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Offset-free Feedback Linearization Control of

a Three-Phase Grid-connected Photovoltaic

System

Rachid Errouissi, Ahmed Al-Durra, S. M. Muyeen.

Abstract: In this paper, a state feedback control law is combined with a disturbance observer to enhance disturbance

rejection capability of a grid-connected photovoltaic inverter. The control law is based on input-output feedback linearization

technique, while the existing disturbance observer is simplified and adopted for the system under investigation. The resulting

control law has a PI/almost PID-like structure, which is convenient for real-time implementation. The objective of the

proposed approach is to improve the dc-bus voltage regulation, while at the same time control the power exchange between

the photovoltaic system and the grid. The stability of the closed-loop system under the composite controller is guaranteed

by simple design parameters. Both simulation and experimental results show that the proposed method has significant

abilities to initiate fast current control and accurate adjustment of the dc-bus voltage under model uncertainty and external

disturbance.

1 Introduction

For a three-phase grid-connected photovoltaic system, the control objective is to maintain the DC-link voltage to

a desired level, while at the same time regulating the reactive power of the grid [1]. Generally, the reactive power

reference depends on whether the system operates under normal or voltage sag conditions [2]. In this work, only

normal condition is considered, meaning that the grid-side converter should operate at unity power factor. The

grid-connected PV inverter, with an output L-type filter, is a nonlinear multivariable system and subjected to

unknown disturbances and model uncertainties [3]. For grid-connected inverter applications, linear controllers

and classical PID controllers are well suited for improving steady-state performance if a small disturbance

is considered around a known operating point [4]– [5]. However, such a performance may be guaranteed at

the expense of degraded transient performance if the system works under severe operating condition, which

results from the changes in atmospheric conditions. Several control techniques have been proposed to improve

the reliability of the grid-connected PV system, including model predictive control [6], optimization-based PI

controller [7], Lyapunov-based control [8], resonant current control [9], H∞ control [10] etc. However, nonlinear

control technique permits to obtain a stable and accurate control as it provides an opportunity for tighter

guarantees on steady-state and transient performances [11]. Among these techniques, input-output feedback
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linearization can be considered as a good candidate to initiate fast current control and accurate DC-link voltage

regulation for a grid-connected inverter.

A look at the literature reveals that feedback linearization technique has been extensively studied for grid-

connected inverter applications [12]–[20], and revealed that better performances can be obtained. In [18]– [19],

a feedback linearization-based control has been applied to a grid-connected PV inverter system, where the

switching actions of the power converter have been incorporated in the equation that describes the dynamics of

the DC-link capacitor. Such a modeling approach offers the ability to deal with model uncertainty through the

satisfaction of matching conditions. However, that leads to a partially linearized PV system, raising concern about

the stability analysis of the internal dynamics. Such a concern has motivated the simplification of the equation

that governs the dynamics of the DC-link capacitor, to ensure full linearization of the PV system via state

feedback control law. As a result, there is no zero dynamics, and hence no additional stability analysis is required.

The simplified model is derived by equaling the active power exchange between the ac grid and the dc-bus [21].

However, the major challenge in using this simplified approach lies in the presence of unmatched disturbance,

i.e., the PV current, which should be decoupled from the system output to eliminate the steady-state error.

Conventionally, an integral action is directly introduced in the loop to ensure offset-free feedback linearization.

This strategy is commonly used for grid-connected inverter applications, but it may lead to undesirable transient

performance if the integral time constant is not properly selected [20]. An alternative approach is to consider

the information about the disturbance when designing a state feedback control law. Such a strategy, known as

the exact disturbance decoupling (EDD), is still a challenging problem for nonlinear systems with unmatched

disturbances, and has attracted a great deal of research, including those reported in [22]–[30]. The early

attempts to improve the steady-state performance under unmatched disturbances were through the so-called

almost disturbance decoupling technique, where the main objective was to guarantee input-to-state stability with

respect to disturbance inputs [25]–[30]. An example of such an approach is the use of high gain controller [30],

but this may cause the control effort to exceed its limiting value during the transient. These methods can

attenuate the effect of the disturbances, but with the expense of a finite steady-state error. The limited accuracy

of the available approaches has motivated the development of new techniques that can remove completely the

steady-state error. A recent technique is the use of a disturbance observer based control [31]–[35]. Such a

strategy is adopted in this paper to develop accurate and stable controller for a grid-connected PV system.

In a grid-connected PV system, the goal is to maintain the system output at a desired steady-state level,

rather than tracking fast time-varying references. Moreover, the disturbance, caused by changes in atmospheric

conditions, varies slowly. Driven by this observation, and following [31], EDD can be achieved by combining

a state feedback control law with a disturbance observer. However, the design of such a disturbance observer

is not trivial due to stability issue. On the other hand, the disturbance observer, proposed in [31], suffers from

practical implementation difficulties that arise when a high-order nonlinear system model is integrated as a part

of the composite controller. Therefore, in this work, a simplified disturbance observer is proposed and combined

with a feedback linearization technique to control a grid-connected PV inverter with zero steady-state error. The

composite controller is obtained by assuming that all states are available from direct measurement and have a

constant steady-state response. Such an assumption is always valid for the system under investigation, meaning
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that the proposed approach is feasible, and convenient for practical implementation. The only unknown variable

is the PV current, but this can be produced by the disturbance observer. As a result, no additional current

sensors are required to implement the proposed controller. The major advantage of the the proposed approach,

compared to the existing methods, is that an integral action arises naturally in the composite controller rather

than directly introducing it in the loop. Another promising feature is that the composite controller is equivalent

to a PI/almost PID controller, which is easy to practically implement. The main contributions of this paper are

summarized as follows

1) Design of an offset-free feedback linearization control of a three-phase grid-connected PV system to achieve

exact disturbance decoupling under the presence of unmatched disturbance. Here, the physical unmatched

disturbance is referred to the PV current i0 as shown in Fig. 1.

2) No information about the current i0 is required to practically implement to proposed controller. It is noticed

that the current i0 has a pulsating dc waveform because of the topology of the boost converter.

3) The nominal tracking performance can be achieved by choosing an adequate reference so that the current

does not exceed its maximal value during transients, while the disturbance rejection performance can be

specified by an appropriate tuning of the observer gain.

4) Unlike the existing disturbance observer-based control (DOBC) for systems with unmatched disturbance [31]–

[35], the composite controller has a relatively simple structure, which makes it more convenient for real-

time implementation. In other words, the integration of the system model is not considered as a part of

controller.

5) Unlike the existing PV control technique inspired form the feedback linearization approach [20], no

additional term is required to improve the transient performance at the startup phase. More specifically,

only a smooth reference is required to achieve a good tracking performance during the transients.
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Fig. 1 Schematic diagram of a grid-connected photovoltaic inverter system.

2 Three phase grid-connected photovoltaic system modeling

The topology of the complete grid-connected PV inverter is depicted in Fig. 1. The PV output voltage v0 is

regulated by controlling the switching devise Sb of the boost converter, while the DC-link voltage vdc is adjusted
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through the switching actions of the inverter. Cb, Lb, C, L, R, represent, respectively, the input capacitor, the

boost inductor, the DC-link capacitor, the filter inductor, and the filter resistor. The control of the grid-side

converter represents the main concern of this study. Following [21], the equations that describe the dynamics

of the DC-link capacitor and the filter current, in the dq reference frame, can be written as follows




did
dt = −RL id + ωiq + 1

Lvd − 1
Led

diq
dt = −RL iq − ωid + 1

Lvq
dvdc
dt = − 3ed

2Cvdc
id + i0

C

(1)

where, id, iq , and ed, are respectively, d-axis current, q-axis current, and d-axis component of the grid voltage.

The control signals vd and vq are the d-axis and the q-axis components of the inverter’s output voltage. It is

noted that such a model is obtained via abc− dq transformation, for which the reference angle is provided by

a phase-locked loop (PLL) algorithm. The PLL scheme is designed such that the q-axis component of the grid

voltage eq is maintained equal to zero. This can be done by using a simple PI controller [36], where the zero

sequence components are ignored and the grid voltage is assumed to be balanced. The structure of the PLL

is depicted in Fig. 2, where ω0 represents the nominal angular frequency. Here, ω̂ and φ̂ are the estimation

of the actual angular frequency ω and the angle φ for the synchronous reference frame, respectively. Kpll and

Tpll represent, respectively, the proportional gain and the time constant of the PI controller. Such parameters

can be obtained based, especially, on the specification of the settling time [36]. In this work, Kpll and Tpll are

set, respectively, to 92 and 0.0217 s, so that the settling time is equal to 100 ms. In practice, the information
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Fig. 2 Structure of The PLL

about i0 is not always available for direct measurement and it varies with changes in atmospheric conditions.

However, even if the pulsating current i0 can be measurable, it cannot be directly used in the controller as it

consists of a dc component and high frequency components due to the switching devise of the boost converter.

More specifically, the current i0 has a pulsating dc waveform. In addition, the model parameters cannot be

accurately determined. Thus, in the presence of unknown external disturbance and parameter uncertainties, the

above model can be rewritten as follows



did
dt = −RL id + ωiq + 1

Lvd − 1
Led + bd

L

diq
dt = −RL iq − ωid + 1

Lvq +
bq
L

dvdc
dt = − 3ed

2Cvdc
id + bv

C

(2)

where, bd, bq and bv are additives variables that can represent model uncertainty, PV current variation, and

PWM offset. In grid-connected photovoltaic system, the boost converter is usually used to achieve maximum

power point. In such conditions, the PV current varies slowly compared to the dynamics of the system [20].

Moreover, by considering the slow changes in model parameters, one can assume that the disturbance b(t) is
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bounded. Moreover, by considering the slow changes in the PV power, it can be assumed that the dc component

of i0 is slow varying in comparison with the dynamics of the system. Therefore, the time derivative of b(t)

can be assumed to be around zero, in particular, as time goes to infinity. Hence, with the aim to simplify the

design process and the stability analysis, one can assume that

lim
t→∞

ḃ (t) = 0 (3)

3 Feedback linearization with a disturbance observer

3.1 Formulation of the control law

The main objective of state feedback control law, in this work, is to completely remove the effect of the

disturbances in steady-state regime. The perturbed model of the three-phase grid-connected PV system (2) can

be rearranged as follows 



ẋ = f (x) + g1u (t) + g2b (t)

yi (t) = hi (x) , i = 1, 2
(4)

where g1 and g2 are given by

g1 =
[
gd gq

]
=




1
L 0

0 1
L

0 0


 , g2 =




1
L 0 0

0 1
L 0

0 0 1
C


 (5)

and f(x) is defined as

f (x) =




−RL id + ωiq − ed
L

−RL iq − ωid
− 3ed

2Cvdc
id


 (6)

The system output y and the input control u are given by

y =


 y1

y2


 =


 iq

vdc


 , u =


 vd

vq


 (7)

The state x and the disturbance b are defined as follows

x =
[
id iq vdc

]T
, b =

[
bd bq bv

]T
(8)

In the feedback linearization approach presented in [37], it is necessary to calculate the relative degree ρi with

respect to the output yi. Using the Lie derivative (see Appendix A), the first time derivative of y1 is

ẏ1 (t) = Lfh1 (x) + Lg1h1 (x)u+ Lg2h1 (x) b (9)

As u appears in the first time derivative of y1, then the relative degree ρ1 is equal to 1. For the output y2, we

have 



ẏ2 (t) = Lfh2 (x) + Lg2h2 (x) b

ÿ2 (t) = L2
fh2 (x) + Lg1Lfh2 (x)u+ Lg2Lfh2 (x) b+ ḃv

C

(10)

Following (10), the relative degree ρ2 is equal to 2. In addition, as the total relative degree ρ = ρ1 + ρ2 = 3,

is equal to the system’s order, then there is no zero dynamics [11]. It is worth noting that the states are available
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for direct measurement. Therefore, the nonlinear system (4) is input-output feedback linearizable if the matrix

G given below is nonsingular at least locally.

G (x) =


 Lg1h1 (x)

Lg1Lfh2 (x)


=


 0 1

L

− 3ed
2LCvdc

0


 (11)

Provided that, in practice, both vdc and ed cannot be equal to zero, the nonlinear system (4) is input-output

feedback linearizable for the given output functions. The main result for the disturbance rejection ability using

feedback linearization technique is stated in the following theorem.

Theorem 3.1. Consider the nonlinear system (4) for the grid-connected PV inverter system, and suppose that

the disturbance b(t) and its time derivative are bounded and satisfy (3), then, the state feedback control law

that guarantees zero steady-state error in the presence of both matched and unmatched disturbances is given

by

u = G−1 (x)


−


 Lfh1 (x)

L2
fh2 (x)


−M (x) b+


 r1

r2




 (12)

where

M (x) =


 L1 (x)

L2 (x)


 =


 Lg2h1 (x)

K12Lg2h2 (x) + Lg2Lfh2 (x)


 (13)

and 
 r1

r2


 =


 K01e1 + ẏr1

K02e2 +K12 (ẏr2 − Lfh2 (x)) + ÿr2


 (14)

Here, ei = yri − yi represents the tracking error and yri is the reference signal for the output yi. The control

gains Kji are chosen such that the polynomials P1(s) and P2(s) given below are Hurwitz

P1 (s) = s+K01, P2 (s) = s2 +K12s+K02 (15)

Proof: Substituting (12) into (9) and (10), together with (13) and (14), leads to




ė1 +K01e1 = 0

ë2 +K12ė2 +K02e2 = − ḃvC
(16)

Since the polynomial P1(s) is Hurwitz, the tracking error e1 converges to zero as time goes to infinity. With

the assumption that ḃ is bounded and the fact that the polynomial P2(s) is Hurwitz, one can show that the

tracking error e2 is bounded and its bound is proportional to that of ḃv [37]. Furthermore, provided that ḃv goes

to zero as time goes to infinity, the output y2 tracks its reference with an error which vanishes at steady-state

regime. More specifically, the steady-state error will fluctuate around zero because of high frequency components

associated with the current i0. The control law (12) is still difficult to be implemented as the disturbance cannot

be measured properly. As pointed in [30], the tracking problem for disturbed nonlinear systems can be solved

without the need for the disturbance information by choosing the controller gains as follows

K01 =
α01

εi
, K02 =

α02

ε2
v

, K12 =
α12

εv
(17)
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where εi,v should be chosen sufficiently small, and αij are any chosen parameters such that the polynomials

Q1(s) and Q2(s) given below are Hurwitz

Q1 = s+ α01, Q2 = s2 + α12s+ α02 (18)

In this sutdy, the parameters αij are chosen as follows

α01 =
3

2
, α02 =

10

3
, α12 =

5

2
(19)

In fact, by reducing εi,v , we diminish the effect of the disturbance, which allows achieving better tracking

performance with smaller steady-state error. This design procedure was adopted in [20] by choosing α01 = 1,

α02 = 1, and α12 = 2, where an integral action is directly introduced in the controller to eliminate completely

the steady-state error caused by PV current variation. The major drawback of that method is that an additional

term is required to avoid harsh behavior during startup phase. However, our proposed method can achieve

good tracking performance without the need for additional terms, since the dynamics of the output reference

is included in the control law. Moreover, the proposed approach does not consider the PV information for

real-time implementation, and only an estimate of the term M(x)b is considered to ensure zero steady-state

error. As a result, an integral action arises naturally in the controller as it can be shown latter. The disturbance

observer proposed in [38] will be used as a basis for further observer design.

3.2 Nonlinear disturbance observer

Define an auxiliary disturbance θ ∈ R2 such that

θ = M (x) b (t) (20)

Note that the nonlinear system is assumed to have a constant steady-state response. Hence, with the assumption

in (11), one can assume that the auxiliary disturbance θ is bounded and satisfies

lim
t→∞

θ̇ (t) = 0 (21)

Replacing the term M(x)b by its estimate θ̂, the control law (12) becomes

u (t) = G−1 (x)


−


 Lfh1 (x)

L2
fh2 (x)


− θ̂ (t) +


 r1

r2




 (22)

The nonlinear function M(x) defined in (13) can be rewritten as follows

M (x) = l (x) g2 (23)

where l(x) is a nonlinear function, and it is given by

l (x) =




∂h1(x)
∂x

K12
∂h2(x)
∂x +

∂Lfh2(x)
∂x


 (24)

Using the above equation, one can show that

l (x) g1 = G (x) (25)
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Combining (23) and (25) with the model given in (4) yields

l (x) ẋ = l (x) f (x) +G (x)u (t) + θ (t) (26)

As a consequence, the auxiliary disturbance θ in (26), can be estimated by the nonlinear disturbance observer

(NDO) [38]
˙̂
θ (t) = −µθ̂ + µ (l (x) ẋ− l (x) f (x)−G (x)u (t)) (27)

where µ is a constant observer gain to be determined. Thus, the dynamics of the observer error eθ(t) =

θ̂(t)− θ(t) is governed by

ėθ = −µeθ − θ̇ (28)

Therefore, with the assumption in (21), it can be shown that the disturbance estimation θ̂ converges to the

actual disturbance θ as t→∞ by choosing

µ = diag {µ1, µ2} (29)

where µ1,2 >0. More specifically, the convergence rate of the disturbance observer depends on the choice of µ.

As the time derivative of the state is not available, it is essential to further simplify the disturbance observer (27)

to make it convenient for practical implementation. In fact, note that




l (x) ẋ =
[

∂h1(x)
∂t

K12h2(x)
∂t +

∂Lfh2(x)
∂t

]T

l (x) f (x) =
[
Lfh1 (x) K12Lfh1 (x) + L2

fh2 (x)
]T (30)

Hence, substituting the control law (22) into (27), and using (30), then after integration gives the simplified

disturbance observer as follows

θ̂ (t) = −µ




K01

t∫
0

e1dτ + e1

K02

t∫
0

e2dτ +K12e2 + (ẏr2 − Lfh2 (x))


 (31)

Thereby, the simplified disturbance observer-based control for the system output y1 appears as a simple PI

controller. For the system output y2, the observer behaves as a PID controller where the time derivative of

the output is replaced by its Lie derivative. The major advantage of the proposed disturbance observer is that

its structure is quite convenient for practical implementation, and the disturbance rejection response can be

specified by adjusting the observer gain µ.

3.3 Closed-loop stability of the composite controller

In order to investigate the closed-loop stability under the proposed controller, one can further simplify the

composite controller by substituting (14) and (31) into the control law (22), which gives

u = G−1




I1
t∫

0

e1dτ + P1e1 +N1 (x)

I2
t∫

0

e2dτ + P2e2 +D2 (ẏr2 − Lfh2 (x)) +N2 (x)


 (32)

where 



I1 = µ1K01, P1 = (K01 + µ1)

I2 = µ2K02, P2 = (K02 + µ2K12) , D2 = (K12 + µ2)
(33)
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and 



N1 (x) = (ẏr1 − Lfh1 (x))

N2 (x) =
(
ÿr2 − L2

fh2 (x)
) (34)

Clearly the resulting control is equivalent to feedback linearization with integral action, but the design method

is different. For real-time implementation, the composite controller can be viewed as a PI/almost PID controller

with a compensation term N1,2(x). The term ’almost’ is due the use of Lie derivative instead of the time

derivative of the system output. The main result concerning the closed-loop stability under the controller (32)

is stated in the following theorem.

Theorem 3.2. Consider the nonlinear system (4) for a grid-connected PV system, and suppose that the

disturbance b(t) is bounded and satisfies the assumption (3). Then, under the control law (32), the output

of the system tracks the desired output with an error which converges to zero as time goes to infinity, i.e.,

lim
t→∞

e1 (t) = 0, lim
t→∞

e2 (t) = 0 (35)

and the eigenvalues associated with the closed-loop system are given by

λ01 = − 3

2εi
, λ11 = −µ1 (36)

and

λ02 =
−5± j5.32

4εv
, λ12 = −µ2 (37)

With the assumption that the disturbance is bounded and the composite controller contains an integral action,

the result is established using input-to-state stability (ISS) theory and the Barbalat’s lemma [37] (see Appendix

B).

Following (36)-(37), the control parameters can be chosen according to the desired closed-loop performances.

Alternatively, the parameter εi,v can be chosen as small as possible to achieve good tracking performance. The

observer gains µ1,2 can be selected as large as possible to ensure a fast disturbance rejection. However, the

selection of such parameters should be made in a tradeoff between fast disturbance estimation and measurement

noise attenuation. An implementation process on how to practically apply the proposed controller to the grid-

connected PV system is given in Fig. 3(a).

4 Computer Simulations

4.1 Control loop diagram

A detailed block diagram of the proposed approach is depicted in Fig. 3(b). The control inputs vd and vq ,

produced by the proposed controller, are transformed into three-phase voltage commands v∗a, v∗b , and v∗c using

dq − abc transformation. Then, the third harmonic injection PWM approach is used to realize the three-phase

voltage commands. The main problem associated with the proposed controller is that the d-axis component

may exceed its maximum value during transients because of rapid changes in DC-link voltage reference. To

overcome such a problem, a limiter is introduced on the set-point changes so that the current will never go
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above its limiting value during transients. A PI controller is also designed to control the duty-cycle d of the

boost converter so that the PV voltage is regulated to track the desired power point. The design of the PI

controller is not described here, as it is beyond the scope of this paper. To evaluate the performances of the

proposed controller under a realistic scenario, the photovoltaic power profile is chosen to mimic a real P-V

characteristic as shown in Fig. 4. This is done by using the PV panel model developed in [39].
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Fig. 3 Flowchart and block diagram for applying the proposed controller to a grid-connected PV inverter system.
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4.2 Simulation Results

To evaluate the effectiveness of the proposed method, a computer simulations have been carried out using

Matlab/Simulink software package, where the sampling time for the mathematical model of the complete



11

system is fixed to 0.001 ms. The control period is set equal to 0.1 ms, while the switching frequency of the

PWM signal is chosen equal to 5 kHz. The parameters of the controller can be determined based on the desired

specifications of the closed-loop system. In this work, the parameters (εi, εv) associated with the controller gains

are set to (0.001, 0.01) while the observer gains (µ1, µ2) are set equal to (16.6, 25). The controller parameters

are designed so that the current control loop has much faster response than that of the DC-link voltage control

loop. The set-point of the DC-link voltage is set equal to 200 V, and the q-axis current reference is chosen

equal to zero in order to ensure unity power factor operation. Fig. 5(a)–(b) shows the steady-state and transient

performances of the feedback linearization-based control with and without a disturbance observer. During

the startup phase, the dc-dc boost converter is disconnected from the grid-side converter, and only nominal

parameters are considered in both controllers. At t = 0.6 s, both converters are interconnected, and the PV

power was stepped up from zero to 500 W by adjusting the PV output voltage v0. From the results, it can be

seen that the use of the disturbance observer guarantees zero steady-state error despite the presence of unknown

unmatched disturbance i0. However, an offset is observed when the disturbance observer is not incorporated in

the control law even if no uncertainty/disturbance is considered during the startup phase. This explains why a

disturbance observer is necessary even if the model can be accurately determined.

Figure 5(c)–(d) compares the performances of the proposed controller with that obtained with an existing PV

control technique [20], inspired from feedback linearization theory and denoted here by FLC1,2. The subscript 1

is refereed to the case where both the proposed approach and the controller FLC have the same controller

gains K01, K02 and K12 to guarantee a fair comparison. For FLC2, the controller gains are determined by

setting α01 = 1, α02 = 1, and α12 = 2 as in [20]. The integral coefficients for FLC1,2 approach are chosen to be

equal to that used for the proposed controller so as to have a fair comparison in terms of disturbance rejection

capability. As seen, all the controllers have proved to be effective in terms of eliminating the steady-state

error because of the existence of integral action, however, a large DC-link voltage tracking error is observed

with FLC method during the startup stage. Moreover, it can be observed that the proposed approach exhibits

better disturbance rejection performance in comparison with FLC2. It can also be seen that the q-axis current

is well controlled with the proposed approach. As pointed out in [20], the startup dynamic performance can be

improved by designing a smoothing term to be combined with FLC. However, such a requirement will further

complicate the design process.

5 Experimental Results

5.1 Laboratory Test Setup

The proposed control scheme for a grid-interconnected photovoltaic inverter is implemented in real-time on a

three-leg IGBT-based two level inverter using the DS1103 board. The laboratory test bed consists of two DC-

link capacitors connected in series, three-phase IGBT with drivers, a line filter, and a step up transformer which

connects the system to the power grid. To consider the real dynamics of the PV system, the P-V characteristic,

shown in Fig. 4, is generated using a 2 kW PV emulator connected to a DC-link via dc-dc converter. This test

bed setup is depicted in Fig. 6. The system parameters are given in Table I of the Appendix C. For the system
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Fig. 5 system’s response under feedback linearization-based control with and without NDO.

design, it is noticed that the parameters of the L filter are imposed by the experimental setup. The grid voltage

amplitude is chosen so that the inverter modulation index cannot go above the unity for the given experimental
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setup. Then, a three-phase transformer is placed between the main grid and the line filter to realize the desired

grid voltage amplitude. The DS1103 board is used in this experiment to control the boost converter and the

grid-tied inverter. It is equipped with Power PC 750GX (Master processor) running at 1 GHz, and a Texas

Instruments TMS320F240 DSP (slave processor) running at 20 MHz.

In order to show, practically, the effectiveness of the proposed approach in controlling a grid-connected PV

system, two scenarios were performed experimentally. For such tests, the control period, the switching frequency

and the parameters of the controller are chosen similar to those used for the simulation test.

Fig. 6 Block diagram of the proposed approach scheme for a grid-connected PV inverter system.

5.2 Performance Evaluation under Normal Operation and Model Uncertainty

The main objective of this experiment is to test the closed-loop system under a sudden change in the PV

output voltage. This scenario may arise when the voltage reference v0ref , for the PI controller, is generated

by a maximum power point tracking algorithm. Initially, the PV system was operating at a low power and

at t = 0.4 s, the PV output voltage reference was suddenly stepped down from 155 to 130 V and then back

to 155 V at t = 1.4 s, which corresponds to a PV output power step of 300 W. The voltage reference v0ref is

fed to the PI controller to adjust the switch duty-ratio of the boost converter so as to regulate the PV output

voltage v0 to its reference. It is noted that the PI controller parameters are tuned so that the PV output voltage

v0 reaches its reference v0ref within 15 ms, which is fast enough to verify the disturbance rejection capability

of the proposed system. Additionally, the capacitance C and the inductance L, used in the controller, were

set equal to 50% of their actual values with the aim of testing the robustness of the proposed controller. As

shown in Fig. 7(a), it is clear that the proposed controller reacts in a quick manner, and the steady-state error

is removed quickly after changes in power. Fig. 7(b) represents the three-phase line current at the maximum

power point, and it can be observed that the system can operate at a low total harmonic distortion of the current.

5.3 Performance Evaluation under Reactive Power Changes and Model Uncertainty

This test was performed to verify the control performance under a step change in reactive power. This scenario

may arise when PV plant is required to respond to the grid operator request, to maintain certain voltage level
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(a) Phase current ia (2), DC-link voltage (3), and q-axis current (1).

(b) Three phase line current.

Fig. 7 System’s response under the proposed controller.

due to a change in operating conditions such as switching on big loads, loss of distribution feeder, etc. This

can be accomplished by investigating the performances of the closed-loop system under a step change in q-axis

current reference. Moreover, the capacitance C and the inductance L, used in the controller, were increased by

50% in comparison with the actual values. As shown in Fig. 8, the q-axis current reference was stepped down

to −1 A, and then returned back to 0 A after 80 ms. It is noticed that the q-axis current is chosen negative

because the reactive power Q, injected into the grid, is expressed as Q = −1.5ediq . From the results, it can

be observed that the q-axis current reaches its steady-state value within a few milliseconds, which is consistent



15

with the design of the controller parameters. It can also be observed that the DC-link voltage regulation is

almost insensible to the reactive power change, and the unity power factor operation is guaranteed during the

period when the reactive power is null. Here, the PV power was kept constant and set to 170 W by maintaining

the PV output voltage equal to 156 V.

Fig. 8 Phase current ia (2), grid voltage ea (4), DC-link voltage (3), and q-axis current (1).

6 Conclusions

This paper has presented an exact feedback linearization-based control for a grid-connected PV inverter. The

elimination of the steady-state error represents a major objective of the proposed approach. For this, a PI/almost

PID disturbance observer is derived based on a newly defined design function vector. As a result, the resulting

disturbance observer is asymptotically stable, and easy to implement in a real-time system without resorting to

integrate the high-order nonlinear system model. This is due to the fact that the resulting disturbance observer

relies only on the reference, its time derivative, and the Lie derivative of the output, whilst the case of the

existing disturbance observer-based control, the estimate of the unmatched disturbance is driven by integrating

a nonlinear system model. The effectiveness of the proposed approach is illustrated by both simulation and

experimental results under modeling errors and external unknown disturbances. The proposed method can be

considered as an alternative approach in improving disturbance attenuation ability and performance robustness

for a grid-connected PV inverter under a wide range of disturbances. The method is equally applicable for other

renewable energy applications. In our future work, we endeavor to adapt the proposed disturbance observer

so as to compensate time-varying disturbance, with a known and fixed frequency. Such a methodology allows

improving the steady-state performance of grid-connected PV systems under unbalanced and distorted grid

voltage, which is considered as an open research filed.
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8 Appendices

8.1 Lie derivative

Lfh (x) =
∂h

∂x
f, Lg1,2h (x) =

∂h

∂x
g1,2 (38)

L2
fh (x) =

∂Lfh (x)

∂x
f, Lg1,2Lfh (x) =

∂Lfh (x)

∂x
g1,2 (39)

8.2 Proof of theorem 3.2

By substituting the control law (32) into (9)- (10), the dynamic errors of the closed-loop system can be expressed

as follows

ė1 + (µ1 +K01) e1 + µ1K01

t∫

0

e1dτ = −bq
L

(40)

and

ë2 + (µ2 +K12) ė1 + (µ2K12 +K02) e2 + µ2K02

t∫

0

e2dτ = δ (t) (41)
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where

δ (t) = −
(
K12 + µ2 +

3ed
2Cv2

dc

id

)
bv
C
− ḃv
C

+
3edbd

2CLvdc
(42)

Let ε =
[
e1 σ1

]T
and η =

[
e2 ė2 σ2

]
be the new coordinates, with

σ1 =

∫ t

0

e1dτ, σ2 =

∫ t

0

e2dτ (43)

Then, the equations (40)-(41) can be rewritten in the new (ε, η) coordinates as




ε̇ = A1ε+ ∆1 (t)

η̇ = A2η + ∆2 (t)
(44)

where A1 and ∆1 are given by

A1 =


 − (µ1 +K01) −µ1K01

1 0


 , ∆1 (t) =


 −

bq
L

0


 (45)

The matrix A2 is expressed as follows

A2 =




0 1 0

− (µ2K12 +K02) − (µ2 +K12) −µ2K02

1 0 0


 (46)

The vector ∆2 is given by

∆2 (t) =




0

δ (t)

0


 (47)

The eigenvalues associated with the closed-loop system are those of A1 and A2. By considering (17) and (19),

the eigenvalue of the matrix A1 are

λ01 = − 3

2εi
, λ11 = −µ1 (48)

and those of matrix A2 are

λ02 =
−5± j5.32

4εv
, λ12 = −µ2 (49)

As all the eigenvalues have negative real parts, A1 and A2 are Hurwitz matrices.

Input-to-state stability (ISS) presented in [37] states that if Ai is Hurwitz matrix, the trajectory ε, respectively η,

is bounded for every bounded input disturbance ∆i. Therefore, with the assumption that bq is bounded, ISS

allows to conclude that the trajectory ε is bounded. This means that σ1defined by 43 is bounded.

The Barbalat’s lemma presented in [37] states that if ψ : R → R is uniformly continuous function on [0,∞),

and

lim
t→∞

τ∫

0

ψ (τ) dτ (50)

exists and is finite, then ψ(t) → 0 as t → ∞. As the nonlinear system under investigation is continuous,

and all the input signals are continuous, the error signal e1, is continuous. By the fact that σ1 is bounded and

continuous, the Barbalat’s lemma allows to conclude that

lim
t→∞

e1 (t) = 0 (51)
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Regarding the subsystem η, it follows from (2)that

3ed
2Cv2

dc

id =
1

vdc

(
v̇dc −

bv
C

)
(52)

Then, one can write 



vdc = vdcref − e2

3ed
2Cv2dc

id = 1
(vdcref−e2)

(
bv
C − (v̇dcref − ė2)

) (53)

By substituting (53) into δ(t) in (42), it can be shown that ∆2(t) is bounded and its bound ∆̄2 only depends

on errors e2, ė2, and references vdcref , and v̇dcref but not on σ2. Under this condition, one can write

‖∆2 (t)‖ ≤ ∆̄2 (‖e2‖ , ‖ė2‖ , ‖vdcref‖ , ‖v̇dcref‖) (54)

As the matrix A2 is Hurwitz, then, there exist symmetric and positive-definite matrices P and Q, such that

AT2 P + PA2 = −Q (55)

Now, let V (η) be the Lyapunov function candidate for the subsystem η, where

V (η) = ηTPη (56)

Differentiating the Lyapunov function candidate V along the trajectories of (44) gives

V (η) = −ηTQη + 2ηTP∆2 (t)

≤ −‖η‖2
(
λmin (Q)− 2λmax(P )‖∆2(t)‖

‖η‖

) (57)

where λmin(X) and λmax(X) represent the minimum and the maximum eigenvalues of a matrix X , respectively.

It follows from (57), that a sufficient condition for the time derivative of V (η) being negative is

‖η‖ =
√
e2

2 + ė2
2 + σ2

2 ≥
2λmax (P )

λmin (Q)
‖∆2 (t)‖ (58)

With the assumption that the disturbance ∆2 is bounded, and its bound does not depend on σ2, one can use

theorem 4.19 in [37] to show that the subsystem η is ISS. This means that σ2 is bounded. By considering the

continuity of e2 and the definition of σ2, the Barbalat’s lemma yields

lim
t→∞

e2 (t) = 0 (59)

8.3 Parameters of the grid-interlinked PV inverter

The parameter values of the grid-interlinked PV inverter system are summarized in Table I.
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Table 1: Parameters of the grid-interlinked PV inverter

Maximum power of PV unit (W) 500

DC link voltage (V) 200

Line-to-line grid voltage (V) 100

Inverter inductance (mH) 52

DC link capacitor (mF) 1.052

Boost inductance (mH) 5

Frequency (Hz) 50


