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Abstract.

We consider the two-stage stochastic linear programming model, in which the recourse function is a
worst case expected value over a set of probabilistic distributions. These distributions share the same
first and second order moments. By using duality of semi-infinite programming and assuming knowledge
on extreme points of the dual polyhedron of the constraints, we show that a deterministic equivalence of
the two-stage problem is a second-order cone optimization problem. Numerical examples are presented
to show non-conservativeness and computational advantage of this approach.
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1 Introduction

Consider the following two-stage stochastic programming problem with fixed recourse:

min
x∈X

{
c′x + EP[Q(x, z̃)]

}
(1.1)

where the apostrophe (′) stands for the transpose and

Q(x, z̃) = min d′y

s. t. Ax + Dy = z̃,

y ≥ 0,

where x ∈ Rn is the vector of first-stage decision variables subject to a feasible region X = {x :
Bx = b, x ≥ 0} ⊆ Rn, B ∈ Rq×n, b ∈ Rq, while d ∈ Rk, A ∈ Rl×n and D ∈ Rl×k are fixed
second-stage data; in particular, D is called the fixed recourse matrix. Finally, z̃ ∈ Rl is random
vector with a support Ω ⊂ Rl, P is the probability measure of z̃, and EP is expectation under
probability measure P.

Practically speaking, it is rare to know the exact distribution of z̃, but we often know the
bounds of means and variances of the components of z̃ by collecting historical data. For con-
venience, assume that we do not know the exact probability measure of z̃, but we are given
EP(z̃i) ≤ µi and EP(z̃2

i ) ≤ ηi for i = 1, ..., l. Motivated by recent development in robust opti-
mization, say Ben-Tal and Nemirovski (2002) and Bertsimas et al.(2010), we consider the “robust
version” of the Problem (1.1) (also called the “minimax two-stage stochastic programs”),

min
x∈X

{
c′x + max

P∈F
EP[Q(x, z̃)]

}
(1.2)

where

F :=
{
P : P(z̃ ∈ Ω) = 1, EP(z̃j) ≤ µj , EP(z̃2

j ) ≤ ηj , j = 1, . . . , l
}

,

In a recent paper, Ang et al. (2014) considered a similar problem with an additional assumption
on y, which requires that y is affinely dependent on z̃. We call this type of assumptions “the
linear decision rule” following Ben-Tal and Nemirovski (2002). The difference in this paper is
that we do not use linear decision rule, instead, we assume that we have sufficient knowledge on
the following dual polyhedron (

A D

B 0

)′ ( w

u

)
≤

(
c

d

)
(1.3)

namely, assume that

Assumption 1 We know all the extreme points of the set(
A D

B 0

)′ ( w

u

)
≤

(
c

d

)
.
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Let us for convenience of analysis denote these extreme points by(
wi

ui

)
, i = 1, ...,m.

The rest of this paper is organized as follows. In Section 2, we establish the deterministic
equivalence of Problem (1.2) as a second-order cone (SOC for short) optimization problem. In
Section 3, we present numerical results with certain important observations. Section 4 concludes
the paper.

Notations. We denote a random variable, z̃, with the tilde sign. Matrices and vectors are
represented as upper and lower case letters respectively. If x is a vector, we use the notation xi

to denote the ith component of the vector. For any two vectors x, y ∈ Rl, the notation x ≤ y

means xi ≤ yi for all i = 1, . . . , l.

2 Problem Formulation

Consider problem

min
x∈X

{
c′x + max

P∈F
EP[Q(x, z̃)]

}
(2.4)

where

Q(x, z̃) = min d′y

s. t. Ax + Dy = z̃,

y ≥ 0.

and

F :=
{
P : P(z̃ ∈ Ω) = 1, EP(z̃j) ≤ µj , EP(z̃2

j ) ≤ ηj , j = 1, . . . , l
}

,

and Ω = {z ∈ Rl : −∞ ≤ −` ≤ z ≤ h ≤ +∞}. Since x is independent of P, Problem (2.4) can
be re-written as follows:

min
x∈X

max
P∈F

EP[c′x + Q(x, z̃)].

We need the following assumptions.

Assumption 2

min
x∈X

max
P∈F

EP[c′x + Q(x, z̃)] = max
P∈F

min
x∈X

EP[c′x + Q(x, z̃)].
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Assumption 3
min
x∈X

{EP[c′x + Q(x, z̃)]} = EP{min
x∈X

[c′x + Q(x, z̃)]}.

Assumption 2 is valid if X is compact. Otherwise, there are several other conditions to
guarantee the min-max relationship above, see Sion (1958). A general result about Assumption
3 can be found in Rockafellar and Wets (1998)(Theorem 14.60) as follows. Let X be a space of
measurable functions from T to Rn that is decomposable relative to µ, a σ-finite measure on A.
Let f : T ×Rn → R̄ be a normal integrand. Then the minimization of If over X can be reduced
to pointwise minimization in the sense that, as long as If 6= ∞ on X , one has

inf
x∈X

∫
T

f(t, x(t))µ(dt) =
∫

T

[
inf

x∈Rn
f(x, t)

]
µ(dt).

Moreover, as long as this common value is not −∞ on X , one has for x̄ ∈ X that

x̄ ∈ argmin x∈X If(x) ⇐⇒ x̄(t) ∈ argmin x∈Rnf(t, x) for µ-almost every t ∈ T.

Under Assumptions 1-3, we have that Problem (2.4) is equivalent to

max
P∈F

min
x∈X

{c′x + max
P∈F

EP[Q(x, z)]}

= max
P∈F

min
x∈X

EP

[
min

y
{c′x + d′y :

(
A D

B 0

) (
x

y

)
=

(
z

b

)
, x, y ≥ 0}

]
= max

P∈F
EP min

x∈X

[
min

y
{c′x + d′y :

(
A D

B 0

) (
x

y

)
=

(
z

b

)
, x, y ≥ 0}

]
= max

P∈F
EP max

1≤i≤m
(z′wi + b′ui)

= min{v0 + z′v + η′V : v0 + z′v + (z2)′V ≥ z′wi + b′ui, 1 ≤ i ≤ m, z ∈ Ω} (2.5)

where z2 := (z2
1 , ..., z

2
` )′; the first two equalities above are due to Assumption 2 and Assumption

3, respectively. The second last equality is due to Assumption 1, and the last equality is due
to strong duality of general linear programming (assume it holds1), which should be clear if we
note that the following is a pair of general dual linear programs.

max P EP
[
max1≤i≤m(z′wi + b′ui)

]
s.t. EP(Ω) = 1

EP(zi) ≤ µi, i = 1, ..., l

EP(z2
i ) ≤ ηi, i = 1, ..., l.

minv0,v,V v0 + z′v + η′V

s.t. v0 + z′v + (z2)′V ≥ max1≤i≤m(z′wi + b′ui)
V ≥ 0, v ≥ 0.

Proposition 2.1 The robust stochastic optimization problem (2.4) is equivalent to the following
second-order cone (SOC for short) optimization problem

min
v0,v,V,r,λ,ν

v0 + µ′v + η′V

1The conditions ensuring such strong duality can be found in Anderson and Nash (1987).
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s. t.
l∑

j=1

[
hjλ

i
j + `jν

i
j + ui

j

]
− v0 + b′ui ≤ 0, i = 1, . . . ,m,∥∥∥∥(

vj − wi
j + λi

j − νi
j

Vj − ri
j

)∥∥∥∥ ≤ Vj + ri
j , j = 1, . . . , l, i = 1, . . . ,m,

Vj , vj ri
j , λi

j , νi
j ≥ 0, j = 1, . . . , l, i = 1, . . . ,m.

Proof. The feasible set of (2.5) can be equivalently written asv0 − b′ui + (v − wj)′z +
l∑

j=1

Vjz
2
j

 ≥ 0, ∀i = 1, ...,m, z ∈ Ω,

V ≥ 0, v ≥ 0.

For fixed i, the first constraint above is equivalent to the following

min
z

v0 − b′ui + (v − wi)′z +
l∑

j=1

Vjz
2
j : −` ≤ z ≤ h

 ≥ 0 (2.6)

Fix Vj , vj , v0, u
i, wi, the left hand side of (2.6) is a separable convex quadratic program in z over

a box. By strong duality of convex quadratic programming and the separability of variables, we
have that (2.6) is equivalent to

max
l∑

j=1

[
−hjλj − `jνj + Vjz

2
j + (vj − wi

j + λj − νj)zj

]
+ v0 − b′ui ≥ 0 (2.7)

s. t. Vj , vj , λj , νj ≥ 0, j = 1, ..., l,

2Vjzj + (vj − wi
j + λj − νj) = 0, j = 1, ..., l, (2.8)

where λj , νj are dual variables.

If all Vj > 0, we solve zj from (2.8) and substitute the solution into (2.7) to obtain

max
m∑

j=1

[
−hjλj − `jνj − (vj − wi

j + λj − νj)2/(4Vj)
]
+ v0 − b′ui ≥ 0

s. t. Vj , vj , λj , νj ≥ 0, j = 1, ..., l,

which is equivalent to

l∑
j=1

[−hjλj − `jνj − rj ] + v0 − b′ui ≥ 0, (2.9)

Vj , vj , rj , λj , νj ≥ 0, j = 1, ..., l, (2.10)

(vj − wi
j + λj − νj)2 ≤ 4Vjr

i
j , j = 1, ..., l, (2.11)

where rjs are auxiliary variables.
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If some Vj = 0, it can be directly verified that conditions (2.9)-(2.11) are also sufficient and
necessary for the optimality of Problem (2.7)-(2.8). Thus, (2.4) is equivalent to

min
r,v0,v,V,λ,ν

v0 + µ′v + η′V

s. t.
l∑

j=1

[
−hjλj − `jνj − ri

j

]
+ v0 − b′ui ≥ 0, j = 1, ..., l, i = 1, ...,m

(vj − wi
j + λj − νj)2 ≤ 4Vjr

i
j , j = 1, ..., l, i = 1, ...,m

V, v, λ, ν, r ≥ 0.

The problem is an SOC optimization problem since we can reformulate it as follows.

min
v0,v,V,rλ,ν

v0 + µ′v + η′V

s. t.
l∑

j=1

[
hjλ

i
j + `jν

i
j + ri

j

]
− v0 + b′ui ≤ 0, j = 1, . . . , l, i = 1, . . . ,m,∥∥∥∥(

vj − wi
j + λi

j − νi
j

Vj − ri
j

)∥∥∥∥ ≤ Vj + ri
j , j = 1, . . . , l, i = 1, . . . ,m,

Vj , vj ri
j , λi

j , νi
j ≥ 0, j = 1, . . . , l, i = 1, . . . ,m.

Remarks. In case that ` = −∞, or h = +∞ or both, the format of the SOC optimization
problem could be slightly different, but it does not change the essential point that Problem (2.4)
is equivalent to an SOC problem.

The right hand side of the second-stage constraints are not necessarily z̃. In fact it can be
an affine mapping of z̃ without essential change of the conclusion.

3 Numerical Experiments

3.1 A Classic Example

Example.2 A company manager is considering the amount of steel to purchase (at $58/1000lb)
for producing wrenches and pliers in next month. The manufacturing process requires molding
the tools on a molding machine and then assembling the tools on an assembly machine with the
following technical data.

Wrench Plier

Steel (lbs.) 1.5 1
Molding Machine (hours) 1 1
Assembly Machine (hours) .3 .5
Contribution to Earnings ($/1000 units) 130 100

2This is a slightly different version of Example 7.3 in the book of Bertsimas and Freund (2000).
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There are uncertainties that will influence his decision. 1. The total available assembly hours
of next month could be 8000 or 10,000, with 50/50 chance. 2. The total available molding hours
of next month could be either 21,000 or 25,000 at 50% possibility for each case. The manager
would like to plan, in addition to the amount of steel to purchase, for the production of wrenches
and pliers of next month so as to maximize the expected net revenue of this company.

3.2 The Two-stage Stochastic Programming Formulation

Decision Variables: x: the steel to purchase now; wi, pi: production plan under scenario i =
1, 2, 3, 4.

Scenario Assembly Hours Molding Hours Probability

1 8000 25000 .25
2 8000 21000 .25
3 10000 25000 .25
4 10000 21000 .25

We solve the problem as a traditional two-stage stochastic programming problem (i.e. in
format (1.1)) as follows.

min 58x−
∑4

i=1 .25(130wi + 100pi)

s.t. w1 + p1 ≤ 25000 (Mold constraint for scenario 1)

.3w1 + .5p1 ≤ 8000 (Assembly constraint for scenario 1)

−x + 1.5w1 + p1 ≤ 0 (Steel constraint for scenario 1)

w2 + p2 ≤ 21000 (Mold constraint for scenario 2)

.3w2 + .5p2 ≤ 8000 (Assembly constraint for scenario 2)

−x + 1.5w2 + p2 ≤ 0 (Steel constraint for scenario 2)

w3 + p3 ≤ 25000 (Mold constraint for scenario 3)

.3w3 + .5p3 ≤ 10000 (Assembly constraint for scenario 3)

−x + 1.5w3 + p3 ≤ 0 (Steel constraint for scenario 3)

w4 + p4 ≤ 21000 (Mold constraint for scenario 4)

.3w4 + .5p4 ≤ 10000 (Assembly constraint for scenario 4)

−x + 1.5w4 + p4 ≤ 0 (Steel constraint for scenario 4)

x,wi, pi ≥ 0, i = 1, ..., 4.

The optimal cost = -961.89.
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We next solve it as a robust two-stage stochastic programming problem (i.e. in format (2.5)).
Here we have X = {x : x ≥ 0}, (B, b) = ∅ and

c = 58, d =


−130
−100

0
0

 , y =


w

p

τ1

τ2

 , A =

 0
0
−1



D =

 1 1 1 0
.3 .5 0 1
1.5 1 0 0

 , z̃ =

 z̃1

z̃2

z̃3

 , ` =

 −21
−8
1

 , h =

 25
10
1

 ,

where τ1, τ2 are slack variables, z̃3 ≡ 0, and z̃1, z̃2 are independent random variables with

P(z̃1 = 21) = P(z̃1 = 25) = P(z̃2 = 8) = P(z̃2 = 10) = .5,

E(z̃1) = 23, E(z̃2) = 9, E(z̃3) = 0.

We have E(z̃2
1) = 533, E(z̃2

2) = 82, E(z̃2
3) = 0.

We calculate the extreme points of the feasible region of the dual problem, that is,

{w ∈ R3 | D′w ≤ d, A′w ≤ c},

where D,A, c, and d are given as above. The extreme points of (3.12) are

w1 =

−43
0
−58

 , w2 =

 0
−143.3
−58


We then solve the corresponding SOC optimization problem:

min
v0,v,V,r,λ,ν

v0 + 23v1 + 9v2 + 533V1 + 82V2

s. t. −v0 +
3∑

j=1

r1
j + 25λ1

1 + 10λ1
2 + λ1

3 − 21ν1
1 − 8ν1

2 + ν1
3 ≤ 0

−v0 +
3∑

j=1

r2
j + 25λ2

1 + 10λ2
2 + λ2

3 − 21ν2
1 − 8ν2

2 + ν2
3 ≤ 0∥∥∥∥(

v1 + λ1
1 − ν1

1 + 43
V1 − r1

1

)∥∥∥∥ ≤ V1 + r1
1∥∥∥∥(

v2 + λ1
2 − ν1

2

V2 − r1
2

)∥∥∥∥ ≤ V2 + r1
2∥∥∥∥(

v3 + λ1
3 − ν1

3 + 58
V3 − r1

3

)∥∥∥∥ ≤ V3 + r1
3∥∥∥∥(

v1 + λ2
1 − ν2

1

V2 − r2
1

)∥∥∥∥ ≤ V1 + r2
1
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∥∥∥∥(
v2 + λ2

2 − ν2
2 + 143.38

V2 − r2
2

)∥∥∥∥ ≤ V2 + r2
2∥∥∥∥(

v3 + λ2
3 − ν2

3 + 58
V3 − r2

3

)∥∥∥∥ ≤ V3 + r2
3

Vi, vi, r
i
j , λ

i
j , ν

i
j ≥ 0, i = 1, 2, 3; j = 1, 2.

The numerical results are as follows. Optimal cost = -902.89, and

v0 = −903, v =

 0.0007
0.0017
0.5579

 , V =

 0
0

11311

 ,

r1 =

 0.0388
0.0346
0.0777

 , r2 =

 36.8178
36.9124
55.9710

 , λ1 =

 0.0004
0.0008
0.0015

 , λ2 =

 9.3722
9.9876
18.8041

 ,

ν1 =

 43.0059
0.0103
0.0015

 , ν2 =

 9.3765
153.3265
18.9580

 .

Ang et al.(2014) tested the same problem based on the linear decision rule mentioned in
Section 1 and obtained an optimal cost -900.93. Compared to the numerical results obtained
in this paper, we can see that the solution (optimal cost = -961.89) of the classical two-stage
model with exact distribution is less conservative than the model studied in this paper (optimal
cost = -900.90). Our solution is a bit conservative (7% worse) but not overly conservative. In
addition, our result is slightly better that the case of using linear decision rule (LDR). We guess
the reason was that LDR is a restrictive assumption and thus reduces the size of feasible region.
The optimal value is then more conservative.

A possible question about the proposed approach is that in high dimensional space, it would
be difficult to obtain a complete list of the extreme points of the dual polyhedron. We therefore
made another test. In the example above there are two extreme points. Now we drop one of
them, say w2, and only keep the extreme point w1. Then the optimal cost of the corresponding
SOC problem is -902.93, which is almost the same as the case with complete set of extreme
points (-902.89). However, if we only keep w2, the model gives us minimal cost -1146.56 (27%
worse than the best minimal cost), which is not so good. Hence, our observation appears to

3Our model extends the uncertainty set from the one in Ang et al. (2014) to

F :=
˘
P : P(z̃ ∈ Ω) = 1, EP(z̃j) ≤ µj , EP(z̃

2
j ) ≤ ηj , j = 1, . . . , l

¯
Hence, the dual form has one extra non-negativity constraint,

vj ≥ 0, j = 1, . . . , l,

compared with that in Ang et al.(2014). When we conduct the numerical experiment following the formulation in

Ang et al.(2014), we add this non-negativity constraint to their original SOCP formulation. Therefore, different

numerical result is obtained here (not -929.88 but -900.9) with exact same formulation method taken.
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suggest that by “choosing” a few “crucial extreme points” we could still find a good solution
without having to include all of the extreme points. A further research topic is then how to
progressively include the “good extreme points” into the crucial set.

4 Conclusion

By considering the worst case over a set of probability measures for which we only have first and
second order moment information, we may obtain robust and computationally efficient models
for finding a solution to a two-stage stochastic optimization problem. It is demonstrated through
a numerical example that this idea may lead to a fast algorithm with non-conservative solutions
to a two-stage linear stochastic program. Therefore the SOC model may greatly widen the
applicability of the two-stage recourse model in decision-making under uncertainty.
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