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Abstract

Within a model of the ejector performance prediction, the influence of ejector component efficiencies is

critical in the prediction accuracy of the model. In this paper, a unified method is developed based on

sparsity-enhanced optimization to determine correlation equations of ejector component efficiencies in order

to improve the prediction accuracy of the ejector performance. An ensemble algorithm that combines

simulated annealing and gradient descent algorithm is proposed to obtain its global solution for the proposed

optimization problem. The ejector performance prediction of a 1-D model in the literature is used as an

example to illustrate and validate the proposed method. Tests results reveal that the maximum and average

absolute errors for the ejector performance prediction are reduced much more when compared with existing

results under the same experimental condition. Furthermore, the results indicate that the ratio of geometric

parameters to operating parameters is a key factor affecting the ejector performance.
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1. Introduction1

Ejector refrigeration systems (ERSs) have been known since early twentieth century. A study of applying2

ERS to air-conditioning and refrigeration was reported in mid-1950s. For ERSs, there are many advantages,3

such as simple construction, high reliability and low maintenance cost in comparison with other refrigeration4

systems. Although the coefficient of performance (COP) of ERSs is relatively low when compared with that5

of vapor compression refrigeration systems, ERSs can be powered by low-grade energy, such as solar energy,6
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Nomenclature

A Area (m2) Subscripts
Cp specific heat at constant pressure (kJ/kg K) c to condenser, exit of ejector
Cv specific heat at constant volume (kJ/kg K) d diffuser
d diameter (m) i ideal, with no loss
Er relative error m mixing flow
m mass flowrate (kg/s) p primary flow, from section1-1 to y-y
M mach number p0 primary flow at inlet of ejector
P pressure (MPa) p1 primary flow at nozzle exit
R gas constant (kJ/kg K) r ratio
T temperature (K) s secondary flow
u entrainment ratio s0 secondary flow at inlet of ejector
V velocity (m/s) y position of the hypothetical throat
η efficiency relating to isentropic efficiency
φ efficiency account for losses Abbreviations
β sparsity weight factor COP coefficient of performance
γ = Cp/Cv ERS ejector refrigeration system

GDA gradient descent algorithm
Superscripts SAA simulated annealing algorithm
c critical mode of ejector SW sparsity weight

biomass energy and waste heat. Therefore, there are many research activities on the study of ERSs and7

their performance in the literature.8

For an ERS, it basically consists of a generator, evaporator, condenser, ejector, expansion valve and9

a pump. The ejector can be regarded as its heart, playing a key role for the performance of the ERS.10

The ejector design can be classified into two types according to the position of the nozzle [1]: constant-11

area mixing ejector; and constant-pressure mixing ejector. Both the constant-area mixing model and the12

constant-pressure mixing model are developed for the prediction of the ejector performance. The predicted13

results obtained for the constant-area mixing model are found to be consistent with the experimental results.14

On the other hand, the predicted results obtained for the constant-pressure mixing model do not agree well15

with the experimental results [2]. However, the performance of a constant-pressure mixing ejector is, in16

practice, superior to that of a constant-area mixing ejector [3]. Therefore, an intensive effort has been17

devoted to the study of performance prediction of the constant-pressure mixing ejector. For constant-18

pressure mixing ejector, there are several models, such as models of Huang et al. [4], Zhu et al. [5] and Chen19

et al. [6], developed to improve its performance prediction. A 1-D model was proposed in [4] to predict20

the ejector performance at critical mode with dry refrigerant R141b. It is assumed that the primary flow21

mixes with the secondary flow under constant-pressure inside the constant-area section of the ejector after22

the choking of the secondary flow. Four empirical component efficiencies are introduced in the model by23
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matching the test data. As a result, the prediction accuracy is improved and the prediction results agree24

well with the experimental data. The maximum relative error on prediction entrainment ratios is -22.9925

%. In [5], a model is developed for the ejector performance prediction of both dry and wet refrigerants.26

The real velocity distribution inside the ejector is approximated by a simple linear function. The mass flow27

rates of the two flows are derived by intergrading the velocity function at the inlet of the constant-area28

section. Three empirical component efficiencies are introduced to account for the losses in the ejector. As29

a result, the maximum relative error is reduced to 13.8 %. In [6], it is assumed that the secondary flow30

is choking in the hypothetical throat at critical mode and that there is an effective area of the secondary31

flow at sub-critical mode. Based on the assumptions, the model can predict ejector performance at both32

critical mode and sub-critical mode with improved prediction accuracy. The maximum relative error on33

entrainment ratios is 14.2%. It can be seen that the prediction accuracy of these models has been improved34

by developing novel physical description of the ejector.35

In fact, besides the physical description of the ejector, the ejector component efficiencies have dramatic36

influence on the validity of a 1-D ejector model [7]. The efficiencies are selected as constant value empirically37

based on experimental date in some cases (e.g. in models of Huang et al. [4] and Eames et al. [8] ) or38

taken from literature in other cases (e.g. in models of Cizungu et al. [9] and yan et al. [10]). However, it39

is found that ejector component efficiencies relied on the ejector configurations [4] or operating conditions40

[5] or both of them [11]. Therefore, ejector component efficiencies were presented as empirical correlations41

in some models, but only empirical methods are introduced to determine the correlation equations of the42

efficiencies in the models. The question on how to optimize ejector component efficiencies such that simple43

correlation equations with better prediction accuracy are obtained appears to remain open in the literatures.44

The aim of this paper is to develop a unified method to determine correlation equations of ejector45

component efficiencies in order to pick out and analyze the key factors which affect ejector performance. To46

begin with, the ejector performance prediction is formulated as a sparsity-enhanced optimization problem47

[12]. The objective in our optimization problem includes not only the prediction accuracy, but also the48

number of active terms in the correlation equations. A hybrid algorithm is developed to solve this formulated49

optimization problem. To illustrate the effectiveness of our proposed method, 1-D model of the ejector50

performance prediction proposed in [4] is used as an example.51
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2. Mathematical modelling and optimization formulation52

In this section, we will take 1-D model proposed in [4] as an example to illustrate how to formulate the53

corresponding performance prediction as a sparsity-enhanced optimization problem. The flow characteristic54

of the model is illustrated in Fig.1.55

2.1. Ejector component efficiencies56

In order to account for losses at critical mode in ejector, ejector component efficiencies are introduced57

in most of 1-D ejector models. Four efficiencies, ηp, ηs, φp and φm, are taken into consideration in [4]. In58

the model, the efficiencies, ηp and ηs, relate to the isentropic efficiency of the primary flow from inlet to59

the nozzle throttle and the secondary flow from inlet to section y-y, respectively. As far as ηp, it is used to60

account for the loss of the primary flow from section 1-1 to y-y. Huang et al. [4] think the loss may result61

from the slipping or viscous effect of the primary and the secondary flows at the boundary. However, recent62

studies have shown that, the loss is due to a series of oblique shocks which the primary flow undergoes as it63

expands from section 1-1 to y-y [13]. But no matter what reason the loss results from, it can be taken into64

account by isentropic efficiency.65

However, there is some diversity on how to account for losses in the mixing chamber in different ejector66

models. Huang et al. [4] defined mixing efficiency, φm, as a momentum transfer efficiency, namely67

φm =
(mp +ms)Vm
mpVpy +msVsy

(1)

This definition is the same as that in literatures [8? ]. However, Yu et al. [14] and Xu et al. [15] present68

another definition of mixing efficiencies, it is69

φm =
V 2
m

V 2
m,i

(2)

Cizungu et al. [16] and Selvaraju and Mani [17] use friction at wall surface of mixing chamber to account70

for mixing losses. The friction factor fm is expressed as71

1√
fm

= 2.0log
(
Rem

√
fm − 0.8

)
(3)

where, Rem is Reynolds number of mixing flow in the mixing chamber.72
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2.2. 1-D model: A brief review73

The following conditions are assumed to be satisfied.74

1. The working fluid is an ideal gas with the properties of Cp and γ being constants;75

2. The flow inside the ejector is steady and one dimensional;76

3. The kinetic energy of the primary and secondary flow at the inlets and the discharging flow at the77

outlet are negligible;78

4. The isentropic relations are used to approximate the ejector component efficiencies;79

5. The primary flow fans out of the nozzle restricting the secondary flow such that they are not mixed80

until the hypothetical throat of the secondary flow is formed at the cross section y-y.81

6. The inner wall of the ejector is adiabatic.82

The flow rate mp of the primary flow at choking condition is given by:83

mp =
Pp0At√
Tp0

√
γ

R

(
2

γ + 1

)(γ+1)/(γ−1)√
ηp (4)

where, ηp relates to the isentropic efficiency of the primary flow from inlet to nozzle throttle. The parameters84

Mp1 and Pp1 of the primary flow at section 1-1 can be estimated as:85 (
Ap1
At

)2

≈ 1

M2
p1

[
2

γ + 1

(
1 +

γ − 1

2
M2
p1

)](γ+1)/(γ−1)

(5)

86

Pp0/Pp1 ≈
(
1 +M2

p1(γ − 1)/2)
)γ/(γ−1)

(6)

Then, the pressure at section y-y can be derived as:87

Ppy = Psy ≈ Ps0
(
1 +M2

sy(γ − 1)/2
)γ/(1−γ)

(7)

The Mach number Msy of the primary flow at section y-y is:88

Ppy
Pp1
≈
(
1 + ((γ − 1) /2)M2

p1

)γ/(γ−1)(
1 + ((γ − 1) /2)M2

py

)γ/(γ−1)
(8)

By introducing φp to account for the losses of the primary flow from section 1-1 to section y-y, the area89

Apy occupied by the primary flow at section y-y is:90

Apy
Ap1

=
(φp/Mpy)

[
(2/ (γ + 1))

(
1 + ((γ − 1) /2)M2

py

)](γ+1)/(2(γ−1))

(1/Mp1)
[
(2/ (γ + 1))

(
1 + ((γ − 1) /2)M2

p1

)](γ+1)/(2(γ−1))
(9)
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The area Asy of the secondary flow at section y-y can be calculated as follows:91

Asy = A3 −Apy (10)

It is assumed that the aerodynamic throat of the secondary flow is formed at section y-y, i.e., Msy=1.92

Then, the mass flow rate of the secondary flow is expressed as given below:93

ms =
Ps0Asy√
Ts0

√
γ

R

(
2

γ + 1

)(γ+1)/(γ−1)√
ηs (11)

where, ηs relates to the isentropic efficiency of the secondary flow from inlet to section y-y. Now the94

entrainment ratio u, which is the vital parameter of ejector, can be calculated through the following equation.95

u = ms/mp (12)

The temperature Tpy and the velocity Vpy of the primary flow at section y-y are:96

Tp0/Tpy = 1 +M2
py(γ − 1)/2 (13)

and97

Vpy = Mpy

√
γRTpy (14)

The temperature Tsy and the velocity Vsy of the secondary flow at section y-y are:98

Ts0/Tsy = 1 +M2
sy(γ − 1)/2 (15)

and99

Vsy = Msy

√
γRTsy (16)

Both the primary and secondary streams are assumed to have reached the constant pressure, starting to100

mix at section y-y. The mixing process can be described as:101

mp

(
CpTpy +

V 2
py

2

)
+ms

(
CpTsy +

V 2
sy

2

)
= (mp +ms)

(
CpTm +

V 2
m

2

)
(17)

102

φm (mpVpy +msVsy) = (mp +ms)Vm (18)

where, φm is the momentum transfer efficiency during the mixing of the two streams. The velocity Vm of103

the mixed flow is:104

Vm = Mm

√
γRTm (19)
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The pressure of the mixed flow rises sharply when a supersonic shock takes place at some section after105

section m-m. Assume that the mixed flow has a uniform pressure after the occurrence of the shock, the106

pressure P3 and the Mach number M3 of the mixed flow follow the gas dynamic relations:107

P3/Pm = 1 + (2γ/(γ + 1))
(
M2
m − 1

)
(20)

108

M2
3 =

1 + ((γ − 1) /2)M2
m

γM2
m − (γ − 1) /2

(21)

Now the critical back pressure P cc can be derived by using the following equation:109

P cc /P3 =
(
1 +M2

3 (γ − 1)/2
)γ/(γ−1)

(22)

2.3. Sparsity-Enhanced Optimization for Ejector Performance Prediction110

In the sparsity-enhanced optimization model, it is important to identify critical basis functions which111

characterize the functional relationship [18]. During the optimization process of the ejector performance112

prediction, simple expressions of efficiencies can be found while optimizing u and P cc by using sparsity-113

enhanced optimization model. Here, we will formulate the determination of these efficiencies as a sparsity-114

enhanced optimization problem. In this way, the prediction accuracy is optimized while the most important115

factors, which affect the prediction accuracy, are also being identified.116

Based on the performance prediction model of the ejector described by (4)-(22), the entrainment ratio117

u and the critical back pressure P cc can be expressed as functions of efficiencies ηp, ηs, φp, φm, i.e.,118

u = u(ηp, ηs, φp, φm), P cc = P cc (ηp, ηs, φp, φm).

In the literature, the efficiencies ηp, ηs, φp, φm appeared in their models of the ejector performance119

prediction are usually taken as a function of Ar(= A3/At) or/and Pr(= Pp0/Ps0). For example, φm =120

0.9788 − 0.0073Ar in [? ]. However, this relationship is always determined by empirical methods. Thus,121

there often exists a big gap between experimental results and prediction results. Furthermore, it is time122

consuming to find out the relationship. In the following, we will develop a unified method to formulate this123

performance prediction problem as an optimization problem. For this, we suppose that124

ηp = ηp(xp, Ar, Pr), ηs = ηs(xs, Ar, Pr), φp = φp(zp, Ar, Pr), φm = φm(zm, Ar, Pr), (23)
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where xp is the coefficient vector in the correlation equation ηp. For example, it can be assumed that125

ηp = xp1 + xp2A
−1
r + xp3P

−1
r + xp4(Ar/Pr) + xp5(Ar/Pr)

−1 + xp6(ArPr)
−1. (24)

Similarly, we suppose that126

ηs = ηs(xs, Ar, Pr), φp = φp(zp, Ar, Pr), φm = φm(zm, Ar, Pr), (25)

where xs, zp and zm are the corresponding coefficient vectors in the correlation equations. Now the de-127

termination of the correlation equations has been transformed into the determination of the coefficient128

vectors xp, xs, zp and zm. When no confusion can arise, we rewrite u(ηp, ηs, φp, φm) and P cc (ηp, ηs, φp, φm)129

as u(xp, xs, zp, zm) and P cc (xp, xs, zp, zm), respectively.130

Since the losses are between 0 to 1, ηp, ηs, φp and φm should satisfy the following constraints:131

0 6 ηp 6 1, 0 6 ηs 6 1, 0 6 φp 6 1, 0 6 φm 6 1. (26)

Denote132

Eu,j(xp, xs, zp, zm) =
uj(xp, xs, zp, zm)− ûj

ûj
, (27)

EPc,j(xp, xs, zp, zm) =
P ccj(xp, xs, zp, zm)− P̂ ccj

P̂ ccj
, (28)

Ej(xp, xs, zp, zm) = E2
u,j(xp, xs, zp, zm) + E2

Pc,j(xp, xs, zp, zm), (29)

C(xp, xs, zp, zm) = (‖xp‖0 + ‖xs‖0 + ‖zp‖0 + ‖zm‖0) , (30)

where uj and ûj are the jth theoretical calculation and the experimental data of the entrainment ratio,133

respectively, P ccj and P̂ ccj are the jth theoretical calculation and the experimental data of the critical back134

pressure, respectively, ‖ ·‖0 is the number of the non-zero elements of ·. For example, if xp = [0, 0.1, 0, 0.4],135

then ‖xp‖0 = 2. Now the sparsity-enhanced ejector performance prediction can be formulated as the136

following optimization problem:137

min
xp,xs,zp,zm

E(xp, xs, zp, zm) =
n∑
j=1

(1− β)Ej(xp, xs, zp, zm) + βC(xp, xs, zp, zm), (31)

s.t. (4)− (30). (32)

where β is the sparsity weight (SW) to balance the ejector performance prediction and sparsity, while n is138

the number of the experimental results. Let this problem be referred to as Problem (P).139
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2.4. Continuous Approximation140

In Problem (P), the cardinality function C(xp, xs, zp, zm) of xp, xs, zp and zm is non-continuous. How to141

solve this optimization problem is challenging. Instead of solving Problem (P) directly, we approximate the142

cardinality function C(xp, xs, zp, zm) by 1-norm function. More specifically, C(xp, xs, zp, zm) is approximated143

by:144

C̃(xp, xs, zp, zm) = (‖xp‖1 + ‖xs‖1 + ‖zp‖1 + ‖zm‖1) . (33)

Then, this optimization becomes:145

min
xp,xs,zp,zm

Ẽ(xp, xs, zp, zm) =
n∑
j=1

(1− β)Ej(xp, xs, zp, zm) + βC̃(xp, xs, zp, zm), (34)

s.t. (4)− (29), (33). (35)

Let this problem be referred to as Problem (AP). Under certain conditions, we can prove that the146

solution of Problem (AP) approaches to a solution of Problem (P) [19].147

2.5. Smoothing Transformation148

The optimization problem defined by (34) and (35) is non-smooth since the absolute value term C̃(xp, xs, zp, zm)149

is involved. It is well-known that the convergence of the optimization process may be slow [20]. Here,150

we shall transform this non-smooth optimization problem into a smooth optimization problem. For any151

x ∈ R, let |x| = x+ − x−, where x+ = max(x, 0) and x− = min(x, 0). Replacing xpi = x+pi − x−pi ,152

xsi = x+si−x
−
si , zpi = z+pi−z

−
pi and zmi = z+mi

−z−mi
into (34) and (35), and denoting X+ = [x+p , x

+
s , z

+
p , z

+
m]T ,153

X− = [x−p , x
−
s , z

−
p , z

−
m]T , we obtain the following optimization problem:154

min
X+,X−

E(X+, X−) =

n∑
j=1

(1− β)Ej(X
+, X−) + β

∑
i

(
X+
i +X−

i

)
(36)

s.t. (4)− (29), (37)

X+ � 0, X− � 0. (38)

It can be shown that the optimization problem defined by (36)-(38) is equivalent to that defined by (34)155

and (35). After the transformation, the original non-smooth optimization problem has been transformed156

into a smooth one at a cost of doubling the number of variables. In the following section, we will develop a157

hybrid method to solve this transformed optimization problem.158
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3. Computational Algorithm159

Although the transformed optimization problem is smooth, it is still highly nonlinear and nonconvex.160

Thus, the optimization problem defined by (36)-(38) may have many local optimal solutions and conventional161

gradient-based optimization methods may trap into local optimum. In the recent, there are many hybrid162

algorithms proposed to solve this problem, such as combining meta-heuristic method with local descent163

methods [21] and combining two deterministic heuristic methods [22]. In this section, we will introduce164

the hybrid method in [23] through combining simulated annealing method with gradient descent method to165

solve this optimization problem.166

3.1. Gradient Descent Approach167

A gradient descent approach (GDA) is much more efficient in local search. The iterative search process168

at each (or kth) iteration can be expressed as follows:169

X+
i(k+1) = X+

i(k) − αk
∂E(k)

∂X+
i(k)

, X−
i(k+1) = X−

i(k) − αk
∂E(k)

∂X−
i(k)

. (39)

where αk is the search step size (αk > 0), E(k) = E(X+
k , X

−
k ), X+

i(k) is the ith element of X+
k and X−

i(k) is170

the ith element of X−
k . We set two termination criteria for the search:171

(1) If the absolute value,
∣∣E(k+1) − E(k)

∣∣, of the difference between the two function values at the two172

successive search steps is smaller than a predefined threshold ε, Xst = X+
(k+1) −X

−
(k+1) is regarded as173

the output solution;174

(2) If the number of iterative steps is greater than a predefined kmax, the iteration terminates.175

3.2. Simulated Annealing176

Simulated annealing algorithm (SAA) is a kind of metaheuristic methods [24] which was originally177

developed in [25] and [26]. It can explore the function’s entire surface during the optimization by uphill and178

downhill moves, escape from local minima and go on to find a global minimum. In our problem, SAA is used179

to find a better initial solution for GDA. SAA will search from the current solution X(0) obtained by GDA180

to search for a better solution Xst in the range from the initial annealing temperature Tb to the termination181

annealing temperature Tf . The iterative search process at each temperature T can be expressed as follows:182
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Set initial location X(0) and let it be the current location X(c). Based on it, generate a subsequent location183

X(s) by applying a perturbation mechanism using s as a step. If the difference, D, between E(X+
(s), X

−
(s)) and184

E(X+
(c), X

−
(c)) is less than 0, or min(1, exp(D/T )) is larger than a random number ξ0 in [0,1], the subsequent185

location (X+
(s), X

−
(s)) is accepted as the new current location (X+

(c), X
−
(c)) to perform the next search. For each186

temperature T , the iteration operates N times, then T is reduced by cooling speed factor λ. The termination187

criteria is: If T is not higher than the termination annealing temperature Tf , the current location is regarded188

as the estimated location Xst.189

3.3. Hybrid Global Optimization Algorithm190

Although SAA has very nice convergent property and can escape from local minima, sometimes the191

global minimum with pre-defined precision will cost a large amount of computation time [27]. However192

GDA approach can quickly converge to a local optimization solution with high accuracy. Therefore, a193

hybrid global optimization algorithm is developed by combining SAA with GDA. SAA is used to find a194

global initial optimum, escaping from local minima. Then, GDA is used to accelerate the convergence to the195

optimum. The hybrid algorithm is a much more efficient to search for a global solution of the optimization196

problem (36)-(38). The process of the algorithm is illustrated in Fig.2.197

4. Results and Discussions198

In this section, we will use our developed method to determine the correlation equations, compare the199

results obtained by our method with those obtained by existing methods and analyze influence of the key200

parameters picked out by our method on ejector performance. Here, we will use the experimental data201

reported in [4] for validation and comparison. The experiments are carried out for 11 different ejectors at202

39 critical-mode operation points. The area ratio Ar and the pressure ratio Pr range from 6.44 to 10.64 and203

from 8.51 to 15.1, respectively.204

4.1. Correlation Equations205

Now we first use our proposed method to determine correlation equations of ejector component ef-206

ficiencies. Since the efficiencies are non-dimensional quantities, the correlations should be functions of207

non-dimensional parameters. Area ratio, Ar, is an important non-dimensional parameter affecting ejector208
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performance [28] and the efficiencies [4]. Therefore, Ar is selected as a non-dimensional parameter in the cor-209

relation equations. It is known that the information of downstream cannot travel back to the upstream and210

the entrainment ratios remain constant at critical mode [29]. Thus, besides the area ratio, Ar, the efficien-211

cies and the ejector performance are mainly affected by the pressure, Pp0 and Ps0. Then, non-dimensional212

parameter Pr(= Pp0/Ps0) is selected as another parameter.213

Hence, most of the correlation equations, such as those in literature [? ] and [11], are supposed as the214

functions of Ar and Pr. Here, the correlation equations are taken as in the form of (24), where each of the215

components is determined through six coefficients. In our method, β is a key factor influencing the results in216

the performance prediction of the ejector. However, a suitable value of β is unknown and thus it was taken217

from 0 to 0.9 with step of 0.1 in calculation so as to obtain the best result. During the solution process,218

we observe that the optimization problem can achieve a good trade-off between the sparsity of coefficient219

vectors xp, xs, zp, zm and the prediction performance at β = 0.8. The corresponding correlation equations220

obtained are as given below:221

ηp = 0.9490 + 0.0037(Ar/Pr), (40)

ηs = 0.8453 + 0.0028(Pr/Ar), (41)

φp = 0.9610 + 0.1144(Ar/Pr)− 0.0971(Pr/Ar), (42)

φm = 0.8452− 0.0281(Ar/Pr) + 0.0578(Pr/Ar). (43)

The correlation equations (40)-(43) determined by our method only include the terms containing Ar/Pr222

or/and Pr/Ar besides the constant term. Moreover, the coefficients of Ar/Pr or Pr/Ar in the correlation223

equations of ηp and ηs are much less than those of φp and φm. Therefore, Ar/Pr and Pr/Ar have more224

influence on φp and φm than ηp and ηs. Because the ejector component efficiencies have significant effect on225

the ejector performance , Ar/Pr and Pr/Ar will influence the ejector performance eventually. On the other226

hand, we note that the term A−1
r and P−1

r are removed from the original candidate correlation equations227

(24) after optimization. This is due to the action of sparsity-enhanced optimization. Thus, integrating Ar228

and Pr as Ar/Pr or Pr/Ar to analyze the ejector performance is more efficient than only using Ar and Pr.229

For convenience, we define Ar/Pr as the ratio of geometric parameters to operating parameters, and Pr/Ar230

as the ratio of operating parameters to geometric parameters.231
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It should be noted that the correlation equations of the efficiencies were determined based on the exper-232

imental data in [4]. Thus, they should be used within the following boundaries which are the same as those233

of experimental data:234

0.400MPa 6 Pp0 6 0.604MPa, 0.040MPa 6 Ps0 6 0.047MPa, (44)

235

6.44 6 Ar 6 10.64, for 2.64mm 6 At 6 2.82mm, (45)
236

0.426 6 Ar/Pr 6 1.106 (46)

Besides the operating parameters and geometric parameters as shown in (44) to (46), material used and237

manufacturing techniques, such as machining, interior surface polishing, also have influence on the ejector238

component efficiencies. From this viewpoint, the 1-D model can be treated as a semi-empirical model [4].239

Thus, when operating parameters and/or geometric parameters are out of the boundaries or material used240

and manufacturing techniques are different from the test ejectors, the correlation equations of the efficiencies241

should be determined according to the new test data. Obtaining simple correlation equations with better242

prediction accuracy and less calculation times is the merit of our unified method. Clearly, our method makes243

it easier for such 1-D ejector models to be used in the industry.244

4.2. Comparisons with Existing Results245

There are two different methods to improve the performance prediction of the ejector. One is to build246

a better model and the other one is to find a better correlation equations of ejector component efficiencies.247

No matter what method is used, the goal is to improve the prediction accuracy. Now we compare our248

results obtained by the correlation equations given in (40)-(43) with those reported in [4], [5] and [6]. The249

error results Eu,j in (27) for the entrainment ratio u are reported in Table 1. It can be observed that the250

maximum error is 7.03% using our proposed correlation equations which is significant better than -22.99%251

in [4]. The average absolute error 1
n

∑n
j=1 |Eu,j | is 2.82% obtained by our method, which is much better252

than 8.70% in [4]. Thus, both maximum error and average absolute error are reduced significantly by using253

our ejector component efficiencies in the model reported in [4].254

Now we compare our results with those in [5] and [6]. The model reported in [5] is proposed to predict the255

performance for both dry and wet refrigerant and the model reported in [6] is used to estimate performance256
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at critical and sub-critical modes. It can be seen that the prediction accuracy of the model is better than257

that in [4]. However, the maximum errors reported in [5] and [6] are still larger than 10% since the ejector258

component efficiencies have not been optimized as what we do. More precisely, they are 13.80% in [5] and259

-14.20% in [6], respectively.260

It is obvious that, after the ejector component efficiencies being optimized by our method, the prediction261

accuracy of the model in [4] is much better than those reported in [5] and [6] under the same experimental262

settings. Thus, our method can improve the prediction accuracy of the ejector models significantly. It can263

be expected that the prediction accuracy of the models in [5] and [6] can be improved by optimizing the264

ejector component efficiencies using our method.265

Note that the results in [30] are not listed in Table 1 for comparison although the entrainment ratios266

u, which are under the same operating parameters and geometric parameters as in Table 1, are available267

there. This is because the authors in [30] adopt a piecewise analysis method while we adopt a basis268

selection method. More specifically, in [30], a trial-and-error method is applied to try different values269

of mixing efficiency φm and diffuser efficiency ηd so that both u and Ar get close to the experimental270

data (error < 2.5%) for 39 experimental points. Then, a regression method is introduced to determine271

the correlation equations. The method does produce promising results in [30]. However, the values of272

the coefficient of determination (R2) are not equal to 1 for the correlation equations of ejector component273

efficiencies [30] and the entrainment u obtained by the correlation equations is not available in [30]. Moreover,274

the correlation equations involve many more terms than those obtained by our method. For example,275

φm = 6.7837+0.1611(Pp0/Pc)
2−2.6404(Pp0/Pc)+0.1924(Pc/Ps0)

2−2.4919(Pc/Ps0)−0.0123P 2
r +0.6634Pr−276

0.0172A2
r +0.3479Ar+0.1611u2 +0.3767u. In comparison, our method can optimize the prediction accuracy277

while minimizing the number of terms in (24). If the predicted error is the only pursuit without sparsity278

consideration, our method can achieve better results just by setting β = 0 and using the forms as in [30] for279

regression.280

A comparison of the results for the critical back pressure P cc obtained by our method and those obtained281

by experiments reported in [4] is shown in Fig. 3. It can be observed that the prediction results coincide282

fairly well with the experimental data within ±6% error. Indeed, the relative errors of P cc are so small that283

the average absolute error 1
n

∑n
j=1 |EPc,j | is 1.5%.284
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4.3. Analysis of Ejector Performance285

From the reported results in equation (40)-(43), the key factors affecting the ejector performance predic-286

tion are Ar/Pr and Pr/Ar. Therefore, analyzing effects of Ar and Pr on ejector performance simultaneously287

should be more significant.288

Fig. 4 illustrates the effects of area ratio Ar and pressure ratio Pr on the entrainment ratio u. It can be289

observed that u increases as Ar increase and Pr decrease. Hence, the maximum u is achieved when Ar = 10290

and Pr = 10, while the minimum u is achieved when Ar = 7 and Pr = 15. Although a large u is good for291

the performance of ejector system, the critical back pressure P cc , which corresponds to u, should be higher292

than the condensation pressure Pc provided by the condenser. Compared with u, P cc varies inversely with293

Ar and Pr, as shown in Fig. 5. Therefore, for a given u, we should adjust Ar and Pr to ensure P cc > Pc.294

The variation of u and COP of ejector system with Ar/Pr when P cc = 0.116MPa are illustrated in Fig.295

6 and Fig. 7, respectively. The figures show that both u and COP are positively correlated with Ar/Pr296

at a fixed pressure of the secondary flow at the inlet of the ejector, Ps0. It can also be observed that u297

and COP at low Ps0 are lager than those at high Ps0 for the same value of Ar/Pr, which indicates that the298

performance of ejectors at low Ps0 is better than that at high Ps0 under this condition. Because P cc is at299

the same value, the pressure of the primary flow at the inlet of ejector, Pp0, is higher for lower Ps0. Thus,300

Pr is larger. This indicates that Ar is larger for the same value of Ar/Pr. In conclusion, the performance of301

ejectors under low Ps0 is better than that under high Ps0 at the expense of higher values of Ar and Pr. It302

can be seen that the values of COP are slightly lower than u under the same operating condition. Further303

observation reveals that the increasing rates of COP are lower than those of u when Ar/Pr increases.304

Fig. 8 and Fig. 9 describe the variations of P cc and COP of the ejector system against Ar/Pr when305

u = 0.4. It can be observed in Fig. 8 that P cc decreases with the increase of Ar/Pr for each fixed Ps0. In306

fact, the decrease of P cc is caused by the decrease of Pp0 when Ps0 is fixed. Furthermore, the decrease of Pp0307

will result in the decrease of Pr. In return, Ar/Pr will increase. Therefore, Pp0 should be reduced and Ar308

should be increased in order to maintain u being a constant when Ar/Pr increases. Assuming the losses of309

the pipes from the generator, evaporator and condenser to the ejector are negligible, COP can be expressed310

as:311

COP = (hs0 − hc)/(hp0 − hc) (47)
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where hp0 and hs0 are enthalpies of the primary flow and the secondary flow at the inlet of the ejector,312

respectively; hc is the enthalpy of the mixed flow which has been condensed by the condenser. Eq. (47)313

indicates that, for fixed hs0, the decreases of hc and hp0 will increase COP since hs0 is lower than hp0.314

According to Fig. 8, P cc and Pp0 decrease with the increase of Ar/Pr. Therefore, COP will increase with315

the increase of Ar/Pr. This trend is depicted in Fig. 9.316

5. Conclusions317

A novel sparsity-enhanced optimization method was proposed to determine the correlation equations318

of ejector component efficiencies in order to improve the prediction accuracy of the ejector performance.319

Through introducing sparsity penalty term, the method can identify critical factors which have dominating320

influence on the prediction accuracy of ejector performance. The combined method of simulated annealing321

and gradient descent algorithm shows potential to find a global optimal solution to the formulated opti-322

mization problem. The results obtained by the method improves the performance prediction accuracy of323

ejector model significantly over the existing empirical based methods. The ejector component efficiencies324

in a typical ejector model have been optimized by the methods and the result indicates that the average325

absolute error and the maximum error have been improved from 8.70% to 2.82% and from -22.99% to 7.03%,326

respectively. It is also found that the ratio of geometric parameters to operating parameters is a key factor327

affecting the ejector component efficiencies and ejector performance.328
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Table 1: Results of 1-D model by our proposed method, Huang et al.(1999), Zhu et al.(2009) and Chen et al.(2013).

A3/At Tp0 Ts0 Experiment Huang et.al present Huang et.al Zhu et. al Chen et.al present

(℃) (℃) u u u Eu,j Eu,j Eu,j Eu,j

AA Ejector

6.44 95 8 0.1859 0.1554 0.1836 -16.43 -0.78 -14.20 -1.25

6.44 90 8 0.2246 0.2156 0.2196 -3.99 1.55 -8.73 -2.25

6.44 84 8 0.2880 0.2880 0.2736 0.23 1.53 -6.08 -5.01

6.44 78 8 0.3257 0.3525 0.3406 8.24 13.80 7.18 4.57

6.44 95 12 0.2350 0.2573 0.2359 9.49 7.04 -4.26 0.39

6.44 90 12 0.2946 0.3257 0.2805 10.54 3.50 -5.40 -4.78

6.44 84 12 0.3398 0.4147 0.3465 22.04 12.58 4.74 1.98

AB Ejector

6.99 90 8 0.2718 0.2093 0.2559 -22.99 -2.80 -8.65 -5.85

6.99 84 8 0.3117 0.3042 0.3167 -2.39 6.90 2.73 1.60

6.99 78 8 0.3922 0.4422 0.3915 12.74 6.32 3.60 -0.17

AG Ejector

7.73 95 8 0.2552 0.2144 0.2588 -15.98 2.21 -1.84 1.42

7.73 90 8 0.3040 0.2395 0.3061 -21.22 2.70 0.82 0.68

7.73 84 8 0.3883 0.3704 0.3758 -4.61 -0.20 -0.33 -3.22

7.73 78 8 0.4393 0.4609 0.4610 4.93 8.97 10.02 4.94

7.73 95 12 0.3503 0.3434 0.3274 -1.97 -2.96 -5.48 -6.55

7.73 90 12 0.4034 0.4142 0.3847 2.67 -0.49 -1.59 -4.63

7.73 84 12 0.4790 0.4769 0.4686 12.09 2.86 2.65 -2.18

7.73 78 12 0.6132 0.6659 0.5703 8.60 -2.00 -1.34 -7.00

AC Ejector

8.28 95 8 0.2814 0.2983 0.2921 6.01 4.25 2.99 3.82

8.28 90 8 0.3488 0.3552 0.3441 1.84 -0.22 0.43 -1.35

8.28 84 8 0.4241 0.4605 0.4204 8.58 0.94 3.11 -0.88

8.28 78 8 0.4889 0.5966 0.5132 22.03 7.35 10.72 4.98

AD Ejector

9.41 95 8 0.3457 0.3476 0.3622 0.56 3.64 6.83 4.78

9.41 90 8 0.4446 0.4178 0.4236 -6.02 -5.62 -1.26 -4.71

9.41 84 8 0.5387 0.5215 0.5132 -3.19 -5.50 0.06 -4.73

9.41 78 8 0.6227 0.6944 0.6216 11.51 -0.91 5.77 -0.17

9.41 95 12 0.4541 0.4708 0.4512 3.67 -0.29 3.46 -0.64

9.41 90 12 0.5422 0.5573 0.5247 2.78 -2.85 1.73 -3.23

9.41 84 12 0.6350 0.6906 0.6313 8.75 -0.20 5.37 -0.59

9.41 78 12 0.7412 0.8626 0.7596 16.37 2.76 9.21 2.48

EG Ejector

6.77 95 8 0.2043 0.1919 0.2023 -6.06 0.06 -10.38 -0.96

EC Ejector

7.26 95 8 0.2273 0.2078 0.2309 -8.57 2.68 -4.27 1.56

7.26 95 12 0.3040 0.3235 0.2936 6.41 1.36 -3.72 -3.43

ED Ejector

8.25 95 8 0.2902 0.2658 0.2903 -8.39 0.35 -1.03 0.04

EE Ejector

9.17 95 8 0.3505 0.3253 0.3472 -7.20 -1.75 0.49 -0.94

9.17 95 12 0.4048 0.4894 0.4333 10.55 7.87 11.12 7.03

EF Ejector

9.83 95 8 0.3937 0.3774 0.3887 -4.13 -3.01 1.22 -1.27

9.83 95 12 0.4989 0.5482 0.4827 9.89 -3.77 0.98 -3.25

EH Ejector

10.64 95 8 0.4377 0.4627 0.4403 5.70 -2.19 4.20 0.59
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Figure 1: Schematic diagram of ejector
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Figure 3: Predictive critical back pressure v.s experimental critical back pressure
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Figure 4: Variation of entrainment ratio with area ratio and pressure ratio
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Figure 5: Variation of critical back pressure with area ratio and pressure ratio
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Figure 6: Effects of Ar/Pr on entrainment ratio at critical back pressure equalling 0.116MPa
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Figure 7: Effects of Ar/Pr on the coefficient of performance at critical back pressure equalling 0.116MPa
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Figure 8: Effects of Ar/Pr on critical back pressure for entrainment ratio equal to 0.4
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