in his PhD 
Thesis  a  very  detailed  overview  of  highly  scalable  Non-
Relational Database Management Systems (NoSQL)[3], which 
can  be  compared  to  distributed  Relational  Database 
Management  Systems  (RDBMS)  in  Eben  Hewitt's  book[5]. 
Refer to  [11] for a detailed outline of the results presented in 
this paper. 

III. SYSTEM ARCHITECTURE

This section consists of three subsections; The scope of the 
first subsection (subsection A.) introduces the limitations of the 
initial  Smart  Camp  infrastructure.  The  second  subsection 
(subsection  B.)  introduces  the  chosen  components  for  a 
scalable and highly available infrastructure, which best fit the 
Smart  Camp  requirements.  The  third  and  last  subsection 
(subsection  C.) of this section presents the developed concept 
of  a  scalable  and  highly  available  infrastructure  within  the 
Smart  Camp  context,  which  can  be  easily  adapted  to 
requirements of other institutions. 

A. Initial System Architecture

The initial Smart Camp system implementation consisted of 
only two layers: The Smart Home Controllers and the actual 
Smart Camp Management Unit as shown in Figure 1 [12]. The 
SHC’s are responsible to observe and to actively control the 
state of the associated accommodation units, whereas the actual 
state of the accommodation units is associated in this context 
with the  state  of  multiple  devices  within  the  Smart  Homes, 
such  as  air  conditioner,  television,  and  multiple  sensors 
attached  to  the  particular  SHC.  By this  way,  every  SHC is 
responsible  for  autonomous  observation  and  control  of  the 
associated  Smart  Homes.  The  corresponding  SCMU  is 
responsible to manage all SHC’s within the Smart Camp and to 
provide them with required information. The SCMU within the 



initial Smart Camp system consists of one web server and one 
database server configured on only one physical machine. The 
SCMU  contains  all  configuration  information  for  each 
registered SHC within the mining camp. 

However, the initial system architecture comprises an SHC 
within every  Smart  Home of  the  mining camp.  A block  of 
Smart  Homes or a Smart Home Complex implies four Smart 
Homes. The actual Smart Camp may consist of any number of 
such Smart Home Complexes (Figure 2).

In order to establish a network communication between the 
SHC’s in  every Smart  Home and the SCMU, the following 
network infrastructure is used: Each SHC within a Smart Home 
Complex is connected to a Layer 2 switch. Every two Smart 
Home Complexes are connected to a Layer 3 switch, which 
establishes  a  Wireless  LAN  (WLAN)  communication  with 
another layer 3 switch, connected to the SCMU (Figure 2).

Since the management unit consists of only one physical 
machine, its resources are limited to the performance of only 
this particular machine. If the number of Smart Homes within 
the mining camp grows, at some point the management unit 
will slow down dramatically or even will not be able to process 
all incoming requests any more. Furthermore, in the event of 
only one hardware and/or software failure on the management 
unit  itself  or  on  the  corresponding  layer  3  switch,  the 
controller's will not be able to access the provided services of 
the management  unit  any more, thus making the system not 
reliable at all. This means, that the infrastructure of the initial 
Smart Camp system is not scalable and its provided services 
are not highly available. As long as the infrastructure within a 
mining camp is not scalable, it will not be possible to extend a 
mining camp, without a complete infrastructural redesign. As 
long as the provided services are not highly available, crashes 
of  single  components  of  the  management  unit  may  lead  to 
outages of all provided services, increasing maintenance costs. 
For these reasons,  this paper elaborates  a new, scalable,  and 
highly  available  infrastructural  concept  for  the  management 
unit,  which  allows  to  extend  a  mining  camp to  almost  any 
number  of  Smart  Homes.  In  order  to  build  a  scalable  and 
highly available architecture, the following building blocks will 
be motivated and described. 

B. Components

This paper proposes a concept of a horizontal scalable and 
highly available infrastructure within the context of large scale 
systems.  This  concept  utilizes  cost  effective  open  source 

solutions  running  on  commodity  hardware  implying  high 
availability,  load  balancing,  and  distributed  database 
components. 

1) High Availability Component
In  general,  an  IT  infrastructure,  no  matter  how  highly 

scalable it is, is highly vulnerable, as long as it provides single 
points  of  failure.  Breakdowns  of  single  hardware  and/or 
software  components  may  lead  to  a  complete  halt  of  the 
system.  To  avoid  complete  breakdowns  of  the  system,  all 
system  components  must  be  designed  redundantly.  High 
availability approaches try to eliminate single points of failure 
by  means  of  adding  redundant  hardware  and/or  software 
components  to  a  consistent  system. This  approach  increases 
reliability of the overall system by making it fault tolerant. “A 
single  point  of  failure  exists  when  a  critical  function  is 
provided by a single component. If that component fails, the 
system has no other way to provide that function and essential 
services  become  unavailable.  The  key  facet  of  a  highly 
available system is its ability to detect and respond to changes 
that could impair essential services”[7]. 

There exist two basic approaches how to make a system 
highly available: Depending on the functionality of the system, 
the components can either be set up in a master slave or in a 
multi  master  cluster  configuration.  The  first  approach 
introduces a master slave or an active-passive configuration; It 
requires at least two equally configured physical components, 
in order to provide high availability of specific services. One of 
the components will be elected as master and the remaining as 
slaves,  thus  creating  a  highly  available  cluster.  Cluster 
members monitor each other by sending periodical messages or 
heart  beats  to  other  cluster  components,  in  order  to  present 
their  availability.  If  one  component  does  not  present  its 
availability, the cluster members will wait a certain period of 
time until the particular component will be considered as down 
or not available and subsequently removed from the cluster. In 
case  the  master  becomes  unavailable,  one  of  the  slave 
components will take over the provided service responsibilities. 
In a master slave configuration, the slaves serve only to take 
over  the  provided  services  in  the  event  of  a  master  crash. 
Because of the fact that at least one passive component waits 
the most of the time to take over and does not provide any 
services, the system throughput is limited to the performance of 
only one active component.  The second approach presents  a 
multi master or an active-active configuration with at least two 
masters. This solution differs to a master slave configuration in 
such a way that it provides multiple active components at the 
same time, thus highly increasing the system throughput. In the 
Smart  Camp  scenario,  a  multi  master  High  Availability 
configuration will be preferred. 

Wackamole  is  an  open  source  based  high  availability 
solution,  originally developed at the John Hopkins University's 
Center  for  Networking  and  Distributed  Systems[8]. 
Wackamole runs on top of the group communication toolkit 
Spread,  where  every  participant  presents  a  member  of  a 
particular group. Spread is able to detect and to handle group 
changes, implying the detection of both new group members 
and  node  failures.  Additionally,  Spread  enables  a  dynamic 
recovery from network partitions. In comparison to other high 
availability solutions, such as Heartbeat, Wackamole provides 
the  possibility  to  create  peer-to-peer  based  high  available 
clusters in either active-passive or active-active configurations, 

Figure 2: Initial Architecture



including a high number of cluster components, as preferred by 
the project.  Therefore,  it  provides  a  configurable  number of 
virtual  IP  addresses  (VIP)  representing  cluster  entry  points, 
which will be equally distributed across all cluster components. 
In general, a VIP is a logical IP address, which is not fixed to a 
specific physical network interface, making it able to share the 
address between different components. Each cluster component 
may be responsible for multiple VIPs, whereas a certain VIP 
may  belong  at  the  same  time  to  maximum  one  cluster 
component. In case of node failures, the cluster rebalances the 
VIPs across the available nodes. That implies, that as long as at 
least one cluster component is up and running, all published 
VIPs  remain  available.  A  VIP  failover  is  completely 
transparent for the clients (Figure 3). 

2) Load Balancing Component
In the context of horizontal scalability, systems are able to 

be expanded with help of additional components, called load 
balancers.  This,  to  be  able  to  increase  their  data  capacity, 
processing power, and to handle a growing number of client 
requests.  Therefore,  the  growing workload  has  to  be  spread 
across  multiple  physical  machines  responsible  for  the  same 
task,  such  as  web  servers.  The  general  idea  behind  load 
distribution is to equally utilize multiple physical machines in 
order  to  combine  their  resources  to  handle  higher  loads.  In 
horizontal  scalable  systems,  load  balancers  present  main 
components,  as  they  are  able  to  distribute  incoming  loads 
horizontally  across  multiple  equally  configured  machines. 
Load balancers unify multiple machines into clusters, reducing 
the utilization of the individual components and simultaneously 
increasing the overall throughput. In highly scalable systems, 
load balancers may be installed e.g. in front of firewall-, Web-, 
and cache servers; This allows to independently scale out each 
infrastructural layer. 

Linux Virtual Server (LVS) is a Linux Kernel patch, which 
enables high performance load balancing on OSI layer 4[9]. In 
comparison to other software based load balancing solutions on 
higher OSI layers, LVS is able to handle multiple 100.000 of 
simultaneous  client  requests.  As  the  present  SCMU 
infrastructure does not require any features provided by higher 
OSI  layers  slowing  down  the  overall  provision  of  client 
requests,  LVS was  selected  for  the project.  LVS distributes 
incoming  load  across  multiple  components,  thus  creating  a 
cluster.  All  cluster  functionality,  such  as  addition  of  new 

components,  takes  place  transparently  for  the  clients.  LVS 
supports  three  different  architectural  approaches,  namely 
“Network Address Translation” (NAT), “Direct Routing”, and 
“IP Tunneling”. IP Tunneling enables, in comparison to NAT 
and Direct  Routing configurations,  a load distribution across 
multiple  machines  distributed  across  different  networks.  In 
comparison  to  other  open  source  based  solutions,  such  as 
HAProxy  or  Apache's  ModBackhand,  LVS  is  not  able  to 
provide  health  checks  without  additional  software  solutions, 
such  as  LDirectord;  LDirectord  was  specially  designed  for 
monitoring  and  administration  of  physical  servers  within  a 
LVS cluster  (Figure 4). 

3) Distributed Database Component
Today’s requirements are growing and so does the need for 

storing more data in a faster way, as well.  Furthermore,  the 
stored data should be highly available.  Scaling up databases 
vertically means buying more, bigger, and faster hard drives, 
RAM, and processors and connecting them to the database to 
satisfy the needs for the moment: Vertical scalability is both, as 
outlined earlier, limited and very expensive. But even if there 
were no limitations of vertical scalability and no need to pay 
attention  to  costs,  what  would  be  a  solution  for  high 
availability? Even the biggest  database  server  is  not  able to 
provide high availability as long as it represents a single point 
of  failure.  Besides,  if  it  comes to horizontal  scalability  of  a 
consistent  IT-infrastructure,  databases  often  represent  a 
bottleneck of the system, as only one machine is able to handle 
a  limited  number  of  both  read  and  write  operations.  In 
summary, the more operations are to be performed, the slower 
the database becomes. In order to handle a growing number of 
read  and  write  operations,  thus  satisfying  the  growing 
requirements  of  a  horizontally  scalable  infrastructure,  a 
database  must  be  able  to  scale  out  horizontally  and  hence 
distribute  the  data  across  multiple  physical  machines,  thus 
increasing  both  the  data  capacity  and  performance  of  the 
database. 

In  his  theorem,  Eric  Brewer  states  three  characteristics 
which  have  to  be  considered  when  designing  a  distributed 
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database  system:  Consistency,  Availability,  and  Partition-
Tolerance[4].  According  to  Brewer,  a  distributed  database 
system can meet only two of these characteristics at any point 
in  time.  First,  a  system  is  “Consistent”  if  every  system 
component can see the same data at any time. Second, a system 
including its  data remains “Available”,  even if  one or  more 
hardware and/or software components crash. Third, a system is 
“Partition  Tolerant”  if  it  is  able  to  proceed  operations  after 
network  failures  between  components,  thus  creating  several 
partitions.  Additionally,  “Partition  Tolerance”  enables  the 
possibility  to  dynamically  add  or  remove  new  system 
components.  Consequently,  if  a  system  does  not  require 
“Partition  Tolerance”,  such  as  local  distributed  systems,  it 
should be able to provide consistency and availability of data. 
Systems, distributed for example across multiple geographical 
areas, should be tolerant to network partitions, thus prohibiting 
availability and consistency at the same time. 

Cassandra is a highly scalable NoSQL database, which was 
originally developed by Facebook[10]. Facebook open sourced 
Cassandra in 2008. At this time, the project was taken over by 
Apache and it is now one of its leading projects. In comparison 
to  other  NoSQL  database  solutions,  such  as  MongoDB, 
Cassandra provides  a decentralized peer-to-peer based cluster 
without  centralized  management  nodes.  Its  multi  master 
architecture partitions the data to multiple nodes, replicates the 
individual  node  content  to  multiple  nodes,  and  hence 
eliminates any single points of failure. Cassandra runs on top 
of  Gossip  protocol,  which  detects  and  handles  cluster 
component  and  network  failures.  According  to  the  CAP 
Theorem,  Cassandra  provides  Availability  and  Partition 
Tolerance.  That  is,  Cassandra  forfeits  strict  consistency,  but 
because  of  its  property,  called  “tuneable  consistency”,  it  is 
possible  to  increase  consistency  of  both  read  and  write 
operations to a higher degree.

C. New System Architecture

The following infrastructural  model has been devised for 
the management unit of the Smart Camp system, presenting a 
constellation of the presented open source components of  the 
previous subsection III.B. (Figure 5).

The  presented  infrastructural  solution  is  both  highly 
available  and  scalable.  Each  of  the  presented  layers  can  be 
scaled  out  horizontally  independent  of  other  layers. 
Furthermore, the scalability of each layer does not affect other 
layers within the infrastructure. Moreover, the individual levels 
are highly available and can even be considered as N-1 fault 
tolerant. N-1 fault tolerance means that every component but 
one of each layer may fail, without affecting the availability of 
provided services. However, the model implements only three 
of  four  presented  requirements  for  scalable  infrastructures, 
namely  high  availability,  load  balancing  and  distributed 
database solutions. The reason why the model does not provide 
a  caching  solution is  that  the current  implementation of  the 
Smart  Home Controllers  does not require a  high number of 
read operations, which have to be cached. Since the presented 
infrastructure  was  designed  to  be  able  to  be  extended,  a 
caching solution may be easily included into the infrastructure, 
as the requirements of the Smart Camp grow. Furthermore, the 
individual layers of the infrastructure are not limited to local 
area network limitations. That is, each of these layers may be 
placed to different geographical locations.

IV. ASSESSMENT

The proposed  infrastructure  has  been  simulated  within a 
virtual environment, using six virtual machines. Particular parts 
of  the  infrastructure  were  turned  off,  in  order  to  inspect  its 
reliability (Figure 6).

 It  turned  out  that  the  proposed  infrastructure  does  not 
provide  any  single  points  of  failure,  as  all  services  were 
available  after  component  outages within each  logical  layer. 
Additionally, the result showed that every logical layer except 
for  the  database  layer  within  the  infrastructure  is  N-1  fault 
tolerant.  As  long as  at  least  one  component  of  the  affected 
layers remains available, all services can be accessed without 
any influence of the SHC activity within the Smart Camp. In 
this scenario, even the database layer is also N-1 fault tolerant, 
as it consists of only two components storing the same data. Figure 5: New SCMU Infrastructure

Figure 6: Crash Simulation



But as the database cluster grows, the database layer will not 
remain N-1 fault tolerant any more, as the data size will exceed 
the data capacity of the remaining database node. In summary, 
the result  demonstrates  a  very  reliable  infrastructure  for  the 
SCMU within  the  context  of  the  Smart  Camp project.  The 
infrastructure does not provide any single points of failure and 
even a crash of every  component but one within each  layer 
except for the database layer does not affect service and data 
availability.

In order to increase the overall system resource capacity, it 
is  possible  to  scale  out  or  to  extend  the  individual  layers. 
Obviously,  the  complexity  of  the  extension  of  independent 
components, such as web servers or load balancers,  is much 
lower  than  the  complexity  of  the  extension  of  dependent 
components, such as database nodes. This is also the reason 
why the scalability  of  database  nodes is  limited to a  higher 
degree than independent infrastructural components. However, 
databases  are in  general  one of  the core  components  within 
infrastructures  and  often  present  bottlenecks,  since  database 
operations  are  very  expensive.  Tests  were  performed  on  a 
Cassandra cluster consisting of one, two, three, and four cluster 
nodes, in order to demonstrate the increasing performance and 
scalability of both read and write  operations after addition of 
more nodes to the cluster, as shown in Figure 7. 

The results show that a migration from two cluster nodes to 
four cluster nodes increases the write operation performance by 
almost  39%  and  the  read  operation  performance  by  almost 
43%. The migration from one to two cluster nodes degrades the 
write  operation  performance  by  almost  19%  and  the  read 
operation performance by not even 2%. On the other hand, two 
database nodes provide highly available data, thus making the 
database  more  reliable  and  the  potential  performance 
degradation less important. 

In  summary,  the  results  present  the  scalability  of  the 
database solution and a clear performance enlargement of read 
and write requests. Since all database cluster nodes and the test 
node were running within multiple virtual machines on only 
one  physical  machine  and  hence  limiting  the  overall 
performance of the cluster, the results may have inaccuracies. 
Still, apart from that, it is clear that the addition of database 
nodes  increases  the  performance  and  allows  to  perform  a 
higher number of read and write operations, thus enabling to 
perform a higher number of simultaneous database requests.

V. CONCLUSION AND OUTLOOK

The developed concept enables the adaption of the Smart 
Camp  Management  Unit  to  the  growing  requirements  of  a 
mining camp. Multiple open source components were selected 
and evaluated within the scope of the Smart Camp project’s 
requirements.  Subsequently,  the  selected  open  source 
components, as depicted in III.B.1), 2), and 3), were integrated 
into a system in such a way, that the resulting infrastructure 
became both scalable and highly available. In order to observe 
scalability  and  high  availability  implications  of  the  system, 
multiple  tests  within  virtual  environments  were  successfully 
completed and presented within the scope of this paper.

The  presented  system  architecture  and  infrastructure 
concept  provides the possibility to unify the management  of 
multiple  mining  camps  within  one  centralized  management 
unit.  This  means,  it  is  possible to  combine  multiple  mining 
camps, which will be managed by only one centralized Smart 
Camp Management Unit.

As the proposed infrastructure was designed to be easily 
expandable, it is conceivable to apply the presented concepts of 
a Smart Camp to a Smart City. The Smart City introduces a 
concept  for  a  scalable  and  highly  available  infrastructure, 
which  may  be  extended  with  semantic  technologies  and 
applied by any company or organization. 
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