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The grinding-classification is the prerequisite process for full recovery of the nonrenewable minerals with both production quality
and quantity objectives concerned. Its natural formulation is a constrainedmultiobjective optimization problem of complex expres-
sion since the process is composed of one grinding machine and two classification machines. In this paper, a hybrid differential
evolution (DE) algorithm with multi-population is proposed. Some infeasible solutions with better performance are allowed to
be saved, and they participate randomly in the evolution. In order to exploit the meaningful infeasible solutions, a functionally
partitionedmulti-populationmechanism is designed to find an optimal solution from all possible directions. Meanwhile, a simplex
method for local search is inserted into the evolution process to enhance the searching strategy in the optimization process.
Simulation results from the test of some benchmark problems indicate that the proposed algorithm tends to converge quickly
and effectively to the Pareto frontier with better distribution. Finally, the proposed algorithm is applied to solve a multiobjective
optimization model of a grinding and classification process. Based on the technique for order performance by similarity to ideal
solution (TOPSIS), the satisfactory solution is obtained by using a decision-making method for multiple attributes.

1. Introduction

Grinding-classification is an important prerequisite process
for most mineral processing plants. The grinding process
reduces the particle size of raw ores and is usually followed by
classification to separate them into different sizes. Grinding-
classification operation is required to produce pulp with
suitable concentration and fineness for flotation. The pulp
quality will directly influence the subsequent flotation effi-
ciency and recovery of valuable metals from tailings. In order
to improve economic efficiency and energy consumption, the
process optimization objectives include product quality and
output yields. Under certain mineral source conditions, the
objectives are decided by a series of operation variables such
as the solid flow of feed ore to ball mill, the steel ball filling
rate, and the flow rates of water added to the first and the

second classifier recycles. To solve the optimization model
of products’ output and quality in the grinding-classification
process is of great significance to improve the technical
and economic specifications, and it has been a continuous
endeavor of the scientists and engineers [1–3].

Grinding-classification is an energy-intensive process
influenced bymany interacting factorswithmutual restraints.
The goals of grinding-classification optimization problem
are decided by multiple constrained input control variables
of nonlinear relationships. So, the optimization model of
grinding-classification operation is a complex constrained
multiobjective optimization problem (CMOP). Generally,
constrained multiobjective problems are so difficult to be
solved that the constraint handling techniques and multi-
objective optimization methods need to be combined for
optimization.
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Multiobjective optimization problems (MOPs), in the
case of traditional optimization methods, are often handled
by aggregating multiple objectives into a single scalar objec-
tive through weighting factors. MOPs have a set of equally
good (nondominating) solutions instead of a single one,
called a Pareto optimum which was introduced by Edge-
worth in 1881 [4] and later generalized by Pareto in 1896
[5]. The practical MOPs are often implicated in series of
equations, functions, or procedures with complicated con-
straints. Therefore, the evolutionary algorithms are attractive
approaches for low requirements onmathematical expression
[6]. Since the mid 1980s, there has been a growing interest
in solving MOPs using evolutionary approaches [7–10].
One of the most successful evolutionary algorithms for the
optimization of continuous space functions is the differential
evolution (DE) [11]. DE is simple and efficiently converges to
the global optimum in most cases [12, 13]. Its efficiency has
been proven [14] in many application fields such as pattern
recognition [15] and mechanical engineering [16].

There have been many improvements for DE to solve
MOPs. Abbass [17] firstly provided a Pareto DE (PDE) algo-
rithm for MOPs in which DE was employed to create new
solutions, and only the nondominated solutions were kept as
the basis for the next generation. Madavan [18] developed a
Pareto differential evolution approach (PDEA) in which new
solutions were created by DE and kept in an auxiliary popu-
lation. Xue et al. [19] introduced multiobjective differential
evolution (MODE) and used Pareto-based ranking assign-
ment and crowding distancemetric, but in a differentmanner
from PDEA. Robic and Filipi [20], also adopting Pareto-
based ranking assignment and crowding distance metric,
developed a DE for multiobjective optimization (DEMO)
with a different population update strategy and achieved
good results. Huang et al. [21] extended the self-adaptive DE
(SADE) to solve MOPs by a so called multiobjective self-
adaptive DE (MOSADE). They further extended MOSADE
by using objectivewise learning strategies [22]. Adeyemo and
Otieno [23] provided multiobjective differential evolution
algorithm (MDEA). In MDEA, a new solution was generated
by DE variant and compared with target solution. If it
dominates the target solution, then it was added to the new
population; otherwise, a target solution was added.

On the other hand, single-objective constrained opti-
mization problems have been studied intensively in the past
years [24–28]. Different constraint handling techniques have
been proposed to solve constrained optimization problems.
Michalewicz and Schoenauer [29] divided constraints han-
dling methods used in evolutionary algorithms into four
categories: preserving feasibility of solutions, penalty func-
tions, separating the feasible and infeasible solutions, and
hybrid methods. The differences among these methods are
how to deal with the infeasible individuals throughout the
search phases. Currently, the penalty functionmethod ismost
widely used, and this algorithm strongly depends on the
choice of the penalty parameter.

Although the multiobjective optimization and the con-
straint handling problem have received lots of contribution,
respectively, the CMOPs are still difficult to be solved in
practice. Coello and Christiansen [30] proposed a simple

approach to solve CMOPs by ignoring any solution that vio-
lates any of the assigned constraints. Deb et al. [8] proposed
a constrained multiobjective algorithm based on the concept
of constrained domination, which is also known as superi-
ority of the feasible solution. Woldesenbet et al. [31] intro-
duced a constraint handling technique based on adaptive
penalty functions and distance measures by extending the
corresponding version for the single-objective constrained
optimization.

In the MOP of grinding and classification process, the
definitions of Pareto solutions, Pareto frontier, and Pareto
dominance are in consistency with the classic definitions.
Clearly, the Pareto frontier is amapping of the Pareto-optimal
solutions to the objective space. In the minimization sense,
general constrained MOPs can be formulated as follows

min 𝐹 (𝑋) = min [𝑓
1
(𝑋) , 𝑓

2
(𝑋) , . . . , 𝑓

𝑟
(𝑋)] ,

s.t. 𝑔
𝑖
(𝑋) ≤ 0 (𝑖 = 1, 2, . . . , 𝑝) ,

ℎ
𝑗
(𝑋) = 0 (𝑗 = 𝑝 + 1, . . . , 𝑞) ,

𝑥
𝑘
∈ [𝑥
𝑘min, 𝑥𝑘max] (𝑘 = 1, 2, . . . , 𝑛) ,

(1)

where 𝐹(𝑋) is the objective vector, 𝑋 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ R𝑛 is

a parameter vector, 𝑔
𝑖
(𝑋) is the 𝑖th inequality constraint,

and ℎ
𝑗
(𝑋) is the 𝑗th equality constraint. 𝑥

𝑘min and 𝑥
𝑘max

are, respectively, the lower and upper bounds of the decision
variable 𝑥

𝑘
.

In this paper, based on the specific industrial background
of continuous bauxite grinding-classification operation, a
new hybrid DE algorithm is proposed to solve complex con-
strained multiobjective optimization problems. Firstly, a
hybrid DE algorithm for MOPs with simplex method (SM-
DEMO) is designed to overcome the problems of global
performance degradation and being trapped in local opti-
mum. Then, for the MOPs with complicated constraints, the
proposed algorithm is formed by combining SM-DEMO and
functional partitioned multi-population. In this method, the
construction of penalty functions is not required, and the
meaningful infeasible solutions are fully utilized.

The remainder of the paper is structured as follows.
Section 2 describes the SM-DEMO algorithm for uncon-
strained cases. The proposed algorithm of multipopulation
for constrained MOPs is given in Section 3 with verification
of performance by benchmark testing results. Section 4
describes the model of products’ output and quality in the
grinding-classification process in detail and the application
of the proposed algorithm in the optimizationmodel. Finally,
the conclusions based on the present study are drawn in
Section 5.

2. SM-DEMO Algorithm for
Unconstrained MOPs

In order to efficiently solve multiobjective optimization
problem and find the approximately complete and nearop-
timal Pareto frontier, we proposed a hybrid DE algorithm
for unconstrained multiobjective optimization with simplex
method.

The differential evolution, with initialization, crossover,
and selection as in usual genetic algorithms, uses a pertur-
bation of two members as the mutation operator to produce
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a new individual.Themutation operator of the DE algorithm
is described as follows.

Considering each target individual 𝑥𝐺
𝑖
, in the 𝐺th gener-

ation of size𝑁𝑝, a mutant individual 𝑥𝐺+1
𝑖

is defined by

𝑥
𝐺+1

𝑖
= 𝑥
𝐺

𝑟3
+ 𝐹 (𝑥

𝐺

𝑟1
− 𝑥
𝐺

𝑟2
) , (2)

where indexes 𝑟
1
, 𝑟
2
, and 𝑟

3
represent mutually different

integers that are different from 𝑖 and that are randomly
generated over [1,𝑁𝑝], and 𝐹 is the scaling factor.

The simplex method, proposed by Spendley, Hext, and
Himsworth and later refined by Nelder andMead (NM) [32],
is a derivative-free line-search method that is particularly
designed for traditional unconstrained minimization scenar-
ios. Clearly, NM method can be deemed as a direct line-
search method of the steepest descent kind. The ingredients
of the replacement process consist of four basic operations:
reflection, expansion, contraction, and shrinkage. Through
these operations, the simplex can improve itself and approxi-
mate to a local optimum point sequentially. Furthermore, the
simplex can vary its shape, size, and orientation to adapt itself
to the local contour of the objective function.

2.1. Main Strategy of SM-DEMO. The SM-DEMO algorithm
is improved by the following three points compared with DE.

2.1.1. Modified Selection Operation. After traditional DE evo-
lution, the individual 𝑢𝐺+1

𝑖𝑗
may violate the boundary con-

straints 𝑥max
𝑖𝑗

and 𝑥
min
𝑖𝑗

. 𝑢𝐺+1
𝑖𝑗

is replaced by new individual
𝑤
𝐺+1

𝑖𝑗
being adjusted as follows:

𝑤
𝐺+1

𝑖𝑗

=

{{

{{

{

𝑥
max
𝑖𝑗

+ rand () ∗ (𝑥max
𝑖𝑗

− 𝑢
𝐺+1

𝑖𝑗
) , if (𝑢𝐺+1

𝑖𝑗
> 𝑥

max
𝑖𝑗

) ,

𝑥
min
𝑖𝑗

+ rand () ∗ (𝑥min
𝑖𝑗

− 𝑢
𝐺+1

𝑖𝑗
) , if (𝑢𝐺+1

𝑖𝑗
< 𝑥

min
𝑖𝑗

) ,

𝑢
𝐺+1

𝑖𝑗
, otherwise.

(3)

The new population is combined with the existing parent
population to form a new set 𝑀𝑔 of bigger size than 𝑁𝑝.
A nondominated ranking of 𝑀𝑔 is performed, and the 𝑁𝑝
best individuals are selected. This approach allows a global
nondomination checking between both the parent and the
new generation rather than only in the new generation as
is done in other approaches, whereas it requires additional
computational cost in sorting the combined.

2.1.2. Nondominated Ranking Based on Euclidean Distance.
The solutions within each nondominated frontier that reside
in the less crowded region in the frontier are assigned a higher
rank, as the NSGA-II algorithm [8] developed by Deb et al.
indicated. The crowding distance of the 𝑖th solution in its
frontier (marked with solid circles) is the average side length
of the cuboids (shown with a dashed box in Figure 1(a)).
The crowding-distance computation requires sorting the
population according to each objective function value in
ascending order of magnitude. As shown in Figure 1, 𝐴 and
𝐶 are two solutions near 𝐵 in the same rank, and 𝜎

0
(𝐵) is the

crowding distance of the𝐵th solution, traditionally calculated
as follows:

𝜎
0
(𝐵) =

𝑛

∑

𝑗=1


𝑓
𝑗
(𝐴) − 𝑓

𝑗
(𝐶)


, (4)

where 𝑓
𝑗
(𝐴), 𝑓

𝑗
(𝐶) are the objective vectors. For each

objective function, the boundary solutions (solutions with
the smallest and the largest function values) are assigned an
infinite distance value.

A crowding-distance metric is used to estimate the
density of solutions surrounding a particular solution in the
population and is obtained from the average distance of the
two solutions on either side of the solution along each of the
objectives. As shown in Figure 1,𝐴,𝐵,𝐶 are the individuals of
the generation on the same frontier, and we easily know that
the density in Figure 1(a) is better than that in Figure 1(b). If
we use (4) to calculate the crowding distance of 𝐶, we only
know that in Figure 1(a) it is better than in Figure 1(b); the
crowding distance of𝐶 in Figures 1(a) and 1(c) is equal, which
is against the knowledge.

To distinguish the mentioned situations, we propose
an improved crowding-distance metric based on Euclidean
distance. 𝑀 is the center point of the line 𝐴𝐵, 𝑓

𝑗
is the 𝑗th

objective vector, and the crowding distance 𝜎(𝐵) is defined as
follows:

𝜎 (𝐵) = |𝐴𝐶| − |𝐵𝑀|

= √

𝑛

∑

𝑗=1

[𝑓
𝑗
(𝐴) − 𝑓

𝑗
(𝐶)]
2

− √

𝑛

∑

𝑗=1

{𝑓
𝑗
(𝐵) −

[𝑓
𝑗
(𝐴) + 𝑓

𝑗
(𝐶)]

2
}

2

.

(5)

The crowded-comparison operator guides the selection
process at the various stages of the algorithm toward a
uniformly distributed Pareto-optimal frontier. To carry out
the comparison, we assume that every individual in the
population has two attributes: (1) nondomination rank 𝑖rank
and (2) crowding distance 𝑖distance. Then, a partial order is
defined as 𝑖 ≺ 𝑗. If 𝑖 ≺ 𝑗, that is, between two solutions
with different nondomination ranks, we prefer the solution
with the lower (better) rank, namely, 𝑖rank ≺ 𝑗rank. Otherwise,
if both solutions belong to the same frontier, that is, 𝑖rank =

𝑗rank, then we prefer the solution that is located in a lesser
crowded region, that is, 𝑖distance ≻ 𝑗distance.

2.1.3. Simplex Method for Local Search. The simplex method
for local search is mixed in the evolution process to enhance
the searching strategy in the optimization process. The goal
of integrating NM simplex method [32] and DE is to enrich
the population diversity and avoid being trapped in local
minimum. We apply NM simplex method operator to the
present population when the number of iterations is greater
than a particular value (like 𝐺max/2). The individuals that
achieved the single extreme value in each objective function
aremarked as the initial vertex points of simplexmethod.The
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Figure 1: Crowding-distance diagram.

present population is updated according to simplex method
until the terminal conditions are satisfied.

The computation steps of the algorithm are included in
Section 3.2.

2.2. Evaluation Criteria. Unlike the single-objective opti-
mization, it is more complicated for solution quality eval-
uation in the case of multiobjective optimization. Many of
the suggested methods can be summarized in two types.
One is to evaluate the convergence degree by computing the
proximity between the solution frontier and the actual Pareto
frontier. The other is to evaluate the distribution degree of
the solutions in objective space by computing the distances
among the individuals. Here, we choose both methods to
evaluate the performance of the SM-DEMO algorithm.

(1) Convergence Evaluation. Deb et al. [8] proposed this
method in 2002. It is described as follows:

𝛾 =
1

𝑄
(

𝑄

∑

𝑖=1

min 𝑃
∗
− 𝑃FT

) , (6)

where 𝛾 is the extent of convergence to a known of Pareto-
optimal set, 𝑃∗ is the obtained nondomination Pareto fron-
tier, 𝑃FT is the real nondomination Pareto frontier, ‖𝑃∗ −𝑃FT‖
is the Euclidean distance of 𝑃∗ with 𝑃FT, and𝑄 is the number
of obtained solutions.

(2) Distribution Degree Evaluation.Thenonuniformity in the
distribution is measured by SP as follows:

SP = √ 1

(𝑄 − 1)

𝑄

∑

𝑖=1

(𝑑 − 𝑑
𝑖
)
2

, (7)

where 𝑑
𝑖
is the Euclidean distance among consecutive solu-

tions in the obtained nondominated set of solutions and
parameter 𝑑 is the average distance.

2.3. Experimental Studies. Four well-known benchmark test
functions [33] are used here to compare the performance of
SM-DEMO with NSGA-II, DEMO/Parent. These four prob-
lems are called ZDT2, ZDT3, ZDT4, and ZDT6; each has two
objective functions. We describe them in Table 1.
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Table 1: Test problems.

Test problems Objective functions
min𝐹(𝑋) = min[𝑓

1
(𝑋), 𝑓

2
(𝑋)]

Range of variable

ZDT2
𝑓
1
(𝑋) = 𝑥

1
, 𝑓
2
(𝑋) = 𝑔(𝑋)(1 − (

𝑓
1

𝑔(𝑋)
)

2

) ,

𝑔 (𝑋) = 1 + 9

𝑛

∑

𝑖=2

𝑥
𝑖

𝑛 − 1

𝑛 = 30

0 ≤ 𝑥
𝑖
≤ 1

ZDT3
𝑓
1
(𝑋) = 𝑥

1
, 𝑓
2
(𝑋) = 𝑔(1 − √(

𝑓
1

𝑔
) − (

𝑓
1

𝑔
) sin (10𝜋𝑓

1
)) ,

𝑔 (𝑋) = 1 + 9

𝑛

∑

𝑖=2

𝑥
𝑖

𝑛 − 1

𝑛 = 30

0 ≤ 𝑥
𝑖
≤ 1

ZDT4
𝑓
1
(𝑋) = 𝑥

1
, 𝑓
2
(𝑋) = 𝑔(1 − √(

𝑓
1

𝑔
)) ,

𝑔 (𝑋) = 1 + 10 (𝑛 − 1) +

𝑛

∑

𝑖=2

(𝑥
2

𝑖
− 10 cos (4𝜋𝑥

𝑖
))

𝑛 = 10

0 ≤ 𝑥
1
≤ 1

−5 ≤ 𝑥
𝑖
≤ 5, 𝑖 = 2, . . . , 𝑛

ZDT6
𝑓
1
(𝑋) = 1 − exp (−4𝑥

1
) sin6 (6𝜋𝑥

1
) , 𝑓
2
(𝑋) = 𝑔(1 − (

𝑓
1

𝑔
)

2

) ,

𝑔 (𝑋) = 1 + 9

𝑛

∑

𝑖=2

𝑥
𝑖

(𝑛 − 1)
0.25

𝑛 = 10

0 ≤ 𝑥
𝑖
≤ 1

Table 2: The performance results of the each algorithm on the test function.

Test function Algorithm 𝛾 SP

ZDT2
DEMO/Parent 0.005120 ± 0.000312 0.000630 ± 0.000010

NSGA-2 0.007120 ± 0.000413 0.000540 ± 0.000940

SM-DEMO 0.004013 ± 0.000230 0.000423 ± 0.000011

ZDT3
DEMO/Parent 0.009704 ± 0.000027 0.007512 ± 0.000165

NSGA-2 0.014067 ± 0.000059 0.006540 ± 0.000124

SM-DEMO 0.004704 ± 0.000003 0.004450 ± 0.000153

ZDT4
DEMO/Parent 2.009704 ± 0.901164 0.011031 ± 0.001104

NSGA-2 3.144067 ± 2.100740 0.010122 ± 0.000072

SM-DEMO 0.874001 ± 0.014323 0.008721 ± 0.000159

ZDT6
DEMO/Parent 0.649704 ± 0.004912 0.104520 ± 0.015486

NSGA-2 1.014067 ± 0.010421 0.007942 ± 0.000105

SM-DEMO 0.007750 ± 0.000083 0.002014 ± 0.000117

The simulation is carried out under the environment of
Intel Pentium 4, CPU 3.06GHz, 512MB memory, Windows
XP Professional, Matlab7.1. Initialization parameters are set
as follows: population size𝑁𝑝 = 100, scaling factor 𝐹 = 0.8,
cross rate 𝐶

𝑅
= 0.6, maximum evolution generation 𝐺max =

250, and number of SM evolution iterations 𝐺SM = 100.
All of the three algorithms are real coded, with equal

population size and equal maximum evolution generation.
Each algorithm independently runs 20 times for each test
function. Because we cannot get the real Pareto-optimal set,
wewill take 60 Pareto-optimal solutions obtained by the three
algorithms as a true Pareto-optimal solution set.

We evaluated the algorithms based on the two perfor-
mance indexes 𝛾 and SP. Table 2 shows themean and variance
of 𝛾 and SP using three algorithms: SM-DEMO, NSGA-
II, and DEMO/Parent. We can learn from Table 2, for the
ZDT2 function, that all of the three algorithms have a good

performance, while the SM-DEMO is slightly better than the
other two algorithms. In terms of convergences, for ZDT3,
ZDT4 and ZDT6, which are more complex than ZDT2, SM-
DEMO is significantly better thanDEMO/Parent andNSGA-
II.

Figure 2 shows a random running of SM-DEMO algo-
rithm. It is clear that SM-DEMO algorithm can produce a
good approximation and a uniform distribution.

3. Proposed Hybrid Algorithm for CMOP

The space of constrained multiobjective optimization prob-
lem can be divided into the feasible solution space and the
infeasible solution space, as shown in Figure 3, where 𝑆 is
the search space, Ω is the feasible solution space, and 𝑍 is
the infeasible solution space. 𝑥

𝑖
(𝑖 = 1, 2, 3, 4) is the feasible

solution, and 𝑦
𝑖
(𝑖 = 1, 2, 3, 4) is the infeasible solution.
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Figure 2: SM-DEMO simulation curve.

Assume that 𝑥∗ is the global optimal solution and 𝑦
1
is

the closest one to 𝑥∗. If the infeasible population 𝑦
1
is not

excluded by the evolution algorithm, it is permitted to explore
boundary regions from new directions, where the optimum
is likely to be found.

3.1. General Idea of the Proposed Algorithm. Researchers
have gradually realized the merit of infeasible solutions in
searching for the global optimum in the feasible region. Some
infeasible solutions with better performance are allowed to be
saved. Farmani et al. [34] formulated a method to ensure that
infeasible solutions with a slight violation become feasible in
evolution. Based on the constraints processing approach of
multiobjective optimization problems, the proposed hybrid
DE algorithm avoids constructing penalty function and
deleting meaningful infeasible solutions directly.

Here, the proposed algorithm will produce multiple
groups of functional partitions, which include an evolution-
ary population 𝑃𝑔 of size 𝑁𝑝, an intermediate population
𝑀𝑔 to save feasible individuals, an intermediate population
𝑆𝑔 to save infeasible individuals, a population 𝑃𝑓 to save the
optimal feasible solution found in the search process and a
population 𝑃𝑐 to save the optimal infeasible solution. The
relationship of multi-population is shown in Figure 4.

With the description of (1), equality constraints are always
transformed into inequality constraints as |ℎ

𝑗
(𝑋)| − 𝛿 ≤ 0,

where 𝑗 = 𝑝 + 1, . . . , 𝑞 and 𝛿 is a positive tolerance value.
To evaluate the infeasible solution, the degree of constraint
violation of individual 𝑋 on the 𝑗th constraint is calculated
as follows:

𝑉
𝑖
(𝑋) = {

max {0, 𝑔
𝑖
(𝑋)} (𝑖 = 1, 2, . . . , 𝑝) ,

max {0, ℎ𝑗 (𝑋)

− 𝛿} (𝑗 = 𝑝 + 1, . . . , 𝑞) .

(8)
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The final constraint violation of each individual in the
population can be obtained by calculating the mean of the
normalized constraint violations.

In order to take advantage of the infeasible solutions
with better performance, we proposed the following adaptive
differential mutation operator to generate individual varia-
tion learning from the mutation operators in DE/rand-to-
best/1/bin, according to rules defined by Price et al. [11].
Considering each individual vector 𝑥𝐺

𝑖
, a mutant individual

𝑥
𝐺+1

𝑖
is defined by

𝑥
𝐺+1

𝑖

= {
𝑥
𝐺

𝑖
+ 𝐹
1
⋅ (𝑥
𝐺

𝑓1
− 𝑥
𝐺

𝑟1
)+ 𝐹
2
⋅ (𝑥
𝐺

𝑓2
− 𝑥
𝐺

𝑟2
) , 𝑅

𝐶
≥ rand ( ) ,

𝑥
𝐺

𝑖
+ 𝐹
1
⋅ (𝑦
𝐺

𝑖
− 𝑥
𝐺

𝑟1
)+ 𝐹
2
⋅ (𝑥
𝐺

𝑓1
− 𝑥
𝐺

𝑟2
) , 𝑅

𝐶
< rand ( ) ,

(9)

where 𝑟
1
and 𝑟
2
represent different integers and also different

from 𝑖, randomly generated over [1,𝑁𝑝]; 𝐹 is the scaling
factor; 𝑥𝐺

𝑓𝑖
(𝑖 = 1, 2, . . . , 𝑛) is randomly generated from 𝑃𝑓,

𝑦
𝐺

𝑖
(𝑖 = 1, 2, . . . , 𝑛) is randomly generated from 𝑃𝑐; and 𝑅

𝐶
is

the mutation factor as follows:

𝑅
𝐶
= 𝑅𝑐
0
⋅
𝛾
𝐺
+ const

𝛾𝐺−1 + const
, (10)

where 𝑅𝑐
0
is the initial value of the variability factor, const is

a small constant, to ensure that the fractional is meaningful,
and 𝛾𝐺 is defined as follows:

𝛾
𝐺
=
the number of infeasible solutions in 𝑃𝑔

𝑁𝑝
. (11)

3.2. Framework of the Proposed Algorithm. The proposed
algorithm is described as follows.

Step 1 (initialization). Generate the population 𝑃𝑔, 𝑃𝑓, and
𝑃𝑐 of size 𝑁𝑝, 𝑁𝑃

1
, and 𝑁𝑃

2
. Set the value of 𝐶

𝑅
(crossover

probability),𝐺max (the number of function evaluations),𝐺SM
(the iterative number of evolution by NM simplex method),
𝑔 = 1 (the current generation number), and positive control
parameter for scaling the difference vectors 𝐹

1
, 𝐹
2
. Randomly

generate the parent population 𝑃𝑔 from the decision space.
Set the 𝑃𝑓, and 𝑃𝑐, and let the intermediate populations 𝑆𝑔
and𝑀𝑔 be empty.

Step 2 (DE reproduction). By (3) and (9) for mutation,
crossover, and selection, an offspring 𝑆𝑔 is created. Judge the
constraints of all individuals in 𝑃𝑔. In accordance with (8),
we first calculate constraint violation degree 𝑉

𝑖
(𝑋) of all of

the individuals. If 𝑉
𝑖
(𝑋) = 0, the solution is feasible and

preserved to the intermediate set 𝑀𝑔; if 𝑉
𝑖
(𝑋) > 0, the

solution is infeasible and preserved to the intermediate set 𝑆𝑔.

Step 3 (simplex method). Apply NM simplex method oper-
ator to the present population if 𝑔 ≥ 𝐺max/2. Update
the present population 𝑀𝑔 when the number of iterations
exceeds maximum iterations.

Step 4 (𝑃𝑓 construction). Rank chromosomes in 𝑀𝑔 based
on (5), and generate the elitist population 𝑃𝑓 (the size is𝑁𝑝)
from the ranked population𝑀𝑔.

Step 5 (𝑃𝑐 construction). Add the chromosomes in 𝑆𝑔 with
slight constraint violations to the 𝑃𝑐.

Step 6 (mixing the population). Combine 𝑆𝑔with the existing
parent population to form a new set𝑀𝑔. Remove the dupli-
cate individuals in𝑀𝑔 and the existing parent population.

Step 7 (evolution). Randomly choose chromosomes from
𝑃𝑐, 𝑃𝑔, and 𝑃𝑓. Use the adaptive differential mutation and
uniform discrete crossover to obtain the offspring population
𝑃𝑔 + 1.

Step 8 (termination). If the stopping criterion ismet, stop and
output the best solution; else, go to Step 2.

3.3. Experimental Study. In this section, we choose three
problems CTP, TNK, and BNH, as shown in Table 3, to test
the proposed method, and compare the method with the
current CNSGA-II [35].
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Table 3: Test functions.

Test
function

Objective function
min𝐹(𝑋) = min[𝑓

1
(𝑋), 𝑓

2
(𝑋)]

Constraints Range of
variable

CTP

𝑓
1
(𝑋) = 𝑥

1
,

𝑓
2
(𝑋) = exp(−

𝑓
1
(𝑋)

𝑐 (𝑋)
)

×{41 +

5

∑

𝑖=2

[𝑥
𝑖

2
− 10 cos (2𝜋𝑥

𝑖
)]}

𝑔
1
(𝑋) = cos (𝜃) (𝑓

2
(𝑋) − 𝑒) − sin (𝜃) 𝑓

1
(𝑋) ,

𝑔
2
(𝑋) = 𝑎

sin {𝑏𝜋 [sin (𝜃) (𝑓2 (𝑋) − 𝑒)
+ cos (𝜃) 𝑓

1
(𝑋)]
𝑐

}


𝑑

,

𝑔
1
(𝑋) ≥ 𝑔

2
(𝑋)

0 ≤ 𝑥
1
≤ 1

−5 ≤ 𝑥
𝑖
≤ 5

𝑖 = 2, 3, 4, 5

BNH
𝑓
1
(𝑋) = 4𝑥

1

2
+ 4𝑥
2

2
,

𝑓
2
(𝑋) = (𝑥

1
− 5)
2
+ (𝑥
2
− 5)
2

𝑔
1
(𝑋) = (𝑥

1
− 5)
2
+ 𝑥
2

2
− 25,

𝑔
2
(𝑋) = −(𝑥

1
− 8)
2
+ (𝑥
2
+ 3) + 7.7,

𝑔
1
(𝑋) ≤ 0, 𝑔

2
(𝑋) ≤ 0

0 ≤ 𝑥
1
≤ 5

0 ≤ 𝑥
2
≤ 3

TNK
𝑓
1
(𝑋) = 𝑥

1
,

𝑓
2
(𝑋) = 𝑥

2

𝑔
1
(𝑋) = −𝑥

1

2
− 𝑥
2

2
+ 1

+0.1 cos(16 arctan(𝑥1
𝑥
2

)) ,

𝑔
2
(𝑋) = (𝑥

1
− 0.5)

2
+ (𝑥
2
− 0.5) ,

𝑔
1
(𝑋) ≤ 0, 𝑔

2
(𝑋) − 0.5 ≤ 0

0 ≤ 𝑥
𝑖
≤ 𝜋

𝑖 = 1, 2
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Figure 5: CTP solution space.

For CTP problem, there are the six parameters 𝜃, 𝑎, 𝑏, 𝑐,
𝑑, and 𝑒 that must be chosen in a way so that a portion of
the unconstrained Pareto-optimal region is infeasible. Each
constraint is an implicit non-linear function of decision
variables. Thus, it may be difficult to find a number of
solutions on a non-linear constraint boundary. We take two
sets of values for six parameters in CTP problem, which are
determined as (1) CTP1: 𝜃 = 0.1𝜋, 𝑎 = 40, 𝑏 = 0.5, 𝑐 = 1,
𝑑 = 2, and 𝑒 = −2; (2) CTP2: 𝜃 = −0.2𝜋, 𝑎 = 0.2, 𝑏 = 10,
𝑐 = 1, 𝑑 = 6, and 𝑒 = 1. The Pareto frontiers, the feasible
solution spaces, and the infeasible solution spaces are shown
in Figure 5.

The parameters are initialized as follows.The size of pop-
ulation 𝑃𝑔 is𝑁𝑝 = 200, size of 𝑃𝑓 is𝑁𝑃

1
= 150, size of 𝑃𝑐 is

𝑁𝑃
2
= 10, scaling factors 𝐹

1
and 𝐹

2
are randomly generated

within [0.5, 1], cross rate is 𝐶
𝑅
= 0.6, maximum evolution

generation is 𝐺max = 300, and number of SM evolution
iterations is 𝐺SM = 100. All of the proposed algorithms
and CNSGA-II are real coded with equal population size and
equal maximum evolution generation. Each algorithm runs
20 times independently for each test function.

Figure 6 shows the result of a random running of the
proposed algorithm and NSGA-II, the smooth curve “—”
represents the Pareto frontier, and “X” stands for the solution
achieved by the proposed algorithm or NSGA-II.

It is obvious that the proposed algorithm returns a
better approximation to the true Pareto-optimal frontie and
a distribution of higher uniformity. We also evaluated the
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Table 4: The comparison of performance.

Test function Algorithm 𝛾 SP

CTP1 CNSGA-Π 0.021317 ± 0.000323 0.873321 ± 0.08725

The proposed 0.009836 ± 0.000410 0.567933 ± 0.01845

CTP2 CNSGA-Π 0.011120 ± 0.000753 0.78314 ± 0.02843

The proposed 0.007013 ± 0.000554 0.296543 ± 0.00453

BNH CNSGA-Π 0.014947 ± 0.000632 0.336941 ± 0.00917

The proposed 0.013766 ± 0.000043 0.209321 ± 0.00561

TNK CNSGA-Π 0.013235 ± 0.000740 0.464542 ± 0.00730

The proposed 0.006435 ± 0.000017 0.224560 ± 0.00159
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Figure 7: Flow diagram of the grinding and classification process.

algorithms based on the two criterions 𝛾 and SP, as shown
in Table 4. It can be observed from the data in Table 4
that the proposed algorithm performs significantly better
than the classical CNSGA-II algorithm in convergence and
distribution uniformity.The simulation results show that this
algorithm can accurately converge to global Pareto solutions
and can maintain diversity of population.

4. Optimization of Grinding and
Classification Process

4.1. Bauxite Grinding and Classification Process. Thegrinding
and classification process is the key preparation for the
bauxite mineral processing. Here, we consider a bauxite
grinding process in a certain mineral company with single
grinding and two-stage classification, as shown in Figure 7.

The process consists in a grinding ball mill and two
spiral classifiers. First classifier recycle will be put back to
the ball mill for regrinding, and the first-stage overflow
will be put into second spiral classifier after being mixed
with water; the second classifier recycle will be prepared for
Bayer production as the rough concentrate, and the second-
stage overflow will be sent to the next flotation process.
The production objectives are composed of the production
yields, technically represented by the solid flow of feed ore
since the process is nonstorable, and the mineral processing
quality, represented by percentage of the small-size fractions
of mineral particles in the second-stage overflows.
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Table 5: Notations for the model of the grinding and classification
process.

Notation Description

𝑝
𝑖

Particle percentage of the 𝑖th size fraction in
the ball mill overflow

𝑓
𝑗

Particle percentage of the 𝑖th size fraction in
the Feed ore

𝐶 Rate of the first classifier recycle
𝐸𝑎
𝑖 The efficiency of the first spiral classifier

𝜏 Themean residence time
𝑃
1 The internal concentration in ball mill
𝑀MF The solid flow of feed ore
𝑊
1 The water addition of the first classifier recycle

𝑊
2 The classifier water addition

𝑏
𝑖𝑗 The breakage distribution function
𝑆
𝑖 The breakage rate function
𝑑
𝑖 The particle with the 𝑖th size

𝛼𝑐
𝑖

The particle percentage of the 𝑖th size in the
first classifier overflow

𝑑
𝑜 The unit size of the particle
𝑃
2 First-stage overflow
𝜙
𝐵 Ball filling rate

𝐴
𝑐
, 𝐵
𝑐

Parameters of the first-stage classifier overflow
size fraction distribution

𝐸𝑎
𝑖 The efficiency of the first spiral classifier

𝑑
50𝑐

The particle size fraction after correction
separation

𝑚 The separation accuracy
𝑘 The intermix index

𝐸𝑎


min, 𝑑


50𝑐
, 𝑚

, 𝑘
 The corresponding key parameters to the
efficiency of the second spiral classifier

𝑎, 𝛼, 𝜇, Λ
Four key parameters to control the breakage
rate function

𝑑min, 𝑑max Theminimum and maximum particle sizes
𝐴MF, 𝐵MF Parameters of feed ore size fraction distribution

𝐹(𝑖)
The cumulative particle percentage less than
the 𝑖th size fraction in feed ore

𝛼𝑐


𝑖

The particle percentage of the 𝑖th size fraction
in the second classifier overflow

𝐸𝑎


𝑖 The efficiency of the second spiral classifier

4.2. Predictive Model of the Grinding and Classification Pro-
cess. Here, we establish the mathematical predictive model
of each unit process in the bauxite grinding and classification
process. The notations of the indexes, decision variables, and
parameters are listed in Table 5. These notations will be used
for the model of the grinding and classification process.

4.2.1. Ball Mill Circuit Model. Here, 𝑝
𝑖
is the particle per-

centage of 𝑖th size fraction in the ball mill overflow, 𝑓
𝑗
is the

particle percentage of 𝑖th size fraction in feed ore, rate of the
first classifier recycle 𝐶 is known, and 𝐸𝑎

𝑖
is the efficiency of

the first spiral classifier. According to a technical report of
field investigation and study, we have that

𝑝
𝑖
(1 + 𝐶) =

𝑑
𝑖𝑖
𝑓
𝑖
+ ∑
𝑖−1

𝑗=1,𝑖>1
𝑑
𝑖𝑗
[𝐸𝑎
𝑖
𝑝
𝑗
(1 + 𝐶) + 𝑓

𝑗
]

1 − 𝑑
𝑖𝑖
𝐸𝑎
𝑖

,

𝑑
𝑖𝑗
=

{{{

{{{

{

𝑒
𝑗
, 𝑖 = 𝑗,

𝑖−1

∑

𝑘=𝑗

𝑐
𝑖𝑘
𝑐
𝑗𝑘
(𝑒
𝑘
− 𝑒
𝑖
) , 𝑖 > 𝑗,

𝑐
𝑖𝑗
=

{{{{{{{{

{{{{{{{{

{

−

𝑗−1

∑

𝑘=𝑖

𝑐
𝑖𝑘
𝑐
𝑗𝑘
, 𝑖 < 𝑗,

1, 𝑖 = 𝑗,

1

𝑆
𝑖
− 𝑆
𝑗

𝑖−1

∑

𝑘=𝑗

𝑆
𝑘
𝑏
𝑖𝑘
𝑐
𝑘𝑗
, 𝑖 > 𝑗,

𝑒
𝑗
=

1

(1 + 0.5 ⋅ 𝜏𝑆
𝑗
) (1 + 0.25 ⋅ 𝜏𝑆

𝑗
)
2
, 𝜏 =

8𝑃
1

𝑀MF
, (12)

where 𝜏 is the mean residence time of minerals, 𝑃
1
is the

internal concentration in ball mill, and

𝑃
1
=

𝑀MF (1 + 𝐶)

𝑀MF (1 + 𝐶) +𝑊1 + 0.3 (𝑊1 +𝑊2)
, (13)

where𝑀MF (𝑡/ℎ) is the solid flow of feed ore,𝑊
1
is the water

addition of the first classifier recycle, and𝑊
2
is the classifier

water addition. 𝑏
𝑖𝑗
is the breakage distribution function; 𝑆

𝑖

is the breakage rate function, and it satisfied the following
equation:

𝑆
𝑖
=

(𝑎(𝑑
𝑖
/𝑑
𝑜
)
𝛼

)

(1 + (𝑑
𝑖
/𝜇)
Λ

)

, (14)

where 𝑑
𝑖
is the particle with the 𝑖th size, 𝑑

𝑜
it is a unit, when

per millimeter is a unit, 𝑑
𝑜
= 1, 𝑑

𝑖
= 𝑖 (mm), and 𝑎, 𝛼, 𝜇,

and Λ are four key parameters to control the breakage rate
function.

In a concrete grinding and classification process, the ball
mill size is fixed, and the speed of ball mill is constant.
Through data acquisition and testing of grinding and clas-
sification steady-state loop, the regression model between 𝑎,
𝛼, 𝜇, Λ and condition variables, size fraction distribution
can be established. The input variables are ball filling rate
𝜙
𝐵
, solid flow of feed ore 𝑀MF, water addition of the first

classifier recycle𝑊
1
, and parameters of feed ore size fraction

distribution 𝐴MF, 𝐵MF. The regression model is

[𝑎 𝛼 𝜇 Λ]
𝑇

=
[
[

[

𝑥
11

⋅ ⋅ ⋅ 𝑥
1𝑗

... d
...

𝑥
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑖𝑗

]
]

]

⋅ [𝑊1 𝜙𝐵 𝐴MF 𝐵MF 𝑀MF]
𝑇

.

(15)

The value of 𝑥
𝑖𝑗
(𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, . . . , 5) can be

obtained by the experimental data regression, 𝐴MF, 𝐵MF can
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be obtained from feed ore size fraction distribution, and 𝐹(𝑖)
is the cumulative particle percentage less than the 𝑖th size
fraction in feed ore, and it is represented as follows:

𝐹 (𝑖) = 1 − exp (−𝐴MF𝑑
𝐵MF
𝑖

) . (16)

4.2.2. Spiral Classifier Model. 𝛼𝑐
𝑖
is the particle percentage

of the 𝑖th size fraction in the first classifier overflow, and 𝑝
𝑖

is the particle percentage of the 𝑖th size fraction in ball mill
overflow. The spiral classifier model is as follows:

𝛼𝑐
𝑖
=

𝑝
𝑖
× (1 − 𝐸𝑎

𝑖
)

∑
𝑖=1

(𝑝
𝑖
× (1 − 𝐸𝑎

𝑖
))
× 100%, (17)

where 𝐸𝑎
𝑖
is the efficiency of the first spiral classifier and the

mechanism formula of 𝐸𝑎
𝑖
is shown as follows:

𝐸𝑎
𝑖
= 1 − exp [−0.693(

𝑑
𝑖
− 𝑑min

𝑑
50𝑐

− 𝑑min
)

𝑚

]

+ 𝐸𝑎min ⋅ [1 − (
𝑑
𝑖
− 𝑑min
𝑑max

)]

𝑘

,

(18)

where 𝑑
𝑖
is the particle with the 𝑖th size, 𝑑min and 𝑑max

represent maximum and minimum particle sizes, 𝑑
50𝑐

is
the particle size fraction after correction separation, 𝑚 is
separation accuracy, and 𝑘 is intermix index.

Through data acquisition and testing of grinding and
classification steady-state loop, the regressionmodel between
classification parameters and condition variables, size frac-
tion distribution can be established. The input variables
include the solid flow of feed ore 𝑀MF, the classifier water
addition 𝑊

2
, and the parameters of ball mill overflow size

fraction distribution 𝐴MF, 𝐵MF. The regression model is
shown as follows:

[𝐸𝑎min 𝑑
50𝑐

𝑚 𝑘]
𝑇

=
[
[

[

𝑦
11

⋅ ⋅ ⋅ 𝑦
1𝑗

... d
...

𝑦
𝑖1

⋅ ⋅ ⋅ 𝑦
𝑖𝑗

]
]

]

⋅ [𝑀MF 𝑊
2
𝐴MP 𝐵MP]

𝑇

,

(19)

where the value of 𝑦
𝑖𝑗
(𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, 3, 4) can be

obtained by data regression.
The first-stage overflow 𝑃

2
calculation formula is as

follows:

𝑃
2
=

𝑀MF
(𝑀MF +𝑊1 +𝑊2)

. (20)

Similarly, we can get the second spiral classifier model as
follows:

𝛼𝑐


𝑖
=

𝛼𝑐
𝑖
× (1 − 𝐸𝑎



𝑖
)

∑
𝑖
(𝛼𝑐
𝑖
× (1 − 𝐸𝑎))

× 100%, (21)

where 𝛼𝑐
𝑖
is the particle percentage of the 𝑖th size fraction in

the second classifier overflow, 𝛼𝑐
𝑖
is the particle percentage

of the 𝑖th size fraction in the first classifier overflow, and

𝐸𝑎


𝑖
is the efficiency of the second spiral classifier. The spiral

classifier model is as follows:

𝐸𝑎


𝑖
= 1 − exp[

[

−0.693(
𝑑


𝑖
− 𝑑


min
𝑑


50𝑐
− 𝑑


min
)

𝑚


]

]

+ 𝐸𝑎


min ⋅ [1 − (
𝑑


𝑖
− 𝑑


min
𝑑max

)]

𝑘


,

(22)

where, 𝐸𝑎min, 𝑑


50𝑐
, 𝑚, and 𝑘

 are key parameters to the
efficiency of the second spiral classifier. Through data acqui-
sition and testing of grinding and classification steady-state
loop, the regression model between classification parameters
and condition variables, size fraction distribution can be
established. The input variables include solid flow of feed
ore𝑀MF and parameters of the first-stage classifier overflow
size fraction distribution 𝐴

𝑐
, 𝐵
𝑐
, which are solved by similar

equation to (20). The regression model is shown as follows:

[𝐸𝑎


min 𝑑


50𝑐
𝑚

𝑘

]
𝑇

=

[
[
[

[

𝑦


11
⋅ ⋅ ⋅ 𝑦


1𝑗

... d
...

𝑦


𝑖1
⋅ ⋅ ⋅ 𝑦



𝑖𝑗

]
]
]

]

⋅ [𝑀MF 𝐴
𝑐
𝐵
𝑐]
𝑇

,

(23)

where the value of𝑦
𝑖𝑗
(𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, 3) can be obtained

by experimental data regression.

4.3. Optimization Model of Grinding and Classification Pro-
cess. Two objective functions in the process are identified:
one is tomaximize output𝑓

1
(𝑋), and the other is tomaximize

the small-size fractions (less than 0.075mm fractions) in the
second-stage overflow 𝑓

2
(𝑋). It is also necessary to ensure

that the grinding productmeets all of other technical require-
ments and the least disturbance in the following flotation
circuit. As the constraints, the feed load of the grinding circuit
𝑀MF, the steel ball filling rate 𝜙

𝐵
, the first and the second

overflows 𝑃
1
and 𝑃

2
, and the particle percentage of fine size

fraction in the first and the second classifier overflows 𝛼𝑐
−0.075

and 𝛼𝑐
−0.075

should be within the user specified bounds.
The operation variables are the solid flow of feed ore

𝑀MF, water addition of the first classifier recycle 𝑊
1
, ball

filling rate 𝜙
𝐵
, and water addition of the second classifier𝑊

2
.

Based on all of the above, grinding and classification process
multiobjective optimization model is as follows:

max 𝐹 = max [𝑓
1
(𝑋) , 𝑓

2
(𝑋)] ,

𝑓
1
(𝑋) = 𝑀MF,

𝑓
2
(𝑋) = 𝛼𝑐



−0.075

= 𝑓 (𝑀MF,𝑊1,𝑊2, 𝜙𝐵) ,

s.t. 𝑀MFmin ≤ 𝑀MF ≤ 𝑀MFmax,
𝜙
𝐵min ≤ 𝜙𝐵 ≤ 𝜙𝐵max,
𝑃
1min ≤ 𝑃1 ≤ 𝑃1max,
𝑃
2min ≤ 𝑃2 ≤ 𝑃2max,
𝛼𝑐
−0.075

≥ 𝛼𝑐min,

𝛼𝑐


−0.075
≥ 𝛼𝑐


min.

(24)



Journal of Applied Mathematics 13

Table 6: The optimization results calculated by the proposed algo-
rithm.

Number 𝑓
1
(𝑋) (t/h) 𝑓

2
(𝑋) (%)

1 92.972 90.814
2 91.810 91.900
3 92.360 90.923
4 90.620 93.460
5 91.310 92.494
6 90.170 93.800
7 89.390 95.200
8 89.480 94.932
9 91.530 92.400
10 89.298 95.763
11 89.824 94.549
12 89.800 94.395
13 89.710 94.618
14 91.170 92.800
15 91.880 91.840
16 92.190 91.281
17 89.870 94.090
18 91.000 93.285
19 91.960 91.520
20 91.124 93.221

85

87

89

91

93

95

97

74.000 79.000 84.000 94.000

Optimization results
The raw data 

f1(x)

f
2
(x
)

(%
)

89.000

Figure 8: The comparison chart between optimization results and
industrial data.

In (24), 𝑓(𝑀MF,𝑊1,𝑊2, 𝜙𝐵) implicates the model of
grinding and classification represented by (12)–(23). The
proposed algorithm is applied to solve the problem, and the
optimization results are shown in Table 6.

With the practical process data from a grinding circuit
of a mineral plant, the simulation of this hybrid intelligent
method adopted the same parameters on the variation in
fresh slurry feed velocity, density, particle size distribution,
and cyclone feed operating configurations.

The comparison of production data and optimization
results in Table 6 is shown in Figure 8, where “X” repre-
sents the proposed algorithm optimization results and “I”
represents the original data collected from the field without
optimization of raw data. According to the objectives, the
data point closer to the upper right edge is more beneficial.
Obviously, the proposed optimization result is far better
than the original data, indicating the effectiveness of the
optimization approach.

4.4. TOPSIS Method for Solution Selection. The resolution of
amultiobjective optimization problemdoes not endwhen the
Pareto-optimal set is found. In practical operational prob-
lems, a single solution must be selected. TOPSIS [36] is a
useful technique in dealing with multiattribute or multicrite-
ria decision-making (MADM/MCDM) problems in the real
world. The standard TOPSIS method attempts to choose
alternatives that simultaneously have the shortest distance
from the positive-ideal solution and the farthest distance
from the negative-ideal solution. According to the TOPSIS
method, the relative closeness coefficient is calculated, and
the best solution in Table 6 is the solution number 10 as
𝑓
1
(𝑋) = 89.298 (𝑡/ℎ) and 𝑓

2
(𝑋) = 95.763 (%). The

corresponding decision variables are 𝑀MF = 89.298 (𝑡/ℎ),
𝜙
𝐵
= 32%,𝑊

1
= 75.127 (𝑡/ℎ), and𝑊

2
= 16.296 (𝑡/ℎ).

5. Conclusions

Promoted by the requirements of engineering optimization
in complex practical processes of grinding and classification,
we proposed a hybrid multiobjective differential evolution
algorithm with a few beneficial features integrated. Firstly, an
archiving mechanism for infeasible solutions is established
with functional partitioned multi-population, which aims to
direct the population to approach or land in the feasible
region from different directions during evolution. Secondly,
we propose an infeasible constraint violations function to
select infeasible population with better performance, so
that they are allowed to be saved and to participate in
the subsequent evolution. Thirdly, a nondominating ranking
strategy is designed to improve the crowding-distance sorting
and return uniform distribution of Pareto solutions. Finally,
the simplex method is inserted in the differential evolution
process to purposefully enrich the diversity without excessive
computation cost. The advantage of the proposed algorithm
is the exemption from constructing penalty function and
the preservation of meaningful infeasible solutions directly.
Simulation results on benchmarks indicate that the proposed
algorithm can converge quickly and effectively to the true
Pareto frontier with better distribution.

Based on the investigated information about grinding cir-
cuit process, we established a multiobjective optimal model
with equations frommechanism knowledge, parameters rec-
ognized by data regression, and constraints of technical
requirements. The nonlinear multiobjective optimization
model is too complicated to be solved by traditional gradient-
based algorithms.The proposed hybrid differential evolution
algorithm is applied and tested to achieve a Pareto solution
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set. It is proven to be valuable for operation decision making
in the industrial process and showed superiority to the oper-
ation carried out in the production. In fact, many operating
parameters in complex processes are highly coupled and
conflicting with each other. The optimal operation of the
entire production process is very difficult to obtain bymanual
calculation; let alone the fluctuation situation of process
conditions. The application case indicates that the proposed
method has good performance and is helpful to inspire
further research on evolutionary methods for engineering
optimization.
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