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Global Optimum Design of Uniform FIR Filter Bank
With Magnitude Constraints
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Abstract—The optimum design of a uniform finite impulse re-
sponse filter bank can be formulated as a nonlinear semi-infinite
optimization problem. However, this optimization problem is non-
convex with infinitely many inequality constraints. In this paper,
we propose a new hybrid approach for solving this highly chal-
lenging nonlinear, nonconvex semi-infinite optimization problem.
In this approach, a gradient-based method is used in conjunction
with a filled function method to determine a global minimum of the
problem. This new hybrid approach finds an optimal result inde-
pendent of the initial guess of the solution. The method is applied to
some existing examples. The results obtained are superior to those
obtained by other existing methods.

Index Terms—Constraint transcription, filled function, finite im-
pulse response (FIR) filter bank, global optimization.

I. INTRODUCTION

HE rapid development of multirate digital signal pro-
T cessing is driven by emerging new applications. These
include subband coding of speech, audio and video signals,
multicarrier data transmission, fast transforms using digital
filter banks, and discrete wavelet analysis for all types of
signals [1]. In multirate digital signal processing, an analysis
filter is used to divide the signal to be processed into subbands.
They are then decimated according to the new bandwidth of
the subbands. Since nonperfect filters are used within the filter
bank, the decimation will cause aliasing of the subband signals.
It is possible to cancel this aliasing through the design of a
synthesis filter bank in such a way that the whole multirate
chain yields no distortion. In other words, the total transfer
function becomes a simple delay. This is referred to as the
perfect reconstruction property (PR) [4].

PR decimated filter banks have been of great interest in sub-
band coding [1]-[4]. However, these filter banks are less suit-
able for subband adaptive filtering since the PR property cannot
be maintained when the subband signals are modified by filters
with arbitrary magnitude and phase response (see [6] and [7]).
Thus, aliasing may be caused in the reconstructed output of the
subband adaptive filter. To overcome this problem, optimization
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methods are often used in the design of filter banks. In [8], the
design of a uniform discrete Fourier transform (DFT)-filter bank
is considered. This problem is solved by a two-step optimization
method. In the first step, the analysis filter bank is designed such
that the aliasing term in each subband is minimized individually.
On this basis, minimal aliasing is achieved at the output without
aliasing cancellation. In the second step, the synthesis filter bank
is designed to match the analysis filter bank in such a way that
the analysis-synthesis response is optimized while all aliasing
terms in the output signal are individually suppressed without
aiming at aliasing cancellation. To design such a filter bank, it
is necessary to solve two quadratic unconstrained optimization
problems. Clearly, this method does not give rise to an optimum
result since the design of such a filter bank is carried out by de-
termining the analysis and synthesis filter banks separately.

The delay introduced by a filter bank has a critical impact in
many practical applications [9]. Thus, there is an increasing in-
terest in finding the minimum delay and the bounds on the delay
and phase characteristics when the PR requirement is relaxed.
In [10], the design of a uniformly modulated oversampled fi-
nite impulse response (FIR) filter bank with group delay spec-
ifications is considered. Accurate linear approximations for the
phase and the group delay of the total filter bank are derived.
Then, the design of this filter bank is formulated as a nonlinear
optimization problem with group delay and amplitude distor-
tion constraints. To solve this optimization problem, an iterative
alternating method is applied. More specifically, the analysis
filter is fixed when solving the synthesis filter, while the syn-
thesis filter is fixed when solving the analysis filter. This alter-
nating process is repeated iteratively until no improvement can
be made. In each alternating iteration, a semi-infinite quadratic
programming is solved via discretization method. This iterative
alternating method has produced better results than those ob-
tained in [8]. However, it does not, in general, produce an op-
timal solution for the overall system that is nonlinear and non-
convex with infinitely many inequality constraints. Therefore,
there is a need to develop global optimization techniques.

In this paper, we develop a new hybrid method for solving this
nonlinear, nonconvex semi-infinite optimization problem. We
first use the constraint transcription method [11] to approximate
the continuous inequality constraints by a sequence of integral
constraints. Each of these integral constraints is then appended
to the cost function as a penalty term. This give rise to a se-
quence of unconstrained optimization problems. Each of them is
solvable by any gradient-based optimization algorithm. In [11],
it is shown that if the penalty parameter is sufficiently large, the
optimal solution of the unconstrained optimization problem sat-
isfies the continuous inequality constraints of the original opti-
mization problem. Thus, we obtain a sequence of approximate
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Fig. 1. Analysis and synthesis filter banks.

optimal solutions. In [11], it is further shown that if these op-
timal solutions are global, then they converge to the global op-
timal solution of the original nonlinear, nonconvex semi-infinite
optimization problem. However, it is clear that the solutions ob-
tained by using a gradient-based optimization algorithm are un-
likely to be globally optimal. Therefore, we adopt a filled func-
tion method [13] to supplement the gradient-based algorithm.
This filled function will be used to escape from a local basin
in the search space and find an improved point. The original
problem is then solved again with this improved point as an ini-
tial guess, leading to an improved local minimum. This process
is repeated until a global minimum of the original problem is
obtained. The new hybrid method finds the optimal result in-
dependent of the initial guess of the solution. This method is
applied to some existing examples, and the results obtained are
shown to be superior to those obtained by existing methods.

II. PROBLEM FORMULATION

A. Definition and Notations

An M -channel uniformly modulated FIR filter bank consists
of a set of M branches. Each branch consists of an analysis filter
H,,(z), a decimator with decimation factor D, an interpolator
with interpolation factor D, and a synthesis filter G, (z). Such
a structure is depicted in Fig. 1.

The input signal X (2) is filtered by M analysis filters H,,,(z),
0 <m < M — 1, where M is the number of subbands. These
analysis filters are modulated versions of the prototype analysis
filter according to

H,.(z) = H (:zW}}) (1)

where Wy, = e~727/M_ The analysis prototype filter is
modeled as an FIR filter with real impulse response h =
[h(0),---,h(L, — 1)]¥. The corresponding transfer function
is given by

H(z) = h"¢a(2) ©)
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where
T

ba(2) = [1,2—17 . 72—(La—1)}

Then, the output of each analysis filter is decimated by a factor
D, D < M. Thus, each subband signal X, (z) can be expanded
as

D-1
1
Xn(2) =5 Y H (z%wg;wg) X (z% Wg) 3)
d=0
where Wp = e~727/M  These signals are then interpolated

by the same factor D and filtered by the synthesis filter bank
G (2). Similarly, the synthesis filters are modulated versions
of the prototype synthesis filter according to

Gm(z) = G (z2W3}) “

where the synthesis prototype filter G(z) is also modeled as an
FIR filter with length L, that is

G(z) = " ¢s(2) ®)

where

9= [9(0)7"'79(Ls - 1)]T

and
Ps(2) = [1,2717 ... ,zf(Lrl)}T .

From above, the output Y'(2) can be expressed as

X (2Wh) 3 H (Wiwh) G (W)
m=0
M-1

= LX(2) Y H (Wi G (W)

- H (2WiWh) G (zWiy) . (6)
The terms
1 M-1
D 2 H (WEiWE) G (W) ™

where 1 < d < D — 1, can be viewed as the transfer func-
tions relating to the residual aliasing terms in the output signal.
Similarly
M-1
T(z) =+ Y HEWi)G (W) ®)

m=0
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can be viewed as the transfer function representing the desired
output signal spectrum. Substituting (2) and (5) into (8), we ob-
tain

T(z) = h"¥(2)g )
where
| M-t
U(z) = D Z ba (2Wip) b5 (2W3p)
m=0

Thus, the (n1,n2) element of ¥(z) can be expressed as

Wiy ns (ejw)
if mod(ny +na — 2, M)#0

if mod(ny +ny —2,M)=0 (10)

0,
::{ %%e—ju(n1+n2—2%

where 1 < ny < Lg, 1 < ny < L, and “mod” denotes the
modulus.

B. Prototype Analysis and Synthesis Design by Optimization
Let the desired frequency response of the filter bank be de-
noted by

Ty(e?) = e=dwTe (11)
where 7,4 is a constant desired group delay. In [10], the design
of such a filter bank is formulated as a nonlinear semi-infinite
optimization problem given

minimize F'(h, g) + kG (h) (12)
subject to
R W(e?W)g — eIV < ep, VYwe[0,n]  (13)
and
leg(w)] < ve, Vw € [0,7] (14)
where
o ~D—1M-1
= / Z Z h D,a(e’)g ® dw (15)
=1 m=0
is the residual aliasing
G(h) = h" Bh (16)
is the inband aliasing
eo(w) = (w) — Ba(w) = KT Z(w)g

is the approximation for the phase error, and

Dy a(e) = a (eJ“’W Wp) of (e7"Wii)
B=2 z_: /qﬁa (e%Wg) oH (e%Wg) dw
=1
E(w) =T {T(w)e’™} (17)
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where k, c1, co are appropriate constants, e, vy are speci-
fied error constants, (-)¥ denotes the Hermitian operation of a
vector, and Z{-} denotes the imaginary part. Let this optimiza-
tion problem be referred to as Problem (P). In this paper, we
choose ¢; = co = 1. Calculating the integrals in (17) and (15),
the (¢, s) element of B obtained is

D(t, s) sin (%)
By, =
b w(t—s)

(18)

while

9 =M 5SS h(t)g(s)h(k)
t=1 s=1 k=1
gt + s — k) p,1(t 45— k)o(t,s)

D -1, ifmod(t—s,D)=0

wlt5) = { -1, else (19)

and

ifl1<I<Lg
else

L,
”[1,LS](1) = {0,

III. SOLUTION STRATEGY

Note that Problem (P) is a nonlinear nonconvex semi-infinite
optimization problem. This optimization problem is very dif-
ficult to solve and many local minima may exist. We develop
a new hybrid method for solving Problem (P). First, the con-
straint transcription method [11] is applied to approximate the
continuous inequality constraints by a sequence of integral con-
straints as detailed below. The constraints (13) and (14) are, re-
spectively, equivalent to the following constraints:

2

Gi(z,w) = A" U (e?V)g — e | — 2 <0, Yw e [0,n]
(20)

and
Go(z,w) = |eg(w)]® — 12 <0, VYw € [0, 7] 1)

T
where £ = (h",g”) € R+ These continuous inequality
constraints (20) and (21) are equivalent to

Gi(z) = /max{Gi(:r,w),O} dw=0, i=1,2.

0

(22)

Since the function max{z,0} is not differentiable at z = 0,
the function CNL; (z) is, in general, nonsmooth. Consequently,
gradient-based optimization routines could not be used to
handle optimization problems involving such equality con-
straints. Thus, as in [11], we construct the following smoothing
approximation:

i 0, if Gi(z,w) < —
Gi-(z,w) = (Gi(z,w) +¢)*J4e, if —e<Gy(x,w)<e.
Gi(z,w), if Gi(z,w) > ¢

(23)
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Denote
G () = / G o, w)duo (24)
0
Define an approximate version of Problem (P) as
min f. - (z) (25)

where
2 A~
fen(®) = F(h,g) + £G(h) + 7Y _ Gic(x)  (26)
i=1

and v is a penalty constant. Let this problem be referred to as
Problem (P, ) and let F be the feasible region of Problem (P),
i.e.,

F={zeRTl:: Gi(z,w) <0, Vw € [0,7], i = 1,2}.
(27)
Define

F={zeRE"le Gi(m,w) <0, Yw € [0,7], i =1,2}.
(28)
We assume that the following conditions are satisfied.
Al) }O' is nonempty.
A2) For any & € F, there exists an Z € ,70-" such that oz +
(1-a) € Fforall a € (0, 1].

Theorem 3.1: Consider Problem (P) and assume that A1) and
A2) are satisfied. Then, for any e > 0, there exists a y(¢) > 0
such that for any v > ~(e), any solution of Problem (P, )
satisfies the continuous inequality constraints of Problem (P).

Proof: The proof is given in Appendix 1. [ |

Furthermore, we have the following.

Theorem 3.2: Assume that the conditions given in

T
Theorem 3.1 are satisfied. Let z* = ((h*)T7 (g)")
be a global optimal solution of Problem (P) and Ilet
* * T % T T .
TL (o) (hse)” (95,7(5)) )7 . be a global thlmal so-
lution of Problem (P, 5(.)), where 7 is chosen sufficiently large
such that z:’ﬁ(a) € F. Then
lim f. 50 (a2 ,) = F(R",97) + £G (R, g7). (29)
Proof: The proof is given in Appendix II. [ |
In practice, we only consider a finite sequence in €. By The-
orem 3.1, the choice of §(¢) for each ¢ in this sequence is finite.
Numerical experiments confirm this fact.
We are now in a position to present an algorithm to search for

a minimizer of Problem (P ,).
Algorithm 3.1:

Step1) Sete = 0.1,y =10,¢9 = 10~8, Yo = 108.
Step 2) Solve Problem (P; ) by a quasi-Newton method
and let the solution obtained be denoted by z7 ..
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Step 3) Check the feasibility of G;(z,w) < 0,7 = 1,2, at
a sufficiently dense set of points in [0, 7]. If these
constraints are satisfied, go to Step 4). Otherwise,
set v = 10~. If v > ~p, stop. There is no feasible
point found. Otherwise, go to Step 2).

Step 4) Sete = ¢/10.If e < &g, go to Step 2). Otherwise,
stop.

Remark 3.1: In Step 2) to Step 3) of Algorithm 3.1, it follows
from Theorem 3.1 that the increment of «y for each € > 0 only
needs to be carried out a finite number of times.

From (17), (19), and (25), we see that Problem (P -) is non-
convex. Clearly, Algorithm 3.1 may not yield a global optimal
solution. Thus, strictly speaking, Theorem 3.2 is not applicable.
To overcome this difficulty, we develop a filled function method
to search for a global optimal solution in Step 2) of Algorithm
3.1. Suppose that z7 _ is a minimizer obtained by a gradient-
based method in Step 2) of Algorithm 3.1. We introduced the
following filled function (see [13]):

p (xvz:,ryv 1, p) :f€7’Y (x:,"{) -p “E—.’E:’,YHQ
—min [f., (2% ), for(2)]
—{—/t{max[o, Jer(®)—fz~ (m:,w)] }2 (30)

where p, p are properly chosen small parameters. The proposed
global algorithm makes use of the filled function (30) as fol-
lows. Initially, a gradient based optimization method is applied
to determine a local minimizer m:ﬁ of Problem (P, ). To allow
the algorithm to move away from the current local minimum
and its associated basin, we then choose appropriate values for
1 and p and apply a gradient-based optimization method to the
filled function p(, 27 _, 11, p) defined by (30). Suppose that this
results in the points . ., where f. (. ,) < f.,(z%.). The
algorithm has then escaped from a local minimum and its asso-
ciated basin, and we can return to minimizing f. , with a gra-
dient-based method, using . - as a starting point to determine
another local minimum. The cycle is then repeated as often as
necessary. For more details, see Remark 3.2.
Algorithm 3.2:

Step 1) Starting from an initial point z°, f. . (z) is
minimized by Algorithm 3.1. Let the local
minimizer obtained be denoted as 2 .

Set 119, po. Let iz and p be two appropriately
chosen small positive numbers. Let » be a large
number and let S = {z%' ..., £%™} such that
z%F € N(x% ., 66) \ N( 06, 1). where

6r > 0r—1 and where N(xz,w,ék) denotes

a neighborhood of z7 _, with center z7 . and
radius 6.

Set pp = o, p = po, i = 1.

Set x = x%. Use z as the initial point for the
minimization of p(z, z% ., i, p) by a modified
quasi-Newton method as described below. If an &
is obtained such that f. . (z) < f. (2 ), then let
z° = & and goto Step 1). If ||z|| > s, stop.

Step 2)

Step 3)
Step 4)
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Step 5) Seti = i + 1. If © < m, goto Step 4). Otherwise,
set po = u/10.If g > f1, goto Step 3). Otherwise,
set po = p/10.1f pg < p, stop. The z% _, obtained
is a global minimizer of f. . (z). Otherwise, goto
Step 3).

In Step 4) of Algorithm 3.2, we set ||z|| > » to be a stopping
criterion because f- - (x) will be very large in the domain ||z|| >
. In Algorithm 3.2, the solution z7 , obtained is regarded as a
globally optimal solution of Problem (P).

Remark 3.2: In the minimization process of the filled func-
tion in Step 4) of Algorithm 3.2, we do not use the quasi-Newton
method directly. Instead, in each iteration, a direction along
which the values of f. . (z) and p(z,z:_,u,p) are both re-
duced is the first choice. More specifically, this search direction
is chosen as

~Viy(®)  Vp(z,®l,00)
||vf€,’)’(x)|| ||Vp (27727:777/1,,p)||'

If this direction does not lead to reduced values of both
fey(®) and p(z,z% ., p,p), then we will choose Dy =
~Vp(z,z? ., 11,p) as the search direction. In this way, a
new point Z can be found such that either both f. .(z) and
p(®, 2%, 11, p) are reduced simultaneously or p(z, % ., i, p)
alone is reduced. Once Z is obtained, we compute the value
fe~(2) and compare it with f. ., (2% ). If f- () < f- (%),
then we go to Step 1) and use z as a new initial point to mini-
mize f. (). Otherwise, this process is repeated until a point
located in a lower basin is found. If this process fails to find
a point in a lower basin, we return to Step 2) and use another
starting point to repeat this process. If all the stating points
in S have been used and no better initial point is found, we
may increase the number of points in S and continue with the
process using these new points in S. We will regard the solution
obtained as a global optimal solution if the process does not
give rise to a point in a lower basin after all the points in S have
been utilized. Clearly, we may miss finding the global optimizer
unless the set S is very dense, but this becomes impractical
even for problems of moderate size. There is clearly a tradeoff.
Our extensive simulation studies suggest that good quality
optimal solutions can often be obtained without having to take
the number of points in S to be excessively large. The questions
of how the points in the set S to be chosen remains open. It is
an important and challenging question for future research.
Remark 3.3: The design of a uniform FIR filter bank with
magnitude constraints is formulated as an optimization problem
with continuous inequality constrains in [10]. An alternating
method is developed to solve this optimization problem. In this
alternating method, the synthesis prototype filter is solved as a
quadratic optimization problem with the preassigned analysis
prototype filter. Then, using the obtained synthesis prototype
filter, the analysis prototype filter is determined by solving a
corresponding linear quadratic optimization problem. In each
of these optimization processes, the continuous inequality con-
straints are discretized into finitely many inequality constraints.
This alternating process is repeated until the reduced cost is
smaller than a preassigned positive real number. Since Problem
(P) is nonlinear optimization problem with continuous inequality

Dy =
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constraints, the solution obtained by this alternating method is
likely to be a local minimizer. As for all local optimization
methods, the initial guess is critically important for the quality of
the solution to be obtained. This is a motivation for the develop-
ment of the hybrid method presented in this paper.

IV. NUMERICAL EXPERIMENTS

In this section, we will apply the proposed method to some
numerical examples and compare the results with those obtained
by existing methods.

Consider the design of the analysis and synthesis prototype
filters. The transfer function of the overall filter bank is given
by 20log;o(er) = —30[dB]. We wish to obtain an optimum
design such that the aliasing levels are minimized subject to a
constraint on the distortion level of the transfer function. Let
k = M and vy = 0.04. The total delay for the filter bank
is chosen as 7y = L, /2. The performance of the filter bank
for different cases is compared in terms of the relative inband
aliasing and the relative residual aliasing measures, which are,
respectively, defined by

D-1 ,
> [ H(e%Wg)‘ dw
i(h) = = ; (31)
:r H(e%)’ dw
and
D—1M-1

XX [T H(Wwg) Gl wip) [ du
M (h,g9)=——— - _ _ ;
ST H W) Gl Wi [ du
" (32)
In this section, we will use a quasi-Newton method with limited
memory developed in [14] to look for local minimizers of the
function f. () and its modified version for the corresponding
filled function p(z, 7 ., 11, p). All the examples are performed
in Compaq Visual Fortran on a computer with Intel Core 2 x
2.4G CPU and 2G RAM. In our computation, the integration
approximated by Simpson’s rule with 512 grid points.

For the first case, let M = 16, D = M/2,and L, = Ls =
2M . The initial coefficients are all set to 0.01. For the parame-
ters in Algorithm 3.2, we set 6 = 0.1 and m = 32. All the ini-
tial points in Algorithm 3.2 are generated randomly. We first use
a gradient-based method to find its local minimizer. Then, we
construct a corresponding filled function. After 25 iterations, a
better initial point is found. With this point as a new initial guess,
we minimize the original function, leading to a better minimizer.
However, with this minimizer, we test all the 32 points in the set
S, but no better initial point is found. To make sure we have
found a global minimizer, we introduce an additional 28 points
in the set S. However, no improved point is found. Thus, the cur-
rent minimizer is regarded as a global minimizer. This process
takes 320.1 s. The coefficients of the analysis and synthesis pro-
totype filters are given in Table I. If we increase the number of
points in the set S to 256, the computational time is increases to
3341.5 s. Using the alternating method in [10] with the stopband
of the prototype filters being set to 7 /M and the initial analysis
filters being set to the solution obtained from the method in [8]
to solve this problem, it takes 26 s. If this solution is adopted as
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TABLE 1

ANALYSIS AND SYNTHESIS PROTOTYPE FILTER COEFFICIENTS WITH M = 16, D = M /2, La = Ls = 2M
n_ [ h(n) n [ h(n) IR n g
0 0.0065433 | 16 | 0.06984 0 0.077432 | 16 | 0.2906
1 0.0113329 | 17 | 0.060582 1 0.13355 17 | 0.13969
2 0.017508 18 | 0.050606 2 0.20709 18 | 0.0024552
3 0.024969 19 | 0.040504 3 0.29569 19 | -0.11548
4 0.033572 20 | 0.030684 4 0.39896 20 | -0.20593
5 0.043028 21 | 0.021686 5 0.50991 21 | -0.26823
6 0.052985 22 | 0.013941 6 0.62844 22 | -0.29688
7 0.063028 23 | 0.0076463 | 7 0.74579 23 | -0.29504
8 0.070789 24 | 0.0019425 | 8 0.78507 24 | -0.30247
9 0.078256 25 | -0.0014336 | 9 0.83696 25 | -0.26228
10 | 0.083948 26 | -0.0034993 [ 10 | 0.85415 26 | -0.21691
11 | 0.08746 27 | -0.004505 11 | 0.83584 27 | -0.16838
12 | 0.088503 28 | -0.004601 12 | 0.77825 28 | -0.12285
13 | 0.08699 29 | -0.0041766 | 13 | 0.6864 29 | -0.082461
14 | 0.082852 30 | -0.0033768 [ 14 | 0.55952 30 | -0.051611
15 | 0.076246 31 | -0.0024986 | 15 | 0.40683 31 | -0.030522

TABLE 11
THE RESULTS WITH M = 16, D = M/2,La = Ls = 2M

M?' (h‘7 g)
[8] —20.0781
[10] —29.1993
our proposed method | —32.3665

M)' (h'7 g)
—24.3550
—33.1888
—33.7584

an initial guess, our method takes an additional 117.5 s to ob-
tain a global optimal solution. If we use the solution obtained in
[8] as the initial guess, then one call of the filled function yields
the global minimizer. This process takes 265 s. Our results and
those obtained by other methods are compared in Table II. The
results solved by our method and the method in [10] with dif-
ferent initial conditions are presented in Table III.

From Table II, we see that our results are superior to those
obtained by other methods, including the iterative alternating
method [10]. The reason is quite clear. The iterative alternating
method does not produce a global optimal solution, as the opti-
mization problem is nonconvex. Figs. 2 and 3 plot the frequency
responses of the analysis and synthesis prototype filters, respec-
tively. Figs. 4 and 5 plot the corresponding magnitude error and
phase error, respectively. If we try to solve this problem with
all initial coefficients being set to 0.1, then after two calls of the
filled function, the global minimizer is obtained. This process
takes 612 s.

Table IV shows the results for the case when M = 16, D =
M/2, L, = Ls = 4M with 32 different starting points.

The frequency responses of the analysis and synthesis proto-
type filters are depicted in Fig. 6. The phase error for this case
is depicted in Fig. 7. X

From these results, we see that our method obtains better re-
sults than those obtained by the iterative alternating method de-
veloped in [10]. Furthermore, the iterative alternating method
may be sensitive to the initial guess of h. This can be seen
from Table III. To illustrate this further, let us reconsider the
case when M = 16, D = M/2, L, = Ls = 4M with 32
starting points. Let h be the optimal solution obtained by our
method. Choose two initial guesses of h as follows: by = 1/2xh
and hy = 2 * h. We run the iterative alternating method with
these two initial guesses, and the results obtained are depicted
in Fig. 8. We can clearly see that these two results are signif-

icantly different. For our method, after two calls of the filled
function, we obtain the same result. V

The remaining seven cases in [10, Table II] are solved using
our method with the solutions obtained in [10] taken as our ini-
tial guesses and 32 starting points. Better results are obtained
for five of the seven cases, where the number of calling of the
filled function is one for each of these five cases. The results for
the remaining two cases are the same as those obtained in [10].
These results and those obtained by existing methods are pre-
sented in Table V.

Our method is not effective for the critically sampled case.
This is because the inband aliasing is considered in (12). The
inband aliasing is related to the frequency selectivity and will
be large if the taps of the prototype filters are small by our
method for this case. How to balance them and design an ef-
ficient method for this case is an interesting future research
problem. At the same time, our method is not effective for the
PR filter bank design. In the design of PR filter bank, a special
structure is constructed in such a way that the aliasing effects are
cancelled. In our formulation, the residual cost is expressed as
the sum of squared terms. Thus, no cancellation will take place.
All of the drawbacks are also shared by the method in [10]. To
design these types of filter banks, the methods developed in [2],
[3], and [16] can be applied.

V. CONCLUSION

In this paper, we have developed a new computational algo-
rithm for the optimum design of an FIR filter bank. This problem
is formulated as a nonlinear and nonconvex semi-infinite op-
timization problem. A constraint transcription method and the
concept of a penalty function are used to approximate this non-
linear nonconvex semi-infinite optimization as a sequence of un-
constrained optimization problems. The quasi-Newton method
with limited memory is used in conjunction with a filled func-
tion method to solve each of these approximated unconstrained
optimization problems. Solutions obtained by our method are
superior to all those obtained by other methods. Furthermore,
our method is independent of the initial guess of the solution.
The method can be readily applied to the optimum design of
uniform FIR filter bank with group delay specifications. This
extension is straightforward.
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TABLE III
THE RESULTS FOR DIFFERENT INITIAL CONDITIONS WITH M = 16, D = M/2, La = Ls = 2M

Different M, (h,g) M, (h, g) cost (12)
initial our method our method our method
conditions method in [10] method in [10] method in [10]
All with 0.01 -32.3665 | -26.2193 | -33.7584 | -33.0750 | -30.7520 | -29.5247
All with 0.1 -32.3665 | -26.2203 | -33.7584 | -33.4316 | -30.7520 | -29.5233
Solution in [8] | -32.3665 | -33.7533 | -33.7584 | -28.7225 | -30.7520 | -19.9626

10 T T T T T T 0.04 T T T T T T
oF _ _ _ | 0.03F A iAo N oA CRRTRY ST Py Ao N -
— Analysis prototype filter with : : : : :
M=16, D=M/2, La=Ls=2M
0.02 4
-0} 4
ool | : ] : : : :
oH- 4
30} .
—001H b 4
—4or 1 -0.02f i
—50( . -0.03}- -
. . . . . . —0.04 i i : : : i
—600 05 1 15 > 25 3 3.5 0 05 1 1.5 2 25 3 35
Fig. 2. The frequency response of analysis filter with M = 16, D = 8, L, =  Fig. 4. The magnitude error for the case when M = 16, D =8,L, = L. =
L, = 32. 32.
20 T T T T T T
0.04 ! ! ! ! ! !
10 | : : : : : :
— Ynhes prototype ier wih ooaf A Al A E L A ol
0 - B
002k LA _
—10} i
0.01H i
20} 4 ok I i
_sok | —0.01H JR O O O Y IO O 4
-0.02 L1810 O 1 DO O 1 IO O 9 _
-40 E :
-0.03 : H ..... -
-850 05 1 15 2 25 3 35 ; : ;
Fig. 3. The frequency response of synthesis filter with M/ = 16, D = 8§, _0'040 0.5 1.5 2 25 3 35
L, =L, = 32.
Fig. 5. The phase error for the case when M = 16,D =8, L, = L, = 32,
vy = 0.04.
APPENDIX I
PROOF OF THEOREM 3.1 TABLE IV
Define THE RESULTS WITH M = 16, D = M/2,La = Ls = 4M
Lao+Ls .
Fo={zeR"": Gi(z,w) < —¢ M (hg) | M, (h,9)
Yw € [0 ﬂ_] i=1. 2} 8] -34.6964 | -38.5248
K Thh ’ 10] -63.9694 | -66.9775
= {:1: eRLHL . G (x)=0,i= 1,2} . (33 Our proposed method | -63.9880 | -68.7237
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TABLE V
THE RESULTS OBTAINED BY OUR METHOD AND THOSE OBTAINED BY EXISTING METHODS
M D La Mi (hyg) M?' (h7g)
[8] [10] our method [8] [10] our method
32 | 16 | 2M | -19.1502 | -28.1670 -31.2417 -23.2661 | -32.7133 -32.7211
32 | 16 | AM | -33.9531 | -62.7587 -65.2094 -37.8805 | -66.9370 -67.3108
64 | 32 | 2M | -18.4164 | -27.6148 -27.6148 -22.6857 | -32.4970 -32.4970
64 | 32 | AM | -33.2612 | -61.9921 -62.0015 -37.6073 | -67.2469 -67.3412
16 | 4 | 2M | -47.6116 | -87.2924 -87.9231 -51.4305 | -92.9208 -93.2613
32| 8 | 2M | -47.0397 | -83.8481 -87.5832 -50.7785 | -90.5891 -90.6354
64 | 16 | 2M | -46.0754 | -81.0713 -81.0713 -49.8074 | -89.8934 -89.8934
20 T T T T T T 40 T T T T T T
20 <N\ ... — Analysis prototype filter with h=1/2h" d
OF \ —— Analysis prototype filter 1 ) |- - Synthesis prototype filter with h=1/2h’
= = Synthesis prototype filter © | — Analysis prototype filter with h=2h"
Ok~ --}.i.| = = Synthesis prototype filter with h=2h"  [............o..........
20 J R - - ) :
\‘ |‘
20F - Ay N
40} -
\ A : :
40 A AAA \,‘ |
W ; ; :
N r ]
—60 1 ve g/ A, :
L £ W AL AL I L LN 4
-60 ,‘ : ‘ 1 I{;" \ll|‘“" " "\I' \‘, "l\:\"’ , \lll\.'”
vy Vv WhAL YA ‘ Wn p AR
—s0f e et 1 PO IR 21 8 A 8 ATAY) ) p YUARIY ]
LR & RSV W [
: : Coed Vulv iV Wt/
~100 L | ! L L L ~100 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 35 0 0.5 1 1.5 2 25 3 35

Fig. 6. The frequency responses of analysis and synthesis filters for the case
when M = 16,D =8,L, = L, = 64.

0.05 T T T T T T

ob oo e

ooafl

008 ; ; ; ; ; ;
0 0.5 1 1.5 2 25 3 35

Fig. 7. The phase error for the case when M = 16, D =8, L, = L, = 64.

T , o T\ T . .
<~) ;(g%,)") be an optimal solution of
Problem (P, ). We have

Let zz. = ((h:

fer (&2) < fer(@) (34)

Fig. 8. The frequency responses of analysis and synthesis filters obtained by
the iterative alternating method with two different initial guesses.

T
forallz = (h",g7) € RE«*le Letx. € F. be fixed. Then,
it follows from (33) that G; .(z.) = 0 for ¢ = 1,2. Note that
F(h,g) + «kG(h) > 0 for all h and g. We have

2
VZ Gi,a (Z:’,y) S fa,'y (Z’Z’,Y) S fs,ﬂ/(ms)-
i=1
That is

2
S Gic (38 ,8) < for(m) /7.

=1

By Theorem 2.3 [15], there exists an () > 0, such that for all
v > (¢), %, € F. This completes the proof.
APPENDIX II
PROOF OF THEOREM 3.2

By Assumption 2), there exists an & € ]’O-~ such that z, =
aZ + (1 — a)z* € F forall « € (0,1]. From (19) and (16),
it follows that for any 6; > 0, there exists an oy € (0, 1], such
that for all @ € (0, ), we have

F(h*,g") + kG(h*) < F(ha.g,) + £G(ha)

<
<F(h*,g") + sG(h") + 6. (35)
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Choose ag = «3/2. Clearly, z,, € j(l)-' . Thus, there exists a
62 > 0 such that maxo<r<w Gi(Za,,w) < —b2, 1 = 1,2.
Thus, G s,(%a,) = 0,7 = 1,2. By the definition of z¥ _, if we
choose € = 89, then

feate) (20)) < ferte) (@az) = F (hay.90,) + G (hay)

where for each ¢ > 0, J(e) is chosen such that the constraints
(20) and (21) are satisfied. Thus

F (B 5008 00)) +5G (B 50)) S F (hay, 80,) G (hay)

By (35) and the fact that £* is an optimal solution of Problem
(P), we obtain

F(h*.g%) + kG0 <F (K 00,0250 ) +7G ()

< fa,’y(s) (m:,"y(s))
S F (hazvgaz) + ’I{G (haz)
< F(h*.g*) + kG (k") + 61.

Letting ¢ — 0 and noting that 6; > 0 is arbitrary, (29) is satis-
fied. This completes the proof.
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