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Abstract 

This research investigated the relationship between the attentional blink (AB) and 

reading in typical adults. The AB is a deficit in the processing of the second of two rapidly 

presented targets when it occurs in close temporal proximity to the first target. Specifically, 

this experiment examined whether the AB was related to both phonological and sight-word 

reading abilities, and whether the relationship was mediated by accuracy on a single-target 

rapid serial visual processing task (single-target accuracy). Undergraduate university students 

completed a battery of tests measuring reading ability, non-verbal intelligence, and rapid 

automatised naming, in addition to rapid serial visual presentation tasks in which they were 

required to identify either two (AB task) or one (single target task) target/s (outlined shapes: 

circle, square, diamond, cross, and triangle) in a stream of random-dot distractors. The 

duration of the AB was related to phonological reading (n = 41, β = -0.43): participants who 

exhibited longer ABs had poorer phonemic decoding skills. The AB was not related to sight-

word reading. Single-target accuracy did not mediate the relationship between the AB and 

reading, but was significantly related to AB depth (non-linear fit, R
2
 = .50): depth reflects the 

maximal cost in T2 reporting accuracy in the AB. The differential relationship between the 

AB and phonological versus sight-word reading implicates common resources used for 

phonemic decoding and target consolidation, which may be involved in cognitive control. The 

relationship between single-target accuracy and the AB is discussed in terms of cognitive 

preparation. 
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1 Introduction 

Visual temporal attention, the ability to process visual information over time, has been 

related to reading proficiency. This relationship has been found in both individuals with 

reading disorders (i.e., dyslexia; e.g., Hari, Valta, & Uutela, 1999) and typical readers (i.e., 

low and high-normal range; La Rocque & Visser, 2009). However, there remain a number of 

unanswered questions about the relationship between visual temporal attention and reading. 

This paper will examine whether visual temporal attention is related to both phonological and 

sight-word reading, and whether this relationship is mediated by accuracy on a single-target 

task. 

1.1 The Attentional Blink 

Deficits in visual (see Valdois, Bosse, & Tainturier, 2004 for a review) and temporal 

attention (see Farmer & Klein, 1995 for a review) have independently and in combination (see 

McLean, Castles, Coltheart, & Stuart, 2010) been associated with reading impairment. Visual 

temporal attention is typically measured using dual-target rapid serial visual presentation 

(RSVP, for an illustration see Figure 1) tasks (henceforth dual-target tasks). These tasks 

require the identification of two targets embedded in a sequence of rapidly presented items. 

The first target (T1) is typically reported with high accuracy, but identification of the second 

target (T2) is markedly impaired when T2 is presented within 200-500 ms of T1. This 

phenomenon is termed the attentional blink (AB; Raymond, Shapiro, & Arnell, 1992).  

There are two main categories of theoretical accounts of the AB: limited capacity and 

selection. Both theories posit a two-stage model in which the first stage involves subconscious 

processing of all items in the RSVP sequence and the second stage involves target 

consolidation for conscious report. Limited capacity accounts theorise that second stage 

processing is capacity limited in that resources can only be applied to one target at a time. If 

T2 appears while T1 is being consolidated for conscious report, T2 is queued until T1 
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processing is finalised. Whilst queued, T2 may be subject to interference or forgetting (Chun 

& Potter, 1995). Selection accounts posit that second stage processing involves targets being 

selected for conscious report by passing through a filter attuned to target features. When a 

target is detected, the system switches from monitoring to consolidation, resulting in a 

temporary loss of control of the filter. If T2 is presented before control of the filter is 

reasserted, T2 may be missed. The longer the time-interval between the targets, the higher the 

likelihood that control will be reasserted and T2 selected (Di Lollo, Kawahara, Ghorashi, & 

Enns, 2005).  

1.2  The AB and Reading  

The relationship between the AB and reading was first explored by Hari et al. (1999) 

who reported that participants with dyslexia exhibited a significantly longer AB (700 ms) 

compared with typical (540 ms), interpreted as prolonged attentional dwell time. Whilst 

considerable variance in the size of the AB is present within studies, the majority of evidence 

indicates that people with dyslexia have deficits performing dual-target tasks (see McLean et 

al., 2010 for a review). However McLean et al. (2010) demonstrated that whilst group 

differences between dyslexic and typical readers were present on dual-target tasks, the 

differences rarely interacted with inter-target-interval (ITI), the time period between targets. 

Rather McLean et al. found that dyslexic readers exhibited poorer overall accuracy for T2 

report, regardless of ITI. Hence, where previous studies had observed that the performance of 

participants with dyslexia was impaired at later ITIs than controls, this was a reflection of 

poorer overall performance by the dyslexic group and not indicative of a prolonged AB. This 

same relationship between T2 accuracy and reading has been found in normally developing 

readers, with better readers exhibiting higher T2 accuracy at all ITIs, but no differences in the 

AB per se (McLean, Stuart, Visser, & Castles, 2009). In typically reading adults, however, a 

different relationship has been reported.  
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La Rocque and Visser (2009) explored the relationship between reading and the AB in 

typically reading adults finding that low-normal readers had a significantly deeper AB than 

high-normal readers. It therefore appears that the relationship between reading and the AB 

may be different for typically reading adults relative to developing or dyslexic readers. 

However, La Rocque and Visser only tested the relationship between the AB and 

phonological reading. It is not known whether sight-word reading is also related to the AB in 

typically reading adults. 

1.2.1 Phonological and sight-word reading and the AB 

One model of reading suggests that printed words are read via two reading routes – the 

non-lexical or phonological and the lexical or sight-word (see Coltheart, Rastle, Perry, 

Langdon, & Ziegler, 2001). The phonological route relies on the knowledge of the letter-

sound correspondences to decode words. This route is used for reading nonwords (e.g., 

bormil) or novel words that can be pronounced correctly from the letter-sound 

correspondences. The sight-word route relies on accessing memories of known words and is 

best assessed by irregular word reading: That is, reading words that cannot be pronounced 

from the letter-sound correspondences (e.g., yacht). Deficits in either or both routes result in 

characteristic patterns of reading impairment (see Coltheart et al., 2001). With two notable 

exceptions (McLean et al., 2010, 2009), studies of the AB and reading have not differentiated 

between phonological and sight-word reading. McLean et al. (2009) examined whether the 

relationship between the AB differed for phonological or sight-word reading skills in 

developing readers (i.e., children). They found no relationship between either reading route 

and the AB. However they did find that T2 accuracy was equally impaired at all ITIs for 

poorer readers for both reading routes. The same pattern of results was found comparing 

dyslexic and normally developing readers (McLean et al., 2010).  
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The maximum cost in T2 accuracy during the AB is referred to as AB depth. Whilst 

there is evidence that AB depth is related to phonological reading in typically reading adults 

(La Rocque & Visser, 2009), the relationship between the AB and sight-word reading has not 

been tested. Evidence of a differential relationship between the two reading abilities and the 

AB may shed light on the cognitive processes that underpin the relationship between the AB 

and reading. The relationship between the AB and reading may, however, be mediated by 

performance on a single-target RSVP (henceforth single-target task). 

1.2.2  Reading, single-target accuracy, and the AB 

An assumption of investigations of the AB and reading is that the dual-target RSVP 

paradigm is a test of temporal attention. One reason for this is that groups separated by 

reading abilities show very little difference on single-target RSVP tasks; therefore, it must be 

dual-target interference that is related to reading. However, Mclean et al. (2010) found lower 

single-target accuracy in their dyslexic sample and, when factored into the dual target 

analyses, this accounted for between group differences. This suggests that some general 

factor, perhaps task vigilance, rather than temporal attention may underpin the relationship 

between the AB and reading. This remains to be tested in typically reading adults. 

1.3 Aims 

The present study has three aims. 1. To build upon the work of La Rocque and Visser 

(2009), which indicated that the AB is related to phonological reading in typically reading 

adults with poorer readers exhibiting a deeper AB than skilled readers. 2. To explore whether 

this relationship holds true for sight-word as well as phonological reading. 3. To determine if 

the relationship between the AB and reading is mediated by single-target accuracy. 

2 Method 

The methods are in line with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki) for experiments involving humans and were approved by the 
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Macquarie University Human Research Ethics Committee (reference number: 5201200813). 

All participants provided informed written consent. 

2.1 Participants 

Participants comprised of 65 undergraduate psychology students (58 female) from 

Macquarie University between 17 and 53 years of age (M = 20.74, Mdn = 18.66, SD = 6.05). 

All participants reported that they were native English speakers with normal or corrected to 

normal vision and granted course credit for participation. 

2.2 Measure and Stimulus 

The same measures used by La Rocque and Visser (2009) were conducted. Standardised 

administration procedures, as detailed in test manuals, were used. Scaled-scores were derived 

from the test manuals, however, for the reading and rapid naming tests, scores for participants 

older than the normative age range were based upon the maximum age-group (17 to 24). 

2.2.1 Reading ability 

The phonemic decoding and sight-word efficiency subtests of the Test of Word Reading 

Efficiency (TOWRE: Torgesen, Wagner, & Rashotte, 2012) were used to assess phonological 

and sight-word reading abilities respectively. The phonemic decoding subtest consisted of 66 

nonwords. The sight-word efficiency tests consisted of 108 real words (regular and irregular). 

In both tests participants were required to read as many words as possible in 45 s. The 

phonemic decoding and sight-word efficiency subtests have reliability coefficients of .90 and 

.91 respectively (Torgesen et al., 2012). 

2.2.2 Non–verbal intelligence 

The matrices subtest of the Kaufman Brief Intelligence Test II (KBIT: Kaufman & 

Kaufman, 2005) was used to assess non-verbal intelligence. Participants were presented with 

36 picture matrices and requested to identify the item missing from each matrix from one of 
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four options. The reliability of the non-verbal intelligence subtest is reported to be at least .85 

(Kaufman & Kaufman, 2005). The rationale for including non-verbal IQ was to control for 

variance due to general abilities. 

2.2.3 Rapid-automatised naming (RAN) 

The rapid letter naming (RAN–letter) subtest of the Comprehensive Test of 

Phonological Processing (Wagner, Torgesen, & Rashotte, 1999) and a computerised rapid 

colour naming task (RAN-colour) were used to assess naming speed. The rationale for this 

was to control for variance due to processing speed (common to TOWRE and RAN), with the 

aim of obtaining purer estimates of the reading processes. 

For the RAN-letter task, participants were instructed to read two pages each containing 

36 six black letters on a white background (random sequences of the letters a, c, k, n, s, and t) 

as quickly as possible. The time taken to read both pages of items was converted to an aged-

based scaled score. The reliability of the RAN-Letter task is .86 for individuals aged 18 years 

and over (Wagner et al., 1999). 

The RAN-colour task used by La Rocque and Visser (2009) was replicated. The task 

consisted of a computerised display of a 6 x 6 matrix of solid coloured dots (subtending 1
o
 of 

visual angle in width and height at a viewing distance of 60 cm) presented on a grey 

background. Participants were instructed to start at the top left hand corner and proceed to the 

right naming the colour of each dot (i.e., green, black, yellow, white, red, and blue) as 

accurately and quickly as possible. Participants commenced each trial by pressing the space 

bar, and were instructed to press the space bar again immediately upon finishing. Each 

participant completed two trials, which differed in colour configuration. The variable of 

interest was the average time taken to complete each trial.  
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2.2.4 Rapid Serial Visual Presentation tasks 

Single- and dual-target tasks were completed. The RSVP sequence included distractors, 

one or two targets depending on the task, and at least one mask (see Figure 1 for a schematic 

diagram of a dual-target trial). In replication of La Rocque and Visser (2009), targets 

consisted of five shape outlines (circle, square, diamond, cross, and triangle). The masks were 

keyboard characters %, &, and #. Distractors were random-dot patches consisting of 200 dots 

(each subtending approximately 0.002
o
 x 0.002

o
). All items were white on a black background 

presented in an area approximately subtending 1
o
 of visual angle in width and height at a 

viewing distance of 60 cm (Visser, personal communication, January 24, 2013). Targets and 

masks were chosen randomly, with the constraint in the dual-target condition that two 

different target identities were presented.  

Each item in the RSVP was displayed for 41.67 ms with a blank inter-stimulus interval 

of 58.33 ms (i.e., stimulus onset asynchrony of 100 ms). As illustrated in Figure 1, in the dual-

target trials commenced with a fixation point (self-initiated trials), five to eight distractors 

followed by T1 then either a) T2; b) a mask, then T2; or c) or a mask, distractor(s), then T2, 

always followed by a mask. There were five ITIs: 100, 200, 300, 500, or 700 ms. For the 

single-target task, T1 and, where applicable, the T1 mask, were replaced by random dot 

distractors. Pseudo-ITIs of 100, 200, 300, 500, and 700 ms were measured from where T1 

would have appeared in the RSVP sequence.  
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Figure 1: Schematic representation of the rapid serial visual presentations used. Note: In the 

single-target condition T1 and the T1 mask were replaced by distractors. 

Participants were instruction to identify the target(s), with an emphasis on T1 in the 

dual-target task. Each trial commenced with a white fixation cross and participants initiated 

each trial by pressing the space bar. After each RSVP, all possible targets were displayed 

horizontally on the screen with a numbers 1 to 5 underneath. Participants were prompted to 

identify the target(s) by pressing the number on the keyboard that corresponded to the 

target(s) presented in the trial. For the dual-target task, 'T1' was displayed for the first 

response and 'T2' was displayed for the second response. Although participants were required 

to identify T1 and T2 separately, responses were scored as correct irrespective of report order 

(i.e., if T1 = triangle and T2 = square, the response was square then triangle, both T1 and T2 



11 

 

 

 

would be scored as correct; if the response was circle then triangle, T1 would be scored as 

correct). This scoring is in keeping with La Rocque and Visser, and is based on evidence that 

order information may be lost when identity is correctly processed. There were five practice 

trials and 125 test trials for each task (25 trials per ITI). Overall T1 accuracy was presented 

for the participants at the end of the practice trials. No feedback was presented during the test 

trials.  

2.3 Apparatus and Procedure 

Testing was conducted as part of a larger experiment as part of a one-and-a-half hour 

session. Tests were administered in a small room, with natural light for the computerised tests 

and fluorescent light for the non-computerised tests. The computer tasks were run on Dell 

Optiplex 9010 machines with an Intel core i5-3470 processor running at 3.60 GHz with a 

Samsung S27ASA950 LED monitor running at 120 Hz. The RSVP tasks were written in 

MATLAB 8.0.0.783 (Mathworks, 2012b) using Psychtoolbox 3.0.10, Revision 3187 

(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). 

Each testing session included two blocks: 1) TOWRE, non-verbal intelligence, and 

RAN; 2) RSVP tasks. Block order and task order within blocks, was counter-balanced 

between participants. The exception to this was that the colour RAN was always administered 

after the paper and pen behavioural tests, and the non-verbal intelligence test was always the 

second behavioural test administered.  

2.4 Method of Analysis 

AB performance was calculated as T2 identification accuracy at each ITI, for trials on 

which T1 was correctly identified (i.e., denoted as T2|T1 throughout this paper). As overall 

T1 accuracy was high (Mean = 0.94 SD = 0.05, Min = 0.74, Max = 1), the majority of trials 

were included in the analysis.  
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AB depth and width were estimated using Cousineau et al.'s (2006) parameter 

estimation procedure. The depth measure is the difference between maximum and minimum 

T2|T1 accuracy. Greater depth values indicate a larger discrepancy between minimum T2|T1 

accuracy and T2|T1 accuracy at later ITIs, that is, a deeper AB effect. The width measure 

reflects the degree of modulation of the U-shape of the AB curve to best fit the data. Greater 

width values indicate a longer AB recovery time. The Cousineau et al. procedure was used as 

it provides more sensitive estimates of depth and width than those used by La Rocque and 

Visser (2009). For reference, La Rocque and Visser estimated depth as minimum T2, and 

width as the ITI at which T2|T1 accuracy met or exceeded T1 accuracy.  

The sensitivity of the current analysis was further increased by using sequential multiple 

regression rather than Analysis of Covariance (ANCOVA) which was employed by La 

Rocque and Visser (2009). Dichotomising continuous variables can result in both false 

positives (e.g., Vargha, Rudas, Delaney, & Maxwell, 1996) and false negatives (through 

reduction of the power of the test e.g., Cohen, 1978). Therefore, in accordance with the 

recommendations of Vargha et al. (1996), the analysis was conducted via regression. In 

addition to this justification, the small number of poor readers (n = 14) in the current sample 

meant that an ANCOVA was not a suitable analysis tool. 

A series of sequential multiple regressions were conducted with AB depth and width 

entered as dependent variables. Using the Bonferroni procedure, alpha was set to .025 to 

control for multiple comparisons. Standardised RAN letter scores, and raw RAN-colour 

scores (averaged across conditions), were entered in the first regression block of each 

regression. The predictor variables of interest (i.e., phonemic decoding, sight-word efficiency, 

or single-target RSVP performance) were entered in the second regression block of the 

applicable analyses. Age and non-verbal IQ were not included in the regression equations as 

correlations indicated that they did not share variance with the other variables. 
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To ensure participants’ reading abilities were in the normal range (as in La Rocque & 

Visser, 2009), participants with a standard score under 90 on the phonemic decoding test 

(n=6) or on the sight-word efficiency test (n=7) were excluded from analyses involving those 

variables. Due to the overlap in these two criteria, 11 individuals were excluded based on 

reading scores outside of the normal range. A further 10 individuals were excluded based on a 

floor effect for the fitting of the AB width parameter, though inclusion of these individuals 

did not change the pattern of the results. 

3 Results 

3.1 Performance on RSVP tasks 

Overall T1 accuracy was high and negatively skewed, indicative of a ceiling effect: 

Mean = 0.94 SD = 0.05, Min = 0.74, Max = 1. As T2 accuracy was based on only those trials 

in which T1 was correctly reported, the majority of trials were included. To test for order 

effects and the presence of an AB effect, a mixed 2 (RSVP task order: single-target first, dual-

target first) by 5 (ITI: 100, 200, 300, 500, 700 ms) Analysis of Variance (ANOVA) was 

conducted. As the assumption of sphericity was violated, degrees of freedom were adjusted 

using the Greenhouse-Geisser procedure (also used for the single-target one-way ANOVA). A 

significant main effect of ITI was present, F(3.4, 133.6) = 40.24, p  < .01, ηp
2 

= 0.51, which is 

displayed in Figure 2, indicating an AB effect. The main effect of RSVP task order, F(1, 39) = 

1.9, p = 0.18, ηp
2
 = 0.05, = .04, and the RSVP task order by ITI interactions were not 

significant, F(3.4, 133.6) = 0.82, p = 0.5, ηp
2
 = 0.02. Thus, completion of the single-target task 

did not unduly influence dual-target performance.  
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Figure 2: Proportion correct single- and dual-target (T2|T1) rapid serial visual presentation 

task accuracy as a function of inter-target interval (pseudo-ITI in the case of the single-target 

task). Error bars represent the 95% confidence intervals.  

Single target accuracy is also presented as a function of pseudo-ITI in Figure 2. Overall 

accuracy was high and relatively higher at longer pseudo-ITIs. A one-way ANOVA indicated 

that single-target task accuracy was significantly affected by pseudo-ITI, F(4, 156) = 5.99, p  

< .01, ηp
2
 = 0.13. This will be considered further in the discussion. 

3.2 AB and reading 

All the following analyses were based on 41 participants with phonemic decoding and 

sight word efficiency scores of 90 or more (i.e., within the normal range) and a valid AB 

width parameter. Pearson product moment correlations were used to examine the relationships 

between variables prior to regression analyses. These are presented in Table 1. There are 

strong relationships between: phonemic decoding and RAN colours, better reading associated 

with faster naming; sight word efficiency and RAN letters, better reading associated with 

more accurate naming. There are medium relationships between: phonemic decoding and AB 

Width, negative relationship, i.e., better reading associated with shorter AB effects; the two 

RAN measures, negative relationship; sight word reading and RAN colours, negative 
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relationship; and sight word reading and phonemic decoding, positive relationship. Higher 

single target accuracy is related to reduced AB depth (strong). As Age and IQ were weakly 

and not significantly related to all variables, these were not included in subsequent analyses. 

Table 1 

Pearson product moment correlations coefficients for the relationships between single-target accuracy, the AB, 

age, non-verbal intelligence, rapid automatised naming, and reading.  

  

Single T 

Acc. 

AB 

Width AB Depth Age IQ RAN Letters 

RAN 

Colours PD 

AB 

Width -0.17 

AB 

Depth -0.63**^ -0.25 

Age -0.06 0.00 0.11 

IQ 0.14 0.07 -0.16 0.12 

RAN 

Letter 0.04 -0.19 0.29 0.13 -0.15 

RAN 

Colour -0.14 0.14 -0.04 -0.12 0.02 -0.44** 

PD 0.07 -0.39* 0.13 0.16 0.03 0.27 -0.55**^ 

SWE 0.00 -0.22 0.18 0.00 -0.15 0.79**^ -0.42** 0.32* 

 

Note: standardised scores were used for the phonemic decoding (PD) test, sight-word efficiency test (SWE), non-verbal 

intelligence (IQ) and RAN letter tests. Single T Acc. = Single-target accuracy. N = 41. *p < .05, ** p < .01, ^ p <.001 

(Bonferroni correction) 

The relationship between the AB (width and depth) and reading was tested by two 

sequential regressions. The overall models for the regression containing the control variables 

were not significant for either AB width: AB width: F(2, 38) = 0.8, p = 0.46, adjusted R
2
 = -

0.01; or AB depth: F(2, 38) = 1.98, p = 0.15, adjusted R
2
 = 0.05 (see Table 2 for full 

regression statistics). Including the reading measures resulted in a significant improvement in 

the fit of the model for AB width: AB width: F(2, 36) = 3.00, p = 0.03 (single-tail), change 

∆R
2
 = 0.14; but not AB depth: F(2, 36) = 0.43, p = 0.66, ∆R

2
 = 0.02. Phonemic decoding was 

the only significant predictor for width. As depicted in Figure 3, the longer the duration of the 

AB, the poorer the phonemic decoding scores.  
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Figure 3: Scatter plot and regression line for the relationship between AB width and 

Phonemic decoding. Note: Higher values on the y-axis reflect longer AB effects.  

Table 2 

Regression descriptive and inferential statistics for AB width and depth, and phonemic 

decoding 

Dependent  Predictor B Std. 

Error 

Beta t 

AB width Block 1 RAN Letters -0.04 0.05 -0.16 -0.89 

  RAN Colours 0.01 0.03 0.07 0.41 

 Block 2 RAN Letters -0.02 0.07 -0.07 -0.28 

  RAN Colours -0.03 0.03 -0.17 -0.85 

  PD -0.05 0.02 -0.43 -2.35* 

  SWE -0.01 0.02 -0.1 -0.37 

AB Depth Block 1 RAN Letters 0.03 0.01 0.34 1.98 

  RAN Colours 0.01 0.01 0.12 0.67 

 Block 2 RAN Letters 0.04 0.02 0.44 1.67 

  RAN Colours 0.01 0.01 0.19 0.93 

  PD 0.01 0.01 0.16 0.82 

  SWE 0 0.01 -0.14 -0.53 

Note: PD = phonemic decoding, SWE = sight word efficiency, IQ = KBIT, non-verbal intelligence. *p < .05 

3.3 Single-target accuracy, reading, and the AB 

To test whether single-target accuracy mediated the relationship between AB width and 

phonemic decoding, a sequential regression was conducted in which overall accuracy on the 
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single-target task was entered with phonemic decoding. The overall model for the control 

variables is as reported in Table 2. The fit of the model was similar to that reported above; 

F(2, 36) = 3.6, p = 0.04, ∆R
2
 = 0.11; phonemic decoding was a significant predictor and 

single-target accuracy was not (see Table 3 for full regression statistics). Therefore, the 

evidence does not indicate that single-target accuracy mediates the relationship between the 

AB width and phonemic decoding. 

Table 3 

Regression descriptive and inferential statistics for phonemic decoding and AB width 

including single-target accuracy 

Dependent  Predictor B Std. Error Beta t 

AB width Block 2 RAN Letters -0.04 0.04 -0.15 -0.89 

  RAN Colours -0.03 0.03 -0.19 -0.97 

  PD -0.05 0.02 -0.44 -2.47* 

  Single T Acc. -0.71 0.65 -0.16 -1.09 

Note: PD = phonemic decoding, Single T acc = single-target accuracy, IQ = KBIT, non-verbal IQ. Block 1 is as reported in 

Table 2, *p < .05 

To elaborate on the significant correlation between single-target accuracy and the AB 

width (see Table 1), regression fitting was employed. A non-linear (second-order polynomial: 

Y = B0 = B1*X + B2*X
2
) fit best characterised the relationship between single-target accuracy 

and AB depth (β1 = 0.13 [95% Confidence Intervals: 0.001, 0.26], β2 = -0.34 [-0.51, -0.17], R
2
 

= .50, see Figure 4). Please note, this was conducted for the full sample (n = 65) as reading 

was not a factor of concern: fit was better for n = 41 (β1 = 0.21 [0.04, 0.37], β2 = -0.44 [-0.65, 

-0.23], R
2
 = .63). 
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Figure 4: Scatter plot and regression fit for the relationship between Single Target proportion 

correct and AB depth. Note: Higher values on the x-axes reflect deeper AB effects and the 

grey dotted lines represent the 95% confidence intervals for the fit. 

4 Discussion 

The present study had three aims. 1. To build upon the work of La Rocque and Visser 

(2009), which indicated that the AB is related to phonological reading in typical adults with 

poorer readers exhibiting a deeper AB than skilled readers. 2. To explore whether this 

relationship holds true for sight-word as well as phonological reading. 3. To determine if the 

relationship between the AB and reading is mediated by single-target accuracy. The results 

indicated that there is a relationship between the AB and reading in typical adults. However, 

whereas La Roque and Visser demonstrated a relationship between AB depth and phonemic 

decoding, the present results demonstrated a relationship between AB width and phonemic 

decoding. AB width and depth were not related to sight-word reading, and single-target 

accuracy did not mediate the relationship between the AB and phonemic decoding. Single-

target accuracy was however related to AB depth. These findings are discussed below. 
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4.1 The AB is related to phonological reading in typical adults 

The findings of the current study indicated that AB width is related to nonword 

reading in typically reading adults. This is in contrast to La Rocque and Visser (2009) who 

reported a relationship with AB depth. There are three key differences between the present 

study and that of La Rocque and Visser: the inclusion of a single-target task, the manner in 

which the AB parameters were estimated, and the method of analysis.  

The current study included a single-target task the completion of which was 

counterbalanced with completion of the dual-target task. There was no evidence that order 

affected the results therefore inclusion of the single-target task cannot account for the 

discrepant findings. 

La Rocque and Visser (2009) calculated width as the ITI at which T2|T1 accuracy 

equalled or exceeded T1 accuracy. The present study used the Cousineau et al. (2006) curve 

fitting procedure to extract a width parameter. It is possible that curve fitting allowed for the 

detection of width effects that were undetected by La Rocque and Visser. Further, the present 

study also used the curve fitting procedure to estimate a depth (amplitude) parameter whereas 

La Rocque and Visser used minimum T2|T1 accuracy. While it is possible this difference 

contributed to the lack of a relationship between depth and reading, amplitude and minimum 

T2|T1 accuracy were very highly correlated in the present study (i.e., r =-.98) as well as other 

research (Cousineau et al., 2006). It is, therefore, unlikely that the different methods of 

calculating the depth of the AB can account for the discrepant findings. 

The third area of difference between this and the original study is the method of 

analysis. La Rocque and Visser (2009) used ANCOVAs, however due to the small number of 

participants in the low-normal reading group in the present study (n = 11, La Rocque & Visser 

n = 23), the ANCOVA (which, incidentally, indicated no effect of group for the present study) 

was not suitable. For this, and the other reasons provided in section 2.4, the present study 
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utilised regression. However as regression should have increased the statistical power of the 

analysis, the alternate method of analysis does not offer a satisfactory account for the failure 

to replicate a relationship between AB depth and reading.  

It does not appear that methodological differences account for the discrepant findings 

between the two studies. Considered together, La Rocque and Visser’s (2009) and the current 

study indicate that the AB and reading are related in typical adults, but the precise nature of 

this relationship is unclear. As mentioned, AB width and depth are known to be correlated 

(Cousineau et al., 2006) and it is possible that they represent different aspects of the same 

attentional mechanism (Li, Lin, Chang, & Hung, 2004). However, little is known about what 

individual differences in AB parameters represent, and how they relate to one another or 

reading proficiency. We do know that instructions prioritizing T1 or T2 affects the width but 

not the depth of the AB: emphasis on T1 leads to a longer but not deeper AB (Cousineau et 

al., 2006). This appears most consistent with a capacity limitation account of the AB: when 

greater resources are allocated to T1 consolidation there is a longer delay in resource 

allocation to T2 (e.g., Chun & Potter, 1995; Jolicoeur, 1998). As the target-distractor selection 

demands are constant between conditions, selection accounts do not provide a clear account of 

these findings. More relevant to reading, Olsen, Chun, and Anderson (2001) manipulated the 

length of target words in an AB, including phonological length. Longer words elicited greater 

AB effects and, although not analysed by parameters, this manipulation affected AB depth. 

These two studies suggest that explicit allocation of resources to T1 affects AB width whereas 

implicit allocation of resources to T1 affects AB depth. It should be noted that the dual-target 

instructions in the current study emphasised T1. The instructions to participants are not noted 

in La Rocque and Visser (2009), therefore it may be this emphasis that differentiates the two 

results. Manipulation of target emphasis in the procedures employed by Olsen et al. would be 

a useful next step. 
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Interestingly, the presence of a relationship between the AB and reading in typical 

readers appears to be limited to adults, with the relationship not being evident in developing 

readers (McLean et al., 2009). McLean et al. found that dual-target performance was related 

to word identification, phonemic decoding, and irregular word reading, with poorer readers on 

all measures exhibiting poorer T2 accuracy regardless of ITI. This is in contrast to the 

findings in adults, where the width (current study) or depth (La Rocque & Visser, 2009) relate 

to reading.  

The differing results between developing and experienced readers may arise from the 

use of speeded verse unspeeded reading measures. Reading ability in the present study, and 

that of La Rocque and Visser (2009), was measured using a speeded reading task, susceptible 

to a speed-accuracy trade-off (Schweizer, 1996). Whereas McLean et al.’s (2009) reading 

ability measure was based on accuracy alone. Individual differences in mental processing 

speed are highly correlated with T2 accuracy, with individuals with faster mental processing 

speeds exhibiting reduced ABs (Klein, Arend, Beauducel, & Shapiro, 2011; study 1). It is 

possible that the relationship between the AB and reading in typical adults is a by-product of 

mental processing speed; however, the rapid automatized naming measures (letters and 

colours) were included to factor out variance due to processing speed. Future research would 

benefit from disentangling whether the relationship arises from reading speed and/or 

accuracy. 

4.2 The AB is related to phonological but not sight-word reading  

Phonological reading but not sight-word reading was related to the AB in the current 

study. Generally this relationship has been demonstrated previously (La Rocque & Visser, 

2009; McLean et al., 2009) and the majority of dyslexia and the AB research has focussed on 

phonological reading difficulties (for a review see Badcock & Kidd, 2015). In typical readers, 

the AB paradigms have required the identification of target shapes. Although verbal labelling 
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of these shapes in not required, target identity being indicated with a symbol-labelled button-

press, it is likely that word retrieval is required. Whilst longer words are associated with 

longer AB effects (Olson et al., 2001), shapes have been selected as stimuli as they are 

considered to have relatively automatic retrieval. However, automatic retrieval is also 

associated with sight-word reading as stipulated by the dual-route cascaded model of reading 

(Coltheart et al., 2001) as well as rapid automatized naming, and neither was related to the AB 

in the current study. Therefore, some different mechanism or further processing of the shape 

targets likely underpins the relationship. 

The initial impetus for investigating the relationship between reading and the AB 

concerned the general allocation of attention over time (Hari et al., 1999). Difficulties in the 

AB were noted as evidence of slower disengagement of attention, which has been implicated 

for discriminating speech sounds, however controversially, thought to be important for the 

acquisition of language (Tallal et al., 1985). This may fit with an association between AB 

width and reading in general. However, it does not account for the lack of relationship 

between the AB and sight-word reading. The peculiar aspect of phonological reading is that 

novel words, as used in the phonemic decoding task of the current study, are processed 

sublexically as they cannot be retrieved from a store of known words (i.e., the mental lexical 

or through lexical access; Coltheart et al., 2001). Reading via the sublexical route is a resource 

dependent process and is known to modulate AB performance: more decoding, leading to a 

deeper AB effect (Olson et al., 2001). If the resources required for sublexical processing in 

reading and AB target consolidation are common, this could account for the observed 

relationship. Phonemic decoding efficiency and AB target consolidation may be constrained 

by this resource. The findings could be accounted for by a smaller capacity or slower 

processing in poor readers. Consistent with this, children with dyslexia require a longer target-

to-mask interval to identify visually presented numbers at the same level of accuracy to 
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typically reading peers (see Di Lollo et al., 1983). The single-target task in the current study 

may not have been sensitive enough to detect a relationship with reading in the current 

sample. 

It may be the case that this common resource relates to cognitive control. Badcock and 

Kidd (2015) report on a meta-analysis of the AB and dyslexia. The major finding in this 

literature is lower overall performance in groups of individuals with dyslexia; that is to say, 

there are no group differences related to the shape (i.e., width or depth) of the AB. Using a 

meta-regression to examine the physical presentation factors that differed between studies to 

predict the between group difference, the inter-trial interval or pre-RSVP time predicted the 

group difference. The pattern of the relationship indicated that the longer the time before the 

onset of the RSVP, the greater the difference between groups. Badcock and Kidd suggested 

that the endogenous engagement of task-set (particularly temporal variability of the targets), 

may be disrupted or slower in groups of people with dyslexia. These conclusions relate to 

dyslexia and overall performance in a dual-target task, whilst the current study focused on the 

normal range of reading and the shape of the AB effect (i.e., an interaction rather than a main 

effect). Nevertheless, implicating cognitive control in AB performance (see also Arnell, 

Stokes, MacLean, & Gicant, 2010), especially with respect to reading, provides a useful 

mechanism to underpin future research in this area. 

As a limitation, it is also possible that the failure to find a relationship between the AB 

and sight-word reading in typical adults may be related to the reading measure. The sight-

word efficiency subtest of the TOWRE (Torgesen et al., 2012) consists of a mixture of regular 

and irregular words. As the pronunciation of regular words can be obtained via the lexical or 

sublexical reading routes (Coltheart et al., 2001), the sight-word efficiency test does not 

provide a pure measure of lexical reading ability. However, whilst acknowledging this 

limitation, Wagner et al. (1999) claim that it is necessary to be able to read the test stimuli via 
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the lexical route in order to obtain an average or above average test score. As participants who 

scored below the normal range were excluded, it is unlikely that participants utilised a 

phonological strategy in the sight-word efficiency test. Further, the sight-word efficiency test 

may have been too easy for participants in the present study, as scores were differentiated by 

speed not error. It is possible that these factors may have masked a relationship between the 

AB and sight-word reading. The conclusion that the AB is related to the phonological but not 

sight-word reading route in typical adults should therefore be considered preliminary  

4.3 Single-target accuracy does not mediate the relationship between the AB and 

reading  

Single-target accuracy did not mediate the relationship between the AB and reading. 

This is at odds with McLean et al.’s (2010) finding in the AB and dyslexia: the between-group 

difference was no longer significant when single-target accuracy was controlled in the 

analysis. However, in contrast to the current findings, McLean et al. reported that reading was 

related to overall T2 accuracy, irrespective of ITI, whereas in the current study, the width of 

the AB was related to reading. Therefore, single-target processing played a role when inter-

target interference did not in children, in contrast, single-target processing did not play a role 

when inter-target interference did in adults. It would be useful to follow up this finding with 

children and adults in the same study, ensuring the ceiling effects were avoided, which was 

not the case in the current study. 

The lack of a mediating relationship between single-target accuracy and reading in the 

present study may be attributable to the ceiling effect present in the single-target task. As 

observed by Badcock, Hogben, and Fletcher (2008), the use of single-target tasks that are too 

easy may mask group or individual differences. The finding that single-target performance 

does not mediate the relationship between the AB and reading typical readers should be 

interpreted with caution and considered preliminary. 
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4.4 Preparation and the AB 

Whilst this is the first study to identify a relationship between single-target accuracy 

and AB depth, there is a growing body of work pointing to the role of cognitive preparation in 

performance on RSVP tasks. The linear increase in single-target accuracy as a function of 

time is suggested to be a result of cognitive preparation (Ariga & Yokosawa, 2008; McLean 

et al., 2010; Visser, Boden, & Giaschi, 2004). There is also evidence that temporal orienting, 

thought to enhance the preparation of attention, influences the AB. When the temporal 

position of T2 is cued (Martens & Johnson, 2005; Experiments 2 and 3), learned (Tang, 

Badcock, & Visser, 2013), or predictable (Badcock, Badcock, Fletcher, & Hogben, 2013) the 

depth of the AB is significantly reduced. Badcock et al. also demonstrated that an individually 

tailored foreperiod to T1 reduced the AB depth and width. Therefore it is clear that the 

capacity to prepare for the arrival of the targets influences the AB, and it may be this 

preparation that underpins the relationship between single-target processing and the AB depth 

in the current results. Further research is required to determine the precise nature of the role of 

cognitive preparation/control in the AB. 

4.5 Conclusion 

The AB is related to single item phonological reading in typical adults. We suggest 

that the same cognitive resource is required for phonemic decoding and target consolidation in 

the AB, potentially related to endogenous cognitive control. Single-target accuracy did not 

mediate the relationship between the AB and reading, indicating that the relationship arises 

from the cost of T1 processing on T2. Single-target accuracy was found to be a predictor of 

AB depth, implicating cognitive preparation as a factor in AB performance. 
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