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Abstract. Gravitational radiation that propagates through an inhomogeneous mass distribution is subject to random gravita-
tional lensing, or scattering, causing variations in the wave amplitude and temporal smearing of the signal. A statistical theory
is constructed to treat these effects. The statistical properties of the wave amplitude variations are a direct probe of the power
spectrum of the mass distribution through which the waves propagate. Scattering temporally smears any intensity variations
intrinsic to a source emitting gravitational radiation, rendering variability on time scales shorter than the temporal smearing
time scale unobservable, and potentially making the radiation much harder to detect. Gravitational radiation must propagate out
through the mass distribution of its host galaxy before it can be detected at the Earth. Plausible models for the distribution of
matter in an L, host galaxy suggest that the temporal smearing time scale is at least several milliseconds due to the gas content
alone, and may be as large as a second if dark matter also scatters the radiation. The smearing time due to scattering by any
galaxy interposed along the line of sight is a factor ~10° times larger. Gravitational scattering is an excellent probe of matter on
parsec and sub-parsec scales, and has the potential to elucidate the nature of dark matter.
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1. Introduction

Current and planned gravitational wave detectors have the
potential to identify sources of gravitational radiation out to
extragalactic distances and, for some types of sources, out
to cosmological distances (Cutler & Thorne 2002) over a
wavelength range spanning more than 8 orders of magnitude.
Instruments such as the Laser Interferometer Gravitational
Wave Observatory (LIGO) are sensitive to radiation in the
range 10-10*Hz, while the planned Laser Interferometer
Space Antenna (LISA) experiment will be sensitive to radiation
from frequencies 10~'~107* Hz. Other methods of detection,
such as those due to pulsar timing observations, are sensitive
to nano-Hertz gravitational radiation (Sazhin 1978; Detweiler
1979). As the detection of gravitational radiation requires ex-
tremely sensitive apparatus, consideration has been devoted as
to whether gravitational lensing by intervening massive objects
might focus the radiation and enhance its detection likelihood
(Ruffa 1999).

These lensing calculations (Ohanian 1974; Bliokh &
Minakov 1975; Bontz & Haugan 1981; Thorne 1983; Deguchi
& Watson 1986a) are performed in the regime of phys-
ical optics. Diffractive effects are important because the

* Appendices A and B are only available in electronic form at
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wavelength of gravitational radiation is large compared to the
Schwarzschild radius of any lensing object. For a wave of
frequency v, diffractive effects are important for lens masses
<10°v~! M, (Takahashi & Nakamura 2003). Thus lensing by
almost any intervening single object must be treated using
physical optics. Moreover, even for lens masses in which geo-
metric optics is valid, it is preferable to work in the framework
of physical optics because it allows one to compute certain
quantities related to the wave amplitude that are in principle
measurable with gravitational wave detectors but are not calcu-
lable under the framework of geometric optics.

Foregoing lensing treatments have largely been limited to
the effects of a single massive object on the wave amplitude.
The approach has hitherto been from a deterministic rather than
a statistical point of view, in that the mass profile of the lensing
object is well specified. However, a statistical approach is more
appropriate under many circumstances.

The argument for a statistical approach stems from the large
number of objects that are likely to contribute to the wave am-
plitude in many astrophysically interesting situations. There are
two senses in which a statistical approach is applicable to the
gravitational lensing of gravitational radiation. One is when a
large number of lensing objects can drift in front of the line of
sight to a source, so that an average over time would involve a
sufficiently large number of objects to merit an average over an
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ensemble of lensing objects. A second, more restrictive, sense
applies when a large number of objects contributes to the ob-
served wave amplitude at any instant. This latter sense is likely
to apply in practice. The wave amplitude of a scattered signal
is determined by the phase fluctuations caused by lensing ob-
jects in a region at least as large as the first Fresnel zone (see,
e.g., Narayan 1992). For gravitational lensing occurring at dis-
tance D from the observer, the Fresnel radius rg ~ VcD/2mv,
is of order a parsec for lensing of v ~ 1 Hz radiation at cos-
mological distances. Thus the area defined by the first Fresnel
zone encompasses contributions from a large number of ob-
jects. Consider, for example, the lensing influence of stars on
the gravitational radiation passing through the spiral arm of a
galaxy. Even the volume of a line of sight orthogonal to the
disk axis of a spiral galaxy with radius rg ~ 1 pc would typ-
ically encompass many thousands of stars. The argument for
a statistical approach is strengthened when one considers the
possible contribution of gas and of dark matter, both of which
may be inhomogeneous on sub-parsec scales.

Scattering gives rise to a number of important effects that
influence the detectability of signal. The two that motivate the
present treatment are (i) the focusing and defocusing of radi-
ation by phase fluctuations, leading to temporal variability in
the observed wave amplitude, and (ii) the temporal smearing
of intrinsic intensity' fluctuations in the source.

Temporal fluctuations in the wave field occur whenever
there is movement of the lensing system relative to the line of
sight to the source of gravitational radiation. Fluctuations in the
gravitational potential drifting transverse to the line of sight in-
duce both phase and amplitude fluctuations in the gravitational
radiation, leading to temporal decorrelation of the wave field
on sufficiently long time scales. This effect is important if the
decorrelation time scale associated with gravitational scatter-
ing is short compared to the time scale on which the wave field
would oscillate in the absence of scattering. In this paper we
concentrate on fluctuations in the wave amplitude itself, while
in a second paper we consider fluctuations in the intensity.

Temporal smearing is due to the fact that the radiation
reaching an observer can arrive from a number of different an-
gles. This effect is significant when the phase fluctuations in-
duced by the lensing are sufficiently large that radiation from
outside the Fresnel radius is scattered toward the observer. The
radiation then arrives from a number of different regions in
the scattering region, in an effect known as multipath propa-
gation. There is a range of propagation times associated with
the range of angles over which the radiation arrives. The ef-
fect is important because it potentially smears out the intrinsic
intensity variations of a source. For instance, time variations
of the source would be undetectable if the intrinsic variability
time scale were significantly shorter than the scatter broaden-
ing time.

! Throughout the text we refer to the quantity defined by @(v)
in Eq. (4) as the (complex) wave amplitude at frequency v, while
the quantity |#(v)|*(?) is the intensity of the radiation at frequency v
and time ¢. Thus intensity variations refer to changes in the quantity
|¢(»)|(¢) with time.
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The scattering of gravitational radiation potentially consti-
tutes an exceptional probe of the distribution of matter out to
the distances to which sources can be detected. In this context
it is useful to compare gravitational scattering to the interstel-
lar scattering (ISS) of radio wavelength radiation by the diffuse
ionized component of our Galaxy’s interstellar medium. Both
scattering phenomena require a statistical approach and occur
in a regime in which physical optics is important. ISS yields
information on the power spectrum of turbulent fluctuations in
the ionized plasma distribution of our own Galaxy over a range
of scales spanning some five orders of magnitude in wavenum-
ber (Armstrong et al. 1995). This information is gleaned pri-
marily from pulsars which are effectively point sources, and
thus constitute excellent probes of fluctuations in the inter-
stellar medium. Other radio sources are less subject to ISS,
and their larger angular diameters severely truncate the range
of wavenumbers over which the power spectrum can be mea-
sured. Gravitational wave sources are the analogues of pulsars
in the regime of gravitational scattering. They emit coherently
and possess small angular diameters so the source structure
does not influence the scattering characteristics, unlike most
sources of electromagnetic radiation that are subject to gravita-
tional lensing. Thus the scattering of gravitational radiation is
a fine-scale probe of the distribution of dark matter in the local
universe.

The close relationship between gravitational and interstel-
lar scattering implies that many phenomena identified in this
paper are analogous to effects previously identified in the
context of interstellar scintillation. For example, the temporal
broadening of gravitational radiation is analogous to the tem-
poral broadening of pulsar radiation, and it poses similar limi-
tations on source detectability (see the review by Rickett 1977,
and references therein).

The outline of the paper is as follows. In Sect. 2 we review
the effect of an arbitrary mass distribution on the amplitude of
a gravitational wave. In Sect. 3 we compute the temporal vari-
ability of the wave amplitude by considering the power spec-
trum of the wave amplitude fluctuations. The effect of tempo-
ral broadening on the scattered signal is considered in Sect. 4.
Estimates of the power spectrum of mass fluctuations due to
the various constituents of a galaxy are presented in Sect. 5. In
Sect. 6 we estimate the magnitude of scattering effects and dis-
cuss their relevance to the observability of gravitational waves.
The conclusions are presented in Sect. 7.

2. Propagation of the wave amplitude

We briefly outline the equations governing the propagation of
gravitational radiation in the gravitational potential of a distri-
bution of lensing objects. One writes the spacetime metric in
the form

ds* = —(1 = 2U(r)c*dr* + (1 - 2U(r)dr* = gdx"dx”, (1)
where U(r) < 1 is the gravitational potential of the lens-

ing objects. Consider a linear perturbation A, in the back-

ground metric tensor, gl(f,): Guv = Guv + hyy. If the wavelength
of the gravitational radiation is much smaller than the typi-
cal radius of curvature of the background metric, then one has
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source

Fig. 1. The lensing geometry. Co-ordinates on the lens plane are denoted with x and those on the observer’s plane by X.

ZR;i)ﬁvh"ﬁ = (0, where R(QB)[),V is the background Riemann tensor,
and one identifies the gravitational wave as
hyy = ¢ epy, 2
where e, is the polarization tensor of the gravitational wave
(€ = 0, epe™ = 2)and ¢ = ¢(t,r) is the scalar
wave amplitude. This scalar wave propagates according to
8,(\-gBgPBH§,¢) = 0, which, when combined with Eq. (1),
takes the following simple form
(V2 + whd = 40°U¢, A3)
where w = 27v and @(v, r) is the temporal Fourier transform of
the scalar wave amplitude.

We consider the solution of Eq. (3) with reference to the
lensing geometry shown in Fig. 1. A point source of unit in-
tensity is located an angular diameter distance Dgs from the ob-
server and distance Dy g from the lens plane. The lens plane is
located an angular diameter distance Dy from the observer’s
plane, and the observer is at location X’ on this plane. The
gravitational perturbations are assumed to be located on a thin
lensing plane. One might be concerned that the thin lensing
approximation used here, while applicable to the lensing of
electromagnetic radiation, is not applicable to gravitational ra-
diation because of its short wavelength. The depths of most
lensing objects are small compared to the wavelength of gravi-
tational radiation. However, the thin lens approximation is still
valid because it depends only on the weakness of the wave am-
plitude and not on the short wavelength assumption (Thorne
1983).

The wave amplitude has the solution (Schneider et al. 1992)

Dsv(1 + z1) oin/2

S0, X) =
o(v. X') D1 Dis

fd2x exp[2rivig(x, X1, “
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where the time delay is, apart from a constant, given by
N _DsU+a) [ Dis Y
@, X')= —— |- |lx - —X'| —¥Yx)]|. 5
e Xy = Sp e e - (x) 5)

The term Dys/Ds in front of the observer’s plane co-
ordinate X’ is a correction factor that accounts for the spher-
ical nature of the wavefront in the mapping of lens plane co-
ordinates to co-ordinates on the observer’s plane (see Goodman
& Narayan 1989). When the source is located sufficiently far
behind the lens plane the incident wavefront may be regarded
as planar and this correction factor tends to unity. We introduce
the scaled co-ordinate X = X’Dys/Ds to retain the symmetry
between lens and observer plane co-ordinates below.

The phase delay associated with the surface mass distribu-
tion, X(x), is

4GDLDLS fdzx,Z(x,) In (lx - x’l)
X0

¥ =
(X) DS C2

(6)
where xg is an arbitrary normalizing constant that is of no inter-
est because it only introduces an arbitrary constant phase delay;
we henceforth write xy = 1 to set this phase delay to zero.

It is convenient to recast the Fresnel-Kirchoff integral (4) in

the form
. e~in/2 i
o, X) = f d’xexp|— (x - X)*
27rr§ 2r§
+iK f Ex's(x) ln(|x il ')]
X0
1+ 7L G

where K = —8n

(N

and where we define the curved-spacetime generalization of the

Fresnel scale in Euclidean space as
DDy s

2nDs(1 + z1)’

c?’

2 _
Ip =

(®)
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and the phase delay due to the gravitational potential is identi-
fied explicitly as

w(x) = de%c' Z(x')ln(lx _ x/').
X0

The approach adopted in this paper involves regarding the grav-
itational phase delay, i, as a random variable. We define rg;f as
the length scale on the lens plane over which the root-mean-
square phase delay changes by one radian. The magnitude of
effects due to gravitational scattering are quantized by compar-
ing the length scale of gravitational phase fluctuations, rg;g, to
the length scale of geometric phase fluctuations, characterized
by the Fresnel scale, rp. Scattering effects are important when
rqiff is comparable to or smaller than rg. To see this, consider the
generic properties of the wave field as determined by Eq. (7).
The dominant contributions to the wave field come from re-
gions where the argument of the exponential in Eq. (7) varies
slowly as a function of x. For small gravitational phase fluctu-
ations on the length scale rg (i.e. rgig > 7p), only the region
around |x — X| < rg contributes to the wave field, and mild
phase curvature on the scale of rg gives rise to mild focusing
and defocusing of the gravitational wave. For very large phase
fluctuations (i.e. rqig << rp) many separate regions on the lens-
ing plane contribute to the observed wave amplitude. This is
because there are many regions on the lens plane for which the
exponential term in Eq. (7) varies slowly as a function of x,
since the large phase fluctuations can offset the contribution of
the (x — X)?/2rZ term.

C))

2.1. The effect of finite source size

As sources of gravitational radiation are compact and spatially
coherent it suffices to treat the radiation from these systems
as point-like (Mandzhos 1981; Ohanian 1983; Schneider &
Schmid-Burgk 1985; Deguchi & Watson 1986b; Peterson &
Falk 1991). Thus Eq. (7) suffices as a practical description of
the wave amplitude observed from any source of gravitational
radiation. Equation (7) also describes the gravitational lensing
of electromagnetic radiation from compact objects, but it needs
to be modified once the source angular diameter becomes suf-
ficiently large. In practice, most sources of electromagnetic ra-
diation are not spatially coherent and are sufficiently large that
effects due to their finite angular diameter are important.

The effect of finite source size on the temporal variabil-
ity of gravitationally scattered radiation is not discussed in the
present paper, but the results in this paper are relevant to the
lensing of electromagnetic radiation when the source size does
not exceed the characteristic angle through which scattering de-
flects the radiation. Stated another way, source size effects are
important when the source angular diameter exceeds the angu-
lar scale over which the wave field of a point source would
vary due to inhomogeneities in the scattering medium (e.g.,
Little & Hewish 1966; Salpeter 1967). To see this, one can at-
tribute wave field decorrelation length scales to both the effects
of source size and of scattering. Define the length scale on the
observer’s plane, X, over which structure in the source causes
the wave field to decorrelate (i.e. <(}§(XSrc + x’)&*(x’)> declines
on the length scale X..). For an incoherent source of angular
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size Oy, this length scale is Xy = A/2764.. One can define
a similar length scale X,y = A/2m0;, over which the wave
field from a point source would decorrelate due to scattering.
Source size effects are therefore unimportant when the source
decorrelation scale exceeds the scattering decorrelation scale,
Xsre R Xsear OF, equivalently, when the angular scale of the scat-
tering pattern from a point source exceeds the source angular
diameter, Oycat = Grc.

2.2. Statistics of the mass fluctuations

In the following discussion we are interested in the statistical
properties of the wave amplitude as influenced by gravitational
lensing. We explicitly ignore (non-stochastic) large-scale phase
gradients due to the overall mass distribution in a lensing sys-
tem. Large scale phase gradients contribute to macrolensing,
but are not relevant to the effects under consideration here.

Since the statistics of wave amplitude fluctuations depend
on the statistical properties of the phase, /(x), we must charac-
terize the fluctuations in the mass surface density, Z(x), that
drive the phase perturbations on the lensing plane. The two
most useful quantities are the mass surface density autocorre-
lation function

Cs(r) = (AX(r' + r)AZ (1))
= (20" +n-Z|[z()-£]).

and its associated quantity, the mass surface density structure
function,

Ds(r) = ([E( +7) - X)) = 2[Cx(0) - C5 (],

(10)

(1)

which describes the mean square difference in the mass surface
density between two points separated by a vector r on the lens-
ing plane. The autocorrelation function is related directly to the
power spectrum of mass surface density fluctuations ®x(gx, g,)
as follows:
2

G = [ G ast@e (12)
These average quantities are written as functions of separa-
tion r only, because it is assumed that the statistical properties
of £ do not depend on the position where they are measured,
which is to say that the statistical properties of X are wide-sense
stationary (see, e.g., Mandel & Wolf 1995). Although this as-
sumption is commonly used in scattering theory, it is obviously
flawed to some degree because the statistical properties of the
lensing matter are expected to vary as, for instance, one moves
from a line of sight intersecting the centre of a galaxy towards
one that intersects its rim. However, it is an excellent approx-
imation in practice since we are concerned with the statistical
properties of the matter distribution mainly on scales less than
~10pc.

It is often convenient to relate correlations in the gravita-
tional phase (x) to the power spectrum of gravitational mass
fluctuations. The autocorrelation in phase fluctuations y(x) and
Y(x + r) is derived using the identity,

fd2a In|ae® = —27¢72, (13)
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which yields the following relation between phase autocorrela-
tion and the mass power spectrum,

(AY(xX)AY(x + 1)) = K* f d*¢d*¢Inlél In ¢ Cx(€ - ¢~ 1)

e f d2q " g vs(q). (14)
The structure function of phase fluctuations Dy (r) is related to
the mass power spectrum according to
Dy(r) =2 K? f d’q [1 - eiq"] g~ Os(q). (15)
These relations simplify the calculations performed below and
allow us to express the results in physically useful quantities.

3. Wave amplitude fluctuations

Given the exact mass distribution on the lens plane, Eq. (7)
can be evaluated directly to find the wave amplitude on the ob-
server’s plane. The mass distribution on the lensing plane is
usually unknown, but it is possible to express the statistical mo-
ments of the wave amplitude in terms of statistical properties of
the mass distribution. In the following subsection we evaluate
the variability due to gravitational scattering by computing the
covariance of wave amplitude fluctuations across the observer’s
plane.

3.1. Mean visibility

We wish to compute the time scale on which the wave ampli-
tude of a source lensed by random mass inhomogeneities fluc-
tuates. The temporal fluctuations are characterized by the co-
variance between the wave amplitude received at a frequency v
and time ¢ with those detected at the same frequency at some
later time t+Af: <q~§(v; N*(vit + At)>. The angular brackets here
refer to an average over all possible statistical ensembles of
lensing objects which, here, is equivalent to an average over all
times ?.

The mass fluctuations on the lensing plane are assumed
to be fixed, and the lensing plane advects past an observer at
some effective velocity veg. This is known as the frozen screen
approximation. A stationary observer who samples the wave
field at position X at times ¢, t5, . . . would observe exactly the
same wave field as an observer who moves across the observing
plane, measuring the wave fields at all the positions X + vegt,
X + vegtr, ... on the observing plane. An average over time is
equivalent to an average over all positions X on the observer’s
plane. To be specific, the temporal covariance of the wave field
is equivalent to the covariance measured between two sepa-
rated receivers located at positions x and x + X = x + vgAt.
The specific expression for the effective velocity, in terms of
the velocities of the source, lensing plane and observer is (see
Appendix B)

Dy Ds
Veff = Uscreen — UBarth [ 1 — = | = Vsec | = |-

D D (16)

To compute the wave field covariance we consider the wave
amplitude measured by two detectors a distance X apart on the
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observing plane: one receiver is positioned at —X/2 while the
other is located at X /2. In light of its connection with the corre-
sponding quantity in interferometry (see Thomson et al. 1986),
we refer to this covariance as the mean visibility, or mutual co-
herence, of the gravitational wave field. Using the the Fresnel
integral derived in Eq. (7), the mutual coherence is

. — [F(\, Tk _ 1 2,127
VO X) = (305 X/ 03 X/2) = s [ s
F

X exp {# e+ X727 - (¢ - X/2)°]
F

+iK f PPEX(©) [1n|£—x|—1n|£—x’|]}. (17)

It is useful to make the change of variable r = x — x’ and
s = (x + x)/2, so the visibility simplifies to

1 is - X

s fdzrdzsexp is-(r+ X)
7
F

r2
+ind2§‘ Inlg| [ZE+r/2+5)—2(E-r/2+5)]

Viv; X) =

F

. (18)

We assume that the mass-induced phase fluctuations are wide-
sense stationary, so that the difference of the mass surface den-
sity X(& +r/2+s) —2(§ —r/2 + 5) depends only on the separa-
tion r. The integral over s then yields a factor (27rr%)262(r +X)
and after performing the remaining integral over r, the visibil-
ity reduces to

Vv, X) = <exp [iK f d?€3(8)

x(ln|£+X/2|—ln|£—X/2)}>. (19)

The average over the mass fluctuations is evaluated using the
result

(explia]) =

1 +i(da) - %(5&) - % (607) + %(&f‘) - } , (20)

eit@)

for a random variable o with average (@) and fluctuations da.
This approximation makes no specific assumptions about the
distribution of the random variable 6. When the fluctuations in
the gravitational phase, i, are small, it is sufficient to consider
only the first three terms in this expansion:

(VO X)) ~ 1 +iK(Y) — %KZ <Y2>,

where ¥ = f 2 g (€ -X/2)-SE+X/2)]. @21

The imaginary component of the contribution is zero because
(Y) = 0; for mass fluctuations which are wide-sense stationary
(i.e. their statistical properties are independent of position) the
average (X(& — X/2)) is equal to (Z(€ + X/2)). The final term
involving terms O(K?) simplifies to

(y?) = f dad’B In|al In||
l>0,18/>0

X[Dz(a—ﬁ—x) +Dz(a—ﬁ—X)
2 2s

- Dx(a-P)|, (22)
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which, re-expressed in terms of the power spectrum of mass
surface density fluctuations using Eq. (14), yields

Vo, X))~ 1 - K* f d’qq* Os(g)[1 —cos(g-X)].  (23)

One obtains a clearer result on the length scale over which the
scattered wave field varies by examining the power spectrum of
wave amplitude fluctuations across the observer’s plane, which
is just the Fourier transform of the visibility:

(@u@) = [ Xt (Vo) = Ko os(g)
+<2n)262<q)[1—1<2 f d’q ¢ s (q’)]. (24)

Apart from the unimportant zero-frequency (¢ = 0) contribu-
tion, the spatial Fourier transform of the mean visibility yields
a direct measurement of the power spectrum of mass den-
sity fluctuations weighted by ¢g~*, which weights the measure-
ment to the largest lensing structures present in the medium.
Measurements of the mean visibility potentially provide an el-
egant probe of the mass density fluctuations along the line of
sight to a source of gravitational radiation.

3.1.1. Strong phase fluctuations

The foregoing result embodied in Eq. (24) is only correct in the
limit in which the phase fluctuations are small. Using Eq. (15),
we can express the visibility in terms of the phase structure
function: (V(v, X)) = 1 — Dy(r)/2. This shows that the small
phase approximation is only valid for sufficiently small base-
lines r such that the mean square difference in the phase delay
due to random mass fluctuations across the lensing plane is less
than one radian.

It is possible to employ an alternative approximation to de-
rive the mean visibility in a manner that is independent of the
magnitude of the phase fluctuations. However, this requires that
we make specific assumptions about the statistical properties of
the gravitational phase, . In particular, we assume that phase
fluctuations are normally distributed, which allows the average
over phase fluctuations to be performed using the result

(expliyly = exp[i ) — (o0?) /2].

Applying this result to the phase fluctuations in Eq. (19), one
derives an exact result for the mean visibility under this some-
what more restrictive assumption:

Dw(X)]

(25)

Vv, X)

exp [—
exp [—K2 fdzq g [1 - ei"'X] CDz(q)] .

This generalization of Eq. (23) shows that the wave amplitude
on the observer’s plane is only correlated over distances on
which the mean square phase difference on the lens plane is
less than one radian. In order words, the wave field is only cor-
related over a distance ~rgir. (Recall that ryi¢ is defined such
that Dy (rgig) = 1.) The frozen screen approximation described
above then implies that temporal fluctuations in the wave field

(26)
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occur on time scales as short as ty,, ~ rgig/veg. The covari-
ance between wave amplitudes measured on time scales longer
than t,,; decreases exponentially quickly.

We can exploit the similarity between scattering due to
gravitational mass perturbations and interstellar scattering in
interpreting the physics embodied in Eq. (26). For phase fluc-
tuations ¢(x) in the interstellar medium, the visibility of a
scattered point source is Viss(v, X) = exp[—Dg(X)/2], which
is identical in form to Eq. (26). The visibility is related to
the apparent source brightness distribution (i.e. the source im-
age), 1(0), according to (e.g., Thomson et al. 1986)
1) = f ax Oy, x. 27)
Since the average visibility of a scattered source declines on
a length scale X = rgi, the average angular brightness dis-
tribution of the scattered source declines on an angular scale
0 = 1/krgig. The implication for observations of gravitational
radiation is that a detector observing a scattered source receives
radiation from a range of angles out to an average angular-
broadening scale Ocar = 1/krgi-

Under certain circumstances it is appropriate to consider
the variance in the visibility as a measure of the extent to which
it deviates from its mean value. The fourth moment of the wave
field, which describes the covariance of fluctuations in the vis-
ibility, is computed in a subsequent paper (Macquart, in prepa-
ration).

4. Temporal broadening of the scattered signal

Propagation effects can cause temporal smearing of grav-
itational radiation, leading to possible misinterpretation or
even non-detection of bursty phenomena. Temporal broaden-
ing is important when a signal propagating through a random
medium can potentially reach an observer along several differ-
ent paths (this is known as multipath propagation). As different
time delays are associated with the ray paths, power from an
impulsive event is smeared out in a process known as temporal
broadening. This can redistribute power in the emitted signal so
that the temporally varying signal is smeared to a level below
the detection threshold (see Fig. 2).

The temporal smearing of gravitational radiation is analo-
gous to the temporal smearing of radio wavelength radiation
received from pulsars. For pulsar radiation this effect is due to
scattering off electron density inhomogeneities in the interstel-
lar medium, and is important for most pulsars located in the
Galactic plane, as it limits the temporal resolution with which
the pulse shape can be measured. The effect severely limits the
detectability of pulsar radiation when the temporal smearing
time scale is comparable to the pulse period. This is particu-
larly important for the heavily scattered pulsars located near
the Galactic centre, as the broadening time scale is so large
that pulsar emission appears continuous rather than pulsed; al-
though the emission is still detected, it is not time-variable.

The treatment developed for the smearing of gravitational
radiation is analogous to that derived for the temporal broad-
ening of pulsar radiation due to interstellar scattering (Lee &
Jokipii 1975). The main differences here are that perturbations
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Unscattered intrinsic intensity variation
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Signal after temporal broadening
> caused by scattering
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Fig. 2. Temporal smearing of a time variable signal (i.e. one for which
|¢(v)|(¢) varies with time) smooths out the variations so that the ra-

diation arrives at the detector over a longer interval and the source
potentially falls below the detection threshold.

in the gravitational potential drive the phase fluctuations rather
than fluctuations in the electron density, and that the gravita-
tional phase fluctuations scale like A~!, whereas those in an
interstellar plasma are proportional to A.

Before discussing effects caused by inhomogeneities in the
gravitational potential, we first consider effects related to the
propagation of the wave through a homogeneous gravitational
field and its subsequent detection. We explicitly decompose the
wave function into its temporal Fourier components, ¢(w) as
follows:

1 (™. y
(1) = - f Pp(w)e™ dw. (28)
27 J_oo
The first effect that limits the measurement of the wave function
is the spectral response, or bandpass, of the detector, which we
idealize as

_ _ 2
(w — wo) } ’ (29)

fo(w) = exp[ e

where wy is the central frequency and A is the bandwidth. The
detected signal is then

B, 1. :
Pae() = 7 f P(w) fa(w)e ™ dw. (30)
)

Consider the response to radiation with a sharp pulse at time
t = 0 propagating through free space. Then ¢(1) = 6(z/c — 1),
#(w) = e and the measured wave function is

[_ (t— z/c)2A2] .

- A
|aet(D)] Nr exp
Now we introduce effects related to propagation through a ho-
mogeneous gravitational field. Consider first a homogeneous
gravitational field which gives rise to a constant phase de-
lay (). One can relate this to a decrease in the group velocity
of the radiation with respect to c. A phase delay ¢ gives rise to

> (€29
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a time delay ¢/w and, for propagation through a distance z the
effective group velocity of the radiation is v, = (dk/dw)™! =
¢ —zw/y, and Eq. (31) becomes

(1 —z/ve)*A?
.

|ae(| = 2 exp

\2r
Phase perturbations due to gravitational inhomogeneities are
not dispersive because the group velocity is independent of fre-
quency. As a result, there is no additional decorrelation due to
any dependence of the effective refractive index of the lensing
medium on frequency.

We now investigate the effect of an inhomogeneous mass
distribution on the temporal broadening of the signal. Using
the decomposition given by Eq. (28), the time-varying intensity
may be written as

(32)

Lie?) = (Paer(DD3, (1)

1 L
- G | (#000) fawsse)

—00

x eiz(k—k’)—it(w—w') dw d(/.),, (33)

where the wavenumbers k and &k’ are functions of w and «’
respectively. The terms inside the integral depend, in general,
on both the frequency w and the frequency difference w — w’.
However, if the bandwidth of the receiver is small, the quantity
<§§(k, N (K, 2, r)> depends strongly only on the frequency
difference Aw = w — «’, and its dependence on the central
frequency w (or w’) can be neglected. One then writes Aw =
w-o,W = (w+ «)/2 and performs the integral over W,
leaving

1 - -
lyer(t) = 2 fdAw <¢(w)¢*(w + Aw)>

X (34)

Aw? .
VA exp (_ _42’2 )] oiAw(e/og 1)

This is recognized as a convolution with respect to ¢, so that

Laei(1) = P1(0) % P2(D), (35)
with

_ Aw® iAw(z/vg—1)
Pi(t) = Zf[\/;Aexp(—m)]e dAw

= A% exp [—(t - z/vg)zAz] , (36)
and
Py(t) = ~— f " ank (3UF" (k + Aky) eferktr==/e), 37)

2m J_

In practice the convolution described in Eq. (35) means that
either P or P, is primarily responsible for the temporal broad-
ening, depending on which of the two is the broadest function
of . The term P, represents the temporal intensity variation
observed from a pulsed signal after propagating through a ho-
mogeneous gravitational potential. In the present case, when
the detector bandpass is large, this term takes the limiting
form 6(¢ — z/vg), which represents the arrival of a sharp pulse
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at time ¢ = z/v,. More generally, when the detector bandpass is
large we can write the temporal intensity variations as the con-
volution of the intensity variations intrinsic to the source, I (%),
with the term P,(7):

Idel(t) = Isrc(t) * PZ(Z)~

The term P, embodies the effect of mass inhomogeneities on
the temporal broadening. This term is the Fourier transform
of the visibility between the wave field measured at some
wavenumber k; = k with the same field measured at wavenum-
ber k, = k + Ak, and with X = 0. Using Eq. (4), this mean
visibility is

Vki ks, 2) = ($(k1, 28" (k2. 2)

= ﬁ < f d*x'd’x’

Qrrdy

X ex L X 1—% - x? 1+%
P22 2k 2%

. Ak ., Ak

+ig(x) (1 Zk) i(x )(1 + T )}> , (39)
where we have written k; = k + Ak/2 and k, = k — Ak/2. The
quantity <q~§(k1, 2" (ka, z)> describes the spectral decorrelation
of the signal between wavenumbers k; and k, caused by its
propagation through the inhomogeneous gravitational potential
between the source and the observer. We assume that the phase
fluctuations obey Gaussian statistics in order to compute the
average over the phase fluctuations. However, in interpreting
the physical origin of effects due to temporal broadening, we
shall see the results obtained here are quite generic, and the as-
sumption of Gaussian statistics has little bearing on the nature
of the effects. We also neglect terms of order Ak?/k> or higher
except in front of the potentially large Cy,(0) term. The mean
visibility evaluates to (see Appendix A)

(38)

1
Vikike?) = s f d’rd’q
s 2 2
. ig?Akrg AR 1
X exp [—1r g+ TZF - 7Cw(O) - 3Dy (n|. 40

Equation (40) is identical in form to the equivalent expression
found by Lee & Jokipii (1975) for scattering broadening in the
interstellar medium due to a thin layer of electron density fluc-
tuations, and it is convenient to follow their treatment of the
effect of the phase fluctuations on the profile of a temporally
broadened signal. Replacing Egs. (40) in (37), P, can be repre-
sented as the convolution of two broadened profiles

Py(t) = Pr(?) * Pp(1), (41)
where
. AK?
Pr(t) = % f dAk exp [—wAk(t—z/vg)—?Cw(O)}, (42)
and
C
Pp(t) = P f dAk d>q d’r

iAk 1
X exp [—icAk(t —zfvg) —ir-q+ ‘qur}% - 5Dy (r)} . (43)
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We refer to Pr and Pp as the refractive and diffractive broaden-
ing terms respectively, for reasons explained below. Performing
the integrals over Ak, one obtains a closed expression for Pg
and writes Pp in terms of a Fourier transform:

c2k? (t - i)z
Pr() = — % |- - and (44)
T mC,0) | 40 |
1 7 gy
Pp(f) = drd’gsfr- =~ - ==L
b(?) (2m)? f e ( Vg ch)
D,
X exp [—1r q- wz(")]’ (45)
Dy (r)
— 2 14
a2 fd rexp[—lr q- > ],
1 z
where g = — 4 |ck (t - —)- (46)
I'e Ug

The effect on the pulse shape due to these two terms is qualita-
tively different. The pulse broadening due to the refractive term
is a Gaussian symmetric about the mean pulse arrival time with
width

2
IR =—

ck “7)

Cy(0).
The symmetry of the refractive pulse broadening profile im-
plies that the pulse can arrive either earlier or later than the
mean arrival time ¢ = z/v,. One understands the origin of this
effect in terms of deviations in the total gravitational potential
along the line of sight. These give rise to deviations in the total
phase delay along the line of sight about the mean value ().
The time delay due to a deviation of phase 0y is just 6yr/ck, so
the root mean square phase delay expected from variations in

the total gravitational potential is <61//2>]/2/ ck, which is exactly
the temporal broadening time given above. Refractive broad-
ening only affects the mean pulse profile over a long time (see
Sect. 6.1), and is not relevant to the effect depicted in Fig. 2.
This is because the broadening occurs only on a time scale over
which the total phase delay along the ray path varies, which is,
in practice, large.

On the other hand, pulse broadening due to the diffractive
term is asymmetric: inspection of Eq. (46) shows that Pp(?) is
zero before the pulse arrival time ¢ = z/ve. Unlike refractive
broadening, diffractive broadening affects the shape of each in-
dividual pulse, and is directly applicable to the effect described
in Fig. 2. The exact form of the diffractive broadening term has
not been determined analytically, except for the specific case
Dy = (r/rairr)*, where one derives

0, t—z/vg <0,
Po() =14 » . (48)
4 exp [—ck(t — 2/vg)r2 /22|, t = 2/vg > 0.

The temporal broadening time scale is estimated for other
phase structure functions by inspection of Eq. (46). The diffrac-
tive profile begins to decline when 1/q is equal to the scale
on which the term exp[-D,(r)/2] varies. This occurs on the



J.-P. Macquart: Scattering of gravitational radiation

escat

/201
X

T/2— 02

source DL observer

D
B LS lens plane -

Ds

Fig. 3. Diffractive temporal broadening arises because radiation, scat-
tered through a typical angle Oy = (krgig)~', is delayed relative to
radiation propagating directly along the line of sight to the source.

scale r = rgjg, so Pp(7) declines on the time scale given by
\ek(t = z/vg)/1r = r;iif. Thus the temporal broadening time is

2
= - (49)

ck rig
The origin of the diffractive broadening term lies in the fact
that the observer receives radiation from a range of angles over
the lensing screen. Radiation that is scattered through a larger
angle takes longer to reach an observer. The typical scattering
angle is sy = 1/krai. For an observer located a distance z be-
hind the lensing plane the time delay associated with radiation
arriving from angle 1/krgg is 2(ck*ry)™", which is equivalent
to Eq. (49) above. The geometry associated with this time de-
lay is illustrated in Fig. 3. Numerical estimates of the scatter
broadening profile due to the diffractive term are given in Lee
& Jokipii (1975).

5. Models for the mass fluctuations

Since the foregoing results depend on the power spectrum of
the surface mass density fluctuations, it is appropriate to quan-
tify the form and magnitude of this spectrum. We consider the
power spectrum of mass fluctuations in a galaxy due to its stel-
lar, gas and dark matter content. Although it might be supposed
that dark matter dominates the mass content of a galaxy, the
extent to which it contributes to gravitational scattering rela-
tive to other forms of matter depends critically on its distri-
bution. With the nature of dark matter largely unknown, the
power spectrum of dark matter fluctuations on scales relevant
to those probed by gravitational scattering is ill-constrained at
present. Nonetheless, it is necessary to consider the conditions
under which the effects are likely be measurable, even if the
estimates are rough.

The results derived here are employed in the following sec-
tion to estimate the magnitude of the effects caused by gravita-
tional scattering.

5.1. Scattering by a star field

Here we consider the mass power spectrum due to a collection

of N stars, each of mass M and with positions ry,73,...,ry.
The mass surface density is written in the form
N
S(r) = )M f(r-ry), (50)
i
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where M f(r) is the projected surface mass density of a star
centred on the origin. We compute the mass surface density
covariance:

(' + () = 1 d>r'(r + rIr’)
( A
1 e
- d2 —igr$ 2. 51

(Mij‘qe E(q)l (51)

The power spectrum of the surface density is
N .

S@P = > M f(g)Pet T, (52)

i.j

and its average is computed by separating the N self (i = j)
contributions from the N(N — 1) cross-term (i # j) contribu-
tions:

S = NM2|F@) + NV = DM? |Fg)| (47). (53)

The average over positions r; and r; appearing in the last term
vanishes if the masses are distributed randomly over all space.
However, this average is in general non-zero and one has

(e = % f Qridr; par, 7)), (54)
where p,(r;, r;) is the joint probability of finding an object at
position r; while another is located at position r;. In practice
this average is never zero because the idealization of stars dis-
tributed randomly on an infinitely extended lensing plane is un-
realistic. The objects are always confined within a finite area,
however large, so there is always some maximum separation
between pairs rm.x = r; — r;. Thus there is always a sufficiently
small g ~ 1/rp,x for which the average in Eq. (54) is equal to
one. However, in certain situations it is convenient to separate
out the large-scale distribution of matter, which may give rise
to large phase gradients and hence gravitational macrolensing,
from the local variations in mass density due to stars. In other
words, it is often convenient to treat the distribution of stars as
being locally uniform, even when the stellar distribution cannot
be uniform on large scales.

Now if the distribution of object positions depends strongly
on the difference, Ar = r; — rj, and only weakly on the average
position s = (r; + r;)/2, we can approximate the distribution
of object positions, as described by the joint probability p,, as
being wide-sense stationary. We write p,(r;,7;) as a function
of Ar only, which gives

_ 1 A
<e‘q'(’i"f)> =3 fdzArdzAs pa(Ar)e ™ = (55)

A
Placing these averages back into Eq. (51) and, using the fact
that the mean surface density. () is (N/A)M f(q = 0), we
obtain the average autocorrelation of the mass surface density
fluctuations

2

M .
@m=”2UPw%WMM+@M»
(2r)

~o* M f2(0),

(56)
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where o = N/A is the mean surface density of objects. The cor-
responding power spectrum of surface density fluctuations is

Ds(q) = oM f(@I [1 + opaq@)] — > M*5(q)f*(0).  (57)

This power spectrum is inserted directly into Eq. (15) to deter-
mine the structure function of phase perturbations due to grav-
itational lensing by a field of stars.

5.1.1. Scattering by a homogeneous stellar distribution

We construct the phase structure function due to a popula-
tion of N objects with mass M. In order to construct a model
that is analytically tractable, we idealize the radial density pro-
file of the objects as a Gaussians with radius R: p(x,y,z) =
M 2nR*) 3% exp[—(x® + y? + z7)/2R?]. The surface density of
each object is then = = M (27R?)~! exp[—(x* + y?)/2R?], from
which we identify (cf. Eq. (50))

1 2 5 PR
flr) = TRz &P [_W}’ and  f(q) =exp [— > ]
where r = /X2 + 12, g = /4> +q>. (58)

When the outer scale of the stellar distribution is much larger
than the scale sizes of the lensing objects, one separates the
contribution due to the large density gradient introduced by the
overall stellar distribution from the local mass density fluctua-
tions caused by individual stars. If the stars are distributed ho-
mogeneously locally, then the power spectrum of local mass
fluctuations reduces to ®s(q) = ocM?| f(q)|2, where we ne-
glect the unimportant term proportional to §(q) in Eq. (57).
The phase structure function, Dy, is constructed by substitut-
ing the power spectrum of mass surface density fluctuations in
Eq. (15):

Dy(r) = 4nK*oM? f dgq~ [1- Jo(qr)] exp|-a*R?].  (59)

The ¢~ weighting term of the integrand causes problems with
the convergence of the structure function as ¢ — 0, because
the rest of the integrand does not increase sufficiently quickly
at small ¢. It is convenient to separate part of the integrand,
1 — Jo(gr), into two terms (1 — Jo(gr) — q2r2/4) and q2r2/4.
With this separation, one has

Dy(r) = 4nK*ocM* (I, + I) (60)
oo 2.2
L = f dgq™ (1 — Joqr - L= )e_qu“
0 4
R2 2 14R2 r2 + 4R2
— = (e r/ART _ 1 _ -
= (e 1-T) g
r? r? 2 -D)r?
X|E{|—|+1log|-— ||+ ———, 61
1(4R2) Og(4R2)] 8 D
r? e
I, = — lim dggle @k
q
r : 2p2
= —gllil_r%El(—q R )
= r lim (F + log (quz)) (62)
40 '
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The integral I; converges because the term (1 —Jo(gr)— qzr2 /4)
contains only terms O(g*) and higher. The integral I, diverges
because it contains terms O(q"). However, as can be seen in
Eq. (62), the divergence is only logarithmic in ¢, so we ap-
proximate the contribution due to I, as > multiplied by a term
of order unity. Physically, this is justified because there must
always be some large scale at which the power spectrum of
mass density fluctuations cuts off because the distribution of
stars is finite. In practice the stars are only distributed homo-
geneously over a small volume; in an exact treatment their true
distribution on large scales must also be taken into account, as
discussed in Katz et al. (1986). These authors also identify and
describe the origin of this logarithmic divergence in the context
of microlensing by stars.

For small r, the sum I; + I, scales as 1 times a term of order
unity (due to the logarithmic cutoff) and the phase structure
function is

Dy(r) ~ 4xK’oM*r* = 1.94 % 107 (1 + 2)

« M\ o r\
1 My ) \100starspc=2 J\1pc

For realistic stellar densities, this implies a very large diffrac-
tive scale length,

(63)

rag = 2.2% 10* (1 +z0) v

M\ o
X
( 1 Mg ) ( 100 stars pc—2

-1/2
) pc. (64)

We note that g scales proportional to N'/2, which implies that
the typical scattering angle due to lensing by uniformly dis-
tributed stars scales as 6y, o N~1/2. This result has also been
derived in the context of microlensing of a homogeneous dis-
tribution of stars by Katz et al. (1986). These authors point out
that if the stellar distribution is not uniform on large scales —
as must be the case in practice — the large scale stellar distri-
bution also causes macrolensing, which shears the microlensed
images. This effect is implicitly ignored here because we are
only interested in the stochastic fluctuations in the gravita-
tional phase delay, and not in large scale phase gradients due
to macrolensing.

The magnitude of rgi is large, which is a reflection of the
fact that, in a uniform distribution, each star’s contribution to
the power spectrum is independent of all other stars. The power
spectrum of mass density fluctuations scales only linearly with
the number density of lensing objects, o, rather than as o2,
when clustering is important (viz. Eq. (57)). Evidently, stellar
clustering must be important if stars are to make an apprecia-
ble contribution to the power spectrum of mass surface density
fluctuations in a galaxy.

5.2. Scattering by gas

Observations of ionized plasma and neutral hydrogen in the lo-
cal universe suggest that the gas distribution in galaxies follows
a power law with an index between —3 and —4 from sub-parsec
to kiloparsec scales (Armstrong et al. 1995; Dickey et al. 2001;
Stanimirovic & Lazarian 2001; Braun 1999). This motivates us
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to consider a model for the gas whose volume density fluctua-
tions follow a power law power spectrum in between minimum
and maximum spatial wavenumbers:

0, 4 < {min

(Dp(q) =4qA CI_B, dmin < 4 < ¢max (65)

0, q > gmax

where the amplitude A is chosen so that the total variance in
the volume density is 0'5, and we assume ¢min < @max. FOr
B < 3 the mass variance is dominated by fluctuations at the in-
ner scale, Iy = 1/gmax, With A = 47(3 - ) qfn;?( o-f,. On the other
hand, with 8 > 3 the mass variance is dominated by fluctuations
at the outer scale, Ly = 1/¢min, With A = 47 (8- 3) qﬁl_l; o-f,.

The two-dimensional power spectrum of surface mass den-
sity fluctuations is obtained by projecting the power spec-
trum of volume mass density fluctuations, ®,, onto the lensing
plane. For a gravitational wave propagating along the z-axis
one sets the argument ¢, in @, to zero, so the resulting power
spectrum of surface mass density fluctuations is @x(qx,q,) =
AL ®,(qx, gy, q: = 0), where AL 2 Ly is the thickness scatter-
ing medium along the z-axis. (One can think of the quantity
D, (gx, qy> g- = 0) as the power in surface mass density fluctua-
tions per unit length.) The phase structure function due to these
mass fluctuations is, using Eq. (15),

Ginax
Dy(r) = 4n AALK? f g1 = Jo(gn)]. (66)
Gmin

For spectra steeper than 8 > —2 the phase structure function is
strongly dominated by mass fluctuations at the outer scale, and
one has

47TAALK2 -2-8
D¢(r) = 2+ﬁ qmin
B\ B Tan”
1-1F|-1-=;1,-=;— . 67
X[ 1 2( i h=5i-= (67)

The phase structure function saturates at the outer scale
of the distribution, for r =~ Ly. For small arguments,
qrznmr2 =r /L% <1 and B8 > 0 we can expand the hypergeo-
metric function | F, to yield

G -pALKa , [hiLo (%Y. 0<p<3

Dy(r) =
w(7) 3 5

(68)
B> 3.

We identify the quantity M3 = oL as the total variance in
the mass fluctuations encompassed within each cell of size L,
which allows us to express the phase structure function normal-
ized to realistic quantities for an L, galaxy. The phase structure
function takes the form Dy (r) = (r/rq)* with, for § > 3,

-3\ oM, !
i = 0.018v7'(1 -1 (£ <
rag = 0.018v (1 +z1) ( B ) (5><107Mo)

AL\ [ Ly PP
X pc.
2kpc 1 kpc

We have normalized the diffractive scale length to a line of sight
in which the gas fluctuations extend along a distance of 2 kpc,

(69)
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while the outer scale of the turbulence, Ly, is normalized to a
value suggested by neutral hydrogen observations of galaxies
in the local group. The mass variance is normalized to a value
of only 5 x 107 M, at the outer scale of the turbulence. A typ-
ical L, galaxy contains a mass of ~5 x 10° M. If most of this
gas is distributed inhomogeneously and contained within a typ-
ical volume ~100 kpc3, then the variance of mass fluctuations
within each cell of size LJ is M2 = (5 X 107 Mo)*.

The result for 8 > 3 given in Eq. (69) is the most useful
since observations suggest a power law index for gas fluctua-
tions in the range 3 < 8 < 4. However, for completeness we
include the results for 0 < 8 < 3, for which the phase structure
function is

M, Y
5x 107 M@)

% AL L() s lo 2h r 2
2kpc/\1kpc 1pc 1pc

For instance, the case 8 = 2 then yields a diffractive scale
length of

Dy(r) = 0.0030 x 10% (31‘%6)(1 +270)% (

(70)

M -1
rag = 0.026v'(1 +z1)~! (m)
AL -1/2 Lo 3/2
X(kaC) (1kp0) pe 7y

As the galaxy would in general possess some inclination to the
line of sight, the path length through the gas may vary consid-
erably from the value of AL = 2 kpc used in the normalizations
here.

It may be wondered why fluctuations in the gas density of a
galaxy, which only account for ~5x 10° M, of the mass content
of an L, galaxy, yield a much greater contribution to the phase
structure function relative to the large mass ~10'' M associ-
ated with stars. The difference arises because of the assump-
tions underlying the distributions of the two forms of matter.
The stellar content of the galaxy is assumed to be uniformly
distributed and thus explicitly ignores stellar clustering. The
assumption of uniformity ensures that the power spectrum of
mass surface density fluctuations increases only linearly with
the stellar density. On the other hand, observations show that
gas tends to follow a power law distribution of density fluc-
tuations, indicating that the gas is clustered in a hierarchy of
scales. In this case the power spectrum of surface density fluc-
tuations scales with the square of the gas density. We note that
the presence of stellar clustering in a population of stars would
also cause the power spectrum to rise with the square of the
stellar density, as demonstrated by Eq. (57).

5.3. Dark matter fluctuations

Here we consider the distribution of dark matter associated
with the halo of a galaxy. Dark matter is also distributed on
larger scales (i.e. it is associated with clusters of galaxies),
but we concentrate only on dark matter on galactic scales.
Irrespective of the dark matter distribution on larger scales, any



772

extragalactic source of gravitational radiation is guaranteed to
at least propagate through the dark matter distribution of its
own galaxy in order to reach an observer near Earth. Both of the
foregoing treatments of mass fluctuations in Sects. 5.1 and 5.2
are readily generalized to treat fluctuations in the dark matter,
whether it is clumped in star-like objects, or clustered on a hi-
erarchy of scales and thus distributed according to a power law.

We consider the dark matter associated with a galaxy sim-
ilar to the Milky Way. Here the dark matter must extend to at
least several kiloparsecs above and below the Galactic plane,
and extend out to ~30 /4~ kpc along the plane. The mass to
light integrated over the entire Galaxy is ~30 My /Ly; however,
this ratio increases sharply near the edge of the luminous disk
to ~1000 M/ L, (see, e.g., Sofue & Rubin 2001).

A plausible model expected on the basis of cold dark mat-
ter (CDM) models is a power law spectrum of mass fluctu-
ations between some outer scale Ly and some inner scale [,
with an index 8 =~ 3 for the range of (galaxy-size) scales
of interest here (e.g., Peacock 1999, and references therein).
(The power spectrum is expected to follow a 8 = 3 index for
scales below the horizon at the epoch of matter-radiation equal-
ity ~16(hQ2)~! Mpc, where £ is the Hubble constant in units of
100 kms~! Mpc™!)

The model presented in Sect. 5.2 for gas fluctuations is
readily adapted to the present situation. As for fluctuations in
the gas distribution, the two dimensional power spectrum of
surface mass density fluctuations is obtained by projecting the
power spectrum of volume mass density fluctuations onto the
lensing plane. One then has ®x(q,, g,) = AL ®,(q., qy,q; = 0),
where AL is the thickness scattering medium along the direc-
tion of propagation, assumed to be along the z-axis.

The power law scattering for 8 2 3 is independent of the
inner scale, and yields

B 3)—1/2

B
Mo N AL VY2 L 32
> o 0 pe.
10" M, Skpe 10kpc

We have normalized the diffractive scale length to a total mass
~10'"" M, distributed inhomogeneously in each cell with ra-
dius comparable to the outer scale Ly, ~ 10kpc. The outer
scale may be larger and encompass a greater mass, but if M,, in-
creases roughly proportional to L3, the diffractive scale remains
constant. Gravitational scattering effects in the context of this
model are expected to be very important, as demonstrated in
the following section.

raig = 1.8 1074 v 1 (1 + z1)™! (

(72)

Another possibility, though somewhat implausible, is that
the dark matter is homogeneously distributed in clumps of uni-
form size. In this case the results of Sect. 5.1 are applicable.
However, even for dark matter masses ~10'3 Mg, the power
associated with a uniform distribution of lensing objects is
small, and we see from Eq. (64) that the diffractive scale length
is many orders of magnitude larger than the Fresnel scale.
Clearly, gravitational scattering effects would be unimportant
for lensing caused by a uniform distribution of dark matter.
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6. Discussion: Implications for the detection
of gravitational waves

We have developed a general theory describing the variability
and temporal broadening of gravitationally scattered gravita-
tional radiation, and have considered models for the mass fluc-
tuations likely to drive these effects. However, we also need
to consider the geometry of the lensing situation in order to
discuss the implications of gravitational scattering on the de-
tectability of gravitational radiation. A large variety of scatter-
ing parameters and geometries is expected, depending on the
type of gravitational wave source under consideration and the
astrophysical environment in which it is likely to be encoun-
tered. Our aim in this paper is to illustrate that scattering ef-
fects are important in many instances likely to be encountered
in practice; an exhaustive treatment of all the circumstances un-
der which gravitational scattering may be important is beyond
the scope of the present paper.

Gravitational radiation always encounters at least two re-
gions of mass fluctuations along its path toward Earth. It must
propagate through the star, gas and the halo of dark matter dis-
tributed throughout the source’s host galaxy and, to be detected
at Earth, it must also propagate through the matter distribution
associated with our own Galaxy. Propagation through the mat-
ter distribution of the host galaxy is particularly important for
certain sources of gravitational radiation, such as coalescing
supermassive black hole binaries, as these objects are likely
to be located at the centres of galaxies. The radiation is then
subject to gravitational scattering through a line of sight inter-
secting the densest environments of the host galaxy. Which of
the three constituents of a galaxy — gas, stars or dark matter —
contributes most to the scattering depends on the distribution
of the matter in each of these three forms.

Gravitational radiation may encounter additional mass fluc-
tuations due to any intervening galaxy interposed along the line
of sight between the source and the detector. Although this
eventuality seldom occurs for sources of gravitational radiation
in the nearby universe, it is worth considering in the context
of lensing of powerful sources located at high redshifts, where
a line of sight is likely to intersect several galaxies and proto-
galaxies. For example, the sensitivity of LISA is expected to be
sufficient to detect coalescence of supermassive binary black
holes out to redshifts z ~ 20, and in this case the radiation
would likely propagate through a large number of intervening
systems.

The geometry of lensing of an extragalactic source due to
matter in the Milky Way is similar to lensing by the host galaxy,
for reasons discussed below. For a source located in the plane
of our own Galaxy, the results are quantitatively similar to the
lensing of an extragalactic source by its host galaxy.

6.1. The time scale of wave amplitude decorrelation

The wave field of a lensed gravitational wave varies due to the
movement of fluctuations in the gravitational potential trans-
verse to line of sight. The time scale of wave amplitude varia-
tions is important, because decorrelation must occur on a time
scale longer than v~! for gravitational radiation of frequency v



J.-P. Macquart: Scattering of gravitational radiation

to be detected. The results of Sect. 3.1 show that the wave am-
plitude fluctuations decorrelate on a time scale t = rgig/ Ve,
which is the time over which the mean square phase on the
lensing plane changes by one radian as the phase fluctuations
are advected past an observer at speed veg. This time scale is
independent of the distance to the mass fluctuations driving the
phase fluctuations.

The velocity of lensing material across the line of sight
to the source of gravitational waves is uncertain. The effec-
tive speed at which the mass fluctuations move across the line
of sight depends on the velocities of the lensing medium, the
Earth and the source. The motion of the source relative to the
lensing medium is likely to dominate the effective lensing ve-
locity. Typical stellar motions and galactic gas velocities are
of the order of one hundred kilometers per second within a
galaxy. If such a speed is representative of motions of most
matter within the galaxy, then it is also representative of the
expected speed of any source of gravitational waves relative to
other constituents of the galaxy. Thus the typical lensing speed
is of order ve = 100kms™'. Lensing of a gravitational wave
source by other material in the source’s host galaxy gives rise
to wave amplitude decorrelation on a time scale

(73)

-1
t=18x10° ( ) days.
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0.001pc/\ 100 kms™
Temporal decorrelation of the wave amplitude is expected to
occur much more rapidly at higher frequencies. The diffractive
scale is inversely proportional to frequency in the lensing mod-
els considered in the previous section. Higher relative veloci-
ties are expected if one considers lensing by an external galaxy
that intersects the line of sight to the source, where the pecu-
liar speed of a galaxy transverse to the line of sight is of order
1000kms!.

Scattering-induced temporal decorrelation of the wave field
occurs on a time scale much longer than the period of the ra-
diation itself. Thus we conclude that while scattering may alter
the amplitude of the lensed radiation, the decorrelation occurs
sufficiently slowly that the wave field is well correlated from
one wave period to the next.

6.2. Temporal broadening

Temporal broadening asymmetrically smears the intensity pro-
file of any intrinsically variable gravitational wave source with
broadening time fp = r% / rﬁiffw. Temporal broadening is impor-
tant when the ratio rg/rqgi is large, and it depends critically on
the Fresnel scale, and thus on the lensing geometry. The Fresnel
scale depends on the ratio of lensing angular diameter distances
D.¢ = D.Dys/Ds (viz. Eq. (8)) which is well approximated by
the source-lens distance when the lensing occurs in the host
galaxy (i.e. DLs = Ds), and by the observer-lens distance when
the lensing occurs in our Galaxy. In a Euclidean spacetime (in
which Dg = Dy + Dyg), the maximum value of D.g occurs
when the lensing plane is midway between the source and ob-
server, and Dy = Dy /2. However, in our universe the angular
diameter distance saturates at z ~ 1 and falls slowly for higher
redshifts. Thus, for large distances between the source, lens-
ing plane and observer, the slow decline of angular diameter
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distances beyond z ~ 1 implies that the maximum effective an-
gular diameter distance is well approximated by its saturation
value, Deg ~ 1 Gpc.

The thin screen approximation used here is an excellent ap-
proximation when treating lensing by an intervening galaxy be-
cause the thickness of the lensing material is small compared
to the effective distance, D.g to the lensing material. However,
the validity of this approximation is less obvious when treat-
ing lensing due to mass fluctuations in the host galaxy of a
source, where the fluctuations occur over a range of distances
that is potentially large relative to D.g. However, the results
derived here are still applicable provided that one choses an ef-
fective distance D.g that is characteristic of the distance to the
bulk of the lensing material. For instance, in treating the tempo-
ral broadening scattering of pulsar radiation due to interstellar
scintillation, in which the interstellar medium is extended along
the entire path from the source to the observer, one takes Deg to
be of order half the distance to the pulsar. Moreover, a rigorous
generalization of the results for an extended medium shows that
the scatter broadening time may still be written as Deg6?/2c,
where 6. = (krgi)~! is the characteristic scattering angle (Lee
& Jokipii 1975). This argument is applicable to the present sit-
uation, as the physics underlying interstellar scintillation and
gravitational-induced temporal smearing is identical.

In terms of normalized values typical of scattering in the
host galaxy and an intervening galaxy, the Fresnel scale for
lensing at a distance Deg is

D 1/2
= 0.0028 v~ /31 Sz
I v+ z1) Skpe pc
D 1/2
=12v1"20 + 7)) V2 | — pc. 74)
1Gpc

The large value of the Fresnel scale typical for matter located
in between the host galaxy and the Milky Way enhances the
effectiveness of temporal smearing.

First consider temporal broadening due to lensing caused
by the mass distribution of the host galaxy. The diffractive
scale estimated for lensing due a uniform distribution of stars
is so large that temporal smearing due to scattering by stars
is unimportant. The effect of scattering by the gas content of
a galaxy depends on the index of its power law distribution.
Observations suggest an index 8 = 3—4 (e.g., Dickey et al.
2001), so the diffractive scale is of order 0.018 v=1(1 + z.) ! pc
for the gas content typical of an L, galaxy. Thus lensing due
to gas density fluctuations alone causes temporal smearing on
time scales of order 4 ms.

Scattering effects due to the large mass associated with dark
matter fluctuations are potentially important. For instance, the
diffractive scale estimated for lensing by a power law of dark
matter fluctuations with an index 8 = 3.2 is rgig = 7.2 X
10~*v=1(1 + z.)~'. With a Fresnel scale rz = 0.0028 v-/2(1 +
z1.)"/? pc, the temporal broadening time is fp ~ 2s. Temporal
broadening on this time scale would severely decrease the de-
tectability of sources whose intrinsic variations occur on a com-
parable time scale, and render undetectable any intrinsic vari-
ations substantially shorter than this scatter broadening time.
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The temporal broadening time is independent of frequency for
the models of the matter distribution considered in Sect. 5.

The large value of the Fresnel scale associated with lens-
ing by a galaxy interposed along the line of sight renders the
temporal intensity variability of most sources of gravitational
radiation undetectable. The broadening time for the dark mat-
ter diffractive scale considered above and the Fresnel scale
1.2v 21 + 7)™ pcis tp ~ 4 x 107 s. The broadening time
due to gas fluctuations alone is tp = 7 X 102s.

The statistical approach adopted in the present treatment
of temporal broadening is only valid when a large number of
lensing lumps of matter — be they stars, gas or dark matter —
contribute to the lensing at any instant. This is guaranteed to
be the case if a large number of objects are contained within a
volume of radius g integrated along the line of sight. However,
as the Fresnel radius scales as v_!/2, there must be a sufficiently
high transition frequency at which the statistical approach be-
comes invalid. Thus, although the diffractive broadening time
is independent of frequency, there must be a sufficiently high
frequency at which the character of the temporal smearing
changes. When relatively few objects contribute to the lensing,
there is only a small number of time delays associated with the
small number of ray directions that scatter radiation into an ob-
server’s line of sight. An observer would then receive a small
number of delayed copies of the same intrinsic intensity vari-
ations. This transition frequency depends strongly on the min-
imum scale length on which matter exhibits structure. If it is
distributed inhomogeneously on scales smaller than the Fresnel
scale then the present statistical treatment is always valid. The
statistical approach is an excellent approximation when con-
sidering scattering by an intervening galaxy, where the Fresnel
scale is particularly large.

The statistical treatment of lensing in the host galaxy is rea-
sonable if the dark matter is cold. For dark matter particles of
rest mass energy E,, the spectrum of fluctuations is expected to
be cut off at the free-streaming scale (e.g., Padmanabhan 1993),

En

—43
1 GeVc2 ) P&

which, for cold (E,, > 1 GeVc™?) dark matter particles, is com-
parable to or below the scales typically probed by gravitational
scattering in a host galaxy for wave frequencies v * 1 Hz. On
the other hand, dark matter particles considerably lighter than
this are expected to exhibit little structure on scales probed
by gravitational lensing; a statistical approach would then no
longer be appropriate, and the character of the scattering would
be qualitatively different. In this sense, measurements of tem-
poral broadening over a range of frequencies, and thus length
scales, provide an exquisitely sensitive means of measuring the
nature of dark matter.

A = o.oos( (75)

7. Conclusions

The gravitational potentials of mass fluctuations encountered
by gravitational radiation as it propagates toward Earth per-
turb its wave front, causing an observer to perceive variabil-
ity in the wave amplitude and temporal smearing of the sig-
nal. We employ a statistical approach to relate these effects to
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the underlying power spectrum of mass density perturbations
that drive the scattering. This approach is motivated by the fact
that gravitational radiation produced by extragalactic sources is
likely to encounter the gravitational potentials of many objects
along its path toward Earth.

Mass fluctuations along the line of sight to a source of
gravitational radiation induce variations in its wave amplitude
as it propagates toward Earth. The characteristic fluctuation
time scale is the time on which the wave amplitude fluctua-
tions decorrelate. This occurs over the interval over which the
root mean square phase difference along the line of sight to
the source changes by one radian. This time scale is frequency
dependent because the phase induced by gravitational pertur-
bations is linearly proportional to frequency. Wave amplitude
variability therefore occurs more rapidly at high frequencies.
We consider lensing by gas and dark matter, and estimate that
decorrelation occurs on a time scale =103y! days. However,
even when temporal variations are too slow to be discerned,
the random amplification of the radiation due to focusing and
defocusing of the radiation still alters the detectability of the
signal.

The most important scattering effect relates to the tempo-
ral smearing of scattered radiation, as it has a direct bearing on
the detectability of any source whose intensity, the square of
the wave amplitude, varies with time. The lightcurve of a tem-
porally smeared source in a stochastic medium is the intrin-
sic intensity lightcurve of the source convolved with a func-
tion whose width is the temporal broadening time scale, fp.
Temporal smearing arises in a scattering medium because ra-
diation scattered through an angle and deflected back towards
towards the line of sight takes longer to reach an observer than
radiation propagating directly along the line of sight. The mag-
nitude of this effect depends on the power spectrum of the mass
fluctuations and on the lensing geometry. The power spectrum
depends on the particular distribution and density of stars, gas
and dark matter along the line of sight. Gravitational radiation
is always subject to scattering, as it must escape through the
mass distribution of its host galaxy and propagate through the
mass distribution of the Milky Way in order to be detected.

We consider the consequences of lensing due to a power
law distribution of mass fluctuations, due to either gas or dark
matter; we also consider a simple model due to lensing by a col-
lection of stars. These estimates suggest that temporal smearing
due to the host galaxy is dominated by the dark matter distri-
bution, and is important for radiation whose intensity varies on
a time scale less than a second. The temporal smearing time
is independent of the observing frequency. Temporal smearing
effects scale linearly with the effective distance to the scattering
material, Doy = Dy Dys/Ds, so the smearing time due to lens-
ing by an external galaxy is exceptionally large. For lensing at
cosmological distances, D.g ~ 1 Gpc, the temporal smearing
time is estimated to be of order tp ~ 10° s. As the distribution
of dark matter on small scales relevant to temporal broadening
is ill-constrained, we caution that the foregoing estimates are
highly uncertain. When dark matter is absent, even the gas con-
tent of a galaxy can appreciably broaden the intrinsic intensity
variations of a source. The broadening time associated with the
gas content of the host galaxy is of order milliseconds, while
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the time associated with scattering due an intervening system
is of order 103 s.

The circumstances in which temporal smearing poses a se-
rious limitation on the detectability of intrinsic source varia-
tions depends on the distribution of scattering material. The
description of temporal smearing presented here is valid when
one is justified in treating the phase fluctuations using a sta-
tistical approach. However, it fails when only a few inhomo-
geneities contribute to the scattering at any one instant, at
which point the observed intensity lightcurve becomes the sum
of a small number of delayed copies of the intrinsic intensity
lightcurve. Thus its validity varies according to the line of sight
and the scale on which matter distributed along it is inhomoge-
neous. Clearly, the scale on which dark matter is inhomoge-
neous is critically important. If it is inhomogeneous on scales
smaller than the Fresnel scale, as is expected for CDM fluctua-
tions, then the statistical approach adopted for temporal broad-
ening here is well justified. Thus, the scale on which dark mat-
ter is distributed is of critical importance in determining the
detectability of gravitational radiation. Conversely, temporal
smearing measurements of gravitational radiation place strong
constraints on the distribution and hence the nature of dark mat-
ter along any line of sight through which a source of gravita-
tional radiation is detected.
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Appendix A: Derivation of mutual coherence
function V(kq, ko; r = 0)

Here we calculate the mutual coherence function,
<§§(k + Ak/2,z, 1" (k — Ak[2.z, r)>, following on from
Eq. (39). We perform the average over phase fluctuations
assuming that y is a normally distributed random variable with
zero mean (the mean phase delay is incorporated into the term
involving the group velocity ve in Eq. (36)):

(1-45)
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With the change of variables
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which has a Jacobian 1 + O(Ak?/k*) which we approximate as
unity, the mutual coherence becomes
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We make the further change of variables ¥ = r + sAk/2k and
s’ = s, which again has a Jacobian 1 + O(Ak?/k?), to write

V(ki, ks, z) =

(A3)
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A further change of variable g = s’/ ré yields the final result,

1- 4 2Aler?
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This expression is equivalent to that obtained by Lee & Jokipii
(1975) for interstellar scattering through a medium of plasma
inhomogeneities.

(A.5)

Appendix B: The effective velocity of scattering
material across the line of sight

We derive an expression of the velocity of scattering mate-
rial across the line of sight, taking into account motion in the
source, lensing medium, and the Earth. Consider an object with

Vsrc 10
— —
source A
D
d (Vg -VE)te /D LS
lens plane —
1 DS
1
Vscreen 1 5
1
. L
1
1
Earth = > Y

VE to

Fig. B.1. The geometry showing the distance traversed across the lens-
ing plane in a duration f.

angular diameter distance Ds from Earth moving at a trans-
verse velocity vs,. measured relative to some frame. Between
two time intervals = 0 and ¢ = fy the object traverses a dis-
placement v f, and the Earth’s change in position iS Ugamto,
where vg,, 1S measured relative to the same co-ordinate frame.
From Fig. B.1 we see that the line of sight moves a distance
AS = Upartnto + (Usre — Ugarth)fo(DL/Ds) across the scattering
screen. The effective velocity of the line of sight across the
scattering screen is thus As/fy:

D D
Vert = annh(l - L)+vm(—L)- (B.1)

Ds Ds

In this time interval the screen also moves an additional dis-
tance vsereento, SO the effective velocity at which the line of sight
to the object crosses a point on the screen is

Dy Ds
eff = Uscreen — |VBarth | 1 — D_S + Usre D_L :

The observed scintillation time scale is the time taken by the
line of sight to traverse a length scale r4g on the screen:

(B.2)

Tdiff
Icint = —+
Ueft
This is the time scale of the scintillations as observed at Earth.
There is a subtle distinction between the velocity at which
the source-observer line of sight moves across the lensing plane
and the actual velocity at which an observer moves through the
lensing pattern, as it is projected at Earth. The distinction arises
because the wavefronts emitted from the source are spherical,
and an observer located near the lensing plane would not mea-
sure the same lensing pattern scale length as an observer on
Earth. A wavefront “imprinted” with a pattern of scale length
rdiff screen ON the scattering screen has a pattern scale of length
Tdiff Barth = Tdiff screenDs /DLs upon reaching Earth. Thus, for an
observer who measures 7gig garth directly from the scale size of
the scintillation pattern passing across the Earth, the real speed
of the scintillation pattern at Earth is

(B.3)

Fdiff Earth

(B.4)

Ureal =
Tscint
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Thus one has

Ds
Dis Vdiff screen
Tdiff screen
Veff
Dy Ds - Dy DL

~~—Uscreen — — < VUEarth — 7= Usrc- (BS)
Dys Dys Dys

Ureal

This correction is only a concern if we were to measure the
scale size of the lensing pattern directly with an interferom-
eter on Earth. The expressions derived above reduce to those
derived in Appendix C of Gupta et al. (1994) for scattering in
Euclidean space.



