
RECONFIGURABLE FIR FILTER IN FPGA

Igor Dzukleski and Cesar Ortega-Sanchez

Electrical and Computer Engineering Department

Curtin University of Technology

GPO Box U1987

 Perth, Western Australia 6102

 E-mail: c.ortega@curtin.edu.au

ABSTRACT

Finite Impulse Response (FIR) filters are widely used

in Digital Signal Processing (DSP) systems. The

throughput of real-time, FIR filters is limited by the

processing capability of its implementation. Software

implementations are very flexible but the inherent

sequential execution of programs makes them slow.

The fastest FIR filters are those implemented in

dedicated hardware, but these systems are usually

fixed and modifications to the filter are not possible.

This paper presents the design and implementation of

a Field-Programmable Gate-Array (FPGA)-based,

FIR filter. By exploiting the field-programmability of

FPGAs it is possible to create different filters with

fixed functionality, or even create adaptive filters

whose parameters are adjusted in real-time by some

intelligent algorithm.

1. INTRODUCTION

The Finite Impulse Response (FIR) filter is used in

many Digital Signal Processing (DSP) systems to

perform signal preconditioning, anti-aliasing, band

selection, decimation/interpolation and low-pass

filtering functions. In high-performance applications,

digital filters need to operate in real-time, i.e. data

have to be processed immediately after they have

been acquired. The throughput of real-time FIR

filters is often limited by the processing capability of

the system. Providing a system with a high

processing speed and flexibility is therefore a crucial

factor [1].

The FIR-filter computes an output from a set of

input-samples. These input samples are multiplied by

a set of coefficients and then added together to

produce the output, hence the filter behaviour is

determined by the set of coefficients. A general FIR

filter is described by the following equation:

Y(n)=k0x(n)+k1x(n-1)+k2x(n-2)+…+kmx(n-m) (1)

Where ki is the i-th coefficient, x(n) is one sample of

the input signal, and Y(n) is one point of the output

signal. m is the number of filter coefficients called

taps, and n is the number of input samples. Figure 1

shows the logical structure of an FIR Filter.

Delay Delay Delay

x

+

x

+

x

+

x

+

x(n)

k0 k1 k2 km

Y(n)

Figure 1. Logical Structure of an FIR filter.

High throughput is often a crucial requirement in

real-time systems. Also, there is a need to have

flexible systems that can be changed according to

new specifications.

FIR-filters can be implemented in either hardware or

software. Systems based on software are flexible,

but due to the sequential nature of program-

execution, they often suffer from insufficient

processing capability. Figure 2 shows the software

implementation of a 256-tap FIR filter.

Register

x

+

x(n)

Coefficients

Y(n)

256 loops
needed to
process all

the samples

Figure 2. Sequential implementation of FIR filter

Dedicated hardware, on the other hand, can provide

the highest processing performance, but is less

flexible for changes [2]. Figure 3 illustrates the

parallel implementation of a 256-tap FIR filter.

Delay Delay Delay

x x x

+

x

x(n)

k0 k1 k2 k255

Y(n)

256 operations in
one clock cycle

Figure 3. Parallel implementation of FIR filter.

The filters shown in figures 2 and 3 perform the

same function. The implementation shown in Figure

3 will do 256 operations in one clock cycle, whereas

the system in figure2 will require at least 256 clock

cycles to calculate one point of the output. However,

the improvement in performance obtained with the

parallel implementation usually requires expensive

dedicated hardware.

Reconfigurable hardware devices offer both the

flexibility of computer software, and the ability to

construct custom high performance computing

circuits. Thus, in many cases they achieve a good

compromise between software and hardware

solutions. The flexible nature of these devices opens

up a new range of circuits that exploits their

reconfigurability. A large variety of real-world

applications exist for such hardware [3].

Another advantage of FPGAs is the fact that they

can accept last minute design modifications as well

as future design iterations without making extensive

software or hardware changes, saving both time and

money. Also, designing the FPGA using a hardware

description language such as VHDL, makes the

design portable and easy to change and test. Apart

from being design-flexible, FPGAs provide optimal

device utilisation through conservation of board

space and system power which are important

advantages not available with many stand-alone

DSP chips [1].

2. FPGA-BASED FIR FILTER

The objective of the work presented in this paper is

to implement a reconfigurable FIR filter in an

FPGA. First, a basic cell to implement one tap of the

FIR filter is designed and then the basic cell is

replicated to form the required FIR filter. The

coefficients and some routing resources will be

downloaded on-line, so that the characteristic

equation of the filter can be altered on-the-fly.

2.1 The Basic Cell

The basic cell is programmed onto the FPGA and

then used to implement reconfigurable FIR filters.

Basic cells are interconnected depending on the type

and length of the filter to be implemented. Note to

be successful in cascading in directions other then

linear, a Router will need to be used between the

basic cells. This is perhaps future work. Figure 3

shows the basic cell and the configuration bits that

are required to configure multiple cells into desired

digital filters.

Basic
Cell

S(p)

M(p)

A(p)

S(n)

M(n)

A(n)

7 selection
bits

From
previous

stage

To next
stage

Figure 3. Block diagram of FIR basic cell.

The main components of the basic cell are Registers

(delays), Multipliers and Adders. Using these basic

components, a cell with the ability to be configured

to use all or some of these resources has been

implemented. Figure 4 shows the internal

architecture of the basic cell.

Figure 4. Structure of the FIR reconfigurable basic cell

As mentioned above several basic cells can be

configured to form different filters, filters of

different lengths, and filters with different

coefficients. For example if a multiplication is not

needed then the multiplication constant can be set to

1; or if no addition is required then the addition

constant can be set to 0. In addition to the canonical

implementation of FIR filters (one basic cell after

another forming a line), other topologies can be

explored. A close inspection of Figure 4 reveals that

output S(n) can propagate either the S(p) input

without delay, or the S(p) input after one clock cycle

(canonical FIR filter implementation), or the result

from the multiplication or addition in the previous

cell. In a similar way, the inputs to the multiplier and

adder in every basic cell can be selected. Note that

one of the operands for the multiplier and adder can

be a constant. Constants going into the multiplier are

the coefficients of the FIR filter.

2.2 Reconfigurable FIR filter

The design of digital circuits using FPGAs requires

the use of sophisticated software tools. In this work,

Xilinx’s ISE 7.1 has been used to write, synthesise

and simulate VHDL descriptions of the basic cell

and FIR filters. The verified design of the basic cell

can be stored in a library for use in the

implementation of different FIR filters.

The actual design of an FIR filter requires

determining the number of taps and the coefficients

associated to each tap. This process can be done

using another program, for example MatLab. Once

the FIR filter has been designed and tested by

simulation, implementing it in an FPGA only

requires connecting as many basic cells as needed to

meet the specification.

The implementation of FIR filters using the basic

cell is simple because it requires adjacent cells to be

joined in a linear fashion, connecting the outputs of

one cell to the inputs of the following cell. This

topology is translated by ISE software into a

configuration file that is downloaded to the FPGA

that will physically implement the filter.

Once the topology for the FIR filter has been

downloaded to the FPGA, two reconfigurations can

be applied. The first is to set the value of the

coefficients in each tap. By changing the

coefficients, the FIR filter will have a different

characteristic equation. The other possible change is

the topology of the filter. This is done by changing

the configuration bits that control the multiplexers

inside each basic cell. These bits will determine,

among other things, the number of taps in a filter.

The number of taps in a filter determines the quality

of the results. Long filters have better characteristics

than shorter ones, but they require more resources to

be implemented. Hence, the maximum size for

reconfigurable FIR filters will be determined by the

FPGA’s available resources.

Reconfiguration of the FPGA-based FIR filter must

be accomplished without having to reset the FPGA

and load all the basic cells over again for every new

configuration. Instead, it must be done seamlessly

just by overriding the previous configuration bits

and coefficients.

In this work, configuration bits and coefficients are

downloaded to the FPGA as a binary file using a

conventional PC RS-232 serial port and the Hyper

Terminal program. Figure 5 shows the setting used

in this project to implement reconfigurable FIR

filters in an FPGA.

Programs in the PC
ISE: Design of basic cell and reconfigurable FIR filter.
MatLab: Design of FIR filter.
Hyper Terminal: Download coefficients and configuration bits.

RS-232

Figure 5. Setting used to test the system

The procedure to implement a reconfigurable FIR

filter is as follows:

1. Using Xilinx Load the array of basic cells on

the FPGA.

2. Once the Basic Cells are on the FPGA use

Hyper Terminal to load the configurations of

these cells and the data to be filtered.

3. Load a new configuration by loading a new file.

It is important to note that the configuration

files will need to be monitored closely so that

the correct bits are used at the correct places on

the FPGA, should one bit be out of place then

the whole configuration is invalid.

3. APPLICATIONS

Reconfigurable digital filters can be used in adaptive

or learning systems.

In adaptive filters new coefficients have to be

constantly generated as a function of the noise

presented to the system. For example, filters change

their characteristic response to filter-out intermittent

noise.

Reconfigurable digital filters can be combined with

an evolutionary strategy, such as genetic algorithms,

to evolve rather than mathematically calculate the

coefficients [2]. It is possible to conceive a system

where the required frequency response of the filter is

well characterised by means of, for example, the

frequency spectrum of the desired output. In this

case, the Fast Fourier Transform (FFT), of the

filter’s output could be used to evaluate the quality

of the filter. If a genetic algorithm were to be used to

evolve the required filter, then the following

procedure would need to be followed:

1. Generate a population of filters. Every individual

of the population would be a set of parameters

that define the response of the filter.

2. Evaluate the fitness of every individual in the

population by loading the parameters into the

filter and comparing its output against the FFT of

the desired response.

3. Select the fitter individuals to generate the next

generation of coefficient sets.

4. Add variation into the new population by

randomly changing the value of some parameters

(mutation).

5. Repeat steps 2 to 4 until the response of the filter

is close enough to the desired response.

Figure 6 shows a block diagram of the evolvable

digital filter.

New population
(Sets of coefficients)

Digital filter

FFT

Desired

frequency
response

Comparator

Generate new
individuals

Mutation

1 individual

Fitness

Figure 6. Evolution of digital filter using genetic

algorithms

If all the blocks shown in figure 6 could be

implemented in the same FPGA, then a very fast and

reliable way of creating digital, adaptable filters

would be attained.

CONCLUSIONS AND FUTURE WORK

Reconfigurable hardware devices offer both the

flexibility of software, and the ability to construct

custom, high-performance, computing circuits. This

flexibility allows FIR-filters implemented in FPGAs

to be used in real-time, high-throughput applications.

New generations of FPGAs contain vast amounts of

resources including not only logic, but also integrated

peripherals such as memory blocks, hardware

multipliers, microcontrollers, and high-speed input

output ports. These devices provide the platform

needed to implement complete DSP, embedded

solutions, without the need to design an ASIC.

By combining reconfigurable, FPGA-based, DSP

components with evolutionary techniques,

interesting intelligent, evolvable systems could be

created. These devices could adapt to changes in

their environment and learn about the world as they

explore it [6, 7]. Interesting times lay ahead. Indeed.

REFERENCES

[1] Poonawala M. FIR Filter Design using FPGA, MSc

Thesis, School of Electronic and Electrical

Engineering, University of Leeds, UK, 2003.

[2] Vinger K. and Torresen J. “Implementing Evolution

of FIR filters efficiently in an FPGA”, Proc. of 2003

NASA/DoD Conference on Evolvable Hardware

(EH-2003), July, 2003, Chicago, Illinois, USA.

[3] Villasenor J. and Mangione-Smith W. “Configurable

Computing”, Scientific American, June 1997.

[4] Wang Y. “Implementation of digital filter by using

FPGA”, BEng Thesis, Electrical and Computer

Engineering Department, Curtin University of

Technology, 2005.

[5] Stettbacher J. “DSP Functions on FPGA’s”, MATLAB

Digest - January 2004, http://www.mathworks.com/

company/newsletters/digest/jan04/dsp_fpga.html.

[6] Bentley P. Digital Biology, Simon and Schuster, New

York, 2001.

[7] Sipper M. Machine Nature, McGraw-Hill, 2002.

