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Abstract 

This study examines bias in a term‐structure model of commodity prices in specifying the 

true stochastic dynamics of underlying spot price. The bias is quantified by comparing the 

model estimated by the conventional method of estimating all model parameters 

simultaneously with a panel of futures prices and the model estimated by an alternative 

method of estimating model parameters in two steps. In this alternative approach, a subset of 

model parameters is first estimated on the first difference of observed futures prices so that 

these parameters are free from bias in specifying deterministic price variation and the 

dynamics of the underlying state variables. In the second step, the remaining model 

parameters are estimated on the futures price equations, while holding the parameters 

estimated in the first step. Empirical applications to four commodities (gold, crude oil, 

natural gas, and corn) reveal that the two‐factor model widely considered in the literature is 

subject to a misspecification bias of substantial size. Out‐of‐sample forecast test indicates that, 

for three of the four commodities considered, the model estimated by the sequential method 

yields a considerably more accurate price forecast than the model estimated by the 

simultaneous method.  
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1. Introduction 

Recent increase in the level and volatility of oil, metals, and other primary commodity 

prices has raised the importance of a better understanding of the stochastic properties of these 

commodity prices and tools to hedge against price risks. Stochastic dynamics of commodity 

prices and pricing of derivative contracts have been studied extensively in the field of 

financial economics. The standard approach in this literature is to specify the stochastic 

dynamics of an underlying asset, usually the spot price of the commodity under 

investigation, by a series of stochastic differential equations, and derive from the suggested 

model valuation formulas of various derivative contracts whose payoff depends on the value 

of the underlying asset realized at the contract maturity date [7].1  

Recent advancements in this modeling approach have been attained through increasing 

the number of state variables to specify the stochastic dynamics of the underlying spot price 

and/or stipulating more complex stochastic process of each state variable. These flexible 

models generally exhibit better fit to the observed price data. Yet, it is often understated that 

these models only approximate true stochastic dynamics of commodity prices. In particular, 

the theory of storage illustrates that, for a commodity with significant storage cost and 

seasonality in demand and/or supply, an equilibrium path of spot and futures prices is highly 

non-linear and cannot be expressed in a reduced form even in a simulation setting [25]. Thus, 

no matter how flexible they are specified, models specifying the dynamics of commodity 

prices are intrinsically subject to approximation bias. 

The main objective of this study is twofold. First, this study examines bias in a two-factor 

term-structure model of commodity prices widely considered in the literature. The bias is 

measured by comparing the model estimated by two different methods. The first method, the 

one standard in the literature, is to estimate all model parameters simultaneously with a 

panel of observed futures prices. The second method estimates a subset of model parameters 

that appear on the first difference of observed futures prices. First differencing eliminates the 

dynamics of the underlying state variables and leaves only the innovation errors in the 

estimation equation. It also eliminates seasonal and other deterministic price variation from 

                                                           
1 A literature on the dynamics of oil and petroleum commodity prices has been growing. However, 

many studies commonly examine, either separately or jointly with the spot price series, a single time 

series constructed by splicing nearby futures prices (see, for example, Lee et al. [9] and Chang et al. [3]). 

In contrast, term-structure models link the spot price to multiple futures prices observed per day 

through no arbitrage. The focus of this paper is centered on the evaluation of these term-structure 

models in their implications for price variances and cross-sectional correlation. 
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the estimation equation. Thus, it allows estimation of the key model parameters without 

imposing a priori restrictions on the dynamics of the state variables and deterministic price 

variation. The bias in specifying these dynamics is captured by the idiosyncratic error 

included in the right-hand side of the futures price equation in the standard approach of 

estimating all model parameters simultaneously with a panel of futures prices. Thus, the 

magnitude of this misspecification bias is measured through comparing the estimated 

variance of the idiosyncratic error between the two estimation methods.  

The second objective of this study is to propose a sequential procedure to estimate 

parameters in a term-structure model of commodity prices. In this alternative approach, a 

subset of model parameters is first estimated on the first difference of observed futures prices 

so that the estimated parameters are free from bias in specifying deterministic price variation 

and the dynamics of the state variables. In the second step, the remaining parameters, those 

determining seasonal mean prices and deterministic variation in the state variables, are 

estimated on the futures price equations while holding the parameters estimated in the first 

step. The proposed sequential method is evaluated empirically by its ability to forecast 

subsequent period futures prices, relative to the forecast based on the model estimated by the 

standard method of estimating all model parameters simultaneously. 

Empirical applications of the model to four commodities with different characteristics 

(crude oil, natural gas, gold, and corn) illustrate that the conventional approach of estimating 

all model parameters simultaneously yields the variance of the idiosyncratic error that is 

substantially greater than the variance estimated on the first difference model. The result 

indicates that deterministic price variation and the dynamics of the state variables as specified 

in a conventional two-factor model are subject to an approximation bias of substantial size. 

The estimates of other model parameters also differ considerably between the two estimation 

methods. In particular, the simultaneous estimation method yields substantially lower 

seasonal mean price estimates and predicts higher values of the state variables for natural gas 

and gold than the sequential estimation method. Out-of-sample forecast test shows that the 

model estimated by the sequential method yields considerably more accurate forecast than 

the model estimated by the simultaneous method for natural gas, gold, and corn. For crude 

oil, the two estimation methods yield the forecasts with roughly the same accuracy. 

The next section reviews the conventional approach to modeling the term structure of 

commodity prices and illustrates that this modeling approach is inherently subject to 

approximation bias. The section then proposes an alternative approach to the estimation of 
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the model parameters. Section three estimates a two-factor term structure model with data 

from four commodity markets and examines the model’s bias in approximating the true price 

dynamics by comparing the estimated model parameters between the two estimation 

methods. The section also compares the two estimation methods by their relative accuracy in 

forecasting out-of-sample data. Section four concludes the paper. 

2. Bias in Term-Structure Models of Commodity Prices 

A conventional approach to modeling term structure of commodity prices can be 

exemplified by the two-factor model of Sorensen [19]. In this model, the log spot price of the 

commodity is specified as a linear combination of three components; seasonal mean price and 

long-term (LT) and short-term (ST) deviation from seasonal mean price. The model takes the 

following form,2 

 

(1) 
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where tS is the spot price in period t; ( ; )f t b  represents seasonal or other deterministic 

variation in the spot price; 
1,t

x  and 
2,t

x  are the state variables representing, respectively, the 

LT and ST deviation from the seasonal mean price; 1
dw  and 2

dw  are increments to standard 

Brownian motions; and b, , , 1
 , and 2

  are the parameters determining, respectively, the 

seasonal mean price, drift rate, mean reversion rate, and diffusion rate of the two stochastic 

factors.  

The price in period t of the futures contract that matures in period T is obtained as the 

period t conditional expectation, under the risk-neutral probability measure, of the spot price 

in T. For the spot price following the stochastic process in (1), the pricing formula of this 

futures contract is obtained as,3 

 

(2) 
, 1, 2,

ln ( ; ) ( )
T t t t

F f T A x x e     b  

                                                           
2 Sorensen [19] applies the model (1) to the term structure of three agricultural commodity futures (corn, 

wheat, and soybean). Manoliu and Tompaidis [12] and Lucia and Schwartz [11] consider the same 

model in their analyses of natural gas and electricity prices, respectively. 
3 The pricing formula (2) assumes constant market price of risks. See Sorensen [19] for more details. 
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, T t    is the time-to-

maturity, and the two coefficients 1
  and 2

  are generally referred as the market price of 

risk associated with the corresponding state variable. 

The set of parameters defining model (1), 
1 2 1 2

{ , , , , , , }     Ω b , is usually 

estimated with futures price data. To fit equation (2) into multiple prices with different 

maturity dates observed per day, an error term, often called the measurement error, is added 

to the right-hand side of (2), which makes the values of the two state variables 1
x  and 2

x  not 

identifiable. The model is thus characterized econometrically as a latent factor model, which 

is commonly estimated through a filtering method. The model is represented in the following 

state-space form 

 

(3) 
, 1, 2, ,

ln ( ; ) ( )
T t t t T t

F f T A x e x u     b  … Measurement equation 
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1, 1, 1 1,

2, 2, 1 2,

t t t

t t t

x x v

x e x v








  
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where ,T t
u  is the measurement error with ,

E[ ] 0
T t

u  , 2

, ,
V[ ]

T t T t
u  , and , ,

E[ , ] 0
T t S s

u u   for all 

t s  and/or T S . In (4), the vector of innovation errors 1, 2,
{ , }

t t t
v v v  is serially 

uncorrelated and identically distributed with ~ N(0, )
t

v H  for all t where H is a 2 by 2 

symmetric matrix with 2

1
  and 2

2
  on the main diagonal and 1 2

   off diagonal.  

Term-structure models similar to (1) have been considered widely in the literature.4  For 

example, Gibson and Schwartz [6] and Nielsen and Schwartz [14] consider a model similar to 

(1) in analyzing oil and copper, yet without a seasonal variation in mean price.5  Models with 

more than two factors are also suggested in the literature. For example, Schwartz [16] extends 

the model (1) by adding a third factor representing the stochastic interest rate and applies it to 

                                                           
4 See Lautier [8] for a comprehensive review on applications of term-structure models to various 

commodities. 
5 These two studies also parameterize the stochastic process of two factors differently from (1) so that 

the two factors are interpreted as representing the spot price and convenience yield factor. Schwartz and 

Smith [17] illustrate that, aside from the absence of seasonal variation in mean price, these models are 

equivalent to model (1).  
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gold, copper, and crude oil.6 Casassus and Collin-Dufresne [2] also consider a three-factor 

model, yet allow the three factors to follow a more flexible stochastic process than Schwartz 

[16]. Cortazar and Naranjo [4] extend the model into a general n-factor setting, with each 

factor assumed to follow a Gaussian process.  

With an increased number of state variables and/or more complex stochastic process 

stipulated on each variable, these flexible models generally exhibit better fit to the observed 

data. However, it is often understated that these models, even recently developed flexible 

models, only approximate the true stochastic dynamics of commodity prices. As shown by 

the theory of storage [15, 25], for a commodity with significant storage cost and seasonality in 

demand or supply, an equilibrium path of spot and futures prices exhibits highly non-linear 

dynamics. In particular, prices of concurrently traded futures contracts with different 

maturity dates are linked through inter-temporal arbitrage, yet this inter-temporal price link 

breaks at the end of demand year when discretionary inventory is driven to zero. This implies 

that cross-sectional price correlation across concurrently traded contracts varies 

discontinuously across season.7 Stochastic processes of the underlying spot price stipulated in 

models of commodity price dynamics, even recently developed flexible models, cannot 

induce a futures price formula that replicates these complex dynamics of commodity futures 

prices.  

Bias in approximating the true price dynamics can be very large for models imposing 

strong restrictions on the dynamics of the underlying spot price. The magnitude of this bias 

cannot be quantified either empirically or theoretically in the absence of a reduced-form 

expression of an equilibrium price path. One way to measure this bias, as proposed in this 

paper, is to compare the model defined in (3) and (4) with its first difference form, 

 

(5) 
, , , 1 1, 2, ,

ln ln ln ( )
T t T t T t t t T t

F F F B v e v u 


        

 

                                                           
6 Other studies applying three factor models include Miltersen and Schwartz [13] for copper, Bhar and 

Lee [1] and Cortazar and Schwartz [5] for crude oil, Liu and Tang [10] and Tang [23] for crude oil and 

copper, and Todorova [24] for oil and natural gas. Cortazar and Schwartz [5] and Todorova [24] employ 

different parameterization from Schwartz [16] and interpret three factors as representing LT, ST, and 

convenience yield factor. 
7 This highly non-linear price dynamics and other features such as time-to-maturity effects and strong 

seasonality in price volatility are depicted by Smith [18] for corn, Suenaga et al. [22] for natural gas, and 

Suenaga and Smith [21] for crude oil and refined petroleum commodities.  
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,
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T t
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given the distributional assumption of 
,T t

u . 

With the assumption that the innovations to the two state variables follow standard 

Brownian motions, the vector of innovation errors in (5) is serially uncorrelated and 

identically distributed with ~ N(0, )
t

v H  where H is as defined before. Thus, the vector of 

coefficients appearing on the model (5), 
1 1 2 1 2

{ , , , , }    Ω , can be estimated by the 

method of maximum likelihood.  

As is clear from the comparison of the first difference form (5) with the original futures 

price equations (3) and (4), first differencing eliminates the term ( ; )f t b  from (5). The absence 

of the drift parameter  in (5) also indicates that the first differencing eliminates any 

deterministic variations in the dynamics of the two state variables 
1

x  and 
2

x . The two latent 

factors 
1

v  and 
2

v  in (5) are the innovations to the state variables. Thus, the first difference 

form (5) allows the possibility that the dynamics of the two state variables involve 

deterministic variations more flexible than those assumed in (1). The stochastic dynamics of 

the two state variables are also not explicit in (5). They remain only partly and implicitly in (5) 

by restricting the factor loadings that link two latent factors 
1

v  and 
2

v  to observed futures 

prices. Specifically, the loadings of the LT factor are unity for all contracts and for all trading 

days whereas those of the ST factor decay exponentially with time-to-maturity  at the rate of 

exp( )  due to the specification that 
1

x  and 
2

x  follow a BM with drift and the MR process, 

respectively. Because the dynamics of 
2

x  is not explicit in the first difference form (5), the 

value of  is determined by the cross-sectional differences in the price movements of 

concurrently traded contracts in estimation of (5), rather than being estimated on the 

stipulated stochastic dynamics of 
2

x . 

Since the first difference form (5) avoids specifying seasonal and other deterministic price 

variation and the dynamics of the two state variables, the parameter vector 
1

Ω  estimated on 

(5) is free from bias in specifying these dynamics. These two sources of bias can be quantified 

by comparing the estimate of 
1

Ω  with the corresponding parameters estimated on the 

original futures price equations (3) and (4). In particular, the two sources of bias interact with 

each other and are reflected in the measurement error on the right-hand side of (3). Thus, 
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comparing the variance of the measurement error estimated on (5) with the one estimated on 

(3) and (4) provides a measure of the two sources of bias.  

The first difference form (5) also facilitates an alternative approach to the estimation of 

term-structure models of commodity prices. In this approach, the model parameters are 

estimated in two steps. In the first step, a subset of the parameters that appear in the first 

difference form is estimated. In the second step, the remaining parameters are estimated on 

the futures price equations, while holding the other parameters at their estimates from the 

first step. For the two-factor model defined in (1), as an example, the set of parameters 

1 1 2 1 2
{ , , , , }    Ω  is first estimated on the first difference form (5). In the second step, the 

remaining parameters 
2

{ , }Ω b  are estimated on the futures price equations (3) and (4), 

holding 
1

Ω  at its estimate from the first step. The estimate of 
1

Ω  from the first step of this 

sequential procedure is free from bias in specifying ( ; )f t b  and the deterministic variations of 

the two state variables. In the second step, equations (3) and (4) are subject to bias in 

specifying ( ; )f t b  and the dynamics of 
1

x  and 
2

x . However, by holding 
1

Ω  at its estimate 

from the first step, 
2

{ , }Ω b  is estimated without being affected by the bias in the estimate 

of 1
Ω  in the second step of the sequential procedure. 

3. Empirical Applications 

In this section, the two-factor term-structure model defined in (1) is estimated with 

empirical data. The model is estimated in its original state-space form (3) and (4) as well as in 

its first difference form (5), and the magnitude of the model’s misspecification bias is 

examined by comparing the model estimated in the two forms. The section also compares the 

suggested sequential estimation method with the conventional estimation method by their 

ability to forecast futures prices in subsequent periods. 

3.1 Data  

The two-factor term-structure model of commodity prices defined in (1) is estimated in its 

original state-space form (3) and (4) and its first difference form (5). The model is estimated 

with the empirical data from the markets for the following four commodities with different 

characteristics:   

 Natural gas – consumption commodity with strong seasonality in demand, 

 Corn – consumption commodity with strong seasonality in supply,  
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 Crude oil – consumption commodity with very weak seasonality in demand and supply, 

and 

 Gold – investment commodity with virtually no seasonality either in demand or supply.  

 

The model is estimated with the daily settlement prices of futures contracts traded at the 

New York Mercantile Exchange (crude oil, natural gas, and gold) and Chicago Board of Trade 

(corn). The sample period starts on January 1, 1984, for corn and gold; on April 1, 1984, for 

crude oil; and on April 1, 1991, for natural gas and ends on September 1, 2009, for all four 

commodities. For each of the four commodities, the model is estimated with the data up to 

December 31, 2007. 8 The last twenty months of data are used for an out-of-sample forecast 

test. Because long-dated contracts do not trade actively, the prices of contracts of more than 

twelve months to maturity are excluded both from the model estimation and from the 

forecasting test, except that prices of contracts of no more than eighteen months to maturity 

are analyzed for corn. Excluding these observations leaves 75,882 prices among 329 contracts 

for crude oil, 57,960 prices among 245 contracts for natural gas, 46,628 prices among 179 

contracts for gold, and 52,131 prices among 151 contracts for corn.9 

3.2 Model specification 

In estimating term-structure models similar to (1), previous studies commonly specify 

that the variance of the measurement error varies by the delivery month of the contract and 

not by the time-to-maturity or by the trade date. The specification simplifies the variance of 

the measurement error on the right-hand side of (3) to 2 2

, ( )T t m T
   where m(T) converts the 

maturity date T into the contract delivery month. Suenaga [20] illustrates that this simple 

variance structure is empirically not supported and a more flexible variance structure is 

necessary to replicate the complex volatility dynamics for all four commodities examined in 

this study. Given this finding, I specify the variance of the measurement error by a flexible 

function as in (6) so that the variance can vary both by time-to-maturity and by the delivery 

month of the contract,10 

                                                           
8 The model is estimated with the data prior to the global financial crisis (GFC). The two-factor Gaussian 

model defined in (1) is not specified to accommodate large price swings experienced during the GFC. 

Thus, estimating the model with the data inclusive of the GFC period would imply even greater 

approximation bias than the level reported in Section 3.3.  
9 Of these observations, 70,800 prices (307 contracts), 52,780 prices (223 contracts), 43,820 prices (168 

contracts), and 48,762 prices (142 contracts) are used to estimate the model for crude oil, natural gas, 

gold, and corn, respectively. 
10 Although the results are not reported here, I also estimated the model with the simple variance 

structure 2 2

, ( )T t m T
   commonly employed in the literature. Both Akaike Information Criterion and 
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(6)  
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exp sin cos
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d
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 
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
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     
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where d T t   is the time-to-maturity of the contract and 
max

d  is the maximum days to 

maturity for which the model is estimated (one year or 
max

252d   trading days for crude oil, 

natural gas, and gold, and eighteen months or 
max

378d   trading days for corn). 

A common specification in the literature for the deterministic price variation ( ; )f t b  is to 

allow the seasonal mean price to vary by the delivery month of the contract. The specification 

is implemented with a set of dummy variables as follows, 

 

(7)  ,
( ; )

k k s
k K

f s b z


b  

 

where 
,k s

z  is the dummy variable which takes the value one if the maturity date s of the 

futures contract corresponds to the delivery month k and takes the value zero otherwise. I 

employ the same specification as (7) in estimating the model (3) and (4). Of the four 

commodities examined in this paper, crude oil and natural gas have a contract maturing each 

month, gold has six contracts maturing each year (Feb, Apr, June, Aug, Oct, and Dec), and 

corn has five contracts maturing each year (Mar, May, July, Sep, and Dec). Thus, I set 

{1,...,12}K   for crude oil and natural gas, {2,4,6,8,10,12}K   for gold, and {3,5,7,9,12}K   

for corn. 

3.3 Estimation results 

It is illustrated in Section 2 that the errors in specifying deterministic price variation and 

the dynamics of the two state variables are quantified by comparing the estimates of the 

variance of the measurement error between the two estimation methods. Figures 1 through 4 

plot the variance of the measurement error calculated based on the estimate of the variance 

function (6) obtained by the two estimation methods. In each figure, the variance is computed 

for each contract delivery month m(T) over a one-year trading horizon (18 months for corn) 

and is aligned with the trading date. In panel (a) of Figures 1 through 4, the variance 

                                                                                                                                                                      
Schwartz Information Criterion support the model allowing flexible variance structure of (6) over the 

restrictive specification. The specification of variance structure of the measurement error, however, does 

not alter the main results reported in the rest of this paper. 
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estimated on the first difference form (5) exhibits a strong time-to-maturity effect. That is, for 

all four commodities, the variance of the measurement error increases rapidly as the contract 

approaches its maturity date. The variance also indicates strong seasonality for the three 

consumption commodities. For natural gas, the variance in the last two months of trading is 

highest for contracts maturing in winter when demand peaks for space heating. For crude oil, 

the variance is high for contracts maturing in summer and winter. For corn, the variance is 

particularly high for the July contract, because the low inventory right before the arrival of a 

new harvest does not allow unexpected price shocks to be absorbed through the inventory 

adjustment. The variance of the measurement error is also high for the October contract of 

gold, which is known to have a substantially low trading volume relative to the other five 

contracts.  

[FIGURES 1-4 SOMEWHERE HERE] 

 

In panel (b) of Figures 1 through 4, the variance of the measurement error estimated on 

the futures price equations (3) and (4) replicates a similar volatility pattern (seasonality and 

time-to-maturity effect), yet it is substantially greater than the variance estimated on the first 

difference form. For crude oil, the variance of the measurement error estimated on the futures 

price equations, on average over one year of trading and over twelve contracts, is about 17.6 

times greater than the variance estimated on the first difference form. For the other 

commodities, the variance estimated on the futures price equations is on average 91.4, 21.2, 

and 102.4 times greater than the estimate on the first difference form for natural gas, gold, 

and corn, respectively. These results indicate that the errors in specifying deterministic price 

variation and the dynamics of the two state variables are of substantial magnitude in the two-

factor model (1) applied to the four commodities. The size of this bias is surprising for all four 

commodities and particularly for gold, for which price exhibits no systematic variation and 

concurrently traded contracts exhibit high price correlation.  

Tables 1 through 4 report the estimates of the other parameters in model (1). In each table, 

panels (a) and (b) report the estimates obtained by the simultaneous method and those 

obtained by the sequential method, respectively. There are several interesting observations in 

comparing the results obtained by the two estimation methods. First, the coefficient estimates 

for the seasonal mean prices can differ substantially between the two estimation methods. In 

particular, the sequential method yields substantially greater mean price estimates for natural 

gas and gold and lower estimates for corn than the simultaneous estimation. For crude oil, 
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the estimated mean prices are larger but only slightly so for the sequential method than for 

the simultaneous method.  

[TABLES 1-4 SOMEWHERE HERE] 

 

These differences in the estimates of the seasonal mean prices imply that the sequential 

estimation predicts lower average values of the state variables for natural gas and gold and 

higher average values for corn than the simultaneous method. This is indeed the case and 

verified in Table 5, which reports the sample mean and standard deviation of the state 

variables predicted through the Kalman filter. For natural gas, the sample mean of the 

predicted LT factor is substantially greater for the simultaneous estimation than for the 

sequential estimation (0.623 and 0.471, respectively). For gold, the predicted LT factor is 

smaller for the simultaneous estimation (-1.331) than for the sequential estimation (-0.755). 

However, the sample mean of the predicted ST factor is greater for the former (0.879) than for 

the latter (-0.042) by a magnitude greater than the difference in the predicted LT factor. For 

corn, the predicted ST factor is substantially smaller for the simultaneous estimation (-0.138) 

than for the sequential estimation (-0.019). The estimates of the drift parameter µ are also 

consistent with the predicted values of the LT factor. The simultaneous estimation method 

yields a substantially higher (lower) estimate of the drift rate than the sequential method for 

natural gas and corn (gold), for which the predicted values of the LT factor are substantially 

higher (lower) by the former than the latter estimation method.  

[TABLE 5 SOMEWHERE HERE] 

 

The second interesting observation in Tables 1 through 4 is that, for all four commodities, 

the estimated mean-reversion coefficient  is very small, implying a very high persistence of 

the ST factor. The estimated mean-reversion rates translate into an autoregressive coefficient 

of close to one and slightly higher for the simultaneous estimation than for the sequential 

estimation. A well-known downward bias in the estimate of the autoregressive coefficient 

predicts that the simultaneous estimation of the mean-reversion rate is biased upward yet the 

bias is almost negligible due to a large sample size. The results shown in the tables oppose 

this prediction. For all four commodities, the estimated mean reversion rate is higher 

(implying lower persistence) for the sequential estimation than for the simultaneous 

estimation. This result indicates that the cross-sectional differentials in the observed daily 

price changes imply a lower persistence of price shocks than the stochastic process of the 

underlying spot price as estimated with a panel of the observed futures prices.  
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Third, the estimates of the two diffusion parameters 
1

  and 
2

  are of similar magnitudes 

for the two estimation methods, except that, for gold, 
2

  estimated on the futures price 

equations (3) and (4) is much greater than the same coefficient estimated on the first 

difference form (5). This result is consistent with the distribution of the predicted factors. In 

Table 5, the sample standard deviations of the predicted factors differ only slightly between 

the two estimation methods for crude oil, natural gas, and corn. For gold, however, the 

sample standard deviation of the predicted ST factor is substantially greater for the 

simultaneous estimation than for the sequential estimation. 

From equation (5), the variance of the daily futures returns is obtained as: 

 

(8) 2 2 2 2

1 2 1 2 ,
V[ ln ( , )] 2

T t
F t T e e            

 

The sum of the first three terms on the right-hand side of (8) represents the variance of the 

price shocks attributable to the two common factors, which depends on the two diffusion 

parameters (
1

  and 
2

 ), the mean reversion parameter ( ), and time-to-maturity ( ). This 

component is computed for each of the four commodities, based on the three parameters 

estimated by each of the two estimation methods. Figure 5 shows how it changes over a one-

year trading horizon (eighteen months for corn). In the figure, the variance attributable to the 

two common factors decreases exponentially with the time-to-maturity for all four 

commodities, due to the MR process stipulated on the ST factor. For crude oil, natural gas, 

and corn, these dynamics are almost identical for the two estimation methods, except that the 

rate of this decrease is slightly higher for the sequential estimation than for the simultaneous 

estimation due to the lower mean-reversion coefficient estimated by the former method than 

by the latter. For gold, the variance attributable to the two common factors is substantially 

higher for the simultaneous estimation than for the sequential estimation because the 

estimated diffusion parameter of the ST factor is substantially higher for the former than for 

the latter method. This difference in the variance of the ST factor implied by the two 

estimation methods represents the bias in specifying the deterministic price variation and the 

dynamics of the two state variables. For the other three commodities, these biases are almost 

all captured by the measurement error. For gold, a dominant share of the bias is captured by 

the measurement error, yet a considerable amount of the bias is also captured by the ST factor, 

most likely because the bias is correlated across concurrently traded contracts. 

[FIGURE 5 SOMEWHERE HERE] 
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Finally, in Tables 1 through 4, the estimates of the market price of risk parameters are 

very small for all four commodities and for both estimation methods. Interestingly, some of 

these coefficients are found significant by the simultaneous estimation, due primarily to the 

small standard errors. In contrast, the estimated market price of risk parameters are 

insignificant for all commodities by the sequential estimation method.  

3.4 Forecasting test 

In this section, I compare the model estimated by the two methods by their relative 

accuracy in forecasting out-of-sample futures prices. The price in period 
1

t  of the futures 

contract maturing at 1
T  is given by (3) as, 

 

  1

1 1 1 1 1 1, 1 1 1, 2, ,
ln ( ; ) ( )

T t t t T t
F f T A x e x u




    b  

 

where 
1 1 1

T t   . A forecast in period 
0

t  ( 0 1
t t ) of this futures price is constructed as the 

expected value of 
1 1,

ln
T t

F  conditional on the information available at 
0

t , i.e., 0

1 1,
E[ln | ]t

T t
F   

where 0t  denotes the set of information available at 0
t . This conditional expectation is 

obtained as, 

 

(8)  

0 0 01

1 1 1 1

1 0

0 0

, 1 1 1, 2,

( )

1 1 1 0 1, 2,

E ln | ( ; ) ( ) E | E |

( ; ) ( ) ( )

t t t

T t t t

T t

t t

F f T A x e x

f T A t t x e x







 



 

           
     

     

b

b
 

 

Using the coefficients estimated with the data up to December 31, 2007, I compute the price 

forecast, according to (8), for the futures contracts no more than 12 months to delivery (18 

months to delivery for corn) that are traded over the period between January 1, 2008 and 

October 2, 2009. The forecast accuracy is compared between the two estimation methods by 

the root mean squared error (RMSE) of the resulting price forecasts. 

Table 6 summarizes the results of forecasting test. In the table, the RMSE of the price 

forecast for crude oil is roughly identical for the two estimation methods. For the other three 

commodities, the forecast constructed with the model estimated by the sequential method 

attains substantially lower RMSE (by 13, 14, and 76 percent for natural gas, corn, and gold, 
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respectively) than the forecast constructed with the model estimated by the simultaneous 

method.  

[TABLE 6 SOMEWHERE HERE] 

 

4. Conclusion 

In this paper, I consider an alternative approach to the estimation of a term-structure 

model of commodity prices. In this approach, the model parameters are estimated in two 

steps; in the first step, the subset of model parameters is estimated on the first difference of 

futures prices; and, in the second step, the remaining model parameters, those determining 

seasonal mean price and deterministic variation in the common state variables, are estimated 

with a panel of futures prices while holding the other model parameters at their estimates 

from the first step. In the first step of this sequential procedure, first differencing eliminates 

deterministic price variation and the dynamics of the common state variables from the 

estimation equation and thus allows estimation of key model parameters without being 

affected by the bias in specifying these dynamics. The bias in specifying these dynamics, 

hence, can be quantified by comparing the model parameters estimated on the first difference 

form with the model estimated by the conventional approach of estimating all parameters 

simultaneously with a panel of futures prices. 

Empirical estimations of a two-factor term-structure model widely considered in the 

literature with daily futures price data from four commodity markets reveal that the bias in 

specifying deterministic price variation and the dynamics of the state variables is of 

substantial magnitude. The variance of the measurement error estimated with the futures 

price equations is 17.6 to 102.4 times greater than the estimates obtained on the first difference 

form of the model. For gold, the simultaneous method yields a substantially higher estimate 

of the diffusion rate of the ST factor than the estimate obtained by the sequential method. 

These results indicate that the model estimated by the conventional method implies high 

price volatility of the four commodities, yet a dominant share of this high volatility represents 

the errors in specifying the stochastic dynamics of the underlying spot price. The magnitude 

of the upward bias in the estimated variance parameters questions the model’s practicality in 

pricing various derivative contracts, especially options and other contracts whose pricing 

depends heavily on the volatility of the underlying asset value. 
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The estimates of other model parameters also differ substantially between the two 

estimation methods. The estimated mean-reversion coefficient is slightly lower (implying 

higher persistence) for the simultaneous estimation than for the sequential estimation. The 

market price of risk parameters estimated by the simultaneous method are significant for 

some commodities while those estimated by the sequential method are insignificant for all 

four commodities. The sequential estimation yields substantially higher estimates of seasonal 

mean prices for natural gas and gold and slightly lower mean prices estimates for corn than 

the simultaneous estimation. The predicted values of the latent state variables differ 

substantially between the two estimation methods, in accordance with the difference in the 

estimated seasonal mean prices. Without observing the true stochastic dynamics, one cannot 

quantify the relative magnitudes of bias in the estimated model parameters by the two 

estimation methods. However, an advantage of the suggested sequential estimation method 

over the simultaneous method is illustrated by the out-of-sample forecast test, which 

indicates that for three of the four commodities the model estimated by the sequential 

method yields a substantially more accurate price forecast than the model estimated by the 

simultaneous method.  
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Figure 1.  Variance of idiosyncratic error as estimated by two methods for crude oil
(a) Sequential estimation (Estimation on first difference form) (b) Simultaneous estimation (Estimation on futures price 

equations)
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Figure 2.  Variance of idiosyncratic error as estimated by two methods for natural gas
(a) Sequential estimation (Estimation on first difference form) (b) Simultaneous estimation (Estimation on futures price 

equations)
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Figure 3.  Variance of idiosyncratic error as estimated by two methods for gold
(a) Sequential estimation (Estimation on first difference form) (b) Simultaneous estimation (Estimation on futures price 

equations)
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Figure 4.  Variance of idiosyncratic error as estimated by two methods for corn
Sequential estimation (Estimation on first difference form)(a) (b) Simultaneous estimation (Estimation on futures price 

equations)
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Figure 5.  Variance attributable to two common factors
(a) Crude Oil (c) Gold

(b) Natural Gas (d) Corn
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Table 1.  Results of estimating two-factor Gaussian model by two estimation methods: Crude 

oil+ 

 
+ Estimates of the coefficients determining the variance of the measurement error are not included in this table. 

* Parameters are estimated on the first difference model in the first stage of two-step estimation. 

 

Coefficient Srd. Err. t -ratio Coefficient Srd. Err. t -ratio

Seasonal mean price                           

January 3.3937 0.0017 1989.319 3.4094 0.0053 646.754

February 3.3936 0.0017 1996.421 3.4093 0.0053 646.685

March 3.3931 0.0017 1999.079 3.4087 0.0053 646.606

April 3.3928 0.0017 2003.313 3.4084 0.0053 646.434

May 3.3923 0.0017 1999.074 3.4080 0.0053 646.476

June 3.3918 0.0017 1999.023 3.4074 0.0053 646.314

July 3.3913 0.0017 1989.323 3.4067 0.0053 645.834

August 3.3910 0.0017 1982.357 3.4064 0.0053 645.707

September 3.3914 0.0017 1984.037 3.4067 0.0053 645.661

October 3.3919 0.0017 1985.926 3.4073 0.0053 645.970

November 3.3930 0.0017 1990.900 3.4087 0.0053 646.509

December 3.3938 0.0017 1990.796 3.4095 0.0053 646.662

Physical dynamics of common factors

m  × 104 0.1827 0.0365 5.004 0.1780 0.0040 44.896

s 1 0.0140 0.0003 53.492 0.0142 0.0003 54.206 *

s 2 0.0169 0.0007 25.340 0.0167 0.0007 23.622 *

f (= e - k ) 0.9951 0.0001 1.73E+04 0.9938 0.0003 3.35E+03 *

r 0.0000 0.0000 0.217 0.0132 0.0498 0.264 *

Market price of risks

l1 × 104 0.2862 0.0361 7.928 0.3367 0.9447 0.356 *

l2 × 104 0.3571 0.2572 1.389 0.3857 0.7082 0.545 *

Simultaneous estimation Sequential estimation

Table(s)



 

 

Table 2.  Results of estimating two-factor Gaussian model by two estimation methods: 

Natural gas+ 

 
+ Estimates of the coefficients determining the variance of the measurement error are not included in this table. 

* Parameters are estimated on the first difference model in the first stage of two-step estimation. 

 

 

Table 3.  Results of estimating two-factor Gaussian model by two estimation methods: Gold+ 

 
+ Estimates of the coefficients determining the variance of the measurement error are not included in this table. 

* Parameters are estimated on the first difference model in the first stage of two-step estimation. 

Coefficient Srd. Err. t -ratio Coefficient Srd. Err. t -ratio

Seasonal mean price                           

January 0.6568 0.2048 3.207 0.7947 0.0024 335.964

February 0.6087 0.2049 2.970 0.7481 0.0022 336.686

March 0.5459 0.2061 2.648 0.6875 0.0021 321.506

April 0.4753 0.2048 2.321 0.6143 0.0018 341.968

May 0.4635 0.2046 2.265 0.6026 0.0018 342.845

June 0.4657 0.2047 2.275 0.6048 0.0018 340.660

July 0.4705 0.2047 2.299 0.6097 0.0018 330.303

August 0.4773 0.2047 2.331 0.6169 0.0019 326.274

September 0.4829 0.2048 2.358 0.6230 0.0019 325.493

October 0.5023 0.2047 2.454 0.6434 0.0019 340.332

November 0.5665 0.2050 2.764 0.7068 0.0020 352.435

December 0.6321 0.2048 3.086 0.7712 0.0023 340.974

Physical dynamics of common factors

m  × 104 0.3635 0.1235 2.943 0.3322 0.0212 15.684

s 1 0.0132 0.0002 53.018 0.0123 0.0002 54.331 *

s 2 0.0232 0.0005 50.515 0.0263 0.0005 54.932 *

f (= e - k ) 0.9941 0.0002 5432.031 0.9925 0.0004 2.31E+03 *

r 0.0000 0.0004 0.063 0.0000 0.0002 0.149 *

Market price of risks

l1 × 104 0.6747 0.1267 5.324 0.5556 0.3187 1.743 *

l2 × 104 -0.2838 0.1861 -1.525 -0.3295 0.3429 -0.961 *

Simultaneous estimation Sequential estimation

Coefficient Srd. Err. × 102 t -ratio Coefficient Srd. Err. t -ratio

Seasonal mean price                           

February 6.3824 0.0042 1.53E+05 6.7263 0.1082 62.186

April 6.3824 0.0040 1.58E+05 6.7265 0.1082 62.187

June 6.3825 0.0039 1.66E+05 6.7265 0.1082 62.188

August 6.3825 0.0039 1.63E+05 6.7264 0.1082 62.187

October 6.3823 0.0039 1.62E+05 6.7263 0.1082 62.186

December 6.3823 0.0041 1.56E+05 6.7263 0.1082 62.186

Physical dynamics of common factors

m  × 104 -0.1063 3.0621 -3.471 -0.0042 0.0026 -1.584

s 1 0.0110 0.0220 50.287 0.0105 0.0002 59.251 *

s 2 0.0088 0.0197 44.968 0.0039 0.0002 20.467 *

f (= e - k ) 0.9996 0.0008 1.26E+05 0.9986 0.0001 1.09E+04 *

r 0.0000 0.0193 0.131 0.0000 0.0006 0.041 *

Market price of risks

l1 × 104 -0.3744 3.0777 -12.164 -0.1991 0.3347 -0.595 *

l2 × 104 -0.2036 0.8914 -22.840 0.0975 0.2111 0.462 *

Simultaneous estimation Sequential estimation



 

 

 

Table 4.  Results of estimating two-factor Gaussian model by two estimation methods: Corn+ 

 
+ Estimates of the coefficients determining the variance of the measurement error are not included in this table. 

* Parameters are estimated on the first difference model in the first stage of two-step estimation. 

 

 

Table 5.  Sample statistics of the predicted latent factors 

 
 

 

Table 6.  Results of out-of-sample forecast test: RMSE of the forecast for the period between 

Jan 1, 2008 and Oct 2, 2009  

 
 

 

Coefficient Srd. Err. × 102 t -ratio Coefficient Srd. Err. t -ratio

Seasonal mean price                           

March 5.9352 0.5515 1076.205 5.8221 0.0585 99.587

May 5.9458 0.5519 1077.285 5.8323 0.0584 99.814

July 5.9503 0.5527 1076.501 5.8367 0.0585 99.727

September 5.9271 0.5500 1077.609 5.8141 0.0581 100.013

November 5.9169 0.5563 1063.539 5.8039 0.0583 99.521

Physical dynamics of common factors

m  × 104 0.0456 0.8687 5.243 -0.0018 0.0324 -0.056

s 1 0.0092 0.0154 59.420 0.0103 0.0002 68.347 *

s 2 0.0128 0.0222 57.643 0.0128 0.0003 40.859 *

f (= e - k ) 0.9971 0.0090 1.11E+04 0.9965 0.0001 1.24E+04 *

r 0.0000 0.0025 0.428 0.0000 0.0001 0.183 *

Market price of risks

l1 × 104 0.1742 1.8421 9.459 0.0884 0.0761 1.163 *

l2 × 104 -0.0794 5.8130 -1.366 -0.3788 0.2848 -1.330 *

Simultaneous estimation Sequential estimation

Mean Std. dev. Mean Std. dev.

Crude oil

x 1 -0.177 0.444 -0.175 0.444

x 2 0.015 0.154 -0.003 0.144

Natural gas

x 1 0.634 0.605 0.471 0.595

x 2 -0.025 0.156 -0.002 0.247

Gold

x 1 -1.331 0.442 -0.755 0.265

x 2 0.879 0.342 -0.042 0.114

Corn

x 1 -0.287 0.151 -0.294 0.152

x 2 -0.138 0.158 -0.019 0.172

Sequential estimationSimultaneous estimation

Simultanous Sequential Sequential in %

estimation estimation of Simultaneous

Crude oil 0.155 0.159 103%

Natural gas 0.232 0.201 87%

Gold 0.039 0.009 24%

Corn 0.058 0.049 86%




