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ABSTRACT 

Finite Impulse Response (FIR) filters are widely used 

in Digital Signal Processing (DSP) systems. The 

throughput of real-time, FIR filters is limited by the 

processing capability of its implementation. Software 

implementations are very flexible but the inherent 

sequential execution of programs makes them slow. 

The fastest FIR filters are those implemented in 

dedicated hardware, but these systems are usually 

fixed and modifications to the filter are not possible. 

This paper presents the design and implementation of 

a Field-Programmable Gate-Array (FPGA)-based, 

FIR filter. By exploiting the field-programmability of 

FPGAs it is possible to create different filters with 

fixed functionality, or even create adaptive filters 

whose parameters are adjusted in real-time by some 

intelligent algorithm. 

1. INTRODUCTION 

The Finite Impulse Response (FIR) filter is used in 

many Digital Signal Processing (DSP) systems to 

perform signal preconditioning, anti-aliasing, band 

selection, decimation/interpolation and low-pass 

filtering functions. In high-performance applications, 

digital filters need to operate in real-time, i.e. data 

have to be processed immediately after they have 

been acquired. The throughput of real-time FIR 

filters is often limited by the processing capability of 

the system. Providing a system with a high 

processing speed and flexibility is therefore a crucial 

factor [1]. 

The FIR-filter computes an output from a set of 

input-samples. These input samples are multiplied by 

a set of coefficients and then added together to 

produce the output, hence the filter behaviour is 

determined by the set of coefficients. A general FIR 

filter is described by the following equation: 

Y(n)=k0x(n)+k1x(n-1)+k2x(n-2)+…+kmx(n-m)   (1) 

Where ki is the i-th coefficient, x(n) is one sample of 

the input signal, and Y(n) is one point of the output 

signal. m is the number of filter coefficients called 

taps, and n is the number of input samples. Figure 1 

shows the logical structure of an FIR Filter. 
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Figure 1. Logical Structure of an FIR filter. 

High throughput is often a crucial requirement in 

real-time systems. Also, there is a need to have 

flexible systems that can be changed according to 

new specifications.  

FIR-filters can be implemented in either hardware or 

software. Systems based on software are flexible, 

but due to the sequential nature of program-

execution, they often suffer from insufficient 

processing capability. Figure 2 shows the software 

implementation of a 256-tap FIR filter.  

 

Register 

x 

+ 

x(n) 

Coefficients 

Y(n) 

256 loops 
needed to 
process all 

the samples 

 
Figure 2. Sequential implementation of FIR filter 



Dedicated hardware, on the other hand, can provide 

the highest processing performance, but is less 

flexible for changes [2]. Figure 3 illustrates the 

parallel implementation of a 256-tap FIR filter. 
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Figure 3. Parallel implementation of FIR filter. 

The filters shown in figures 2 and 3 perform the 

same function. The implementation shown in Figure 

3 will do 256 operations in one clock cycle, whereas 

the system in figure2 will require at least 256 clock 

cycles to calculate one point of the output. However, 

the improvement in performance obtained with the 

parallel implementation usually requires expensive 

dedicated hardware. 

Reconfigurable hardware devices offer both the 

flexibility of computer software, and the ability to 

construct custom high performance computing 

circuits. Thus, in many cases they achieve a good 

compromise between software and hardware 

solutions. The flexible nature of these devices opens 

up a new range of circuits that exploits their 

reconfigurability. A large variety of real-world 

applications exist for such hardware [3].  

Another advantage of FPGAs is the fact that they 

can accept last minute design modifications as well 

as future design iterations without making extensive 

software or hardware changes, saving both time and 

money. Also, designing the FPGA using a hardware 

description language such as VHDL, makes the 

design portable and easy to change and test. Apart 

from being design-flexible, FPGAs provide optimal 

device utilisation through conservation of board 

space and system power which are important 

advantages not available with many stand-alone 

DSP chips [1]. 

2. FPGA-BASED FIR FILTER 

The objective of the work presented in this paper is 

to implement a reconfigurable FIR filter in an 

FPGA. First, a basic cell to implement one tap of the 

FIR filter is designed and then the basic cell is 

replicated to form the required FIR filter. The 

coefficients and some routing resources will be 

downloaded on-line, so that the characteristic 

equation of the filter can be altered on-the-fly. 

2.1 The Basic Cell 

The basic cell is programmed onto the FPGA and 

then used to implement reconfigurable FIR filters. 

Basic cells are interconnected depending on the type 

and length of the filter to be implemented. Note to 

be successful in cascading in directions other then 

linear, a Router will need to be used between the 

basic cells. This is perhaps future work. Figure 3 

shows the basic cell and the configuration bits that 

are required to configure multiple cells into desired 

digital filters. 
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Figure 3. Block diagram of FIR basic cell. 

The main components of the basic cell are Registers 

(delays), Multipliers and Adders. Using these basic 

components, a cell with the ability to be configured 

to use all or some of these resources has been 

implemented. Figure 4 shows the internal 

architecture of the basic cell.  

 
Figure 4. Structure of the FIR reconfigurable basic cell 

As mentioned above several basic cells can be 

configured to form different filters, filters of 

different lengths, and filters with different 

coefficients. For example if a multiplication is not 

needed then the multiplication constant can be set to 

1; or if no addition is required then the addition 

constant can be set to 0. In addition to the canonical 



implementation of FIR filters (one basic cell after 

another forming a line), other topologies can be 

explored. A close inspection of Figure 4 reveals that 

output S(n) can propagate either the S(p) input 

without delay, or the S(p) input after one clock cycle 

(canonical FIR filter implementation), or the result 

from the multiplication or addition in the previous 

cell. In a similar way, the inputs to the multiplier and 

adder in every basic cell can be selected. Note that 

one of the operands for the multiplier and adder can 

be a constant. Constants going into the multiplier are 

the coefficients of the FIR filter. 

2.2 Reconfigurable FIR filter 

The design of digital circuits using FPGAs requires 

the use of sophisticated software tools. In this work, 

Xilinx’s ISE 7.1 has been used to write, synthesise 

and simulate VHDL descriptions of the basic cell 

and FIR filters. The verified design of the basic cell 

can be stored in a library for use in the 

implementation of different FIR filters. 

The actual design of an FIR filter requires 

determining the number of taps and the coefficients 

associated to each tap. This process can be done 

using another program, for example MatLab. Once 

the FIR filter has been designed and tested by 

simulation, implementing it in an FPGA only 

requires connecting as many basic cells as needed to 

meet the specification.  

The implementation of FIR filters using the basic 

cell is simple because it requires adjacent cells to be 

joined in a linear fashion, connecting the outputs of 

one cell to the inputs of the following cell. This 

topology is translated by ISE software into a 

configuration file that is downloaded to the FPGA 

that will physically implement the filter.  

Once the topology for the FIR filter has been 

downloaded to the FPGA, two reconfigurations can 

be applied. The first is to set the value of the 

coefficients in each tap. By changing the 

coefficients, the FIR filter will have a different 

characteristic equation. The other possible change is 

the topology of the filter. This is done by changing 

the configuration bits that control the multiplexers 

inside each basic cell. These bits will determine, 

among other things, the number of taps in a filter. 

The number of taps in a filter determines the quality 

of the results. Long filters have better characteristics 

than shorter ones, but they require more resources to 

be implemented. Hence, the maximum size for 

reconfigurable FIR filters will be determined by the 

FPGA’s available resources. 

Reconfiguration of the FPGA-based FIR filter must 

be accomplished without having to reset the FPGA 

and load all the basic cells over again for every new 

configuration. Instead, it must be done seamlessly 

just by overriding the previous configuration bits 

and coefficients.  

In this work, configuration bits and coefficients are 

downloaded to the FPGA as a binary file using a 

conventional PC RS-232 serial port and the Hyper 

Terminal program. Figure 5 shows the setting used 

in this project to implement reconfigurable FIR 

filters in an FPGA. 
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Figure 5. Setting used to test the system 

The procedure to implement a reconfigurable FIR 

filter is as follows: 

1. Using Xilinx Load the array of basic cells on 

the FPGA. 

2. Once the Basic Cells are on the FPGA use 

Hyper Terminal to load the configurations of 

these cells and the data to be filtered. 

3. Load a new configuration by loading a new file. 

It is important to note that the configuration 

files will need to be monitored closely so that 

the correct bits are used at the correct places on 

the FPGA, should one bit be out of place then 

the whole configuration is invalid. 

3. APPLICATIONS 

Reconfigurable digital filters can be used in adaptive 

or learning systems. 

In adaptive filters new coefficients have to be 

constantly generated as a function of the noise 

presented to the system. For example, filters change 

their characteristic response to filter-out intermittent 

noise. 

Reconfigurable digital filters can be combined with 

an evolutionary strategy, such as genetic algorithms, 

to evolve rather than mathematically calculate the 

coefficients [2]. It is possible to conceive a system 

where the required frequency response of the filter is 

well characterised by means of, for example, the 



frequency spectrum of the desired output. In this 

case, the Fast Fourier Transform (FFT), of the 

filter’s output could be used to evaluate the quality 

of the filter. If a genetic algorithm were to be used to 

evolve the required filter, then the following 

procedure would need to be followed: 

1. Generate a population of filters. Every individual 

of the population would be a set of parameters 

that define the response of the filter. 

2. Evaluate the fitness of every individual in the 

population by loading the parameters into the 

filter and comparing its output against the FFT of 

the desired response. 

3. Select the fitter individuals to generate the next 

generation of coefficient sets. 

4. Add variation into the new population by 

randomly changing the value of some parameters 

(mutation). 

5. Repeat steps 2 to 4 until the response of the filter 

is close enough to the desired response. 

Figure 6 shows a block diagram of the evolvable 

digital filter. 
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Figure 6. Evolution of digital filter using genetic 

algorithms 

If all the blocks shown in figure 6 could be 

implemented in the same FPGA, then a very fast and 

reliable way of creating digital, adaptable filters 

would be attained. 

CONCLUSIONS AND FUTURE WORK 

Reconfigurable hardware devices offer both the 

flexibility of software, and the ability to construct 

custom, high-performance, computing circuits. This 

flexibility allows FIR-filters implemented in FPGAs 

to be used in real-time, high-throughput applications.  

New generations of FPGAs contain vast amounts of 

resources including not only logic, but also integrated 

peripherals such as memory blocks, hardware 

multipliers, microcontrollers, and high-speed input 

output ports. These devices provide the platform 

needed to implement complete DSP, embedded 

solutions, without the need to design an ASIC. 

By combining reconfigurable, FPGA-based, DSP 

components with evolutionary techniques, 

interesting intelligent, evolvable systems could be 

created. These devices could adapt to changes in 

their environment and learn about the world as they 

explore it [6, 7]. Interesting times lay ahead. Indeed. 
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