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Abstract 

Silver-containing antimicrobial agents are used in various medical products. However, their 

toxicity to mammalian cells has not been sufficiently evaluated. Numerous studies have 

unveiled evidence of significant antimicrobial properties associated with Ag ions. In cell 

culture media or human body fluids, the free Ag
+
 has rich opportunities to complex with Cl

-
. 

Surprisingly, studies on the toxicity of solid form AgCl(s) to mammalian cells are quite 

limited. In this study, we evaluated the cytotoxicity of Ag ions and silver chloride colloids on 

red blood cells and human mesenchymal stem cells (hMSCs). The adverse effects of silver 

chloride on red blood cells and hMSC were viewed by SEM and LIVE/DEAD viability 

staining, respectively. Among different tested chemical forms of silver, AgCl was identified 

to be the least cytotoxic. Moreover, a decline in the cytotoxicity of AgCl at significantly high 

concentrations was observed. We attributed the reduced cytotoxicity to aggregated AgCl 

which limited the bioavailability of free Ag
+
 ions.     
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1. Introduction 

Currently, silver-containing antimicrobial agents have gained popularity in the fields of 

wound-dressing, urinary catheters and cardiovascular implants. Ag nanoparticles are of 

particular interest because of the enhanced nanomaterial synthesis and characterization 

techniques. The widespread use of Ag, however, has raised issues concerning Ag toxicity to 

aquatic species and humans. Ag is the second extremely harmful metal after mercury to 

freshwater fish and invertebrates, with median lethal concentration (LC50) values of between 

6.5 and 65 µg Ag/L (Wood, 1996), mainly due to the liberated silver ions. The Ag
+ 

toxicity is 

associated with the perturbation of Na
+
- K

+ 
transportation and ionoregulation ability of fish 

thus leading to cardiovascular collapse (Kennedy, 2010). Most recent Ag toxicity studies 

were focused on nanosilvers (Asharani, 2008). Apart from releasing active Ag
+
, several 

studies unravelled that nanosilvers exerted toxic effects on cultured cells by increasing lactate 

dehydrogenase (LDH) leakage, inhibiting mitochondrial function (Hussain, 2005), producing 

oxidative stress (Carlson, 2008), damaging DNA (Asharani, 2009) and so on. In cell culture 

media or human body fluid, the free Ag
+
 has rich opportunities to complex with Cl

-
. AgCl 

formation has been confirmed to protect rainbow trout against silver toxicity (Bielmyer, 

2008). Surprisingly, few published studies have reported dissolved silver chloride (AgCln) 

toxicology (Rodgers, 1997). The study on potential toxicity of solid form AgCl(s) to 

mammalian cells is even more limited. Considering the water solubility of AgCl(s) is only 

0.013 mM (Santoro, 2007) at room temperature, it is essential to understand the toxic 

involvement of this Ag speciation.      

Since silver-impregnated medical devices are often exposed to the bloodstream, haemolysis 

evaluation is one of the fundamental tests in determining the safety of such devices. On the 

other hand, human mesenchymal stem cells (hMSCs) represent a promising cell-based 

therapy for wound healing and skin regeneration, as they are openly exposed to wound 

dressing materials. Therefore, the present study was performed to assess the in vitro acute 

toxicity of silver nitrate in comparison with silver chloride colloids to red blood cells and 

bone marrow derived hMSCs. Most of the earlier studies evaluated the Ag cytotoxicity at 

relatively low doses. For example, Sopjani et al. (2009) has reported that at concentrations of 

100 – 500 nM Ag
+
 triggered eryptosis by interfering with the energy balance. Employing 

comet assay and chromosomal aberration tests, Hackenberg (2011) demonstrated hMSCs 

DNA damage by 1 to 100 µM Ag nanoparticles. However, Ag susceptibility studies have 

produced different minimal inhibition concentrations (MIC) data due to complex solubility 

issues that affect the bioavailability of Ag ions. Kim et al. (2007) determined the  MIC of Ag 

nanoparticles to be  3.5 ng/mL for Staphylococcus aureus, while other Ag microbiocidal 

studies have revealed the MICs against Escherichia coli and Staphylococcus aureus could 

range from 74 to 740 µM (Chopra, 2007). Hence, acute cytotoxicity assessment of silver 

species at high concentrations becomes necessary to guarantee a safe therapeutic-window. 

We attempted to investigate toxic effects of Ag ions from 0.0075 to 5.0 mM. We assumed 

that Ag ions would react with chloride ions and therefore reduce the cytotoxicity. In 

particular, the formation of silver chloride and its functional impairment to the above 

mentioned mammal cells were investigated.  The particles were characterized by dynamic 

light scattering. The adverse effects of silver chloride on red blood cells and hMSCs were 

viewed by SEM and LIVE/DEAD viability staining, respectively. 
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2. Material and Methods 

2.1. Chemicals  

Silver nitrate was purchased from Sigma-Aldrich. De-ionized (DI) water was distilled by a 

Milli-Q water purification system. 1 x Phosphate-buffered saline (PBS) was ordered from 

Invitrogen.  

 

2.2. AgCl colloids  preparation 

34 mg silver nitrate was dissolved in 10 mL DI water to get a 20 mM stock solution. Silver 

chloride was formed immediately after mixing AgNO3 with PBS. The particle growth and 

precipitation was monitored by DLS.   

 

2.3. Haemolysis 

Rabbit and rat red blood cell (RBC) samples were obtained from apparently healthy animals 

that were housed in the Experimental Animal Unit of Jilin University. The cells were diluted 

in PBS (4 vol %) for haemolysis study. AgNO3 stock solution (20 mM) was used as a source 

of silver ions. The stock solution was diluted by adding DI water to obtain free silver ion 

concentrations which ranged from 0.08 to 5 mM. From DLS characterization results, we 

know the AgCl colloidal solution was stable only for about 1 h. To distinguish the 

cytotoxicity of free Ag
+
 ions and AgCl colloids, we always freshly prepared AgCl colloids by 

vigorously mixing 1 mL of silver nitrate solution and 1 mL of PBS solution.  After 30 min, 

the cell suspension was mixed with Ag
+ 

and colloidal AgCl and incubated for 1 h at 37°C in 

the minishaker. A control solution that contained only PBS was used as a reference for 0% 

hemolysis. Triton X-100 at a concentration of 0.5% served as a positive control. The released 

haemoglobin concentration was measured at 576 nm.  
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2.4. Human mesenchymal stem cell culture, staining and cytotoxicity study 

Human bone marrow-derived MSCs (Cambrex, Walkersville, MD) were cultured in 

Mesenchymal Stem Cell Growth Medium with 1% penicillin/streptomycin. The cells were 

subcultured three times after reaching 90% confluence at 37°C/5% CO2. Passage 5 hMSCs 

were seeded at the density of 1x10
4
/well (in 96-well plate) in either fresh media containing (1) 

0.0075 to 10 mM silver nitrate, (2) 0.0075 to 10 mM AgCl colloids aged for 30 min. 

To visualize the cell attachment and morphology after incubation with silver compounds, in 

the form of either silver nitrate or silver chloride colloids, the cells were stained with the 

LIVE/DEAD
®
 cell viability/cytotoxicity kit (Molecular Probes) for 30 min, and examined 

using an Olympus BX61 microscope. 

The cell viability was examined using 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxy-

methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cells were allowed to attach 

in 24-well plates in 1 mL of medium with different concentrations of silver nitrate or silver 

chloride colloids. After overnight incubation at 37 °C in 5% CO2, the light absorbance was 

measured at 490 nm with a microplate reader. The cell viability was expressed as the ratio of 

the number of viable cells with Ag treatment to that without treatment. Experiments were 

repeated in triplicates, and consistent results were obtained.  

2.5. Red blood cell preparation for SEM 

The shape changes of red blood cells incubated with AgCl colloids were observed using a 

field emission SEM (JEOL JSM-6701F). The cells were harvested by centrifugation at 1500 
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rpm for 5 min. They were washed with PBS three times and then fixed in PBS containing 2.5% 

glutaraldehyde for 1 h. The cells were further washed with DI water, followed by dehydration 

using a series of ethanol washes. Several drops of the suspension were placed on a carbon 

tape and left to dry under room temperature. The samples were coated with platinum prior to 

SEM analyses. 

2.6.Statistical analysis 

  All the experiments were replicated three times. The results of dose-response haemolysis are 

presented as means ± standard deviations (S.D.) of three separate experiments with the aid of 

Windows Excel computer software.   

3. Results  

3.1. Silver chloride particle characterization 

We prepared colloidal AgCl at total Ag concentrations ranging from 0.02 to 2.0 mM. 

AgCl colloids seemed easily agglomerated or aggregated in PBS at high concentrations. 

When 0.31 to 2.0 mM AgNO3 was reacted with PBS, the colour of solution changed from 

transparent to light blue, grey and colourless within 4 h. Visible precipitates settled to the 

bottom were further revealed by light microscope (Fig. 1).  The individual primary grains 

formed are roughly circular, close inspection reveals particles of ~ 5 µm diameter. The 

aggregates gradually assembled into a network of branching, treelike shapes with dimensions 

exceeding hundreds of micrometer range. Similarly, Choi et al. (2011) revealed that AgCl 

tends to form larger particles. The settled precipitates definitely exceeded the nanometric 

range in dimensions. No obvious precipitation was observed within 1 h when [AgNO3] ≤ 0.16 

mM.  

 

3.2. Haemolytic properties of Ag
+ 

and AgCl colloid 

In Fig. 2, the haemolysis percentage of rat blood cells caused by Ag
+ 

in DI and pre-formed 

AgCl was compared after 1 h incubation at 37ºC. As expected, haemolysis induced by Ag
+ 

indicated a dose-dependent increase from 0.02 mM to 0.16 mM, the haemolytic percentages 

of rat red blood cells incubated with 0.02, 0.04, 0.08 and 0.16 mM AgNO3 were 50%, 80%, 

90% and 100%, respectively; however, haemolysis dropped significantly at 0.31 mM (80%) 

and even lower at 0.625 mM (50%). At concentrations above 0.625 mM, the measured 

haemolytic percentages were maintained at 40%. Although colloidal AgCl was not 

haemolytic at 0.04 mM, similar to the case of Ag
+
, it showed the maximum haemolysis at 

0.16 mM and a declined haemolytic property from 0.31 mM. Unlike rat RBCs, rabbit RBSs 

were extremely fragile to silver toxicity. Ag
+ 

in DI water caused 100% rabbit RBCs 

haemolysis from 0.02 to 2.5 mM. Even the formation of AgCl colloids (from 0.08 to 2.5 mM) 

did not protect the rabbit RBCs from being haemolyzed.    

 

3.3. Red blood cell morphology changes  

In agreement with quantity results of haemoglobin release, morphological changes of rat red 

blood cells observed by light microscope displayed that, while control cells kept a typical 

biconcave shape, exposure of rat RBCs to Ag
+ 

in DI caused serious haemolysis and showing 

many ghost cells. The number of ghost cells increased with increasing concentration of Ag
+
 

from 0.16 to 0.62 mM (Fig. 3). We hypothesized that haemoglobin wrapped inside these cell 

fragments contributed to the lower haemoglobin readings. Exposure of RBCs to AgCl 

colloids did not exhibit apparent morphological changes at 0.02 mM. Haemolysis started at 

0.04 mM and less RBCs were left at concentrations from 0.08 to 0.31 mM. Surprisingly, the 

light microscope images showed more swollen cells and less ghost cells as the AgCl colloids 

concentration increased to 0.62 mM. These echinocyte II/III cells were further characterized 
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by SEM. The SEM micrographs (Fig. 4) showed loss of biconcave structure and ruffled 

membrane on the surface of RBCs.  

 

3.4. hMSCs morphology alterations and cytotoxicity evaluation 

After overnight incubation, a dose-dependent (from 0.0075 to 0.125 mM) cell death induced 

by Ag was confirmed by MTS test. At a concentration of 0.125 mM, silver nitrate killed 86% 

cells as evidenced by necrosis cells lifting of 96-well plate surface. Incubation with the high 

concentrations of Ag, in contrary, left cells still attached on tissue culture plate surface, which 

indicated the absence of cellular necrosis. Treated cells appeared to have shrunk with a few 

cellular extensions as compared to control cells. The restricted cell spreading patterns could 

be due to damage to cytoskeletal functions by AgCl colloids. Similar results were observed 

by Asharani et al. in human glioblastoma cells (U251) treated with 200 µg/mL Ag-starch 

nanoparticles. The cells were observed even at 10 mM, with white patches on the cell body. 

  

4. Discussion 

With the rapidly expanding use of Ag in medical applications, especially for the management 

of burn patients, human exposure is frequent and so evaluation of their potential cytotoxicity 

becomes essential. Former studies have identified the toxic outcome of silver in several in 

vitro cell systems and in vivo animal models. The current study compares cytotoxic potentials 

of Ag
+
 and AgCl to red blood cells and hMSCs. To assess the impact of AgCl formation on 

ionic silver cytotoxicity, we separately tested haemolysis of free Ag ions in DI and pre-

formed AgCl colloidal in PBS. Free Ag ions at concentration of 0.02 mM caused significant 

rat blood haemolysis (50%). Contrary to the expectation, silver ions of higher concentration 

(above 0.31 mM) were less haemolytic than 0.16 mM. Although pre-formed AgCl colloids 

caused dramatically less haemolysis than Ag
+ 

at doses 0.02 to 0.16 mM, similar to the case of 

free ions, AgCl colloids induced the maximum haemolysis at 0.16 mM. At higher doses 

(0.31- 5.0 mM), the haemolytic difference of Ag
+
 and AgCl colloids was not obvious by 

measuring released haemoglobin amount, but the morphology changes were totally different 

which will be discussed later. Previously, most studies indicated a dose-dependent increase in 

lesions related to various levels of silver exposure. To our knowledge this is the first study to 

disclose the existence of such a turning-point. Although the exact mechanism underlying this 

critical point is yet to be elucidated, one possible explanation for this would be the variation 

of the reactive oxygen species (ROS) does not follow a dose-dependent manner. Panda et al. 

(2011) prepared Ag
+
, Ag nanoparticles and colloidal AgCl for sake of genotoxicity and 

cytotoxicity evaluation on onion bulb cells. In their study, one kind of ROS, O2
.-
, generated 

by Ag
+ 

indicated a significant dose-dependent increase in the range 0-0.37 mM, however, O2
.- 

content dropped remarkably at the next highest concentration (0.74 mM). Evidence of ROS 

leading to lipid peroxidation of the RBC membrane and haemolysis has been reported before 

(Clark, 1983, Asharani, 2010), taken together, our data could suggest a correlation between 

AgCl colloids and free radicals generation.   

Recent reports have established the binding of Ag
+ 

ions with dissolved organic matter, 

thiosulfate and chloride might lead to a mitigated toxicity of silver species (Hogstrand, 1996; 

Russell, 1998). We hypothesize the reduced cytotoxicity of Ag
+
 was due to the formation of 

AgCl colloids.  

To assess the impact of Cl
-
 presence on haemolysis, the formation and growth of AgCl in 

PBS (total [Cl
-
] = 139.6 mM) was studied. [Cl

-
] was much higher than the added [Ag

+
] which 

would ensure complete complexation of Ag
+
 ions. At low Ag

+ 
concentration (0.08 and 0.16 

mM), no AgCl precipitation was observed after mixing with PBS (Fig. 1) within 1 h. As the 
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Ag
+ 

became more concentrated, for example, at [AgNO3] = 0.31 mM, AgCl colloids were 

observed to become bigger in size as a function of time.   The mean diameter of AgCl 

colloids (at 5, 10, 15, 20, 25 and 30 m) measured by DLS was 79, 105, 137, 179, 222 and 387 

nm, respectively. Whereas the reaction time was longer, the presence of sedimenting particles 

(5080 µm in diameter) were detected by the DLS instrument. The poor data quality was not 

good enough for DLS characterization after 30 m. These findings suggest that at high 

concentrations AgCl colloids are not stable at all. Potential change of AgCl colloidal particle 

size over time, however, is often ignored by some earlier studies. For example, Choi et al. 

(2008) prepared 0.7 mM AgCl colloidal particles by mixing 1 mL of 14 mM silver nitrate and 

1 mL of 28 mM sodium chloride with 18 mL of distilled water. The particle sizes were 

reported from 0.1 to 2 µm with an average diameter of 0.25µm. The authors could interpret 

experimental results more precisely by incorporating the aging time of their AgCl colloids 

before adding them to the tested microorganisms. The particle size measured over the 

duration of toxicological bioassays may enhance our insights on the nature of the Ag 

exposure.  The stock solution of AgCl prepared by Panda et al. (2011) was also very high at 

1.48 mM. Again, the descriptions of AgCl size and aggregation diverged from detailed to 

very limited. Based on our observation, even at a concentration of 1.25 mM, AgCl colloids 

rapidly precipitated within 15 min. This information is highly important, since the dispersion 

status of tiny particles might affect the subsequent toxicity.   

We speculate that three major reasons are associated with the reduced cytotoxicity of Ag
+ 

observed in our study. First of all, a decreased concentration of Ag
+ 

is expected due to the 

formation of AgCl that consumed Ag
+
. Secondly, like the ionic Ag

+ 
may sorb to silver 

nanoparticles (Liu, 2010), high AgCl colloidal concentrations will provide more surfaces for 

Ag
+
 binding. Thirdly, at higher initial [AgNO3] concentration, primary colloids formed 

aggregates faster which limits the dissociation of free Ag
+
.   

In parallel, we performed Ag ions and AgCl colloids haemolysis studies on rabbit red blood 

cells. At the same concentration, Ag caused different haemolysis between rat and rabbit 

RBCs. Rabbit RBCs are more sensitive to Ag than rat RBCs. For example, 0.63 and 1.25 mM 

AgCl caused 80% and 30% rat blood cell lysis, but still caused 100% haemolysis of rabbit 

blood cells. The reduced haemolysis due to AgCl formation was not observed until [AgNO3] 

= 5 mM. The difference may be related to the nature of the red blood cell membrane. It is 

suggested that the phospholipid composition of the red cell membrane is characteristic for 

each animal species (Kasarov, 1970), therefore leptospirae also caused different red blood 

cell degradation among tested animals. Contrasting effects of chloride protection on the 

toxicity of silver are documented in the earlier studies for different test species. For example, 

Lee et al. (2005) tested the inhibition growth of two green algae, C. reinhardtii and P. 

subcapitata exposure to dissolved silver. The two algae differ in their response to the 

attenuation of silver chloride complexes. In a comparison of Ag
+ 

toxicity to rainbow trout and 

European eel, Grosell et al. (2000) found marked fish species-specific differences. The 

different silver tolerance with the presence of ambient Cl
-
 was related to the differences in 

whole body Na
+
 turnover rates and differences in chloride homeostatic mechanisms.  

 

SEM analysis of rat red blood cells following 0.6 mM AgCl colloid exposure unveiled the 

surface characteristics of rat RBCs at an early stage of haemolysis. In addition to the swollen 

cell body as shown in light microscope images, AgCl exposure resulted in multiple groves on 

the surface of RBCs. At high magnification, numerous pores on the cell membrane were 

disclosed. Therefore, the morphologic alterations in rat RBCs can be induced by changes in 

the cell membrane. Our SEM results are consistent with those AFM studies recently reported 
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by Asharani et al. (2010). In their study, the authors attributed the swollen echinocytes to the 

damaged membrane that further challenged the osmotic barrier, thus resulting in increased 

water uptake by the cells.  

Following overnight incubation, it was found that Ag
+ 

was extremely toxic to hMSCs, they 

induced significant necrosis at 0.125 mM. However, as shown in Fig. 5, no dose-response 

was observed in cells treated by AgCl colloids at higher concentrations (0.25 to 10 mM); 

indeed, 0.5 mM AgCl treated cells displayed less cellular shrinkage than 0.12 mM.  The 

absence of massive cell death indicated AgCl treatment mainly resulted hMSCs apoptosis. 

Although our data provided some factors that should be considered in assessing AgCl 

colloids cytotoxicity, further molecular level studies are required in order to understand the 

mode of cytotoxic mechanisms.   

Conclusions 

In summary, ionic Ag exhibited dramatically higher cytotoxicity than that of pre-formed 

AgCl colloid. The current study reinforces the importance of Cl
-
 interaction in acute Ag ions 

toxicity evaluation. Our results confirm the protection role of Cl
-
, on both red blood cells and 

hMSCs, especially at high doses far beyond previously investigated concentrations. Moreover, 

AgCl colloids at high concentrations were found to aggregate and to settle within 30 m. The 

absence of standard aging time will undoubtedly complicate interpretation of Ag acute 

toxicity data. In order to reduce the discrepancies among different laboratory cytotoxic 

studies, it would be beneficial to specify detailed experimental conditions.  
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Figures 

 

Fig. 1. Unstable AgCl colloids formed after mixing AgNO3 with phosphate-buffered saline. 

(A) Gradually increased level of AgCl aggregation was obvious with higher concentrations of 

AgNO3 (0.08 to 2.0 mM) and longer aging time (20 min to 1 h). (B) Light microscopic 

images of typical AgCl colloids at 30 min and 1 h. Initial [AgNO3] = 0.31 mM.  

 

 

 

 

 

 

 

 

Fig. 2. Heamolysis percentages of rat and rabbit red blood cells caused by Ag
+
 ions in de-

ionized water and pre-formed AgCl colloids. Data are presented as the mean ± S.D. (n = 3). 
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Fig. 3. Morphological observation of rat red blood cells exposure to Ag
+
 ions and AgCl 

colloids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Scanning electron microscopic images of rat red blood cells before and after treated 

with 0.62 mM AgCl colloids. 
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Fig. 5. Ag
+
 in de-ionized water caused necrosis of human mesenchymal stem cells (hMSCs) 

while AgCl colloids led to apoptosis of the cells.  


