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ABSTRACT 

The formation of the iron oxyhydroxide schwertmannite has been monitored by time-

resolved TEM studies. Schwertmannite aggregates are found to form initially as spherical 

agglomerates of ferrihydrite crystallites, which then begin to grow characteristic needles 

on their surfaces. High resolution images of the needles show that they are initially 

comprised of aligned goethite nanocrystals, which subsequently coarsen to form 

crystallographically coherent needles of goethite. Thus, needle formation on 

schwertmannite aggregates can be considered as the first stage in the phase 

transformation from schwertmannite to goethite. The results of this study suggest that 

schwertmannite is not a distinct mineral phase, but may be mixture of ferrihydrite and 

poorly-crystalline goethite with a distinctive morphology directed by the presence of 

surface-adsorbed sulfate anions. 
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1.0 INTRODUCTION 

Schwertmannite is a poorly-crystalline iron oxyhydroxide that forms specifically 

in acidic sulfate media, and is known to occur as an environmental precipitate in acid 

mine drainage sites.[1] Schwertmannite has also been found to precipitate as a component 

of hydrometallurgical streams containing precipitated iron,[2, 3] and thus its structure, its 

composition, the conditions required for its formation, and the mechanism by which its 

unique morphology develops, have been a subject of considerable interest to researchers 

seeking to understand the complex chemistry of iron oxyhydroxide precipitation.[4, 5]  

Schwertmannite can be identified readily by its characteristic “hedge-hog” 

morphology: samples are typically composed of rounded aggregates a few hundred 

nanometers in diameter, made up of fine radiating whiskers, or needles 2-10 nanometers 

in width. Schwertmannite was first described by Bigham et al.[6, 7] and its structure has 

been described as being very similar to β-FeOOH, with sulfate anions incorporated into 

tunnel sites within the iron oxyhydroxide lattice.  

Schwertmannite is stable with respect to ferrihydrite in acidic, sulfate-rich 

suspensions, but metastable with respect to goethite. The transformation of ferrihydrite to 

goethite has been shown to occur via a dissolution/reprecipitation mechanism where 

goethite crystals form in solution from dissolved Fe(III) ions in equilibrium with 

ferrihydrite.[8, 9] More recent work has demonstrated that goethite nanorods can form by 

an oriented aggregation mechanism in which ferrihydrite nanoparticles transform to 

goethite nanoparticles, which then assemble into rods through some form of recognition 

aggregation.[9, 10] Subsequent aging of the oriented aggregates gives rise to coherent 

crystalline nanorods of goethite.  Various crystal morphologies have been described for 

goethite, but goethites formed in acidic sulfate solutions have usually been reported to be 

nanocrystalline in nature, with rod-like morphology, and often forming larger aggregates 

of aligned rods or laths.[11-14] 

In a recent publication, it was reported that samples of ferric oxyhydroxide grown 

in the presence of arsenate often contain aggregates that, when viewed at low 

magnification in the transmission electron microscope, closely resemble the hedge-hog 

morphology characteristic of schwertmannite.[15, 16] Powder XRD patterns of these 

materials were suggestive of 2-line ferrihydrite, and higher magnification TEM images 

revealed that the aggregates were indeed made up of ferrihydrite crystallites, with 

peripheral ferrihydrite nanoparticles arranged to form ‘whiskers’ similar to those seen in 
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schertmannite.[16] These observations seemed to indicate however, that schwertmannite 

may form via a mechanism involving aggregation of ferrihydrite crystallites.  

The use of electron nanodiffraction in a Scanning Transmission Electron 

Microscope (STEM nanodiffraction) has also been reported, and diffraction patterns on 

individual schwertmannite needles have been analysed in an attempt to characterise the 

structure of schwertmannite.[17] The results of this study suggested that schwertmannite 

contained subunits with spinel-type symmetry, a structural component that has also been 

observed in nanodiffraction experiments on 2-line ferrihydrite. This study didn’t draw 

firm conclusions about the schwertmannite structure, other than to note a strong similarity 

to the results obtained from 2-line ferrihydrite, and to suggest that there was no evidence 

for the presence of an akaganéite-like structure. Subsequent work investigating electron-

beam induced changes to iron oxyhydroxides has raised concerns about the stability of 

schwertmannite needles under the focussed electron beam of the STEM, and thus the 

results of nanodiffraction experiments are open to dispute[18] and thus significant 

question remain about the structure of schwertmannite and the mechanism by which its 

morphology develops. 

 In this paper we describe an investigation of schwertmannite growth by using 

high-resolution TEM images to examine the development of needles at selected time 

intervals in the growth process. The results provide important insights into the 

mechanism by which the characteristic radiating needles form. They also provide 

evidence suggesting that schwertmannite is not a distinct oxyhydroxide phase with a 

unique structure, but is instead composed of ordered assemblies of goethite and 

ferrihydrite nanocrystals. 

 

2.0 EXPERIMENTAL PROCEDURE 

 

 0.4 g of ferric sulfate (Fe2(SO4)3.xH2O) was added to 250 ml of Milli-Q water in a 

polypropylene bottle at ambient temperature, and the bottle was immediately sealed and 

placed in a bottle roller thermostatted at 85 °C. Samples were taken at intervals of 2, 5, 

10, 15, 30 and 60 minutes and the suspensions cast directly onto a conventional copper 

TEM grid and allowed to dry in air. 

 Samples for powder X-ray diffraction analysis were prepared in a separate 

experiment in which a number of 250 ml bottles containing ferric sulfate solution (1g/L) 
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were placed in the bottle roller at 85°C, and removed after selected time intervals of up to 

24 hours. As each bottle was removed from the bottle roller, the sample was rapidly 

filtered under reduced pressure and the solid cooled and freeze-dried. 

 X-ray powder diffraction was carried out at 298 K using Cu-Kα radiation (40 kV, 

30 mA) on a Seimens D500 diffractometer. The samples were step scanned from 3° to 

70° 2Θ, at 0.02° increments, using a counting time of 5 s per increment.   

 In turbidity experiments, a 0.7 g/L solution of ferric sulfate was prepared at room 

temperature, and then placed into a water bath at 85°C. Using a UV-Visible spectrometer, 

turbidity was monitored over a period of 400 minutes by measuring the absorbance at 900 

nm. Since the iron and/or sulfate are not expected to have any appreciable absorbance at 

900 nm, the absorbance can be related to the turbidity; the turbidity is the light scattered 

by the particles in suspension, and provided the scattered light does not reach the 

detector, it can be measured as a transmittance or absorbance value. A sample was taken 

at a given time, placed into a quartz cuvette, covered with a lid and prior to measurement 

was gently shaken to suspend all the particles. The absorbance reading was taken three 

times and the average calculated. The reaction was sampled at regular intervals and the 

sub-samples were filtered and the sulfate concentration determined by ICP-AES analysis.  

 Transmission Electron Micrographs were recorded on a JEOL 2011 TEM 

operating at 200 kV, or on a JEOL 3000 FEG TEM operating at 300 kV. All high-

resolution (HRTEM) images were collected on the JEOL 3000.  The sensitivity of the 

samples to damage by the electron beam presented challenges in obtaining high-

resolution images. In order to minimize exposure of the sample to the electron beam, 

initial alignment and focusing at high magnification was carried out on one region of the 

sample, and then the sample was moved to a new region of interest and digital images 

collected rapidly.  Multiple images collected in this manner along with the investigation 

of the effects of deliberate degradation of the needles in the beam, enable us to be 

confident that we have obtained images of unaltered schwertmannite needles.    

 

3.0 RESULTS  

3.1 Time-Resolved TEM 

 

 When heating ferric sulfate solutions at 85 °C, formation of a visible precipitate 

was evident after 5-10 minutes, and colloidal suspensions formed at this time tended to 
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settle after about 1 hour. Samples taken after longer times tended to settle more rapidly 

and were present in higher yield than the initial colloidal products. Powder XRD analysis 

of these samples gave patterns characteristic of schwermannite in products collected after 

15 minutes or longer.  

 The development of schwertmannite aggregates was tracked by TEM examination 

of samples taken at different time intervals, as shown by the images presented in Figure 

1. The initial precipitate in the hydrolysis reaction, sampled after 5 minutes, forms 

compact globular aggregates of >100 nm diameter, as shown in Figure 1a. At low 

magnification, this material appears to be amorphous. The appearance of the 

characteristic schwertmanite needles is rapid, and after 10 minutes, we can see short 

needles radiating from the surface of the spherical aggregates. The typical 

schwertmannite morphology is well developed after 1 hour (Figure 1c) with radiating 

whiskery needles many tens of nanometers in length completely surrounding the 

aggregates. 

 These images provide some important information as to the mechanism of growth 

of schwertmannite aggregates. It is now clear that the needles do not grow out from a 

small central nucleus, but instead form and grow on the surface of large spherical 

aggregates. The study of schwertmannite by electron microscopy is hindered by the fact 

that the aggregates are large and too dense to be transparent to the electron beam, so 

electron microscopy cannot reveal whether the material at the centre of schwertmannite 

aggregates is crystalline in nature. We cannot be sure whether the cores of the 

schwertmannite aggregates also change in some way as the reaction progresses and 

needles grow out from their surface. 

  

 Further images of schwertmannite samples are presented in Figure 2, showing the 

development of the whiskers on the surface of the central aggregates. The average length 

of the whiskers can be estimated from such images to give some idea as to how they 

develop over time. The dense central core of the schwertmannite aggregates makes it 

difficult to accurately measure the length of the needles, but it can be seen that after 10 

minutes the needles are generally < 50 nm in length, while at 15 minutes, the needles are 

approximately 100 nm long, and have extended to ~100-200 nm in length after 60 

minutes. 
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 TEM examination of products aged for 60 minutes showed two different types of 

aggregates within the sample. In addition to the normal schwertmannite structures, many 

of the aggregates had shorter, straight needles and appeared less spherical than the 

common schwertmannite balls. Figure 2(d) shows a typical aggregate observed in the 60 

minute sample that contains both morphologies. The elliptical aggregates to the right of 

this image have a morphology consistent with nanocrystalline goethite, and selected area 

electron diffraction of these aggregates provided evidence of greater degree of 

crystallinity than that observed for typical schwertmannite aggregates.  

  
 
3.2 Powder X-Ray diffraction and turbidity measurements 
 

 Figure 3 shows the powder XRD patterns obtained for precipitates collected at 

selected time intervals up to 2 hours during hydrolysis of ferric sulfate solutions at 85 °C. 

Samples taken at 15 mins and 30 mins showed patterns typical of schwertmannite, but 

after 2 hours reaction time the XRD patterns indicated the appearance of some poorly-

crystalline goethite, and the relevant peaks in the pattern can be identified in Figure 3 by 

comparison with the major lines in the goethite powder diffraction file (JCPDS 29-0713). 

XRD patterns do not show any indication of goethite reflections in the samples collected 

at 15 and 30 minutes however, which suggests that if any goethite is present after these 

reaction times, it is present in too small an amount and/or present as very small 

crystallites such that it cannot be detected in the powder XRD pattern of the bulk 

material.  

 Linewidth analysis based on the (101) reflection in the 2 hour sample indicated a 

crystallite size of ~ 10 nm. Additional powder XRD patterns for samples collected at 

intervals from 2 hours to 24 hours showed only a minor increase in crystallite size over 

the 24-hour period covered by the data, with an approximate size of ~12 nm being 

determined for samples collected from 5 to 24 hours. 

  The progress of crystallisation has also been monitored with a combination of 

turbidity measurements and sulfate concentration measurements over a 3-hour period. 

Curves showing turbidity and sulfate concentration changes over this time scale are 

presented in Figure 4. The curves reveal that both turbidity and sulfate concentration do 

not stabilize until after ~ 60 minutes of the reaction. After this time, there is a gradual 

decrease in turbidity which we attribute to phase transformation of schwertmannite to 
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goethite. XRD patterns indicate an increase in the intensity of goethite peaks during this 

period of time, and the drop in turbidity suggests that this process occurs via a 

dissolution/re-precipitation mechanism.  

 The absence of any change in the sulfate concentration during this time however, 

suggests that the phase transformation to goethite may be far from complete within the 

timeframe of this experiment. Bigham et al.[19] demonstrated that schwertmannite, on 

conversion to goethite, releases sulfate ions and H+, although the timeframe of this 

transformation was a period of years with the suspension held at room temperature, so it 

perhaps not surprising that our own results do not show a similar release of sulfate ions. 

XRD patterns measured for samples treated for up to 24 hours did show increased 

intensities of the goethite peaks, but it was clear that only a small portion of the 

schwertmannite sample had transformed to goethite, since a background of broad peaks 

was still evident in the pattern obtained after 24 hours.  

 

3.3 High-Resolution TEM 

 

 High resolution TEM can provide some further information about the structural 

nature and mechanism of formation of the schwertmannite needles. Figure 4 shows a 

typical high resolution image of one of the aggregates observed after 5 minutes reaction 

time. Visible lattice fringes indicate that the aggregate is comprised of crystallites of 

approximately 5-7 nm diameter. Lattice spacings measured for these crystallites in 

numerous aggregates varied between 2.43Å and 2.47Å, with an average spacing of 

2.45Å, which is a close match to the spacing of {011} planes in ferrihydrite.[20] These 

aggregates observed in the earliest phase of schwertmannite formation did not show any 

sign of the needles or whiskers typical of the schwertmannite morphology and on the 

basis of our TEM observations we conclude that the initial precipitate in this reaction is 

best described as dense spherical aggregates of ferrihydrite nanocrystals. 

   To examine the mechanism of needle formation more closely, high-

resolution images of nascent needles from samples taken after 15 minutes reaction time 

are shown in Figure 6. In these images we can see that the needles taper slightly, and are 

not straight-edged, but rather appear to be composed of individual crystalline particles 

about 5 nm in diameter. Lattice fringes on the schwertmannite needles shown in Figure 6 

indicate that the needles are composed of goethite nanocrystals; the fringes labelled in the 
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image on the left gave a d-spacing of approximately 0.4 nm, corresponding to the (101) 

spacing in goethite. The ends of the needles shown in Figure 6 display a “kink” that is 

characteristic of schwertmannite needles we have observed in many samples, and the 

arrangement of the primary particles is indicative of oriented aggregation of goethite 

nanocrystals twinned along the (210) plane.[21]  

Oriented aggregation is a form of particle aggregation in which primary 

crystallites combine reversibly to form an aggregate on the basis of various possible 

interparticle interactions.[22] The primary crystallities may then re-orient themselves 

with respect to one another through Brownian motion, leading to aggregates with an 

energetically favourable structural alignment of the subunits. Oriented aggregation 

mechanisms have been described in a number of recent articles concerned with 

nanoparticle formation and aggregation,[9, 22-28] and some of these have demonstrated 

the role of oriented aggregation in the transformation of ferrihydrite to other iron 

oxyhydroxides.[9, 23, 24, 26] 

  
HRTEM examination of schwertmannite needles after a reaction time of 60 minutes 

shows that many of the needles have a much more coherent orientation of lattice fringes 

than those presented in Figure 6. The schwertmannite needle shown in Figure 7b is an 

example, in which lattice fringes reveal that all sections of the needle are 

crystallographically aligned. The fourier transform of a section of the image (Figure 7c) 

shows the pattern characteristic of an orientation close to the [111] zone axis of goethite, 

confirming that this schwertmannite needle is composed of crystallographically aligned 

goethite subunits. Measurement of spacings from lattice fringes on this image provided 

further confirmation that the needle has a goethite structure: 4.25Å and 2.53Å for (101) 

and (011) planes respectively, as indexed on the simulated diffraction pattern shown in 

Figure 7(d). These results match closely with the expected d-spacings of 4.190 Å for  the 

(101) planes and 2.522 Å for the (011) planes in goethite. 

 
4.0 DISCUSSION 

 

 Both the structure of schwertmannite, and the mechanism by which its distinctive 

hedge-hog morphology develops have been the subject of conjecture for some time,[15, 

16] but the images presented here provide clues that may help answer both of these 
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questions. TEM images of samples collected after only 5 minutes reaction time show that 

the iron oxyhydroxide phase that precipitates initially is ferrihydrite. The aggregates are 

dense, roughly-spherical and appear to be composed of randomly-oriented ferrihydrite 

crystallites. We were unable to isolate sufficient sample for XRD analysis of the product 

at this early stage of the reaction, but the crystallinity and size of the nanocrystals making 

up these aggregates would lead us to expect that it is more likely to be 6-line rather than 

2-line ferrihydrite.   

 The emergence of a morphology that can be considered characteristic of 

schwertmannite (i.e. the formation of radiating needles) is first evident in the samples 

taken after 15 minutes. The images presented in Figure 6 show that the needles are 

composed of goethite nanocrystals that appear to align via an oriented aggregation 

process. Previous studies have shown that when goethite crystallises by this mechanism, 

goethite nanocrystals form at the expense of the ferrihydrite precursor particles, then 

aggregate in oriented alignment to form nanorods.[9, 10] The nanorods can then undergo 

a change to a more regular morphology through a process of slow recrystallisation and 

coarsening to produce particles that display crystallographic order over a much larger 

scale.[9] The images presented in Figures 6 and 7 suggest that a similar mechanism could 

account for the formation of schwertmannite needles, and the subsequent emergence of 

goethite “rafts”. Aggregates formed in the early stages of the reaction contained nano-

scale crystallites with lattice fringes matching ferrihydrite, and no individual particles 

with goethite lattice spacings were observed in these samples. Once needle formation had 

commenced on the periphery of aggregates, we observed only goethite lattice spacings in 

the crystallites that made up the needles. By this stage of the growth process, it was not 

possible to observe lattice fringes of particles located in the heart of the aggregates, but 

on the basis of our powder XRD data, we propose that bulk samples must still contain a 

large proportion of ferrihydrite even after the typical schwertmannite morphology has 

been established. Thus we conclude that the schwertmannite aggregates contain a central 

core of ferrihydrite surrounded by radiating needles composed of goethite nanocrystals. 

 The formation of schwertmannite needles by oriented aggregation may also 

explain the surprising kinks and twists in the needles that are often observed. The images 

presented in Figure 6 reveal how ‘bent’ needles can form by oriented alignment of 

goethite nanocrystals along a (210) twin plane, resulting in a 117.5° bend in the needle 
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axis. Further “twinned” alignment can then allow the needles to form the more 

convoluted spirals that are sometimes observed. 

In order to consider the effects of adding nanocrystalline goethite on the powder 

XRD patterns of ferrihydrite, some rudimentary pattern prediction was carried out using 

the Crystal Diffract[29] software package. Some predicted patterns are shown in Figure 8 

and compared to the experimental pattern observed for the schwertmannite sample 

collected after 15 minutes reaction time. Selection of a model structure for ferrihydrite 

was problematic in this exercise, given that the structure of ferrihydrite is still the subject 

of some debate.[30, 31] The ferrihydrite structural model we have used to generate these 

simulated patterns was that proposed by Jansen et al.[20] and the overall model is based 

on mixtures of 6 nm ferrihydrite nanocrystals and 3 nm goethite nanocrystals. While 

these models are somewhat speculative, the simulated patterns provide some indication 

that our interpretation of the growth process is reasonable at least in regard to the fact that 

small amounts of nanocrystalline goethite may not be evident in the XRD patterns of the 

bulk material.. 

 We estimate, on the basis of the simulated diffraction patterns for mixtures of 

nanocyrstalline goethite and ferrihydrite, that major reflections due to goethite would not 

be evident in the mixture until the amount of goethite present exceeds about 10%. Time 

resolved powder XRD patterns of schwertmannite samples do not show any clear 

indication of the presence of goethite until at least 60 minutes reaction time, although 

TEM images show that needle development begins much earlier, and that discrete 

nanoparticles within the needles appear to have a goethite structure. So it seems likely 

that in the first 60 minutes of schwertmannite formation, the only goethite crystallites 

present are those that form the outer layer of the aggregates (the radiating needles), while 

the internal bulk of the aggregates during this time remains composed of ferrihydrite. As 

the reaction progresses further, the metastable ferrihydrite phase will gradually disappear 

and the needles will grow longer. After 60-120 minutes reaction time, the schwertmannite 

needles no longer show evidence of being composed of aggregates of goethite 

nanocrystals; they show coherent lattice fringes along their whole length. At this stage in 

the reaction, the goethite crystallites appear to be of sufficient size and order to begin to 

show indication of goethite peaks in the XRD pattern of the bulk material, as 

demonstrated in the XRD pattern shown in Figure 3. 
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 The goethite needles that radiate from schwertmannite aggregates are not 

however, of the same morphology as the goethite aggregates observed when the reaction 

is allowed to progress for much longer times, and indeed it is well know that 

schwertmannite is itself a metastable oxyhydroxide, and that goethite laths will form in 

systems aged over a period of days or weeks at room temperature. It has been reported 

that this transformation results in the release of sulfate ions from the solid[19], and this 

observation has been taken as evidence that sulfate was structurally incorporated within 

the schwertmannite lattice. 

 In our experiments, we have found no evidence of any lattice fringes in 

schwertmannite needles that could be attributed to an akaganeite-like phase, and we have 

not observed any re-release of sulfate into the solution as the initial ferrihydrite phase 

transforms to goethite. However, as the total yield of schwertmannite in the suspension 

we have studied is quite low (< ~ 1g in 250 ml) it is possible that over the timeframe of 

our experiments, the small amounts of goethite formed are insufficient to lead to a 

measurable change in free sulfate concentration. A further possible explanation for this is 

that the sulfate content of schwertmannite aggregates may be due to surface adsorption, 

[32]given that the schwertmannite morphology provides very high surface area. The 

release of sulfate observed by Bigham et al.[19] as the schwertmannite phase transformed 

to goethite, may simply be due to the corresponding decrease in surface area that would 

be inherent in such a transformation.  

 We note that the formation of radiating goethite needles on a central iron oxide 

aggregate has been described previously in two interesting and relevant publications.[11, 

33] In these examples, goethite needles were found to form on the surface of larger Fe2O3 

particles when suspensions of these particles contained sulfate ions. Previous studies 

describing the oriented aggregation of goethite nanocrystals have monitored the 

transformation of ferrihdyrite to goethite in ferric nitrate solutions,[9, 10] or in iron 

solutions selected as biomimetic models,[24] but oriented aggregation in ferric sulfate 

media has not been previously described. However, the evidence provided here suggests 

that the basic mechanism of goethite formation in schwertmannite needles is essentially 

the same as described in other media, so it seems that oriented aggregation and 

subsequent coarsening of nanoparticles may be a generally applicable mechanism for 

goethite growth in acidic conditions. The morphology of the “coarsened” goethite 

assemblies appears more variable however, and in the case of schwertmannite, the 
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characteristic balls of radiating needles may arise as the result of specific surface 

interactions between the goethite nanocrystals and the sulfate anion. 
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Figure 1: TEM images showing the time-resolved formation of schwertmannite 
aggregates from 0.7 g L-1 Fe3+ (as ferric sulfate) solutions (85oC), after (a) 5, (b) 10 and 
(c) 60 minutes.  
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Figure 2: TEM images showing the development of schwertmannite needles at (a)10 
minutes, (b) 15 minutes and (c) 30 minutes reaction time. Image (d) shows an 
agglomerate with a mixture of schwertmannite and goethite-like aggregates in a sample 
aged for 60 minutes.  
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Figure 3 : Powder XRD patterns of products formed after 15, 30 and 120 minutes in the 
hydrolysis of ferric sulfate solution at 85°C. The appearance of poorly crystalline 
goethite in the sample taken at 120 min can be seen by comparison with positions of the 
ten most intense goethite reflections shown at the bottom of the figure (JCPDS # 29-
0713). 
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Figure 4: Changes in turbidity (top curve) and sulfate concentration (bottom curve)  
during hydrolysis of 0.7 g/l ferric sulfate solutions at 85 °C. The turbidity curve contains 
data from triplicate runs, and the sulfate concentration curve contains data from 
duplicate experiments. 
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Figure 5:  High-resolution TEM image showing lattice fringes within an aggregate of the 
same type as shown in Figure 1a, i.e. after 5 minutes reaction time.  Scale bar = 5 nm. 
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Figure 6: Typical high-resolution TEM images of schwertmannite needles in samples 
formed after 15 minutes reaction time, showing oriented attachment of goethite 
nanocrystals at the needle tips, with particles twinned along the (210) plane. Scale bars 
= 5nm. 
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Figure 7: TEM images of a schwertmannite needle after 60 minutes reaction time. a) 
Low magnification image of a typical schwertmannite aggregate, b) high reslotuion TEM 
image of the needle circled in a), c) fourier transform of the region shown by the white 
square in b), d) simulated electron diffraction pattern for goethite viewed along the (111) 
zone axis. 
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Figure 8 : a) Powder XRD pattern measured for schwertmannite product collected after 

15 minutes reactions time. b) Simulated pattern for a 7:3 mixture of 6 nm ferrihydrite and 

3 nm goethite nanocrystals. c) Simulated pattern for a 9:1 mixture of 6 nm ferrihydrite 

and 3 nm goethite nanocrystals. 

 

 


