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Abstract—The goal of this paper is to survey existing biomedi-
cal ontologies and their developments in 2007. This paper dis-
cusses features of biomedical ontologies that allow true infor-
mation integration in biomedical domain. The paper is compi-
lation of several biomedical ontologies like Gene Ontology, 
Protein Ontology, etc. that have developed serving primarily 
the purposes of information extraction from on-line biomedi-
cal literature and databases. 
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I. INTRODUCTION 

Biologists, in attempting to answer a specific biological 
question, now frequently choose their direction and select 
their experimental strategies by way of an initial computa-
tional analysis. Naturally, computers and computer tools are 
used to collect and analyse the results of largely automated 
instruments used in biological sciences. However, far more 
pervasive than this type of a requirement, the very nature of 
the intellectual discovery process requires access to the lat-
est version of the worldwide collection of data, and the fun-
damental tools of bioinformatics that now are increasingly a 
part of the experimental methods themselves.  A driving 
force in the life science discovery process is turning com-
plex, heterogeneous data into useful, organized information 
and ultimately into systematized knowledge. The endeavour 
is simply the classic pathway for all science, Data ⇒ Infor-
mation ⇒ Knowledge ⇒ Discovery, which earlier in the 
history of biology required only brainpower and pencil and 
paper, now requires sophisticated computational technol-
ogy. 

The problem of management of biological macromolecu-
lar data is as old as the data themselves. In 1998, a special 
issue of Nucleic Acids Research listed 64 different data-
banks covering diverse areas of biological research, and the 
nucleotide sequence data alone at over 1 billion bases. It is 
not only the flood of information and heterogeneity that 
make the issues of information representation, storage, 
structure, retrieval and interpretation critical. There also has 
been a change in the community of users. In the middle 
1980s, fetching a biological entry on a mainframe computer 
was an adventurous step that only few dared. Now, at the 
end of the 1990s, thousands of researchers make use of bio-
logical databanks on a daily basis to answer queries, e.g. to 
find sequences similar to a newly sequenced gene, or to re-
trieve bibliographic references, or to investigate fundamen-
tal problems of modern biology [1]. New technologies, of 

which the World Wide Web (WWW) has been the most 
revolutionary in terms of impact on science, have made it 
possible to create a high density of links between data-
banks. Database systems today are facing the task of serv-
ing ever increasing amounts of data of ever growing com-
plexity to a user community that is growing nearly as fast as 
the data, and is becoming increasingly demanding. 

II. ONTOLOGY PRELIMINARIES 

In response to current advances in technology and the in-
creasing scope of research, massive amounts of data are 
routinely deposited in public and private databases. The 
scope of public data sources ranges from the comprehen-
sive, multidisciplinary, community informatics centres, 
supported by public funds and sustained by team of special-
ists, to small boutique data sources provided by individual 
investigators. The content of the databases varies greatly, 
reflecting the broad disciplines and sub-disciplines across 
life sciences from molecular biology and cell biology, to 
medical and clinical trials, to ecology and biodiversity. In 
this section, we briefly discuss various features of biologi-
cal databases and then give samples of various public bio-
logical databases. 
 Biological data sources represent a loose collection of 
autonomous web sites, each with its own governing body 
and infrastructure. These sites vary in almost every possible 
instance such as computing platform, access and data man-
agement system. Much of the available biological data ex-
ists in legacy systems in which there are no structured in-
formation management systems. These data sources are in-
consistent at the semantic level, and more often than not, 
there is no adequate meta-data specification. Until recently, 
biological databases were not designed for interoperability 
[2]. Data elements in public or proprietary databases are 
stored in heterogeneous formats ranging from simple files 
to fully structured database systems that are often ad hoc, 
application-specific or vendor-specific. For example, scien-
tific literature, images, and other free-text documents are 
commonly stored in unstructured or semi-structured formats 
(plain text, HTML, XML). Genomic, microarray gene ex-
pression, and proteomic data are stored in conventional flat 
files and spreadsheet programs or in structured relational 
databases (Oracle, Sybase, DB2, and Informix). 

Perhaps the technical problems of standardization dis-
cussed in the preceding paragraphs could be addressed 
more easily in the context of a more general logical struc-
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ture. As noted by Hafner [3], general biological data re-
sources are databases rather than knowledge bases: they de-
scribe miscellaneous objects according to the database 
schema, but no representation of general concepts and their 
relationships is given. Schulze-Kremer [4] addressed this 
problem by developing ontologies for knowledge sharing in 
molecular biology. He proposed to create a repository of 
terms and concepts relevant to molecular biology, hierar-
chically organized by means of ‘is a subset of’ and ‘is 
member of’ operators. 

III. BIOMEDICAL ONTOLOGIES 

The term ontology is originally a philosophical term re-
ferred as “the object of existence”. Computer Science 
community borrowed the term ontology to refer to a “speci-
fication of conceptualisation” for knowledge sharing in arti-
ficial intelligence [5]. Ontologies provide a conceptual 
framework for a structured representation of the meaning, 
through a common vocabulary, on a given domain — in this 
case, biological or medical— that can be used by either 
humans or automated software agents on a the domain. This 
shared vocabulary usually includes concepts, relationships 
between concepts, definitions for these concepts and rela-
tionships and also the possibility of defining ontology rules 
and axioms; in order to define a mechanism to control the 
objects that can be introduced in the ontology and to apply 
logical inference. Ontologies in biomedicine have emerged 
because of the need for common language for effective 
communication across diverse sources of biological data 
and knowledge.  

Several Biomedical Ontologies like UMLS [6] Gene On-
tology [7], Protein Ontology [8], MGED Ontology [9], and 
TAMBIS Ontology [10] have developed, often reflecting 
mere relations of 'association' between what are called 'con-
cepts', and serving primarily the purposes of information 
extraction from on-line biomedical literature and databases. 
In recent years, we have learned a great deal about the crite-
ria, which must be satisfied if ontology is to allow true in-
formation integration and automatic reasoning across data 
and information derived from different sources. Substantial 
contributions have been carried out in medicine for the de-
velopment of standards, medical terminologies and coding 
systems. The most important one, from the ontological per-
spective, is the MeSH (Medical Subject Headings) ontol-
ogy, used to index Medline documents. MeSH [11] by the 
National Library of Medicine (NLM) mainly consists of the 
controlled vocabulary and a MeSH Tree. The controlled vo-
cabulary contains several different types of terms, such as 
Descriptor, Qualifiers, Publication Types, Geographics, and 
Entry terms. MeSH has got more than 18000 categories, 
with a poly tree based, hierarchical structure where a term 
can appear in different branches. In 1986, NLM began a 
long-term goal to build Unified Medical Language System 
(UMLS). UMLS [6, 12, 13] is a repository of biomedical 
vocabularies and is NLM’s biomedical ontology. The pur-
pose of the UMLS is to improve the ability of computer 
programs to understand biomedical meaning and to use its 

understanding to retrieve relevant machine readable infor-
mation for users [13]. The UMLS integrates over 2 million 
names for some 900,000 concepts from more than 60 fami-
lies of biomedical vocabularies, as well as 12 million rela-
tions among these concepts.  
Gene Ontology [7, 14] consortium lead ontological devel-
opment in the genetic area. The Gene Ontology is a collabo-
rative effort to create a controlled vocabulary of gene and 
protein roles in cells, addressing the need for consistent de-
scriptions of gene products in different databases. The GO 
collaborators are developing three structured, controlled vo-
cabularies (ontologies) that describe gene products in terms 
of their associated biological processes, cellular compo-
nents and molecular functions in a species-independent 
manner. The GO Consortium was initially a collaboration 
among Mouse Genome Database [15], FlyBase [16], and 
Saccharomyces Genome database [17] efforts. GO is now a 
part of UMLS, and the GO Consortium is a member of the 
Open Biological Ontologies consortium to be discussed 
later in this section. One of the important uses of GO is the 
prediction of gene function based on patterns of annotation. 
For example, if annotations for two attributes tend to occur 
together in the database, then the gene holding one attribute 
is likely to hold for other as well [18]. In this way, func-
tional predictions can be made by applying prior knowledge 
to infer function of novel entity (either a gene or a protein). 
GO consists of three distinct ontologies, each of which 
serves as an organizing principle for describing gene prod-
ucts. The intention is that each gene product should be an-
notated by classifying it three times, once within each on-
tology [19].  

GO is the result of the effort to enumerate and model 
concepts used to describe genes and gene products. The 
central unit for description in GO is a concept. Concept 
consists of unique identifier and one or more strings (re-
ferred to as terms) that provide a controlled vocabulary for 
unambiguous and consistent naming. Concepts exist in a 
hierarchy of IsA and PartOf relations in a directed acyclic 
graph (DAG) that locates all concepts in the knowledge 
model with respect to their relationships with other con-
cepts. More details about Gene Ontology are at: 
http://www.geneontology.org/  

We are building Protein Ontology [20-23] to integrate 
protein data formats and provide a structured and unified 
vocabulary to represent protein synthesis concepts. Protein 
Ontology (PO) provides integration of heterogeneous pro-
tein and biological data sources. PO converts the enormous 
amounts of data collected by geneticists and molecular bi-
ologists into information that scientists, physicians and 
other health care professionals and researchers can use to 
easily understand the mapping of relationships inside pro-
tein molecules, interaction between two protein molecules 
and interactions between protein and other macromolecules 
at cellular level. PO consists of concepts (or classes), which 
are data descriptors for proteomics data and the relation-
ships among these concepts. PO has (1) a hierarchical clas-
sification of concepts represented as classes, from general 
to specific; (2) a list of attributes related to each concept, 
for each class; (3) a set of relationships between classes to 
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link concepts in ontology in more complicated ways then 
implied by the hierarchy, to promote reuse of concepts in 
the ontology; and (4) a set of algebraic operators for query-
ing protein ontology instances. More details about Protein 
Ontology are at: http://www.proteinontology.org.au/ 

The MGED Ontology (MO) is developed by Microarray 
Gene Expression Data (MGED) Society. MO provides 
terms for annotating all aspects of a microarray experiment 
from the design of the experiment and array layout, through 
to preparation of the biological sample and protocols used 
to hybridise the RNA and analyze the data [9]. MO is a spe-
cies neutral ontology that focuses on commonalities among 
experiments rather than differences between them. MO is 
primarily an ontology used to annotate microarray experi-
ments; however it contains concepts that are universal to 
other types of functional genomics experiments. The major 
component of the ontology involves biological descriptors 
relating to samples or their processing; it is not an ontology 
of molecular, cellular, or organism biology, such as the 
Gene Ontology. MO version 1.2 contains 229 classes, 110 
properties and 658 instances. 

TAMBIS (Transparent Access to Multiple Bioinformat-
ics Information Sources) uses an ontology to enable biolo-
gists to ask questions over multiple external databases using 
a common query interface [24]. The TAMBIS ontology 
(TaO) [10] describes a wide range of bioinformatics tasks 
and resources, and has a central role within the TAMBIS 
system. An interesting difference between the TaO and 
some of the other ontologies is that the TaO does not con-
tain any instances. The TaO only contains knowledge about 
bioinformatics and molecular biology concepts and their 
relationships - the instances they represent still reside in the 
external databases. The TaO is a dynamic ontology, in that 
it can grow without the need for either conceptualizing or 
encoding new knowledge.  

The National Center for Biomedical Ontology is an NIH 
National Center for Biomedical Computing (NCBC): a con-
sortium comprised of leading biologists, clinicians, infor-
maticians, and ontologists who are working together to de-
velop innovative technology and methods that allow scien-
tists to record, manage, and disseminate biomedical infor-
mation and knowledge in machine-processable form. 

The Center is developing two major repositories of bio-
medical content: (1) Open Biomedical Ontologies (OBO), a 
comprehensive, online library of open-content ontologies 
and controlled terminologies, and (2) Open Biomedical 
Data (OBD), a database resource that will allow expert sci-
entists to archive experimental data that is fully described 
(annotated) using the OBO ontologies and terminologies.  
The biomedical research community will access OBO and 
OBD via a system called BioPortal. List of Biomedical On-
tologies and more details about them available at National 
Center for Biomedical Ontologies is available at: 
http://cbioapprd.stanford.edu/ncbo/faces/pages/ontology_lis
t.xhtml 

IV. OPEN ISSUES IN BIOMEDICAL ONTOLOGIES 

Research into different biological systems uses different or-
ganisms chosen specifically because they are amenable to 
advancing these investigations. For example, the rat is a 
good model for the study of human heart disease, and the 
fly is a good model for the study of cellular differentiation. 
For each of these model systems, there is a database em-
ploying curators who collect and store the body of biologi-
cal knowledge for that organism. Mining of Scientific Text 
and Literature is done to generate a list of keywords that are 
used as GO terms. However, querying heterogeneous, inde-
pendent databases in order to draw these inferences is diffi-
cult: The different database projects may use different terms 
to refer to the same concept and the same terms to refer to 
different concepts. Furthermore, these terms are typically 
not formally linked with each other in any way. GO seeks 
to reveal these underlying biological functionalities by pro-
viding a structured controlled vocabulary that can be used 
to describe gene products, and is shared between biological 
databases. This facilitates querying for gene products that 
share biologically meaningful attributes, whether from 
separate databases or within the same database. 

Association between ontology nodes and proteins, 
namely, protein annotation through gene ontology, is an in-
tegral application of GO. To efficiently annotate proteins, 
the GO Consortium developed a software platform, the GO 
Engine, which combines rigorous sequence homology com-
parison with text information analysis. During evolution, 
many new genes arose through mutation, duplication, and 
recombination of the ancestral genes. When one species 
evolved into another, the majority of orthologs retained 
very high levels of homology. The high sequence similarity 
between orthologs forms one of the foundations of the GO 
Engine. Text information related to individual genes or pro-
teins is immersed in the vast ocean of biomedical literature. 
Manual review of the literature to annotate proteins presents 
a daunting task. Several recent papers described the devel-
opment of various methods for the automatic extraction of 
text information [25, 26]. However, the direct applications 
of these approaches in GO annotation have been minimal. 
A simple correlation of text information with specific bio-
logical ontology nodes in the training data should predict 
association for unannotated biomedical data. Correlation 
methodology should combine homology information, a 
unique data-clustering procedure, and text information 
analysis to create the best possible annotations. 

For Protein Functional Classification, in addition to the 
presence of domains, motifs or functional residues, the fol-
lowing factors are relevant: (a) similarity of three dimen-
sional protein structures; (b) proximity to genes (which may 
indicate that the proteins they produce are involved in the 
same pathway); (c) metabolic functions of organisms; and 
(d) evolutionary history of the protein. At the moment, PO’s 
Functional Domain Classification does not address the is-
sues of proximity of genes and evolutionary history of pro-
teins. These factors will be added to complete the Func-
tional Domain Classification System in a future version of 
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the Protein Ontology. Also, more constraints need to be 
added to Protein Ontology other than the three existing 
types of constraints, by studying the effects of environment 
on various protein families that exist. Also, the constraints 
defined in PO are not mapped back to the protein sequence, 
structure and function that they affect. Achieving this in fu-
ture will inter-link all the concepts of PO. We also need to 
analyse all the protein families to study how the Protein On-
tology representation will help us to understand in detail the 
linkage between various protein families. 

Currently, we are developing a trustworthy ontology [27] 
to automate the process of additions and modifications to 
the Protein Ontology through online interfaces. This also 
assists in providing a degree of separation between the en-
tered concepts and the actual protein ontology available to 
the users through the use of an Intermediate Protein Ontol-
ogy (IPO). A trustworthy Protein Ontology framework will 
ensure that only valid and correct concepts are added to 
Protein Ontology. A PO administrator uses an administra-
tion console to skim through IPO using a defined set of 
rules that denotes what a correct concept would be, what a 
correct relationship between different concepts would be, 
and what a correct instance of the concept would be [28]. 
These sets of rules utilize structure and semantics of the PO 
to facilitate validation of any changes made to the IPO by 
research assistants. To identify the pattern of correctness of 
the information that has been added, we calculate a correct-
ness value [29] for every concept entered by the researcher 
into the Intermediate Protein Ontology (IPO). For a correct 
concept entered, 0.1 increases the reputation; whereas for 
an incorrect concept entered, the 0.05 decreases the reputa-
tion. The final value of reputation for each set of entries by 
a researcher determines the correctness of information en-
tered by the researchers. 
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