
© 2012 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

Smart Camp
Building Scalable and Highly Available IT-Infrastructures

Sergej Proskurin
Furtwangen University, Germany

David McMeekin
Curtin University, Australia

Achim P. Karduck
Furtwangen University, Germany

Curtin University, Australia

Abstract — The Western Australian resources boom has created
a demand for a large amount of domestic accommodations,
known as mining camps. However, due to the absent
infrastructure within the remote regions of Australia, the energy
supply of these mining camps is expensive. In order to reduce the
electricity consumption of the mining camps, the Smart Camp
project was initiated. The system infrastructure consists of a
home automation based controller, placed in each mining
accommodation unit to reduce energy consumption, and a
centralized management unit, coordinating the controllers. Due
to the fact that the size and complexity of mining camps may
grow over time, the provided infrastructure of the management
unit has to be able to evolve. One possible solution is to design a
system in the context of high availability and horizontal
scalability. This paper proposes a horizontally scalable and high
availability infrastructural concept, in the context of the Smart
Camp project. This concept also utilizes cost effective open
source solutions running on commodity hardware. Within the
context of horizontal scalability and reliability, this paper
provides an applied research outline of some of the real world
considerations, such as open source based high availability, load
balancing, and distributed database solutions.

Keywords: Smart Camp, Scalability, High Availability, Load
Balancing, Distributed Database, Infrastructure.

I. INTRODUCTION

The purpose of the Smart Camp project was the need for a
reduction of the electricity costs within mining camps in
Australia. To resolve high energy costs issues within mining
camps, the Smart Camp project comprises the development of
an intelligent controller, here referred to as the Smart Home
Controller (SHC) and a management unit, here referred to as
the Smart Camp Management Unit (SCMU). Within the scope
of the Smart Camp project, the SHC's will be installed within
each mining accommodation unit of the camp and hence
aiming to transform it into a Smart Home. In order to reduce
the overall energy costs, the SHC will observe and control
certain electrical devices within Smart Home’s. Since air
conditioners represent the main electricity consumers within
mining camps, the particular controllers, first of all, will be
able to control the air conditioner and with it the main
electricity consumption in each Smart Home. Each SHC will
act considering residents presence, the working hours, and
further preferences. To obtain the required preferences, the
controller will send specific requests to the SCMU, which will
contain all required information for every controller within the
mining camp. The management unit will be central in each

mining camp, in order to monitor the state of each controller
and to provide them with specific services (Figure 1).

Within the context of the Smart Camp project, a prototype
has already been developed and deployed within the mining
camp in Karratha, Western Australia. The initially proposed
prototype infrastructure revealed multiple weaknesses; It
provided single points of failure and was not capable to keep
up with the growing number of SHC requests. According to
mining camp setup, the final Smart Camp system will consist
of about 1.500 SHC's, which have to be coordinated by the
central SCMU within the camp. Additionally, the particular
mining camp may be extended after time, in terms of adding
more Smart Homes’s and Smart Home Controllers to the camp,
thus significantly increasing network demands. Therefore, the
management unit will have to be able to process all incoming
requests and provide required information to all controllers
within the mining camp, independent of the number of Smart
Homes. In case of a mining camp expansion, the management
unit must not cause a bottleneck and it has to be able to cope
with the increased number of requests. Consequently, as
individual mining camps may grow over time both the Smart
Camp Management Unit and its infrastructure must be
designed in such a way to be able to be easily scalable.

Above design requirement is in line with today's key
requirement for system architectures and infrastructures, that
they have to be designed with foresight in terms of scalability,
availability, and evolvability. Provided services within
infrastructures must remain available, even in case of one or
more hardware and/or software outages. Single points of
failure may lead to serious and in particular expensive
consequences, such as breakdown of all available services.
Moreover, infrastructures must avoid potential bottlenecks by
being easily expandable, considering costs of required
components. For this reason, this paper deals with the
reasonable question: “how to build cost effective scalable and
highly available IT infrastructures?”. In brief, highly available

Figure 1: The Smart Camp System

systems eliminate single points of failure by implementing
redundant components. Scalable systems enable easy adaption
of the particular system to the growing demands. Our research
implies the analysis and familiarization of scalable and reliable
mechanisms based on open source solutions and their adoption
within the Smart Camp context. In the end, the aim is to
develop a highly scalable and highly available infrastructural
concept for the SCMU, which will be able to be adapted easily
and without expensive hardware to the growing services and
network requirements of a mining camp, or another Smart
Home based infrastructure.

II. RELATED WORK

Most systems are developed to meet only the current
requirements of a particular problem. However, requirements
on systems change regularly over time. Within the Smart Camp
context, requirements on mining camps, such as the number of
Smart Home Controller requests, may grow over time. As
consumer demands grow, the need for more system resources
increases. Obviously, if the demand shrinks, using too many
resources in order to solve the need would be a waste of
money. In both cases the system will either not work properly
or waste a lot of system resources. In order to adapt the system
to the changed requirements, the system has to be either
extended or reduced. Adaption of a non-scalable system to
changed requirements often leads to complete infrastructural
redesign, inducing high costs, and thus operational loss.
Additionally, a complete infrastructural redesign cannot be
performed without significant time investments. On the other
hand, a scalable system ideally can be adapted cost effectively
to the changed requirements within a short period of time and
without the need for a complete infrastructural redesign.

According to Theo Schlossnagle, scalability means “how
well does a particular solution fit a problem as the scope of that
problem increases”[1] or decreases. In this context, to scale up
or to scale out a system means to extend the systems resources.
In contrast, to scale down a system means to reduce the
systems resources. In general, scalability is about the adaption
of a system to variable needs of a problem, by increasing or
reducing its system resource capacity. This is required e.g. in
order to provide services to a much higher number of clients. A
distinction is made between vertical and horizontal scalability:

• A system is vertically scalable if the capacity of this
system can be increased by replacing internal hardware
components with more high performance components,
such as RAM, processors, storage, etc.[1]

• A system is horizontally scalable if the resource
capacity of this particular system can be increased by
adding additional hardware and/or software
components of the same type[1].

While a vertically scalable system is both very expensive
and limited in its performance enhancement, which can be led
back to Moore's Law[2], a horizontally scalable system is often
a much more cost effective solution, performing better as its
counterpart. On the other hand, additional components in
horizontal scalable systems create a distributed system, which
is not easy to deal with. Nevertheless, the vertical scalability
approach should be considered only if solving problems using
the horizontal scalability approach is not an option, as the

achieved performance enhancement is both too limited and too
expensive[1].

In order to develop scalable and highly available systems, a
combination of the following methodologies must be
considered:

• High availability mechanisms

• Load balancing mechanisms

• Database distribution mechanisms

• Caching mechanisms

Although the individual methodologies do not present new
solutions, their combination opens doors to innovative highly
scalable system possibilities, required by a growing number of
companies. A detailed introduction of the used approaches and
their combination for Smart Camp follows.

In his book, Theo Schlossnagle describes a variety of
potential possibilities of how to create scalable systems[1]. He
conveys a fundamental understanding and possible
configurations of the above mentioned mechanisms including
their advantages and difficulties. Additionally, Willy Tareau
covers load balancing fundamentals, representing one of the
central elements of scalable systems[6]. In order to understand
advantages, difficulties, and limits of database distribution, it is
essential to internalize the concepts of Eric Brewer's CAP
Theorem[4]. Additionally, Christof Strauch presents in his PhD
Thesis a very detailed overview of highly scalable Non-
Relational Database Management Systems (NoSQL)[3], which
can be compared to distributed Relational Database
Management Systems (RDBMS) in Eben Hewitt's book[5].
Refer to [11] for a detailed outline of the results presented in
this paper.

III. SYSTEM ARCHITECTURE

This section consists of three subsections; The scope of the
first subsection (subsection A.) introduces the limitations of the
initial Smart Camp infrastructure. The second subsection
(subsection B.) introduces the chosen components for a
scalable and highly available infrastructure, which best fit the
Smart Camp requirements. The third and last subsection
(subsection C.) of this section presents the developed concept
of a scalable and highly available infrastructure within the
Smart Camp context, which can be easily adapted to
requirements of other institutions.

A. Initial System Architecture

The initial Smart Camp system implementation consisted of
only two layers: The Smart Home Controllers and the actual
Smart Camp Management Unit as shown in Figure 1 [12]. The
SHC’s are responsible to observe and to actively control the
state of the associated accommodation units, whereas the actual
state of the accommodation units is associated in this context
with the state of multiple devices within the Smart Homes,
such as air conditioner, television, and multiple sensors
attached to the particular SHC. By this way, every SHC is
responsible for autonomous observation and control of the
associated Smart Homes. The corresponding SCMU is
responsible to manage all SHC’s within the Smart Camp and to
provide them with required information. The SCMU within the

initial Smart Camp system consists of one web server and one
database server configured on only one physical machine. The
SCMU contains all configuration information for each
registered SHC within the mining camp.

However, the initial system architecture comprises an SHC
within every Smart Home of the mining camp. A block of
Smart Homes or a Smart Home Complex implies four Smart
Homes. The actual Smart Camp may consist of any number of
such Smart Home Complexes (Figure 2).

In order to establish a network communication between the
SHC’s in every Smart Home and the SCMU, the following
network infrastructure is used: Each SHC within a Smart Home
Complex is connected to a Layer 2 switch. Every two Smart
Home Complexes are connected to a Layer 3 switch, which
establishes a Wireless LAN (WLAN) communication with
another layer 3 switch, connected to the SCMU (Figure 2).

Since the management unit consists of only one physical
machine, its resources are limited to the performance of only
this particular machine. If the number of Smart Homes within
the mining camp grows, at some point the management unit
will slow down dramatically or even will not be able to process
all incoming requests any more. Furthermore, in the event of
only one hardware and/or software failure on the management
unit itself or on the corresponding layer 3 switch, the
controller's will not be able to access the provided services of
the management unit any more, thus making the system not
reliable at all. This means, that the infrastructure of the initial
Smart Camp system is not scalable and its provided services
are not highly available. As long as the infrastructure within a
mining camp is not scalable, it will not be possible to extend a
mining camp, without a complete infrastructural redesign. As
long as the provided services are not highly available, crashes
of single components of the management unit may lead to
outages of all provided services, increasing maintenance costs.
For these reasons, this paper elaborates a new, scalable, and
highly available infrastructural concept for the management
unit, which allows to extend a mining camp to almost any
number of Smart Homes. In order to build a scalable and
highly available architecture, the following building blocks will
be motivated and described.

B. Components

This paper proposes a concept of a horizontal scalable and
highly available infrastructure within the context of large scale
systems. This concept utilizes cost effective open source

solutions running on commodity hardware implying high
availability, load balancing, and distributed database
components.

1) High Availability Component
In general, an IT infrastructure, no matter how highly

scalable it is, is highly vulnerable, as long as it provides single
points of failure. Breakdowns of single hardware and/or
software components may lead to a complete halt of the
system. To avoid complete breakdowns of the system, all
system components must be designed redundantly. High
availability approaches try to eliminate single points of failure
by means of adding redundant hardware and/or software
components to a consistent system. This approach increases
reliability of the overall system by making it fault tolerant. “A
single point of failure exists when a critical function is
provided by a single component. If that component fails, the
system has no other way to provide that function and essential
services become unavailable. The key facet of a highly
available system is its ability to detect and respond to changes
that could impair essential services”[7].

There exist two basic approaches how to make a system
highly available: Depending on the functionality of the system,
the components can either be set up in a master slave or in a
multi master cluster configuration. The first approach
introduces a master slave or an active-passive configuration; It
requires at least two equally configured physical components,
in order to provide high availability of specific services. One of
the components will be elected as master and the remaining as
slaves, thus creating a highly available cluster. Cluster
members monitor each other by sending periodical messages or
heart beats to other cluster components, in order to present
their availability. If one component does not present its
availability, the cluster members will wait a certain period of
time until the particular component will be considered as down
or not available and subsequently removed from the cluster. In
case the master becomes unavailable, one of the slave
components will take over the provided service responsibilities.
In a master slave configuration, the slaves serve only to take
over the provided services in the event of a master crash.
Because of the fact that at least one passive component waits
the most of the time to take over and does not provide any
services, the system throughput is limited to the performance of
only one active component. The second approach presents a
multi master or an active-active configuration with at least two
masters. This solution differs to a master slave configuration in
such a way that it provides multiple active components at the
same time, thus highly increasing the system throughput. In the
Smart Camp scenario, a multi master High Availability
configuration will be preferred.

Wackamole is an open source based high availability
solution, originally developed at the John Hopkins University's
Center for Networking and Distributed Systems[8].
Wackamole runs on top of the group communication toolkit
Spread, where every participant presents a member of a
particular group. Spread is able to detect and to handle group
changes, implying the detection of both new group members
and node failures. Additionally, Spread enables a dynamic
recovery from network partitions. In comparison to other high
availability solutions, such as Heartbeat, Wackamole provides
the possibility to create peer-to-peer based high available
clusters in either active-passive or active-active configurations,

Figure 2: Initial Architecture

including a high number of cluster components, as preferred by
the project. Therefore, it provides a configurable number of
virtual IP addresses (VIP) representing cluster entry points,
which will be equally distributed across all cluster components.
In general, a VIP is a logical IP address, which is not fixed to a
specific physical network interface, making it able to share the
address between different components. Each cluster component
may be responsible for multiple VIPs, whereas a certain VIP
may belong at the same time to maximum one cluster
component. In case of node failures, the cluster rebalances the
VIPs across the available nodes. That implies, that as long as at
least one cluster component is up and running, all published
VIPs remain available. A VIP failover is completely
transparent for the clients (Figure 3).

2) Load Balancing Component
In the context of horizontal scalability, systems are able to

be expanded with help of additional components, called load
balancers. This, to be able to increase their data capacity,
processing power, and to handle a growing number of client
requests. Therefore, the growing workload has to be spread
across multiple physical machines responsible for the same
task, such as web servers. The general idea behind load
distribution is to equally utilize multiple physical machines in
order to combine their resources to handle higher loads. In
horizontal scalable systems, load balancers present main
components, as they are able to distribute incoming loads
horizontally across multiple equally configured machines.
Load balancers unify multiple machines into clusters, reducing
the utilization of the individual components and simultaneously
increasing the overall throughput. In highly scalable systems,
load balancers may be installed e.g. in front of firewall-, Web-,
and cache servers; This allows to independently scale out each
infrastructural layer.

Linux Virtual Server (LVS) is a Linux Kernel patch, which
enables high performance load balancing on OSI layer 4[9]. In
comparison to other software based load balancing solutions on
higher OSI layers, LVS is able to handle multiple 100.000 of
simultaneous client requests. As the present SCMU
infrastructure does not require any features provided by higher
OSI layers slowing down the overall provision of client
requests, LVS was selected for the project. LVS distributes
incoming load across multiple components, thus creating a
cluster. All cluster functionality, such as addition of new

components, takes place transparently for the clients. LVS
supports three different architectural approaches, namely
“Network Address Translation” (NAT), “Direct Routing”, and
“IP Tunneling”. IP Tunneling enables, in comparison to NAT
and Direct Routing configurations, a load distribution across
multiple machines distributed across different networks. In
comparison to other open source based solutions, such as
HAProxy or Apache's ModBackhand, LVS is not able to
provide health checks without additional software solutions,
such as LDirectord; LDirectord was specially designed for
monitoring and administration of physical servers within a
LVS cluster (Figure 4).

3) Distributed Database Component
Today’s requirements are growing and so does the need for

storing more data in a faster way, as well. Furthermore, the
stored data should be highly available. Scaling up databases
vertically means buying more, bigger, and faster hard drives,
RAM, and processors and connecting them to the database to
satisfy the needs for the moment: Vertical scalability is both, as
outlined earlier, limited and very expensive. But even if there
were no limitations of vertical scalability and no need to pay
attention to costs, what would be a solution for high
availability? Even the biggest database server is not able to
provide high availability as long as it represents a single point
of failure. Besides, if it comes to horizontal scalability of a
consistent IT-infrastructure, databases often represent a
bottleneck of the system, as only one machine is able to handle
a limited number of both read and write operations. In
summary, the more operations are to be performed, the slower
the database becomes. In order to handle a growing number of
read and write operations, thus satisfying the growing
requirements of a horizontally scalable infrastructure, a
database must be able to scale out horizontally and hence
distribute the data across multiple physical machines, thus
increasing both the data capacity and performance of the
database.

In his theorem, Eric Brewer states three characteristics
which have to be considered when designing a distributed

Figure 4: Linux Virtual Server

Figure 3: Wackamole Active-Active Configuration

database system: Consistency, Availability, and Partition-
Tolerance[4]. According to Brewer, a distributed database
system can meet only two of these characteristics at any point
in time. First, a system is “Consistent” if every system
component can see the same data at any time. Second, a system
including its data remains “Available”, even if one or more
hardware and/or software components crash. Third, a system is
“Partition Tolerant” if it is able to proceed operations after
network failures between components, thus creating several
partitions. Additionally, “Partition Tolerance” enables the
possibility to dynamically add or remove new system
components. Consequently, if a system does not require
“Partition Tolerance”, such as local distributed systems, it
should be able to provide consistency and availability of data.
Systems, distributed for example across multiple geographical
areas, should be tolerant to network partitions, thus prohibiting
availability and consistency at the same time.

Cassandra is a highly scalable NoSQL database, which was
originally developed by Facebook[10]. Facebook open sourced
Cassandra in 2008. At this time, the project was taken over by
Apache and it is now one of its leading projects. In comparison
to other NoSQL database solutions, such as MongoDB,
Cassandra provides a decentralized peer-to-peer based cluster
without centralized management nodes. Its multi master
architecture partitions the data to multiple nodes, replicates the
individual node content to multiple nodes, and hence
eliminates any single points of failure. Cassandra runs on top
of Gossip protocol, which detects and handles cluster
component and network failures. According to the CAP
Theorem, Cassandra provides Availability and Partition
Tolerance. That is, Cassandra forfeits strict consistency, but
because of its property, called “tuneable consistency”, it is
possible to increase consistency of both read and write
operations to a higher degree.

C. New System Architecture

The following infrastructural model has been devised for
the management unit of the Smart Camp system, presenting a
constellation of the presented open source components of the
previous subsection III.B. (Figure 5).

The presented infrastructural solution is both highly
available and scalable. Each of the presented layers can be
scaled out horizontally independent of other layers.
Furthermore, the scalability of each layer does not affect other
layers within the infrastructure. Moreover, the individual levels
are highly available and can even be considered as N-1 fault
tolerant. N-1 fault tolerance means that every component but
one of each layer may fail, without affecting the availability of
provided services. However, the model implements only three
of four presented requirements for scalable infrastructures,
namely high availability, load balancing and distributed
database solutions. The reason why the model does not provide
a caching solution is that the current implementation of the
Smart Home Controllers does not require a high number of
read operations, which have to be cached. Since the presented
infrastructure was designed to be able to be extended, a
caching solution may be easily included into the infrastructure,
as the requirements of the Smart Camp grow. Furthermore, the
individual layers of the infrastructure are not limited to local
area network limitations. That is, each of these layers may be
placed to different geographical locations.

IV. ASSESSMENT

The proposed infrastructure has been simulated within a
virtual environment, using six virtual machines. Particular parts
of the infrastructure were turned off, in order to inspect its
reliability (Figure 6).

 It turned out that the proposed infrastructure does not
provide any single points of failure, as all services were
available after component outages within each logical layer.
Additionally, the result showed that every logical layer except
for the database layer within the infrastructure is N-1 fault
tolerant. As long as at least one component of the affected
layers remains available, all services can be accessed without
any influence of the SHC activity within the Smart Camp. In
this scenario, even the database layer is also N-1 fault tolerant,
as it consists of only two components storing the same data. Figure 5: New SCMU Infrastructure

Figure 6: Crash Simulation

But as the database cluster grows, the database layer will not
remain N-1 fault tolerant any more, as the data size will exceed
the data capacity of the remaining database node. In summary,
the result demonstrates a very reliable infrastructure for the
SCMU within the context of the Smart Camp project. The
infrastructure does not provide any single points of failure and
even a crash of every component but one within each layer
except for the database layer does not affect service and data
availability.

In order to increase the overall system resource capacity, it
is possible to scale out or to extend the individual layers.
Obviously, the complexity of the extension of independent
components, such as web servers or load balancers, is much
lower than the complexity of the extension of dependent
components, such as database nodes. This is also the reason
why the scalability of database nodes is limited to a higher
degree than independent infrastructural components. However,
databases are in general one of the core components within
infrastructures and often present bottlenecks, since database
operations are very expensive. Tests were performed on a
Cassandra cluster consisting of one, two, three, and four cluster
nodes, in order to demonstrate the increasing performance and
scalability of both read and write operations after addition of
more nodes to the cluster, as shown in Figure 7.

The results show that a migration from two cluster nodes to
four cluster nodes increases the write operation performance by
almost 39% and the read operation performance by almost
43%. The migration from one to two cluster nodes degrades the
write operation performance by almost 19% and the read
operation performance by not even 2%. On the other hand, two
database nodes provide highly available data, thus making the
database more reliable and the potential performance
degradation less important.

In summary, the results present the scalability of the
database solution and a clear performance enlargement of read
and write requests. Since all database cluster nodes and the test
node were running within multiple virtual machines on only
one physical machine and hence limiting the overall
performance of the cluster, the results may have inaccuracies.
Still, apart from that, it is clear that the addition of database
nodes increases the performance and allows to perform a
higher number of read and write operations, thus enabling to
perform a higher number of simultaneous database requests.

V. CONCLUSION AND OUTLOOK

The developed concept enables the adaption of the Smart
Camp Management Unit to the growing requirements of a
mining camp. Multiple open source components were selected
and evaluated within the scope of the Smart Camp project’s
requirements. Subsequently, the selected open source
components, as depicted in III.B.1), 2), and 3), were integrated
into a system in such a way, that the resulting infrastructure
became both scalable and highly available. In order to observe
scalability and high availability implications of the system,
multiple tests within virtual environments were successfully
completed and presented within the scope of this paper.

The presented system architecture and infrastructure
concept provides the possibility to unify the management of
multiple mining camps within one centralized management
unit. This means, it is possible to combine multiple mining
camps, which will be managed by only one centralized Smart
Camp Management Unit.

As the proposed infrastructure was designed to be easily
expandable, it is conceivable to apply the presented concepts of
a Smart Camp to a Smart City. The Smart City introduces a
concept for a scalable and highly available infrastructure,
which may be extended with semantic technologies and
applied by any company or organization.

ACKNOWLEDGMENTS

Thank you very much Markus Lanthaler, as you were very
supportive and had always time for a detailed discussion.
Many thanks to Professor Elizabeth Chang for providing with
DEBII all the support of an inspiring environment.

REFERENCES

[1] Theo Schlossnagle, “Scalable Internet Architectures”, Sams Publishing,
July 21, 2006.

[2] Excerpts from a conversation with Gordon Moore: “Moore's Law”,
ftp://download.intel.com/museum/Moores_Law/Video-
Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf.

[3] Christof Strauch, “NoSQL Databases”, PhD Thesis, Hochschule der
Medien, Stuttgart.

[4] Julian Browne, “Brewer's CAP Theorem”,
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem,
January 11, 2009.

[5] Eben Hewitt, “Cassandra: The Definitive Guide”, O'Reilly, 2011.

[6] Willy Tarreau, “Making Applications Scalable with Load Balancing”,
http://www.exceliance.fr/sites/default/files/biblio/art-2006-
making_applications_scalable_with_lb.pdf, September, 2006.

[7] Barbara Lancaster Wedge Greene, “Carrier-Grade: Five Nines, The
Myth and The Reality”, http://www.ltcinternational.com/inside-
out/uploads/ltc_carriergrade_whitepaper.pdf, March 18, 2007.

[8] Wackamole Homepage, http://www.backhand.org/wackamole.

[9] Linux Virtual Server Homepage, http://www.linuxvirtualserver.org.

[10] Cassandra Homepage, http://www.datastax.com/docs/1.0/index.

[11] Sergej Proskurin, “Smart Camp - Scalability in IT Infrastructures”,
Furtwangen University, 2012.

[12] L. Oslislo, A. Talevski, A.P. Karduck, “Smart Camp: Benefits of Media
and Smart Service Convergence”, 25th IEEE International Converence
on Advanced Information Networking and Applications (AINA 2011),
March 22-25, 2011, Singapore.

Figure 7: Cassandra Cluster - Operations per Second

	I. Introduction
	II. Related Work
	III. System Architecture
	A. Initial System Architecture
	B. Components
	1) High Availability Component
	2) Load Balancing Component
	3) Distributed Database Component

	C. New System Architecture

	IV. Assessment
	V. Conclusion and Outlook

