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Abstract

The paper considers causal smoothing of the real sequences, i.e., discrete time processes in a

deterministic setting. A family of causal linear time-invariant filters is suggested. These filters ap-

proximate the gain decay for some non-causal ideal smoothing filters with transfer functions vanish-

ing at a point of the unit circle and such that they transfer processes into predictable ones. In this

sense, the suggested filters are near-ideal; a faster gain decay would lead to the loss of causality.

Applications to predicting algorithms are discussed and illustrated by experiments with forecasting

of autoregressions with the coefficients that are deemed to be untraceable.

Key words: smoothing filters, casual filters, predicting, near-ideal filters, LTI filters.

AMS 2010 classification: 42A38, 93E11, 93E10, 42B30

1 Introduction

The paper studies causal smoothing of the discrete time processes. For many applications, it is preferable

to replace a process by a more smooth process. In continuous time setting, smoothness is associated with

predictability. Smooth analytic functions are predictable, i.e., their values on any interval define uniquely

their values outside of this interval, and an ideal low-pass filter converts a function into an analytic one.

For discrete time processes, it is not obvious how to define an analog of the continuous time analyticity
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and smoothness. A classical approach is to consider predictability instead of analyticity. So far, the

predictability criterion for stochastic Gaussian stationary discrete time processes in the frequency do-

main setting are given by the classical Szegö-Kolmogorov Theorem. This theorem says that the optimal

prediction error is zero if ∫ π

−π
log φ

(
eiω

)
dω = −∞, (1)

where φ is the spectral density; see Kolmogorov [20], Szegö [27, 28], Verblunsky [29], and more recent

literature reviews in [3, 26]. This means that a stationary Gaussian process is predictable if its spectral

density is vanishing on a part of the unit circle {z ∈ C : |z| = 1}, i.e., if the process is ”band-limited”

in this sense. This result was expanded on more general stable stochastic processes allowing spectral

representations with spectral density via processes with independent increments; see, e.g., [7].

The stochastic setting is the most common in causal smoothing and sampling; see, e.g., [1, 2, 4,

5, 3, 8, 9, 12, 11, 13, 14, 15, 16, 18, 20, 25, 24]. A transition to the predicability of discrete time

processes in deterministic setting is non-trivial and related to the concept of the randomness for the real

sequences in the pathwise setting without a probability measure. There are many classical works devoted

to this important concept, starting from Mises [24], Church [6], Kolmogorov [20], Loveland [23]; see

the references in [21].

It was found that real sequences are predictable if their Z-transform vanishes on an arc of the unit

circle [11] on the complex plane or at a point z = −1 of the unit circle [12]. Therefore, smoothing can

be interpreted as reduction of the energy on the higher frequencies. In particular, an ideal low-pass filter

is a smoothing filter. This filter is non-causal, i.e., it requires the future value of the process. Similarly, a

filter with too high rate of decay of the frequency response at a certain point of the unit circle also cannot

be causal, since causality is inconsistent with predictability of outputs described in [12].

The present paper readdresses the problem of causal smoothing of the discrete time processes in

the deterministic pathwise setting, without probabilistic assumptions. We suggest a family of causal

smoothing filters that can be arbitrarily close to some ideal non-causal smoothing filters defined by

equation (2) below. The suggested filters are near-ideal in the sense that they ensure ”almost” ideal rate

of damping the energy at the point z = −1; a faster decay of the frequency response is impossible for

causal filters. This follows from predictability criterion [11]. In fact, the particular reference family

of non-causal ideal filters (2) was selected because these filters transfer non-predictable processes into
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predictable ones satisfying the criterion from [12]. Similar approach was used in [10] for the continuous

time setting.

The suggested near-ideal filters are discrete time causal linear time-invariant filters (LTI filters); they

are represented as convolution integrals over the historical data and approximate the real unity uniformly

on an arbitrarily large part of the unit circle.

It appears that these causal filters can be used to improve the performance of predictors suggested in

[12]. These are robust with respect to the noise contamination, and the error caused by a high-frequency

noise depends on the intensity of this noise. A near-ideal smoothing filter cannot remove the high-

frequency noise entirely but still can reduce it. This approach is discussed in Section 4, where we present

some numerical experiments with the suggested near-ideal filters applied to forecasting of autoregres-

sions in a setting where the autoregression coefficients are deemed to be untraceable.

Some definitions and notations

We denote by Z the set of all integers.

For r ∈ [1,+∞], we denote by �r the set of all sequences x = {x(t)}t∈Z ⊂ R, such that ‖x‖�r =(∑∞
t=−∞ |x(t)|r)1/r < +∞ for r ∈ [1,∞) or ‖x‖�∞ = supt |x(t)| < +∞ for r = +∞. We denote by

�+r the set of all sequences x ∈ �r such that x(t) = 0 for t < 0.

We denote by Lr(−π, π) the usual Banach space of complex valued Lr-integrable functions x :

[−π, π] → C.

Let Dc Δ
= {z ∈ C : |z| > 1}, and let T = {z ∈ C : |z| = 1}.

For x ∈ �1 or x ∈ �2, we denote by X = Zx the Z-transform

X(z) =

∞∑
t=−∞

x(t)z−t, z ∈ C.

Respectively, the inverse Z-transform x = Z−1X is defined as

x(t) =
1

2π

∫ π

−π
X

(
eiω

)
eiωtdω, t = 0,±1,±2, ....

If x ∈ �2, then X|T is defined as an element of L2(T), i.e., X
(
eiω

) ∈ L2(−π, π). If X
(
eiω

) ∈
L1(−π, π), then x = Z−1X is defined as an element of �∞.

Let H2(Dc) be the Hardy space of functions that are holomorphic on Dc including the point at

infinity with finite norm ‖h‖H2(Dc) = supρ>1 ‖h(ρeiω))‖L2(−π,π). Note that Z-transform defines a
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bijection between the sequences from �+2 and the restrictions (i.e., traces) X|T of the functions from

H2(Dc) such that X (eiω) = X
(
e−iω

)
for ω ∈ R; see, e.g., [22], Section 4.3. If X

(
eiω

) ∈ L1(−π, π)

and X (eiω) = X
(
e−iω

)
, then x = Z−1X is defined as an element of �+∞.

2 Problem setting

Let x(t) be a discrete time process, t ∈ Z. The output of a linear filter is the process

y(t) =

∞∑
s=−∞

h(t− s)x(s),

where h : Z → R is a given impulse response function.

If h(t) = 0 for t < 0, then the output of the corresponding filter is

y(t) =
t∑

s=−∞
h(t− s)x(s).

In this case, the filter and the impulse response function are said to be causal. The output of a causal filter

at time t can be calculated using only past historical values x(s)|s≤t of the currently observable input

process.

The goal is to approximate x by a ”smooth” filtered process y via selection of an appropriate causal

impulse response function h.

We are looking for families of the causal smoothing impulse response functions h satisfying the

following conditions.

(A) The outputs y approximate inputs x; an arbitrarily close approximation can be achieved via selec-

tion of a filter from this family.

(B) The spectrum of the output y vanishes on higher frequencies.

(C) The effectiveness of the damping on the energy on the higher frequencies approximates the ef-

fectiveness of some reference family of non-causal smoothing filters that transfer processes into

predictable ones, i.e., such that the future values are uniquely defined by the past values.

Note that it is not a trivial task to satisfy Conditions (A)-(C) simultaneously. For example, there are

sets of ideal low-pass filters such that the distance of these sets from the set of all causal filters is zero.
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In [2], this was shown for the set of low-pass filters with increasing pass interval [−Δ,Δ], where Δ ∈
(0, π). However, Condition (B) is not satisfied for the corresponding causal approximations. Moreover,

all known causal approximations of ideal filters do not feature zero values for the transfer functions. The

present paper suggests transfer functions vanishing at z = −1 together with their derivatives.

The targeted properties of the near ideal filters

Our purpose is to construct a family of causal filters such that the Conditions (A)–(C) are satisfied. We

will be using a reference family of ”ideal” smoothing filters with the frequency response

Mθ,q

(
eiω

)
= exp

(
− θ

|1 + eiω|q
)
, (2)

where q > 1 and θ > 0 are parameters. For these filters, Condition (A) is satisfied as θ → 0, and

Conditions (B) is satisfied for all θ > 0. However, these filters are non-causal because, for any x ∈ �2,

the values x(t + 1) of the output processes of these filters are weakly predictable at time t [12]. This is

since Mθ,q

(
eiω

) → 0 fast enough as ω → −π.

For a given integer m ≥ 1, we will construct a family of causal filters with impulse responses

ha ∈ �+∞ and with the corresponding Z-transforms Ha = Zha, where a ∈ (0, 1) is a parameter. For this

family, the following more special Conditions (a)-(c) will be satisfied (the number m is used in Condition

(b1) below).

(a) Approximation of the identity operator:

• (a1) supω∈[0,π],a |Ha

(
eiω

) | < +∞.

• (a2) For any Ω > 0, Ha

(
eiω

) → 1 as a → 1− 0 uniformly in ω ∈ [−Ω,Ω].

• (a3) For any X
(
eiω

) ∈ L1(−π, π) and any x = Z−1X,

‖ya(·)− x(·)‖�∞ → 0 as a → 1− 0,

where ya is the output process

ya(t) =

t∑
τ=−∞

ha(t− τ)x(τ).

(b) The spectrum is vanishing at a point at T:
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• (b1) For all a, Ha

(
eiω

)
is m times differentiable at ω = π, and

Ha(−1) = 0,
dkHa

dωk

(
eiω

) ∣∣∣
ω=π

= 0, k = 1, ...,m.

• (b2) For any ε > 0, there exists δ > 0 and a ∈ (0, 1) such that

sup
ω∈[π−δ,π+δ]

|Ha

(
eiω

) | < ε.

(c) Approximation of non-causal filters (2) with respect to the effectiveness in damping: For any ε > 0

and any Ω ∈ (0, π), Ω0 ∈ (Ω, π), Ω1 ∈ (Ω0, π) there exists θ > 0, q > 1, a > 0 such that

|Ha

(
eiω

)− 1| ≤ ε, ω ∈ [−Ω,Ω], (3)

|Ha

(
eiω

) | ≤ |Mθ,q

(
eiω

) |, ω ∈ [−Ω1,−Ω0] ∪ [Ω0,Ω1]. (4)

Conditions (a)-(c) represent particular versions of less specific Conditions (A)-(C). In particular,

estimate (4) ensures that Condition (C) is satisfied.

3 A family of near-ideal smoothing filters

Let a real number p ∈ (1/2, 1) and integers N ≥ 1 and m ≥ 1 be given. For the real numbers a ∈ (0, 1),

we define transfer functions

Ha(z) =

(
exp

(1− a)p

z + a
+Ga(z)

)m

, z ∈ C, (5)

where

Ga(z) = −ξ(a, p) +
γ(a, p)

N

(
(−1)Nz−N − 1

)
,

and where

ξ(a, p) = exp[−(1− a)p−1], γ(a, p) = |1− a|p−2ξ(a, p).

We consider the set {Ha}a∈(0,1) of transfer functions (5) with a fixed triplet (m,N, p).

Theorem 1 Conditions (a)-(c) are satisfied for the family of filters defined by the transfer functions

{Ha}a∈(0,1). (Therefore, Conditions (A)-(C) are satisfied for this family).
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Proof of Theorem 1. Let us assume first that m = 1.

Clearly, the functions Ha are holomorphic in Dc and bounded in Dc ∪ T for any a ∈ (0, 1). Hence

the inverse Z-transforms ha = Z−1Ha are causal impulse responses, i.e., ha(t) = 0 for t < 0; see, e.g.,

[22], Theorem 4.3.2.

Let f(a) = (1− a)p and Ψa(z) = f(a)(z+ a)−1. By the definitions, Ha(z) = expΨa(z) +Ga(z),

and

Ψa

(
eiω

)
= f(a)

cos(ω) + a− i sin(ω)

(cos(ω) + a)2 + sin(ω)2
.

Let us prove that Condition (a) holds.

Clearly, |Ga

(
eiω

) | → 0 as a → 1− 0 uniformly in ω ∈ (−π, π].

Let ωa ∈ (π/2, π) be such that cos(ωa)+a = 0. We have that ReΨa

(
eiω

)
> 0 for all ω ∈ [−ωa, ωa]

and ReΨa

(
eiω

)
< 0 for all ω ∈ [−π, ωa) ∪ (−ωa, π].

Further, we have that

inf
ω∈[−ωa,ωa]

|eiω + a| ≥
√

1− a2.

Hence

sup
ω∈[−ωa,ωa]

|Ψa

(
eiω

) | ≤ f(a)√
1− a2

=
(1− a)p−1/2

(1 + a)1/2
≤ 1.

Therefore, the value |Ha

(
eiω

) | is uniformly bounded in a, ω. Hence Condition (a1) holds.

Further, we have that

ωa → π − 0 as a → 1.

Hence, for any Ω ∈ [0, π), we have that

sup
ω∈[−Ω,Ω]

|Ψa

(
eiω

) | → 0 as a → 1

and

sup
ω∈[−Ω,Ω]

|Ha

(
eiω

)− 1| → 0 as a → 1.

Hence Condition (a2) holds.

Let as show that Condition (a3) holds. Let Ya = HaX. By Condition (a2), Ya
(
eiω

) → X
(
eiω

)
as

a → 1− 0 for all ω ∈ R. Clearly, there exists a0 ∈ (0, 1) and c0 > 0 such that supω,a≥a0 |Ha

(
eiω

) | ≤
7



c0. Hence |Ya
(
eiω

)−X
(
eiω

) | ≤ (c0+1)|X (
eiω

) |. By the assumptions, X
(
eiω

)
= Zx ∈ L1(−π, π).

By the Lebesgue Dominance Theorem, it follows that

∥∥Ya

(
eiω

)−X
(
eiω

)∥∥
L1(−π,π)

→ 0 as a → 1− 0.

Therefore, Condition (a3) holds and Condition (a) holds.

Let us show that Condition (b) holds. We have that

exp
(
Ψa

(
eiπ

))
= exp

(
f(a)

−1 + a

(1− a)2

)
= exp

(
−(1− a)p

1− a

)
= ξ(a, p) = −Ga(−1).

Hence Ha(−1) = exp (Ψa (−1)) +Ga(−1) = 0.

Let us show that dHa
dω

(
eiω

) ∣∣∣
ω=π

= 0. Let

r(ω) = Re exp
(
Ψa

(
eiω

))
, s(ω) = Im exp

(
Ψa

(
eiω

))
,

q(ω) =
1

N
Im

(
e−iN(ω−π) − 1

)
.

Clearly, the function Ψa

(
eiω

)
is differentiable in ω ∈ R for any a, as well as functions r(ω), s(ω),

and q(ω). In addition, we have that r(ω) = r(π − ω). Hence r(ω) is even about the point ω = π and

differentiable. This implies that

dr

dω
(ω)

∣∣∣
ω=π

= 0.

By the definitions, s(ω) = exp(ReΨa) sin(ImReΨa) and exp(ReΨa)
(
eiω

) → ξ(a, p) as ω → π. We

have that s(π) = q(π) = 0. The L’Hôpital’s rule gives that

lim
ω→π

ds(ω)
dω

dq(ω)
dω

= lim
ω→π

s(ω)

q(ω)
= lim

ω→π

ξ(a, p) sin
( −(1−a)p sin(ω)
(a+cos(ω))2+sin(ω)2

)
1
N sin(N(ω − π))

= −ξ(a, p)
(1 − a)p

(a − 1)2
= −γ(a, p).

Clearly, dq(ω)
dω |ω=π = −1. Hence

d

dω
expΨa

(
eiω

) ∣∣∣
ω=π

= i
ds(ω)

dω
|ω=π = iγ(a, p).

On the other hand,

dGa

(
eiω

)
dω

∣∣∣
ω=π

=
d

dω

(
−ξ(a, p) +

γ(a, p)

N

(
e−iN(ω−π) − 1

)) ∣∣∣
ω=π

= −iγ(a, p).
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Hence

d

dω
Ha

(
eiπ

) ∣∣∣
ω=π

=
d

dω
exp

(
Ψa

(
eiπ

)) ∣∣∣
ω=π

+
dGa

(
eiω

)
dω

∣∣∣
ω=π

= 0.

Therefore, Condition (b1) holds.

Let us show that Condition (b2) holds. We have that

ReΨa

(
eiω

)
=

f(a)(cos(ω) + a)

(cos(ω) + a)2 + sin(ω)2
= f(a)

Re (eiω + a)

|eiω + a|2 .

We have that −Re (eiω+a)/|eiω +a| is non-decreasing in ω ∈ [ωa, π] and converges to 1 as ω → π−0,

and 1/|eiω + a| is non-decreasing in ω ∈ [ωa, π] and converges to (1 − a)−1 as ω → π − 0. Hence

the product of these functions, −f(a)−1ReΨa

(
eiω

)
, is non-decreasing in ω ∈ [ωa, π] . Hence we can

select ω̂a ∈ [ωa, π] such that −ReΨa

(
eiω

) ≥ −ReΨa

(
eiπ

)
/2 for all ω ∈ [ω̂a, π], i.e., ReΨa

(
eiω

) ≤
ReΨa

(
eiπ

)
/2 for all ω ∈ [ω̂a, π]. In addition, ReΨa

(
eiω

)
= ReΨa

(
e−iω

)
. Hence ReΨa

(
eiω

) ≤
ReΨa

(
eiπ

)
/2 for all ω ∈ [ω̂a, 2π − ω̂a] = [π − δa, π + δa], where δa = π − ω̂a.

Further, we have that

ReΨa

(
eiπ

)
= (1− a)p

−1 + a

(−1 + a)2
→ −∞ as a → 1.

For a given ε > 0, let us select ā such that ReΨa

(
eiπ

)
/2 < log(ε/2) for all a ≥ ā. In addition, we

can select ã ≥ ā such that |Ga

(
eiω

) | ≤ ε/2 for all a ≥ ã and all ω. Then Condition (b2) holds with

a = ã and δ = δã selected for given ε. Therefore, Condition (b) holds.

Let us show that Condition (c) holds. It follows from the proof of (a) above, that, for a given ε > 0

and Ω, we can select ā such that (3) holds for a ≥ ā. Further, let q > 1 be any. For any Ω0 > Ω and

Ω1 > Ω0,

sup
ω∈[−Ω1,−Ω0]∪[Ω0,Ω1]

|Mθ,q

(
eiω

)− 1| → 0 as θ → 0.

Clearly, (4) holds for small enough θ. Hence Condition (c) holds.

We have proved the theorem for the case where m = 1. The extension on the case where m > 1 is

straightforward. This completes the proof of Theorem 1. �

Illustrative examples

Figures 1-3 shows examples of the frequency responses and the impulse functions for the filters described

above.
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Figure 1 shows the shapes of gain curves |Mθ,q

(
eiω

)
for reference non-causal filter (2) with θ = 0.02,

q = 1.01, and |Ha

(
eiω

) | for near-ideal causal filters (5) with a = 0.99, p = 0.6, N = 50, m = 2.

Figure 2 shows the shapes of error curves for approximation of identity operator on low frequencies.

More precisely, it shows |Mθ,q

(
eiω

)− 1| for reference non-causal filter (2) and |Ha

(
eiω

)− 1| for near-

ideal causal filters (5), with the same parameters as for Figure 1.

Figure 3 shows an example of impulse response h = Z−1Ha calculated as the inverse Z-transform

for causal filter (5) with a = 0.8, p = 0.6, N = 10, m = 1. Since the properties of Ha guarantee that

Imha(t) = 0 for all t and that ha(t) = 0 for all t < 0, we show the values for t ≥ 0 only.

In particular, these examples show that the impulse response functions ha can take negative values;

i.e., these filters do not represent an averaging with a positive kernels.

4 Applications to the forecasting

A possible application of suggested above filters is preliminary smoothing of the input signals for the

predicting algorithms. For this task, the causality is crucial. It is known that the band-limited sequences

are predictable, i.e., the sequences are predictable if with the spectrum vanishing on a interval in T. In

addition, there are predictable sequences such that the spectrum is vanishing in a single point of T; see

[11, 12], where some predicable algorithms were suggested.

It can be noted that, the suggested above filters do not change the input sequences significantly if a is

close to 1; the energy of the input is not damped on a given arc of T. In fact, the energy is damped on a

small neighborhood of the point eiπ = −1, and the size of this neighborhood converges to zero as a → 1.

Therefore, one cannot expect that the filters introduced above will help to improve the performance of

the predicting algorithms [11] requiring that the spectrum is vanishing on a fixed arc on the unit circle.

However, it appears that these filters can help to improve the performance of predictors [12] oriented

on processes x with spectrum vanishing in a single point. More precisely, predictors [12] are applicable

for discrete time processes x such that, for some θ > 0, q > 1, c > 0,

sup
ω∈[−π,π]

|X (
eiω

) | ≤ cMθ,q

(
eiω

)
, X = Zx. (6)

In particular, it follows that filters (2) transfer sequences of a general type into predictable sequences

such that (6) holds; respectively, filters (2) cannot be causal.
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The predicting kernel [12] was defined as k = k(·, γ) = Z−1K , where

K(z)
Δ
= z

(
1− exp

[
− γ

z + 1− γ−r

])
, (7)

and where r > 0 and γ > 0 are parameters. This predictor produces the process

y(t) =
t∑

d=−∞
k(t− d)x(t)

approximating x(t+ 1) for γ → +∞ for all inputs x satisfying (6) with q > 1 + 2/r. (In the notations

from [12], r = 2μ/(q−1), where μ > 1, q > 1 are the parameters ). The function K
(
eiω

)
approximates

the function eiω representing the forward one-step shift in the time domain; the value |K(
eiω

) − eiω| is

small everywhere but in a small neighborhood of ω = π. Therefore, the process y(t) represents an one

step prediction of x(t+ 1) if X
(
eiω

)
vanishes with a certain rate at ω = −π. It was shown in [12] that

sup
t

|x(t+ 1)− y(t)| → 0 as γ → 0,

for real sequences x such that (6) holds, i.e., that the prediction error vanishes as γ → +∞. Moreover,

the error vanishes uniformly over classes of processes x from some bounded sets from �∞, such that (6)

holds with a given c.

Predictors (7) are robust with respect to some small noise contamination, meaning that the prediction

error depends continuously on the intensity of the contaminating noise. However, for large γ, the values

of K
(
eiω

)
can be very large in a neighborhood of ω = π; in this case, the error can be large even for a

small noise.

We suggest to apply filter (5) to compensate the presence of large values of K
(
eiω

)
in a small

neighborhood of ω = π and therefore to reduce the impact of the presence of the high-frequency noise.

This is illustrated by Figure 4 showing the shapes of error curves for approximation of the forward one

step shift operator. More precisely, it shows the shape of |K(
eiω

) − eiω| for the predictor (7) and the

shape of |K (
eiω

)
Ha

(
eiω

)−eiω| for the transfer functions (5) and (7), which corresponds to preliminary

smoothing of the input process by filters (5). These shapes characterize imperfection of the predictors,

since the transfer function eiω corresponds to the one-step forward shift operator in time domain, i.e., eiω

represents an ideal non-causal error-free one-step ahead predictor. It appears that the application of the

filter improves the approximation of eiω .
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Our setting does not involve stochastic processes and probability measure; it is oriented on smoothing

the real sequences. However, to provide an example of the application of our smoothing filters, we

considered a toy example with prediction of a stochastic Gaussian stationary process x(t) evolving as an

autoregression of AR(2) type

x(t) = β1x(t− 1) + β2x(t− 2) + ση(t), t ∈ Z. (8)

Here η(t) is a stochastic discrete time Gaussian white noise, Eη(t) = 0, Eη(t)2 = 1. The coefficient

σ > 0 describes the intensity of the noise.

For the estimation of the effectiveness of predictors, we use the ratio

e(b1, b2) =

(∑n
t=1 |y(t− 1)− x(t)|2)1/2

(
∑n

t=1 |b1x(t− 1) + b2x(t− 2)− x(t)|2)1/2
, (9)

where bk ∈ R are parameters. The values y(t − 1) are supposed to be the predictions, at time t − 1,

of the future values x(t). Since the sequence {x(t)} does not satisfy (6) due to the presence of noise, a

forecasting error is inevitable. Ratio (9) allows to compare the error of a predicting algorithm generating

y and the error generated by a linear predictor with the coefficients b1 and b2. More precisely, the value

e(b1, b2) represent the ratio of the error generated by the predictor producing y and the error generated

with the error of the linear predictor based on the hypothesis that β1 = b1 and β2 = b2.

If the vector (β1, β2) is known, then the optimal one step predictor of x(t) is

y(t− 1) = β1x(t− 1) + β2x(t− 2). (10)

In this case, the value n−1
∑n

t=1 |β1x(t − 1) + β2x(t − 2) − x(t)|2 represents the sample mean of the

squared error of this optimal predictor with known values of (β1, β2). Therefore, the optimal predictor

(10) ensures that e(β1, β2) ≈ 1 for a large enough n. Similarly, for any given n, an average value for

e(β1, β2) is also close to one for a sufficiently large number of Monte-Carlo trials, for optimal predictor

(10). Respectively, any other predictor besides (10), including predictor (7), cannot achieve a lesser

average value of e(β1, β2) for a sufficiently large n or as an average value for a sufficiently large number

of Monte-Carlo trials.

However, in many practical situations, the value of (β1, β2) is unknown, and, respectively, predictor

(10) cannot be used. On the other hand, predictor (7) does not require to know (β1, β2) and can be applied

in models with unknown or random and time variable (β1, β2) where predictors (10) is not applicable. In
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other words, predictor (7) can be applied for processes with unknown shape of the spectral representation.

Therefore, it is reasonable to estimate the performance of a predictor using e(b1, b2) with bk �= βk, for

instance, with bk selected as the expected value, or the median, or upper or lower boundaries of unknown

βk.

Since it is impossible to implement convolution with infinitely supported kernels and inputs, one has

to use truncated kernels and inputs for calculations. In the experiments described below, we replaced k

and ha = Z−1Ha by the truncated kernels

kd(t) = I{t≤d}k(t), ha,d(t) = I{t≤d}ha(t), d > 0. (11)

In other words, the original k = Z−1K and ha = Z−1Ha were used as some benchmarks; only their

truncated versions were actually implemented.

We will use value (9) to estimate the performance of predicting algorithms for the following two

cases:

• The algorithm is applied without filtering and produces y = kd ◦ x; we denote by eK(b1, b2) the

corresponding values (9).

• The algorithm is applied with filtering and produces y = (kd ◦ ha,d) ◦x; we denote by eKH(b1, b2)

the corresponding values (9).

In both cases, y(t) is calculated using historical data {x(s)}t−d≤s≤t.

In our experiments, we used equations (5) and (7) with

γ = 1.1, r = 1.1, a = 0.6, p = 0.7, N = 100, m = 2. (12)

Note that selection of too large γ makes calculation of k challenging, since it involves precise integration

of fast growing K
(
eiω

)
. The choice of parameters in (12) ensures that the values of |K(

eiω
) | are not

large. Figure 5 shows the corresponding impulse response Z−1Ha. Figure 6 shows the corresponding

impulse responses Z−1K and Z−1(KHa).

In our experiment with AR(2) process, we used 10,000 Monte-Carlo trials with n = d = 100 and

σ = 0.3. For each trial, we selected (β1, β2) randomly and independently. The distribution of (β1, β2) at

each trial was the following: β1 has the uniform distribution on the interval (0, 1), and β2 = ξ
√
1− β2

1 ,
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where ξ is a random variable independent on β1 and uniformly distributed on the interval (−1, 1). This

choice ensures that the eigenvalues of the autoregression stay inside of the unit circle D almost surely.

We used MATLAB and standard personal computers; an experiment with 10,000 Monte-Carlo trials

would take about five minutes of calculation time.

First, we compared the relative performance of our predictors with respect to the performance of the

optimal predictor that requires that the values β1 and β2 are known. We obtained that the mean value

over all Monte-Carlo trials of eK(β1, β2) is 1.5019 and the mean value of eKH(β1, β2) is 1.1177. This

indicates that application of filter (5) improves the performance of the predictor. As was mentioned

above, we cannot expect, for sufficiently many Monte-Carlo trials, the mean values of eK(β1, β2) and

eKH(β1, β2) to be less than one, so the performance of the predictor (7) combined with filters (5) is

reasonably good.

Second, we calculated the mean values eK(b1, b2) and eKH(b1, b2) with bk = Eβk, where Eβk is the

population mean for βk, k = 1, 2. For our parameters of the Monte-Carlo trials, we have Eβ1 = 0.5 and

Eβ2 = 0. The corresponding values eK(0.5, 0) and eKH(0.5, 0) represent comparison of the performance

of our predictor (without or with preliminary filtering) with an one-step predictor of x(t) given by

y(t− 1) = (Eβ1)x(t− 1) + (Eβ2)x(t− 2).

Note that this predictor requires to know the population means of β1 and β2. We obtained that the mean

value for eK(0.5, 0) is 1.2292 and the mean value for eKH(0.5, 0) is 0.9545. These numbers indicate a

good performance of our filter/predictor system, especially if we take into account that our system does

not require to know the values Eβk.

Figure 7 shows a sample path of AR(2) process x(t) and a filtered process obtained using filter (5)

with the parameters defined by (12). Figure 8 shows sample paths of AR(2) process x(t) and outputs

y(t) of predictor [12] without preliminary filtering and with preliminary filtering using filter (5) with the

parameters defined by (12). It shows the values y(t − 1), i.e., predictions of x(t), versus the values of

x(t).

In addition, we considered a modification of process (8) with β2 ≡ 0, i.e., AR(1) process. We used

the same predictors and filters as for the experiments with AR(2) process described above.

We set again 10, 000 Monte-Carlo trials with n = d = 100, with σ = 0.3, and with randomly

selected β1 such that β1 was distributed uniformly on the interval (0, 1). We compared the relative
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performance of our predictors with respect to the performance of the optimal predictor that requires that

the value β1 is known. We obtained that the mean value of eK(β1, 0) is 1.2830 and the mean value of

eKH(β1, 0) is 1.1023. The numbers indicate again that the use of the filter improves the performance

of the predictor. Again, the mean values of eK(β1, 0) and eKH(β1, 0) cannot be less than one, so the

performance of the predictor (7) combined with filters (5) is reasonably good.

Finally, we calculated the values eK(b1, 0) and eKH(b1, 0) with b1 = Eβ1 = 0.5 for AR(1) process

defined by (8) with β2 ≡ 0. In other words, we compared the relative performance of the one step

predictor (5) with or without filtering with respect to the predictor y(t) = (Eβ1)x(t) that requires to

known the population mean for β1. We obtained that eK(0.5, 0) = 1.1824 and eKH(0.5, 0) = 1.0155.

This shows again that application of the filter reduces the forecasting error. Given that our system does

not require to know Eβ1, the performance is reasonably good.

The results of these experiments appear to be consistent and stable with respect to the variations of

the parameters.

On the impact of truncation

Since it is impossible to implement convolution with infinitely supported kernels and inputs, we have

to run numerical calculations with truncated processes. Let us show that the described above filtering

and forecasting are robust with respect to the truncation, i.e., that the truncation in (11) has a vanishing

impact for large d. Since Ha

(
eiω

) ∈ L∞(−π, π), we have that ha ∈ �2. Hence ha,d ◦ x → ha ◦ x in �∞

as d → +∞ for x ∈ �2; in practice, only truncated inputs x ∈ �2 are available. It can be also noted that

the predicting kernel k = Z−1K defined by (7) belongs to �2. Therefore, the kernel k ◦ ha,d converges

to k ◦ ha in �∞ as d → +∞.

Our numerical experiments for autoregressions with the coefficients deemed to untraceable demon-

strated that truncation with relatively small d = 100 does not diminish a good forecasting performance.

5 Conclusion

The paper proposes a family of causal smoothing filters. These filters are near-ideal meaning that a

higher rate of damping of the energy on the high frequencies would lead to the loss of causality; this is

because they approximate non-causal filters transferring non-predicable processes into predictable ones.

15



A possible application is preliminary smoothing of the inputs for predicting algorithms. Certain mild but

stable improvement of forecasting accuracy is demonstrated in experiments with simple autoregressions

in a setting where theirs coefficients are deemed to be untraceable.

It could be interesting to investigate the computational limits of the algorithms described above, for

instance, for long sequences, for higher order autoregressions, or for other types of input processes. It

could be interesting to find other filters with similar properties. It could be useful to represent the filtering

algorithm in the terms of the discrete Fourier transform. We leave this for future work.
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Figure 1: Gain decay: the values |Mθ,q

(
eiω

) | for a non-causal filter (2) with θ = 0.02 and q = 1.01,

and |Ha

(
eiω

) | for a causal filter (5) with a = 0.99, p = 0.6, N = 50, m = 2.
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Figure 2: Approximation of identity operator: shapes of the distances from 1, i.e, for the values

|Mθ,q

(
eiω

) − 1| and |Ha

(
eiω

) − 1|, for a non-causal filter (2) with θ = 0.02 and q = 1.01, and

|Ha

(
eiω

) | for a causal filter (5) with a = 0.99, p = 0.6, N = 50, m = 2.
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Figure 3: Impulse response ha(t) = (F−1Ha)(t) for causal filter (5) with a = 0.8, p = 0.6, N = 10,

m = 1.
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0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

 

 
h(t) for a=0.6, p=0.7, N=100 ,m=2

Figure 5: Impulse response ha(t) = (F−1Ha)(t) for causal filter (5) with the parameters given in (12).
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Figure 6: The impulse response Z−1K of predictor (7) and the impulse response Z−1(KHa) of the

predictor combined with filters (5) with the parameters given in (12).
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Figure 7: A path of AR(2) process x(t) versus the output of filter (5) with the parameters given in (12).
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Figure 8: A path of AR(2) process x(t) versus two predictions y(t − 1) of x(t); one was calculated

without filtering, and another was calculated after application of filter (5) with the parameters given in

(12).
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